Version 47.1 by Bei Jinggeng on 2023/02/22 17:55

Show last authors
1 [[image:image-20230131115217-1.png]]
2
3
4
5 **Table of Contents:**
6
7 {{toc/}}
8
9
10
11
12
13
14 = 1. Introduction =
15
16 == 1.1 What is LoRaWAN Pressure Sensor ==
17
18
19 (((
20 The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
21 )))
22
23 (((
24 The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
25 )))
26
27 (((
28 The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 )))
30
31 (((
32 PS-LB supports BLE configure and wireless OTA update which make user easy to use.
33 )))
34
35 (((
36 PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
37 )))
38
39 (((
40 Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
41 )))
42
43 [[image:1675071321348-194.png]]
44
45
46 == 1.2 ​Features ==
47
48
49 * LoRaWAN 1.0.3 Class A
50 * Ultra-low power consumption
51 * Measure air / gas or water pressure
52 * Different pressure range available
53 * Thread Installation Type or Immersion Type
54 * Monitor Battery Level
55 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
56 * Support Bluetooth v5.1 and LoRaWAN remote configure
57 * Support wireless OTA update firmware
58 * Uplink on periodically
59 * Downlink to change configure
60 * 8500mAh Battery for long term use
61 * Controllable 3.3v,5v and 12v output to power external sensor
62
63
64 == 1.3 Specification ==
65
66
67 (% style="color:#037691" %)**Micro Controller:**
68
69 * MCU: 48Mhz ARM
70 * Flash: 256KB
71 * RAM: 64KB
72
73 (% style="color:#037691" %)**Common DC Characteristics:**
74
75 * Supply Voltage: 2.5v ~~ 3.6v
76 * Operating Temperature: -40 ~~ 85°C
77
78 (% style="color:#037691" %)**LoRa Spec:**
79
80 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
81 * Max +22 dBm constant RF output vs.
82 * RX sensitivity: down to -139 dBm.
83 * Excellent blocking immunity
84
85 (% style="color:#037691" %)**Current Input Measuring :**
86
87 * Range: 0 ~~ 20mA
88 * Accuracy: 0.02mA
89 * Resolution: 0.001mA
90
91 (% style="color:#037691" %)**Voltage Input Measuring:**
92
93 * Range: 0 ~~ 30v
94 * Accuracy: 0.02v
95 * Resolution: 0.001v
96
97 (% style="color:#037691" %)**Battery:**
98
99 * Li/SOCI2 un-chargeable battery
100 * Capacity: 8500mAh
101 * Self-Discharge: <1% / Year @ 25°C
102 * Max continuously current: 130mA
103 * Max boost current: 2A, 1 second
104
105 (% style="color:#037691" %)**Power Consumption**
106
107 * Sleep Mode: 5uA @ 3.3v
108 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
109
110
111 == 1.4 Probe Types ==
112
113 === 1.4.1 Thread Installation Type ===
114
115
116 [[image:1675071448299-229.png]]
117
118 * Hersman Pressure Transmitter
119 * Measuring Range: -0.1 ~~ 0 ~~ 60MPa, see order info.
120 * Accuracy: 0.2% F.S
121 * Long-Term Stability: 0.2% F.S ±0.05%
122 * Overload 200% F.S
123 * Zero Temperature Drift: 0.03% FS/℃(≤100Kpa), 0.02%FS/℃(>100Kpa)
124 * FS Temperature Drift: 0.003% FS/℃(≤100Kpa), 0.002%FS/℃(>100Kpa)
125 * Storage temperature: -30℃~~80℃
126 * Operating temperature: -20℃~~60℃
127 * Connector Type: Various Types, see order info
128
129
130 === 1.4.2 Immersion Type ===
131
132
133 [[image:1675071521308-426.png]]
134
135 * Immersion Type, Probe IP Level: IP68
136 * Measuring Range: Measure range can be customized, up to 100m.
137 * Accuracy: 0.2% F.S
138 * Long-Term Stability: ±0.2% F.S / Year
139 * Overload 200% F.S
140 * Zero Temperature Drift: ±2% F.S)
141 * FS Temperature Drift: ±2% F.S
142 * Storage temperature: -30℃~~80℃
143 * Operating temperature: -40℃~~85℃
144 * Material: 316 stainless steels
145
146
147 == 1.5 Probe Dimension ==
148
149
150
151 == 1.6 Application and Installation ==
152
153 === 1.6.1 Thread Installation Type ===
154
155
156 (% style="color:blue" %)**Application:**
157
158 * Hydraulic Pressure
159 * Petrochemical Industry
160 * Health and Medical
161 * Food & Beverage Processing
162 * Auto-controlling house
163 * Constant Pressure Water Supply
164 * Liquid Pressure measuring
165
166 Order the suitable thread size and install to measure the air / liquid pressure
167
168 [[image:1675071670469-145.png]]
169
170
171 === 1.6.2 Immersion Type ===
172
173
174 (% style="color:blue" %)**Application:**
175
176 Liquid & Water Pressure / Level detect.
177
178 [[image:1675071725288-579.png]]
179
180
181 The Immersion Type pressure sensor is shipped with the probe and device separately. When user got the device, below is the wiring to for connect the probe to the device.
182
183
184 [[image:1675071736646-450.png]]
185
186
187 [[image:1675071776102-240.png]]
188
189
190 == 1.7 Sleep mode and working mode ==
191
192
193 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
194
195 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
196
197
198 == 1.8 Button & LEDs ==
199
200
201 [[image:1675071855856-879.png]]
202
203
204 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
205 |=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action**
206 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
207 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
208 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
209 )))
210 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
211 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
212 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
213 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
214 )))
215 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
216
217
218 == 1.9 Pin Mapping ==
219
220
221 [[image:1675072568006-274.png]]
222
223
224 == 1.10 BLE connection ==
225
226
227 PS-LB support BLE remote configure.
228
229
230 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
231
232 * Press button to send an uplink
233 * Press button to active device.
234 * Device Power on or reset.
235
236 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
237
238
239 == 1.11 Mechanical ==
240
241
242 [[image:1675143884058-338.png]]
243
244
245 [[image:1675143899218-599.png]]
246
247
248 [[image:1675143909447-639.png]]
249
250
251 = 2. Configure PS-LB to connect to LoRaWAN network =
252
253 == 2.1 How it works ==
254
255
256 The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
257
258
259 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
260
261
262 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
263
264
265 [[image:1675144005218-297.png]]
266
267
268 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
269
270
271 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.
272
273 Each PS-LB is shipped with a sticker with the default device EUI as below:
274
275 [[image:image-20230131134744-2.jpeg]]
276
277
278
279 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
280
281
282 (% style="color:blue" %)**Register the device**
283
284 [[image:1675144099263-405.png]]
285
286
287 (% style="color:blue" %)**Add APP EUI and DEV EUI**
288
289 [[image:1675144117571-832.png]]
290
291
292 (% style="color:blue" %)**Add APP EUI in the application**
293
294
295 [[image:1675144143021-195.png]]
296
297
298 (% style="color:blue" %)**Add APP KEY**
299
300 [[image:1675144157838-392.png]]
301
302 (% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB
303
304
305 Press the button for 5 seconds to activate the PS-LB.
306
307 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
308
309 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
310
311
312 == 2.3 ​Uplink Payload ==
313
314 === 2.3.1 Device Status, FPORT~=5 ===
315
316
317 Include device configure status. Once PS-LB Joined the network, it will uplink this message to the server.
318
319 Users can also use the downlink command(0x26 01) to ask PS-LB to resend this uplink.
320
321
322 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
323 |(% colspan="6" %)**Device Status (FPORT=5)**
324 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
325 |(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
326
327 Example parse in TTNv3
328
329 [[image:1675144504430-490.png]]
330
331
332 (% style="color:#037691" %)**Sensor Model**(%%): For PS-LB, this value is 0x16
333
334 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
335
336 (% style="color:#037691" %)**Frequency Band**:
337
338 *0x01: EU868
339
340 *0x02: US915
341
342 *0x03: IN865
343
344 *0x04: AU915
345
346 *0x05: KZ865
347
348 *0x06: RU864
349
350 *0x07: AS923
351
352 *0x08: AS923-1
353
354 *0x09: AS923-2
355
356 *0x0a: AS923-3
357
358 *0x0b: CN470
359
360 *0x0c: EU433
361
362 *0x0d: KR920
363
364 *0x0e: MA869
365
366
367 (% style="color:#037691" %)**Sub-Band**:
368
369 AU915 and US915:value 0x00 ~~ 0x08
370
371 CN470: value 0x0B ~~ 0x0C
372
373 Other Bands: Always 0x00
374
375
376 (% style="color:#037691" %)**Battery Info**:
377
378 Check the battery voltage.
379
380 Ex1: 0x0B45 = 2885mV
381
382 Ex2: 0x0B49 = 2889mV
383
384
385 === 2.3.2 Sensor value, FPORT~=2 ===
386
387
388 Uplink payload includes in total 9 bytes.
389
390
391 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
392 |(% style="width:97px" %)(((
393 **Size(bytes)**
394 )))|(% style="width:48px" %)**2**|(% style="width:71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**
395 |(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.5ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.607E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.707E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.8IN126IN226INTpin"]]
396
397 [[image:1675144608950-310.png]]
398
399
400 === ===
401
402
403 === 2.3.3 Battery Info ===
404
405
406 Check the battery voltage for PS-LB.
407
408 Ex1: 0x0B45 = 2885mV
409
410 Ex2: 0x0B49 = 2889mV
411
412
413 === 2.3.4 Probe Model ===
414
415
416 PS-LB has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
417
418
419 For example.
420
421 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
422 |**Part Number**|**Probe Used**|**4~~20mA scale**|**Example: 12mA meaning**
423 |PS-LB-I3|immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water
424 |PS-LB-I5|immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water
425 |PS-LB-T20-B|T20 threaded probe|0~~1MPa|0.5MPa air / gas or water pressure
426
427
428
429 The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.
430
431
432 === 2.3.5 0~~20mA value (IDC_IN) ===
433
434
435 The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
436
437 (% style="color:#037691" %)**Example**:
438
439 27AE(H) = 10158 (D)/1000 = 10.158mA.
440
441
442 === 2.3.6 0~~30V value ( pin VDC_IN) ===
443
444
445 Measure the voltage value. The range is 0 to 30V.
446
447 (% style="color:#037691" %)**Example**:
448
449 138E(H) = 5006(D)/1000= 5.006V
450
451
452 === 2.3.7 IN1&IN2&INT pin ===
453
454
455 IN1 and IN2 are used as digital input pins.
456
457 (% style="color:#037691" %)**Example**:
458
459 09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
460
461 09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
462
463
464 This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
465
466 (% style="color:#037691" %)**Example:**
467
468 09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
469
470 09 (H): 0x09&0x01=1              0x00: Normal uplink packet.
471
472 0x01: Interrupt Uplink Packet.
473
474 === (% id="cke_bm_109176S" style="display:none" %) (%%)2.3.8 Sensor value, FPORT~=7 ===
475
476
477 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %)
478 |(% style="width:94px" %)(((
479 **Size(bytes)**
480 )))|(% style="width:43px" %)2|(% style="width:367px" %)n
481 |(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:367px" %)(((
482 Voltage value, each 2 bytes is a set of voltage values.
483 )))
484
485 [[image:image-20230220171300-1.png||height="207" width="863"]]
486
487 Multiple sets of data collected are displayed in this form:
488
489 [voltage value1], [voltage value2], [voltage value3],…[voltage value n]
490
491
492 === 2.3.9 ​Decode payload in The Things Network ===
493
494
495 While using TTN network, you can add the payload format to decode the payload.
496
497
498 [[image:1675144839454-913.png]]
499
500
501 PS-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
502
503
504 == 2.4 Uplink Interval ==
505
506
507 The PS-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval||style="background-color: rgb(255, 255, 255);"]]
508
509
510 == 2.5 Show Data in DataCake IoT Server ==
511
512
513 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
514
515
516 (% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
517
518 (% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
519
520
521 [[image:1675144951092-237.png]]
522
523
524 [[image:1675144960452-126.png]]
525
526
527 (% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake.
528
529 (% style="color:blue" %)**Step 4:** (%%)Create PS-LB product.
530
531 [[image:1675145004465-869.png]]
532
533
534 [[image:1675145018212-853.png]]
535
536
537
538
539 [[image:1675145029119-717.png]]
540
541
542 (% style="color:blue" %)**Step 5: **(%%)add payload decode
543
544 [[image:1675145051360-659.png]]
545
546
547 [[image:1675145060812-420.png]]
548
549
550 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
551
552
553 [[image:1675145081239-376.png]]
554
555
556 == 2.6 Frequency Plans ==
557
558
559 The PS-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
560
561 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
562
563
564 == 2.7 ​Firmware Change Log ==
565
566
567 **Firmware download link:**
568
569 [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
570
571
572 = 3. Configure PS-LB via AT Command or LoRaWAN Downlink =
573
574
575 Use can configure PS-LB via AT Command or LoRaWAN Downlink.
576
577 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
578 * LoRaWAN Downlink instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
579
580 There are two kinds of commands to configure PS-LB, they are:
581
582 * (% style="color:#037691" %)**General Commands**
583
584 These commands are to configure:
585
586 * General system settings like: uplink interval.
587 * LoRaWAN protocol & radio related command.
588
589 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
590
591 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
592
593
594 * (% style="color:#037691" %)**Commands special design for PS-LB**
595
596 These commands only valid for PS-LB, as below:
597
598
599 == 3.1 Set Transmit Interval Time ==
600
601
602 Feature: Change LoRaWAN End Node Transmit Interval.
603
604 (% style="color:blue" %)**AT Command: AT+TDC**
605
606 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
607 |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
608 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
609 30000
610 OK
611 the interval is 30000ms = 30s
612 )))
613 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
614 OK
615 Set transmit interval to 60000ms = 60 seconds
616 )))
617
618 (% style="color:blue" %)**Downlink Command: 0x01**
619
620 Format: Command Code (0x01) followed by 3 bytes time value.
621
622 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
623
624 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
625 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
626
627
628 == 3.2 Set Interrupt Mode ==
629
630
631 Feature, Set Interrupt mode for GPIO_EXIT.
632
633 (% style="color:blue" %)**AT Command: AT+INTMOD**
634
635 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
636 |=(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**
637 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
638 0
639 OK
640 the mode is 0 =Disable Interrupt
641 )))
642 |(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
643 Set Transmit Interval
644 0. (Disable Interrupt),
645 ~1. (Trigger by rising and falling edge)
646 2. (Trigger by falling edge)
647 3. (Trigger by rising edge)
648 )))|(% style="width:157px" %)OK
649
650 (% style="color:blue" %)**Downlink Command: 0x06**
651
652 Format: Command Code (0x06) followed by 3 bytes.
653
654 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
655
656 * Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
657 * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
658
659
660 == 3.3 Set the output time ==
661
662
663 Feature, Control the output 3V3 , 5V or 12V.
664
665 (% style="color:blue" %)**AT Command: AT+3V3T**
666
667 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %)
668 |=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response**
669 |(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((
670 0
671 OK
672 )))
673 |(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((
674 OK
675 default setting
676 )))
677 |(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((
678 OK
679 )))
680 |(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((
681 OK
682 )))
683
684 (% style="color:blue" %)**AT Command: AT+5VT**
685
686 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %)
687 |=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response**
688 |(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((
689 0
690 OK
691 )))
692 |(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((
693 OK
694 default setting
695 )))
696 |(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((
697 OK
698 )))
699 |(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((
700 OK
701 )))
702
703 (% style="color:blue" %)**AT Command: AT+12VT**
704
705 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %)
706 |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response**
707 |(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)(((
708 0
709 OK
710 )))
711 |(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK
712 |(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((
713 OK
714 )))
715
716 (% style="color:blue" %)**Downlink Command: 0x07**
717
718 Format: Command Code (0x07) followed by 3 bytes.
719
720 The first byte is which power, the second and third bytes are the time to turn on.
721
722 * Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
723 * Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
724 * Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
725 * Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
726 * Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
727 * Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
728
729
730 == 3.4 Set the Probe Model ==
731
732
733 Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value.
734
735 **AT Command: AT** **+PROBE**
736
737 AT+PROBE=aabb
738
739 When aa=00, it is the water depth mode, and the current is converted into the water depth value; bb is the probe at a depth of several meters.
740
741 When aa=01, it is the pressure mode, which converts the current into a pressure value;
742
743 bb represents which type of pressure sensor it is.
744
745 (A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C)
746
747 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
748 |**Command Example**|**Function**|**Response**
749 |AT +PROBE =?|Get or Set the probe model.|0
750 OK
751 |AT +PROBE =0003|Set water depth sensor mode, 3m type.|OK
752 |(((
753 AT +PROBE =000A
754
755
756 )))|Set water depth sensor mode, 10m type.|OK
757 |AT +PROBE =0101|Set pressure transmitters mode, first type(A).|OK
758 |AT +PROBE =0000|Initial state, no settings.|OK
759
760
761
762 **Downlink Command: 0x08**
763
764 Format: Command Code (0x08) followed by 2 bytes.
765
766 * Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
767 * Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
768
769
770 == 3.5 Multiple collections are one uplink(Since firmware V1.1) ==
771
772
773 Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time.
774
775 (% style="color:blue" %)**AT Command: AT** **+STDC**
776
777 AT+STDC=aa,bb,bb
778
779 (% style="color:#037691" %)**aa:**(%%)
780 **0:** means disable this function and use TDC to send packets.
781 **1:** means enable this function, use the method of multiple acquisitions to send packets.
782 (% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
783 (% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120
784
785 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
786 |**Command Example**|**Function**|**Response**
787 |AT+STDC=?|Get the mode of multiple acquisitions and one uplink.|1,10,18
788 OK
789 |AT+STDC=1,10,18|Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(((
790 Attention:Take effect after ATZ
791
792 OK
793 )))
794 |AT+STDC=0, 0,0|(((
795 Use the TDC interval to send packets.(default)
796
797
798 )))|(((
799 Attention:Take effect after ATZ
800
801 OK
802 )))
803
804
805
806 (% style="color:blue" %)**Downlink Command: 0xAE**
807
808 Format: Command Code (0x08) followed by 5 bytes.
809
810 * Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
811
812
813 = 4. Battery & how to replace =
814
815 == 4.1 Battery Type ==
816
817
818 PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
819
820 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
821
822 [[image:1675146710956-626.png]]
823
824
825 Minimum Working Voltage for the PS-LB:
826
827 PS-LB:  2.45v ~~ 3.6v
828
829
830 == 4.2 Replace Battery ==
831
832
833 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
834
835 And make sure the positive and negative pins match.
836
837
838 == 4.3 Power Consumption Analyze ==
839
840
841 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
842
843 Instruction to use as below:
844
845 (% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
846
847 (% style="color:blue" %)**Step 2:**(%%) Open it and choose
848
849 * Product Model
850 * Uplink Interval
851 * Working Mode
852
853 And the Life expectation in difference case will be shown on the right.
854
855 [[image:1675146895108-304.png]]
856
857
858 The battery related documents as below:
859
860 * [[Battery Dimension>>https://www.dropbox.com/s/ox5g9njwjle7aw3/LSN50-Battery-Dimension.pdf?dl=0]],
861 * [[Lithium-Thionyl Chloride Battery datasheet, Tech Spec>>https://www.dropbox.com/sh/d4oyfnp8o94180o/AABQewCNSh5GPeQH86UxRgQQa?dl=0]]
862 * [[Lithium-ion Battery-Capacitor datasheet>>https://www.dropbox.com/s/791gjes2lcbfi1p/SPC_1520_datasheet.jpg?dl=0]], [[Tech Spec>>https://www.dropbox.com/s/4pkepr9qqqvtzf2/SPC1520%20Technical%20Specification20171123.pdf?dl=0]]
863
864 [[image:image-20230131145708-3.png]]
865
866
867 === 4.3.1 ​Battery Note ===
868
869
870 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
871
872
873 === 4.3.2 Replace the battery ===
874
875
876 You can change the battery in the PS-LB.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
877
878 The default battery pack of PS-LB includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
879
880
881 = 5. Remote Configure device =
882
883 == 5.1 Connect via BLE ==
884
885
886 Please see this instruction for how to configure via BLE: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]
887
888
889 == 5.2 AT Command Set ==
890
891
892
893 = 6. OTA firmware update =
894
895
896 Please see this link for how to do OTA firmware update: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
897
898
899 = 7. FAQ =
900
901 == 7.1 How to use AT Command to access device? ==
902
903
904 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
905
906
907 == 7.2 How to update firmware via UART port? ==
908
909
910 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
911
912
913 == 7.3 How to change the LoRa Frequency Bands/Region? ==
914
915
916 You can follow the instructions for [[how to upgrade image>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]].
917 When downloading the images, choose the required image file for download. ​
918
919
920 = 8. Order Info =
921
922
923 [[image:image-20230131153105-4.png]]
924
925
926 = 9. ​Packing Info =
927
928
929 (% style="color:#037691" %)**Package Includes**:
930
931 * PS-LB LoRaWAN Pressure Sensor
932
933 (% style="color:#037691" %)**Dimension and weight**:
934
935 * Device Size: cm
936 * Device Weight: g
937 * Package Size / pcs : cm
938 * Weight / pcs : g
939
940
941 = 10. Support =
942
943
944 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
945
946 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
947
948