Version 50.2 by Xiaoling on 2023/02/27 09:26

Show last authors
1 [[image:image-20230131115217-1.png]]
2
3
4
5 **Table of Contents:**
6
7 {{toc/}}
8
9
10
11
12
13
14 = 1. Introduction =
15
16 == 1.1 What is LoRaWAN Pressure Sensor ==
17
18
19 (((
20 The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
21 )))
22
23 (((
24 The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
25 )))
26
27 (((
28 The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 )))
30
31 (((
32 PS-LB supports BLE configure and wireless OTA update which make user easy to use.
33 )))
34
35 (((
36 PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
37 )))
38
39 (((
40 Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
41 )))
42
43 [[image:1675071321348-194.png]]
44
45
46 == 1.2 ​Features ==
47
48
49 * LoRaWAN 1.0.3 Class A
50 * Ultra-low power consumption
51 * Measure air / gas or water pressure
52 * Different pressure range available
53 * Thread Installation Type or Immersion Type
54 * Monitor Battery Level
55 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
56 * Support Bluetooth v5.1 and LoRaWAN remote configure
57 * Support wireless OTA update firmware
58 * Uplink on periodically
59 * Downlink to change configure
60 * 8500mAh Battery for long term use
61 * Controllable 3.3v,5v and 12v output to power external sensor
62
63
64
65 == 1.3 Specification ==
66
67
68 (% style="color:#037691" %)**Micro Controller:**
69
70 * MCU: 48Mhz ARM
71 * Flash: 256KB
72 * RAM: 64KB
73
74 (% style="color:#037691" %)**Common DC Characteristics:**
75
76 * Supply Voltage: 2.5v ~~ 3.6v
77 * Operating Temperature: -40 ~~ 85°C
78
79 (% style="color:#037691" %)**LoRa Spec:**
80
81 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
82 * Max +22 dBm constant RF output vs.
83 * RX sensitivity: down to -139 dBm.
84 * Excellent blocking immunity
85
86 (% style="color:#037691" %)**Current Input Measuring :**
87
88 * Range: 0 ~~ 20mA
89 * Accuracy: 0.02mA
90 * Resolution: 0.001mA
91
92 (% style="color:#037691" %)**Voltage Input Measuring:**
93
94 * Range: 0 ~~ 30v
95 * Accuracy: 0.02v
96 * Resolution: 0.001v
97
98 (% style="color:#037691" %)**Battery:**
99
100 * Li/SOCI2 un-chargeable battery
101 * Capacity: 8500mAh
102 * Self-Discharge: <1% / Year @ 25°C
103 * Max continuously current: 130mA
104 * Max boost current: 2A, 1 second
105
106 (% style="color:#037691" %)**Power Consumption**
107
108 * Sleep Mode: 5uA @ 3.3v
109 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
110
111
112
113 == 1.4 Probe Types ==
114
115 === 1.4.1 Thread Installation Type ===
116
117
118 [[image:1675071448299-229.png]]
119
120 * Hersman Pressure Transmitter
121 * Measuring Range: -0.1 ~~ 0 ~~ 60MPa, see order info.
122 * Accuracy: 0.2% F.S
123 * Long-Term Stability: 0.2% F.S ±0.05%
124 * Overload 200% F.S
125 * Zero Temperature Drift: 0.03% FS/℃(≤100Kpa), 0.02%FS/℃(>100Kpa)
126 * FS Temperature Drift: 0.003% FS/℃(≤100Kpa), 0.002%FS/℃(>100Kpa)
127 * Storage temperature: -30℃~~80℃
128 * Operating temperature: -20℃~~60℃
129 * Connector Type: Various Types, see order info
130
131
132
133 === 1.4.2 Immersion Type ===
134
135
136 [[image:1675071521308-426.png]]
137
138 * Immersion Type, Probe IP Level: IP68
139 * Measuring Range: Measure range can be customized, up to 100m.
140 * Accuracy: 0.2% F.S
141 * Long-Term Stability: ±0.2% F.S / Year
142 * Overload 200% F.S
143 * Zero Temperature Drift: ±2% F.S)
144 * FS Temperature Drift: ±2% F.S
145 * Storage temperature: -30℃~~80℃
146 * Operating temperature: -40℃~~85℃
147 * Material: 316 stainless steels
148
149
150
151 == 1.5 Probe Dimension ==
152
153
154
155 == 1.6 Application and Installation ==
156
157 === 1.6.1 Thread Installation Type ===
158
159
160 (% style="color:blue" %)**Application:**
161
162 * Hydraulic Pressure
163 * Petrochemical Industry
164 * Health and Medical
165 * Food & Beverage Processing
166 * Auto-controlling house
167 * Constant Pressure Water Supply
168 * Liquid Pressure measuring
169
170 Order the suitable thread size and install to measure the air / liquid pressure
171
172 [[image:1675071670469-145.png]]
173
174
175 === 1.6.2 Immersion Type ===
176
177
178 (% style="color:blue" %)**Application:**
179
180 Liquid & Water Pressure / Level detect.
181
182 [[image:1675071725288-579.png]]
183
184
185 The Immersion Type pressure sensor is shipped with the probe and device separately. When user got the device, below is the wiring to for connect the probe to the device.
186
187
188 [[image:1675071736646-450.png]]
189
190
191 [[image:1675071776102-240.png]]
192
193
194 == 1.7 Sleep mode and working mode ==
195
196
197 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
198
199 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
200
201
202 == 1.8 Button & LEDs ==
203
204
205 [[image:1675071855856-879.png]]
206
207
208 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
209 |=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action**
210 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
211 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
212 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
213 )))
214 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
215 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
216 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
217 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
218 )))
219 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
220
221
222
223 == 1.9 Pin Mapping ==
224
225
226 [[image:1675072568006-274.png]]
227
228
229 == 1.10 BLE connection ==
230
231
232 PS-LB support BLE remote configure.
233
234
235 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
236
237 * Press button to send an uplink
238 * Press button to active device.
239 * Device Power on or reset.
240
241 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
242
243
244 == 1.11 Mechanical ==
245
246
247 [[image:1675143884058-338.png]]
248
249
250 [[image:1675143899218-599.png]]
251
252
253 [[image:1675143909447-639.png]]
254
255
256 = 2. Configure PS-LB to connect to LoRaWAN network =
257
258 == 2.1 How it works ==
259
260
261 The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
262
263
264 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
265
266
267 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
268
269
270 [[image:1675144005218-297.png]]
271
272
273 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
274
275
276 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.
277
278 Each PS-LB is shipped with a sticker with the default device EUI as below:
279
280 [[image:image-20230131134744-2.jpeg]]
281
282
283
284 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
285
286
287 (% style="color:blue" %)**Register the device**
288
289 [[image:1675144099263-405.png]]
290
291
292 (% style="color:blue" %)**Add APP EUI and DEV EUI**
293
294 [[image:1675144117571-832.png]]
295
296
297 (% style="color:blue" %)**Add APP EUI in the application**
298
299
300 [[image:1675144143021-195.png]]
301
302
303 (% style="color:blue" %)**Add APP KEY**
304
305 [[image:1675144157838-392.png]]
306
307 (% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB
308
309
310 Press the button for 5 seconds to activate the PS-LB.
311
312 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
313
314 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
315
316
317 == 2.3 ​Uplink Payload ==
318
319 === 2.3.1 Device Status, FPORT~=5 ===
320
321
322 Include device configure status. Once PS-LB Joined the network, it will uplink this message to the server.
323
324 Users can also use the downlink command(0x26 01) to ask PS-LB to resend this uplink.
325
326
327 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
328 |(% colspan="6" %)**Device Status (FPORT=5)**
329 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
330 |(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
331
332 Example parse in TTNv3
333
334 [[image:1675144504430-490.png]]
335
336
337 (% style="color:#037691" %)**Sensor Model**(%%): For PS-LB, this value is 0x16
338
339 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
340
341 (% style="color:#037691" %)**Frequency Band**:
342
343 *0x01: EU868
344
345 *0x02: US915
346
347 *0x03: IN865
348
349 *0x04: AU915
350
351 *0x05: KZ865
352
353 *0x06: RU864
354
355 *0x07: AS923
356
357 *0x08: AS923-1
358
359 *0x09: AS923-2
360
361 *0x0a: AS923-3
362
363 *0x0b: CN470
364
365 *0x0c: EU433
366
367 *0x0d: KR920
368
369 *0x0e: MA869
370
371
372 (% style="color:#037691" %)**Sub-Band**:
373
374 AU915 and US915:value 0x00 ~~ 0x08
375
376 CN470: value 0x0B ~~ 0x0C
377
378 Other Bands: Always 0x00
379
380
381 (% style="color:#037691" %)**Battery Info**:
382
383 Check the battery voltage.
384
385 Ex1: 0x0B45 = 2885mV
386
387 Ex2: 0x0B49 = 2889mV
388
389
390 === 2.3.2 Sensor value, FPORT~=2 ===
391
392
393 Uplink payload includes in total 9 bytes.
394
395
396 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
397 |(% style="width:97px" %)(((
398 **Size(bytes)**
399 )))|(% style="width:48px" %)**2**|(% style="width:71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**
400 |(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.5ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.607E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.707E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.8IN126IN226INTpin"]]
401
402 [[image:1675144608950-310.png]]
403
404
405 === 2.3.3 Battery Info ===
406
407
408 Check the battery voltage for PS-LB.
409
410 Ex1: 0x0B45 = 2885mV
411
412 Ex2: 0x0B49 = 2889mV
413
414
415 === 2.3.4 Probe Model ===
416
417
418 PS-LB has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
419
420
421 For example.
422
423 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
424 |**Part Number**|**Probe Used**|**4~~20mA scale**|**Example: 12mA meaning**
425 |PS-LB-I3|immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water
426 |PS-LB-I5|immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water
427 |PS-LB-T20-B|T20 threaded probe|0~~1MPa|0.5MPa air / gas or water pressure
428
429 The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.
430
431
432 === 2.3.5 0~~20mA value (IDC_IN) ===
433
434
435 The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.
436
437 (% style="color:#037691" %)**Example**:
438
439 27AE(H) = 10158 (D)/1000 = 10.158mA.
440
441
442 Instead of pressure probe, User can also connect a general 4~~20mA in this port to support different types of 4~~20mA sensors. below is the connection example:
443
444 [[image:image-20230225154759-1.png||height="408" width="741"]]
445
446
447 === 2.3.6 0~~30V value ( pin VDC_IN) ===
448
449
450 Measure the voltage value. The range is 0 to 30V.
451
452 (% style="color:#037691" %)**Example**:
453
454 138E(H) = 5006(D)/1000= 5.006V
455
456
457 === 2.3.7 IN1&IN2&INT pin ===
458
459
460 IN1 and IN2 are used as digital input pins.
461
462 (% style="color:#037691" %)**Example**:
463
464 09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
465
466 09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
467
468
469 This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
470
471 (% style="color:#037691" %)**Example:**
472
473 09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
474
475 09 (H): 0x09&0x01=1              0x00: Normal uplink packet.
476
477 0x01: Interrupt Uplink Packet.
478
479
480 === (% id="cke_bm_109176S" style="display:none" %) (%%)2.3.8 Sensor value, FPORT~=7 ===
481
482
483 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %)
484 |(% style="width:94px" %)(((
485 **Size(bytes)**
486 )))|(% style="width:43px" %)2|(% style="width:367px" %)n
487 |(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:367px" %)(((
488 Voltage value, each 2 bytes is a set of voltage values.
489 )))
490
491 [[image:image-20230220171300-1.png||height="207" width="863"]]
492
493 Multiple sets of data collected are displayed in this form:
494
495 [voltage value1], [voltage value2], [voltage value3],…[voltage value n/2]
496
497
498 === 2.3.9 ​Decode payload in The Things Network ===
499
500
501 While using TTN network, you can add the payload format to decode the payload.
502
503
504 [[image:1675144839454-913.png]]
505
506
507 PS-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
508
509
510 == 2.4 Uplink Interval ==
511
512
513 The PS-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval||style="background-color: rgb(255, 255, 255);"]]
514
515
516 == 2.5 Show Data in DataCake IoT Server ==
517
518
519 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
520
521
522 (% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
523
524 (% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
525
526
527 [[image:1675144951092-237.png]]
528
529
530 [[image:1675144960452-126.png]]
531
532
533 (% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake.
534
535 (% style="color:blue" %)**Step 4:** (%%)Create PS-LB product.
536
537 [[image:1675145004465-869.png]]
538
539
540 [[image:1675145018212-853.png]]
541
542
543
544
545 [[image:1675145029119-717.png]]
546
547
548 (% style="color:blue" %)**Step 5: **(%%)add payload decode
549
550 [[image:1675145051360-659.png]]
551
552
553 [[image:1675145060812-420.png]]
554
555
556 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
557
558
559 [[image:1675145081239-376.png]]
560
561
562 == 2.6 Frequency Plans ==
563
564
565 The PS-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
566
567 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
568
569
570 == 2.7 ​Firmware Change Log ==
571
572
573 **Firmware download link:**
574
575 [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
576
577
578 = 3. Configure PS-LB via AT Command or LoRaWAN Downlink =
579
580
581 Use can configure PS-LB via AT Command or LoRaWAN Downlink.
582
583 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
584 * LoRaWAN Downlink instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
585
586 There are two kinds of commands to configure PS-LB, they are:
587
588 * (% style="color:#037691" %)**General Commands**
589
590 These commands are to configure:
591
592 * General system settings like: uplink interval.
593 * LoRaWAN protocol & radio related command.
594
595 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
596
597 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
598
599
600 * (% style="color:#037691" %)**Commands special design for PS-LB**
601
602 These commands only valid for PS-LB, as below:
603
604
605 == 3.1 Set Transmit Interval Time ==
606
607
608 Feature: Change LoRaWAN End Node Transmit Interval.
609
610 (% style="color:blue" %)**AT Command: AT+TDC**
611
612 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
613 |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
614 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
615 30000
616 OK
617 the interval is 30000ms = 30s
618 )))
619 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
620 OK
621 Set transmit interval to 60000ms = 60 seconds
622 )))
623
624 (% style="color:blue" %)**Downlink Command: 0x01**
625
626 Format: Command Code (0x01) followed by 3 bytes time value.
627
628 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
629
630 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
631 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
632
633
634
635 == 3.2 Set Interrupt Mode ==
636
637
638 Feature, Set Interrupt mode for GPIO_EXIT.
639
640 (% style="color:blue" %)**AT Command: AT+INTMOD**
641
642 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
643 |=(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**
644 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
645 0
646 OK
647 the mode is 0 =Disable Interrupt
648 )))
649 |(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
650 Set Transmit Interval
651 0. (Disable Interrupt),
652 ~1. (Trigger by rising and falling edge)
653 2. (Trigger by falling edge)
654 3. (Trigger by rising edge)
655 )))|(% style="width:157px" %)OK
656
657 (% style="color:blue" %)**Downlink Command: 0x06**
658
659 Format: Command Code (0x06) followed by 3 bytes.
660
661 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
662
663 * Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
664 * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
665
666
667
668 == 3.3 Set the output time ==
669
670
671 Feature, Control the output 3V3 , 5V or 12V.
672
673 (% style="color:blue" %)**AT Command: AT+3V3T**
674
675 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %)
676 |=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response**
677 |(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((
678 0
679 OK
680 )))
681 |(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((
682 OK
683 default setting
684 )))
685 |(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((
686 OK
687 )))
688 |(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((
689 OK
690 )))
691
692 (% style="color:blue" %)**AT Command: AT+5VT**
693
694 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %)
695 |=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response**
696 |(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((
697 0
698 OK
699 )))
700 |(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((
701 OK
702 default setting
703 )))
704 |(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((
705 OK
706 )))
707 |(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((
708 OK
709 )))
710
711 (% style="color:blue" %)**AT Command: AT+12VT**
712
713 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %)
714 |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response**
715 |(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)(((
716 0
717 OK
718 )))
719 |(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK
720 |(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((
721 OK
722 )))
723
724 (% style="color:blue" %)**Downlink Command: 0x07**
725
726 Format: Command Code (0x07) followed by 3 bytes.
727
728 The first byte is which power, the second and third bytes are the time to turn on.
729
730 * Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
731 * Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
732 * Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
733 * Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
734 * Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
735 * Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
736
737
738
739 == 3.4 Set the Probe Model ==
740
741
742 Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value.
743
744 **AT Command: AT** **+PROBE**
745
746 AT+PROBE=aabb
747
748 When aa=00, it is the water depth mode, and the current is converted into the water depth value; bb is the probe at a depth of several meters.
749
750 When aa=01, it is the pressure mode, which converts the current into a pressure value;
751
752 bb represents which type of pressure sensor it is.
753
754 (A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C)
755
756 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
757 |**Command Example**|**Function**|**Response**
758 |AT +PROBE =?|Get or Set the probe model.|0
759 OK
760 |AT +PROBE =0003|Set water depth sensor mode, 3m type.|OK
761 |(((
762 AT +PROBE =000A
763
764
765 )))|Set water depth sensor mode, 10m type.|OK
766 |AT +PROBE =0101|Set pressure transmitters mode, first type(A).|OK
767 |AT +PROBE =0000|Initial state, no settings.|OK
768
769 **Downlink Command: 0x08**
770
771 Format: Command Code (0x08) followed by 2 bytes.
772
773 * Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
774 * Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
775
776
777
778 == 3.5 Multiple collections are one uplink(Since firmware V1.1) ==
779
780
781 Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time.
782
783 (% style="color:blue" %)**AT Command: AT** **+STDC**
784
785 AT+STDC=aa,bb,bb
786
787 (% style="color:#037691" %)**aa:**(%%)
788 **0:** means disable this function and use TDC to send packets.
789 **1:** means enable this function, use the method of multiple acquisitions to send packets.
790 (% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
791 (% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120
792
793 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
794 |**Command Example**|**Function**|**Response**
795 |AT+STDC=?|Get the mode of multiple acquisitions and one uplink.|1,10,18
796 OK
797 |AT+STDC=1,10,18|Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(((
798 Attention:Take effect after ATZ
799
800 OK
801 )))
802 |AT+STDC=0, 0,0|(((
803 Use the TDC interval to send packets.(default)
804
805
806 )))|(((
807 Attention:Take effect after ATZ
808
809 OK
810 )))
811
812 (% style="color:blue" %)**Downlink Command: 0xAE**
813
814 Format: Command Code (0x08) followed by 5 bytes.
815
816 * Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
817
818
819
820 = 4. Battery & how to replace =
821
822 == 4.1 Battery Type ==
823
824
825 PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
826
827 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
828
829 [[image:1675146710956-626.png]]
830
831
832 Minimum Working Voltage for the PS-LB:
833
834 PS-LB:  2.45v ~~ 3.6v
835
836
837 == 4.2 Replace Battery ==
838
839
840 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
841
842 And make sure the positive and negative pins match.
843
844
845 == 4.3 Power Consumption Analyze ==
846
847
848 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
849
850 Instruction to use as below:
851
852 (% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
853
854 (% style="color:blue" %)**Step 2:**(%%) Open it and choose
855
856 * Product Model
857 * Uplink Interval
858 * Working Mode
859
860 And the Life expectation in difference case will be shown on the right.
861
862 [[image:1675146895108-304.png]]
863
864
865 The battery related documents as below:
866
867 * [[Battery Dimension>>https://www.dropbox.com/s/ox5g9njwjle7aw3/LSN50-Battery-Dimension.pdf?dl=0]],
868 * [[Lithium-Thionyl Chloride Battery datasheet, Tech Spec>>https://www.dropbox.com/sh/d4oyfnp8o94180o/AABQewCNSh5GPeQH86UxRgQQa?dl=0]]
869 * [[Lithium-ion Battery-Capacitor datasheet>>https://www.dropbox.com/s/791gjes2lcbfi1p/SPC_1520_datasheet.jpg?dl=0]], [[Tech Spec>>https://www.dropbox.com/s/4pkepr9qqqvtzf2/SPC1520%20Technical%20Specification20171123.pdf?dl=0]]
870
871 [[image:image-20230131145708-3.png]]
872
873
874 === 4.3.1 ​Battery Note ===
875
876
877 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
878
879
880 === 4.3.2 Replace the battery ===
881
882
883 You can change the battery in the PS-LB.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
884
885 The default battery pack of PS-LB includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
886
887
888 = 5. Remote Configure device =
889
890 == 5.1 Connect via BLE ==
891
892
893 Please see this instruction for how to configure via BLE: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]
894
895
896 == 5.2 AT Command Set ==
897
898
899
900 = 6. OTA firmware update =
901
902
903 Please see this link for how to do OTA firmware update: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
904
905
906 = 7. FAQ =
907
908 == 7.1 How to use AT Command to access device? ==
909
910
911 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
912
913
914 == 7.2 How to update firmware via UART port? ==
915
916
917 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
918
919
920 == 7.3 How to change the LoRa Frequency Bands/Region? ==
921
922
923 You can follow the instructions for [[how to upgrade image>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]].
924 When downloading the images, choose the required image file for download. ​
925
926
927 = 8. Order Info =
928
929
930 [[image:image-20230131153105-4.png]]
931
932
933 = 9. ​Packing Info =
934
935
936 (% style="color:#037691" %)**Package Includes**:
937
938 * PS-LB LoRaWAN Pressure Sensor
939
940 (% style="color:#037691" %)**Dimension and weight**:
941
942 * Device Size: cm
943 * Device Weight: g
944 * Package Size / pcs : cm
945 * Weight / pcs : g
946
947
948
949 = 10. Support =
950
951
952 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
953
954 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
955
956