Version 45.5 by Xiaoling on 2023/02/21 15:33

Show last authors
1 [[image:image-20230131115217-1.png]]
2
3
4
5 **Table of Contents:**
6
7 {{toc/}}
8
9
10
11
12
13
14 = 1. Introduction =
15
16 == 1.1 What is LoRaWAN Pressure Sensor ==
17
18
19 (((
20 The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
21 )))
22
23 (((
24 The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
25 )))
26
27 (((
28 The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 )))
30
31 (((
32 PS-LB supports BLE configure and wireless OTA update which make user easy to use.
33 )))
34
35 (((
36 PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
37 )))
38
39 (((
40 Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
41 )))
42
43 [[image:1675071321348-194.png]]
44
45
46 == 1.2 ​Features ==
47
48
49 * LoRaWAN 1.0.3 Class A
50 * Ultra-low power consumption
51 * Measure air / gas or water pressure
52 * Different pressure range available
53 * Thread Installation Type or Immersion Type
54 * Monitor Battery Level
55 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
56 * Support Bluetooth v5.1 and LoRaWAN remote configure
57 * Support wireless OTA update firmware
58 * Uplink on periodically
59 * Downlink to change configure
60 * 8500mAh Battery for long term use
61
62
63 == 1.3 Specification ==
64
65
66 (% style="color:#037691" %)**Micro Controller:**
67
68 * MCU: 48Mhz ARM
69 * Flash: 256KB
70 * RAM: 64KB
71
72 (% style="color:#037691" %)**Common DC Characteristics:**
73
74 * Supply Voltage: 2.5v ~~ 3.6v
75 * Operating Temperature: -40 ~~ 85°C
76
77 (% style="color:#037691" %)**LoRa Spec:**
78
79 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
80 * Max +22 dBm constant RF output vs.
81 * RX sensitivity: down to -139 dBm.
82 * Excellent blocking immunity
83
84 (% style="color:#037691" %)**Current Input Measuring :**
85
86 * Range: 0 ~~ 20mA
87 * Accuracy: 0.02mA
88 * Resolution: 0.001mA
89
90 (% style="color:#037691" %)**Voltage Input Measuring:**
91
92 * Range: 0 ~~ 30v
93 * Accuracy: 0.02v
94 * Resolution: 0.001v
95
96 (% style="color:#037691" %)**Battery:**
97
98 * Li/SOCI2 un-chargeable battery
99 * Capacity: 8500mAh
100 * Self-Discharge: <1% / Year @ 25°C
101 * Max continuously current: 130mA
102 * Max boost current: 2A, 1 second
103
104 (% style="color:#037691" %)**Power Consumption**
105
106 * Sleep Mode: 5uA @ 3.3v
107 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
108
109
110 == 1.4 Probe Types ==
111
112 === 1.4.1 Thread Installation Type ===
113
114
115 [[image:1675071448299-229.png]]
116
117 * Hersman Pressure Transmitter
118 * Measuring Range: -0.1 ~~ 0 ~~ 60MPa, see order info.
119 * Accuracy: 0.2% F.S
120 * Long-Term Stability: 0.2% F.S ±0.05%
121 * Overload 200% F.S
122 * Zero Temperature Drift: 0.03% FS/℃(≤100Kpa), 0.02%FS/℃(>100Kpa)
123 * FS Temperature Drift: 0.003% FS/℃(≤100Kpa), 0.002%FS/℃(>100Kpa)
124 * Storage temperature: -30℃~~80℃
125 * Operating temperature: -20℃~~60℃
126 * Connector Type: Various Types, see order info
127
128
129 === 1.4.2 Immersion Type ===
130
131
132 [[image:1675071521308-426.png]]
133
134 * Immersion Type, Probe IP Level: IP68
135 * Measuring Range: Measure range can be customized, up to 100m.
136 * Accuracy: 0.2% F.S
137 * Long-Term Stability: ±0.2% F.S / Year
138 * Overload 200% F.S
139 * Zero Temperature Drift: ±2% F.S)
140 * FS Temperature Drift: ±2% F.S
141 * Storage temperature: -30℃~~80℃
142 * Operating temperature: -40℃~~85℃
143 * Material: 316 stainless steels
144
145
146 == 1.5 Probe Dimension ==
147
148
149
150 == 1.6 Application and Installation ==
151
152 === 1.6.1 Thread Installation Type ===
153
154
155 (% style="color:blue" %)**Application:**
156
157 * Hydraulic Pressure
158 * Petrochemical Industry
159 * Health and Medical
160 * Food & Beverage Processing
161 * Auto-controlling house
162 * Constant Pressure Water Supply
163 * Liquid Pressure measuring
164
165 Order the suitable thread size and install to measure the air / liquid pressure
166
167 [[image:1675071670469-145.png]]
168
169
170 === 1.6.2 Immersion Type ===
171
172
173 (% style="color:blue" %)**Application:**
174
175 Liquid & Water Pressure / Level detect.
176
177 [[image:1675071725288-579.png]]
178
179
180 The Immersion Type pressure sensor is shipped with the probe and device separately. When user got the device, below is the wiring to for connect the probe to the device.
181
182
183 [[image:1675071736646-450.png]]
184
185
186 [[image:1675071776102-240.png]]
187
188
189 == 1.7 Sleep mode and working mode ==
190
191
192 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
193
194 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
195
196
197 == 1.8 Button & LEDs ==
198
199
200 [[image:1675071855856-879.png]]
201
202
203 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
204 |=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action**
205 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
206 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
207 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
208 )))
209 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
210 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
211 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
212 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
213 )))
214 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
215
216
217 == 1.9 Pin Mapping ==
218
219
220 [[image:1675072568006-274.png]]
221
222
223 == 1.10 BLE connection ==
224
225
226 PS-LB support BLE remote configure.
227
228
229 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
230
231 * Press button to send an uplink
232 * Press button to active device.
233 * Device Power on or reset.
234
235 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
236
237
238 == 1.11 Mechanical ==
239
240
241 [[image:1675143884058-338.png]]
242
243
244 [[image:1675143899218-599.png]]
245
246
247 [[image:1675143909447-639.png]]
248
249
250 = 2. Configure PS-LB to connect to LoRaWAN network =
251
252 == 2.1 How it works ==
253
254
255 The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
256
257
258 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
259
260
261 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
262
263
264 [[image:1675144005218-297.png]]
265
266
267 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
268
269
270 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.
271
272 Each PS-LB is shipped with a sticker with the default device EUI as below:
273
274 [[image:image-20230131134744-2.jpeg]]
275
276
277
278 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
279
280
281 (% style="color:blue" %)**Register the device**
282
283 [[image:1675144099263-405.png]]
284
285
286 (% style="color:blue" %)**Add APP EUI and DEV EUI**
287
288 [[image:1675144117571-832.png]]
289
290
291 (% style="color:blue" %)**Add APP EUI in the application**
292
293
294 [[image:1675144143021-195.png]]
295
296
297 (% style="color:blue" %)**Add APP KEY**
298
299 [[image:1675144157838-392.png]]
300
301 (% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB
302
303
304 Press the button for 5 seconds to activate the PS-LB.
305
306 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
307
308 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
309
310
311 == 2.3 ​Uplink Payload ==
312
313
314 Uplink payloads have two types:
315
316 * Distance Value: Use FPORT=2
317 * Other control commands: Use other FPORT fields.
318
319 The application server should parse the correct value based on FPORT settings.
320
321
322 === 2.3.1 Device Status, FPORT~=5 ===
323
324
325 Include device configure status. Once PS-LB Joined the network, it will uplink this message to the server.
326
327 Users can also use the downlink command(0x26 01) to ask PS-LB to resend this uplink.
328
329
330 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
331 |(% colspan="6" %)**Device Status (FPORT=5)**
332 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
333 |(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
334
335 Example parse in TTNv3
336
337 [[image:1675144504430-490.png]]
338
339
340 (% style="color:#037691" %)**Sensor Model**(%%): For PS-LB, this value is 0x16
341
342 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
343
344 (% style="color:#037691" %)**Frequency Band**:
345
346 *0x01: EU868
347
348 *0x02: US915
349
350 *0x03: IN865
351
352 *0x04: AU915
353
354 *0x05: KZ865
355
356 *0x06: RU864
357
358 *0x07: AS923
359
360 *0x08: AS923-1
361
362 *0x09: AS923-2
363
364 *0x0a: AS923-3
365
366 *0x0b: CN470
367
368 *0x0c: EU433
369
370 *0x0d: KR920
371
372 *0x0e: MA869
373
374
375 (% style="color:#037691" %)**Sub-Band**:
376
377 AU915 and US915:value 0x00 ~~ 0x08
378
379 CN470: value 0x0B ~~ 0x0C
380
381 Other Bands: Always 0x00
382
383
384 (% style="color:#037691" %)**Battery Info**:
385
386 Check the battery voltage.
387
388 Ex1: 0x0B45 = 2885mV
389
390 Ex2: 0x0B49 = 2889mV
391
392
393 === 2.3.2 Sensor value, FPORT~=2 ===
394
395
396 Uplink payload includes in total 9 bytes.
397
398
399 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
400 |(% style="width:97px" %)(((
401 **Size(bytes)**
402 )))|(% style="width:48px" %)**2**|(% style="width:71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**
403 |(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.5ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.607E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.707E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.8IN126IN226INTpin"]]
404
405 [[image:1675144608950-310.png]]
406
407
408 === 2.3.3 Sensor value, FPORT~=7 ===
409
410
411 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %)
412 |(% style="width:94px" %)(((
413 **Size(bytes)**
414 )))|(% style="width:43px" %)2|(% style="width:367px" %)n
415 |(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:367px" %)(((
416 Voltage value, each 2 bytes is a set of voltage values.
417 )))
418
419 [[image:image-20230220171300-1.png||height="207" width="863"]]
420
421
422 === 2.3.4 Battery Info ===
423
424
425 Check the battery voltage for PS-LB.
426
427 Ex1: 0x0B45 = 2885mV
428
429 Ex2: 0x0B49 = 2889mV
430
431
432 === 2.3.5 Probe Model ===
433
434
435 PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. 
436
437
438 For example.
439
440 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
441 |(% style="width:111px" %)**Part Number**|(% style="width:158px" %)**Probe Used**|**0~~20mA scale**|**Example: 10mA meaning**
442 |(% style="width:111px" %)PS-LB-I3|(% style="width:158px" %)immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water
443 |(% style="width:111px" %)PS-LB-I5|(% style="width:158px" %)immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water
444
445 The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value.
446
447
448 === 2.3.6 0~~20mA value (IDC_IN) ===
449
450
451 The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
452
453 (% style="color:#037691" %)**Example**:
454
455 27AE(H) = 10158 (D)/1000 = 10.158mA.
456
457
458 === 2.3.7 0~~30V value ( pin VDC_IN) ===
459
460
461 Measure the voltage value. The range is 0 to 30V.
462
463 (% style="color:#037691" %)**Example**:
464
465 138E(H) = 5006(D)/1000= 5.006V
466
467
468 === 2.3.8 IN1&IN2&INT pin ===
469
470
471 IN1 and IN2 are used as digital input pins.
472
473 (% style="color:#037691" %)**Example**:
474
475 09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
476
477 09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
478
479
480 This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
481
482 (% style="color:#037691" %)**Example:**
483
484 09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
485
486 09 (H): 0x09&0x01=1              0x00: Normal uplink packet.
487
488 0x01: Interrupt Uplink Packet.
489
490
491 === 2.3.9 ​Decode payload in The Things Network ===
492
493
494 While using TTN network, you can add the payload format to decode the payload.
495
496
497 [[image:1675144839454-913.png]]
498
499
500 PS-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
501
502
503 == 2.4 Uplink Interval ==
504
505
506 The PS-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval||style="background-color: rgb(255, 255, 255);"]]
507
508
509 == 2.5 Show Data in DataCake IoT Server ==
510
511
512 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
513
514
515 (% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
516
517 (% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
518
519
520 [[image:1675144951092-237.png]]
521
522
523 [[image:1675144960452-126.png]]
524
525
526 (% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake.
527
528 (% style="color:blue" %)**Step 4:** (%%)Create PS-LB product.
529
530 [[image:1675145004465-869.png]]
531
532
533 [[image:1675145018212-853.png]]
534
535
536
537
538 [[image:1675145029119-717.png]]
539
540
541 (% style="color:blue" %)**Step 5: **(%%)add payload decode
542
543 [[image:1675145051360-659.png]]
544
545
546 [[image:1675145060812-420.png]]
547
548
549 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
550
551
552 [[image:1675145081239-376.png]]
553
554
555 == 2.6 Frequency Plans ==
556
557
558 The PS-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
559
560 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
561
562
563 == 2.7 ​Firmware Change Log ==
564
565
566 **Firmware download link:**
567
568 [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
569
570
571
572 = 3. Configure PS-LB via AT Command or LoRaWAN Downlink =
573
574
575 Use can configure PS-LB via AT Command or LoRaWAN Downlink.
576
577 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
578 * LoRaWAN Downlink instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
579
580 There are two kinds of commands to configure PS-LB, they are:
581
582 * (% style="color:#037691" %)**General Commands**
583
584 These commands are to configure:
585
586 * General system settings like: uplink interval.
587 * LoRaWAN protocol & radio related command.
588
589 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
590
591 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
592
593
594 * (% style="color:#037691" %)**Commands special design for PS-LB**
595
596 These commands only valid for PS-LB, as below:
597
598
599 == 3.1 Set Transmit Interval Time ==
600
601
602 Feature: Change LoRaWAN End Node Transmit Interval.
603
604 (% style="color:blue" %)**AT Command: AT+TDC**
605
606 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
607 |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
608 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
609 30000
610 OK
611 the interval is 30000ms = 30s
612 )))
613 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
614 OK
615 Set transmit interval to 60000ms = 60 seconds
616 )))
617
618 (% style="color:blue" %)**Downlink Command: 0x01**
619
620 Format: Command Code (0x01) followed by 3 bytes time value.
621
622 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
623
624 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
625 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
626
627
628 == 3.2 Set Interrupt Mode ==
629
630
631 Feature, Set Interrupt mode for GPIO_EXIT.
632
633 (% style="color:blue" %)**AT Command: AT+INTMOD**
634
635 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
636 |=(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**
637 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
638 0
639 OK
640 the mode is 0 = No interruption
641 )))
642 |(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
643 Set Transmit Interval
644 ~1. (Disable Interrupt),
645 2. (Trigger by rising and falling edge)
646 3. (Trigger by falling edge)
647 4. (Trigger by rising edge)
648 )))|(% style="width:157px" %)OK
649
650 (% style="color:blue" %)**Downlink Command: 0x06**
651
652 Format: Command Code (0x06) followed by 3 bytes.
653
654 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
655
656 * Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
657 * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
658
659
660 == 3.3 Set the output time ==
661
662
663 Feature, Control the output 3V3 , 5V or 12V.
664
665 (% style="color:blue" %)**AT Command: AT+3V3T**
666
667 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %)
668 |=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response**
669 |(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((
670 0
671 OK
672 )))
673 |(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((
674 OK
675 default setting
676 )))
677 |(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((
678 OK
679 )))
680 |(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((
681 OK
682 )))
683
684 (% style="color:blue" %)**AT Command: AT+5VT**
685
686 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %)
687 |=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response**
688 |(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((
689 0
690 OK
691 )))
692 |(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((
693 OK
694 default setting
695 )))
696 |(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((
697 OK
698 )))
699 |(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((
700 OK
701 )))
702
703 (% style="color:blue" %)**AT Command: AT+12VT**
704
705 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %)
706 |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response**
707 |(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)(((
708 0
709 OK
710 )))
711 |(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK
712 |(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((
713 OK
714 )))
715
716 (% style="color:blue" %)**Downlink Command: 0x07**
717
718 Format: Command Code (0x07) followed by 3 bytes.
719
720 The first byte is which power, the second and third bytes are the time to turn on.
721
722 * Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
723 * Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
724 * Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
725 * Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
726 * Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
727 * Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
728
729
730 == 3.4 Set the Probe Model ==
731
732
733 (% style="color:blue" %)**AT Command: AT** **+PROBE**
734
735 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:448px" %)
736 |=(% style="width: 154px;" %)**Command Example**|=(% style="width: 204px;" %)**Function**|=(% style="width: 85px;" %)**Response**
737 |(% style="width:154px" %)AT +PROBE =?|(% style="width:204px" %)Get or Set the probe model.|(% style="width:85px" %)(((
738 0
739 OK
740 )))
741 |(% style="width:154px" %)AT +PROBE =0003|(% style="width:204px" %)Set water depth sensor mode, 3m type.|(% style="width:85px" %)OK
742 |(% style="width:154px" %)AT +PROBE =0101|(% style="width:204px" %)Set pressure transmitters mode, first type.|(% style="width:85px" %)(((
743 OK
744 )))
745 |(% style="width:154px" %)AT +PROBE =0000|(% style="width:204px" %)Initial state, no settings.|(% style="width:85px" %)(((
746 OK
747 )))
748
749 (% style="color:blue" %)**Downlink Command: 0x08**
750
751 Format: Command Code (0x08) followed by 2 bytes.
752
753 * Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
754 * Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
755
756
757 == 3.5 Multiple collections are one uplink(Since firmware V1.1) ==
758
759
760 Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time.
761
762 (% style="color:blue" %)**AT Command: AT** **+STDC**
763
764 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
765 |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
766 |(% style="width:156px" %)AT+STDC=?|(% style="width:137px" %)(((
767 Get the mode of multiple acquisitions and one uplink
768 )))|(((
769 1,10,18
770 OK
771 )))
772 |(% style="width:156px" %)AT+STDC=1,10,18|(% style="width:137px" %)Set the mode of multiple acquisitions and one uplink|(((
773 OK
774 (% style="color:#037691" %)**aa:**(%%)
775 **0:** means disable this function and use TDC to send packets.
776 **1:** means enable this function, use the method of multiple acquisitions to send packets.
777 (% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
778 (% style="color:#037691" %)**cc: **(%%)the number of collection times, the value is 1~~120
779 )))
780
781 (% style="color:blue" %)**Downlink Command: 0xAE**
782
783 Format: Command Code (0x08) followed by 5 bytes.
784
785 * Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
786
787
788 = 4. Battery & how to replace =
789
790 == 4.1 Battery Type ==
791
792
793 PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
794
795 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
796
797 [[image:1675146710956-626.png]]
798
799
800 Minimum Working Voltage for the PS-LB:
801
802 PS-LB:  2.45v ~~ 3.6v
803
804
805 == 4.2 Replace Battery ==
806
807
808 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
809
810 And make sure the positive and negative pins match.
811
812
813 == 4.3 Power Consumption Analyze ==
814
815
816 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
817
818 Instruction to use as below:
819
820 (% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
821
822 (% style="color:blue" %)**Step 2:**(%%) Open it and choose
823
824 * Product Model
825 * Uplink Interval
826 * Working Mode
827
828 And the Life expectation in difference case will be shown on the right.
829
830 [[image:1675146895108-304.png]]
831
832
833 The battery related documents as below:
834
835 * [[Battery Dimension>>https://www.dropbox.com/s/ox5g9njwjle7aw3/LSN50-Battery-Dimension.pdf?dl=0]],
836 * [[Lithium-Thionyl Chloride Battery datasheet, Tech Spec>>https://www.dropbox.com/sh/d4oyfnp8o94180o/AABQewCNSh5GPeQH86UxRgQQa?dl=0]]
837 * [[Lithium-ion Battery-Capacitor datasheet>>https://www.dropbox.com/s/791gjes2lcbfi1p/SPC_1520_datasheet.jpg?dl=0]], [[Tech Spec>>https://www.dropbox.com/s/4pkepr9qqqvtzf2/SPC1520%20Technical%20Specification20171123.pdf?dl=0]]
838
839 [[image:image-20230131145708-3.png]]
840
841
842 === 4.3.1 ​Battery Note ===
843
844
845 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
846
847
848 === 4.3.2 Replace the battery ===
849
850
851 You can change the battery in the PS-LB.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
852
853 The default battery pack of PS-LB includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
854
855
856 = 5. Remote Configure device =
857
858 == 5.1 Connect via BLE ==
859
860
861 Please see this instruction for how to configure via BLE: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]
862
863
864 == 5.2 AT Command Set ==
865
866
867
868 = 6. OTA firmware update =
869
870
871 Please see this link for how to do OTA firmware update: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
872
873
874 = 7. FAQ =
875
876 == 7.1 How to use AT Command to access device? ==
877
878
879 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
880
881
882 == 7.2 How to update firmware via UART port? ==
883
884
885 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
886
887
888 == 7.3 How to change the LoRa Frequency Bands/Region? ==
889
890
891 You can follow the instructions for [[how to upgrade image>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]].
892 When downloading the images, choose the required image file for download. ​
893
894
895 = 8. Order Info =
896
897
898 [[image:image-20230131153105-4.png]]
899
900
901 = 9. ​Packing Info =
902
903
904 (% style="color:#037691" %)**Package Includes**:
905
906 * PS-LB LoRaWAN Pressure Sensor
907
908 (% style="color:#037691" %)**Dimension and weight**:
909
910 * Device Size: cm
911 * Device Weight: g
912 * Package Size / pcs : cm
913 * Weight / pcs : g
914
915
916 = 10. Support =
917
918
919 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
920
921 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
922
923