Version 146.1 by Xiaoling on 2025/06/10 15:28

Show last authors
1
2
3
4 [[image:image-20240109154731-4.png||data-xwiki-image-style-alignment="center" height="546" width="769"]]
5
6
7
8
9
10
11
12 **Table of Contents :**
13
14 {{toc/}}
15
16
17
18
19
20
21 = 1. Introduction =
22
23 == 1.1 What is LoRaWAN Pressure Sensor ==
24
25
26 (((
27 The Dragino PS-LB/LS series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB/LS can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
28 )))
29
30 (((
31 The PS-LB/LS series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
32 )))
33
34 (((
35 The LoRa wireless technology used in PS-LB/LS allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
36 )))
37
38 (((
39 PS-LB/LS supports BLE configure and wireless OTA update which make user easy to use.
40 )))
41
42 (((
43 PS-LB/LS is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery **(%%)or (% style="color:blue" %)**solar powered + Li-ion battery **(%%), it is designed for long term use up to 5 years.
44 )))
45
46 (((
47 Each PS-LB/LS is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
48 )))
49
50
51 == 1.2 ​Features ==
52
53
54 * LoRaWAN 1.0.3 Class A
55 * Ultra-low power consumption
56 * Measure air / gas or water pressure
57 * Different pressure range available
58 * Thread Installation Type or Immersion Type
59 * Monitor Battery Level
60 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
61 * Support Bluetooth v5.1 and LoRaWAN remote configure
62 * Support wireless OTA update firmware
63 * Uplink on periodically
64 * Downlink to change configure
65 * Controllable 3.3v,5v and 12v output to power external sensor
66 * 8500mAh Li/SOCl2 Battery (PS-LB)
67 * Solar panel + 3000mAh Li-ion battery (PS-LS)
68
69 == 1.3 Specification ==
70
71
72 (% style="color:#037691" %)**Micro Controller:**
73
74 * MCU: 48Mhz ARM
75 * Flash: 256KB
76 * RAM: 64KB
77
78 (% style="color:#037691" %)**Common DC Characteristics:**
79
80 * Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v
81 * Operating Temperature: -40 ~~ 85°C
82
83 (% style="color:#037691" %)**LoRa Spec:**
84
85 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz,Band 2 (LF): 410 ~~ 528 Mhz
86 * Max +22 dBm constant RF output vs.
87 * RX sensitivity: down to -139 dBm.
88 * Excellent blocking immunity
89
90 (% style="color:#037691" %)**Current Input Measuring :**
91
92 * Range: 0 ~~ 20mA
93 * Accuracy: 0.02mA
94 * Resolution: 0.001mA
95
96 (% style="color:#037691" %)**Voltage Input Measuring:**
97
98 * Range: 0 ~~ 30v
99 * Accuracy: 0.02v
100 * Resolution: 0.001v
101
102 (% style="color:#037691" %)**Battery:**
103
104 * Li/SOCI2 un-chargeable battery
105 * Capacity: 8500mAh
106 * Self-Discharge: <1% / Year @ 25°C
107 * Max continuously current: 130mA
108 * Max boost current: 2A, 1 second
109
110 (% style="color:#037691" %)**Power Consumption**
111
112 * Sleep Mode: 5uA @ 3.3v
113 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
114
115 == 1.4 Probe Types ==
116
117 === 1.4.1 Thread Installation Type ===
118
119
120 [[image:1675071448299-229.png]]
121
122 * Hersman Pressure Transmitter
123 * Measuring Range: -0.1 ~~ 0 ~~ 60MPa, see order info.
124 * Accuracy: 0.2% F.S
125 * Long-Term Stability: 0.2% F.S ±0.05%
126 * Overload 200% F.S
127 * Zero Temperature Drift: 0.03% FS/℃(≤100Kpa), 0.02%FS/℃(>100Kpa)
128 * FS Temperature Drift: 0.003% FS/℃(≤100Kpa), 0.002%FS/℃(>100Kpa)
129 * Storage temperature: -30℃~~80℃
130 * Operating temperature: -20℃~~60℃
131 * Connector Type: Various Types, see order info
132
133 === 1.4.2 Immersion Type ===
134
135
136 [[image:image-20240109160445-5.png||height="199" width="150"]]
137
138 * Immersion Type, Probe IP Level: IP68
139 * Measuring Range: Measure range can be customized, up to 100m.
140 * Accuracy: 0.2% F.S
141 * Long-Term Stability: ±0.2% F.S / Year
142 * Storage temperature: -30°C~~80°C
143 * Operating temperature: 0°C~~50°C
144 * Probe Material: 316 stainless steels
145 * Cable model specifications: CGYPU 5*0.2mm2
146 * Usage characteristics of Cable
147 1) Operating temperature:-40℃— +70℃
148 2) -30℃ bending cable 15 times of outer diameter can work normally
149
150 === 1.4.3 Wireless Differential Air Pressure Sensor ===
151
152 [[image:image-20240511174954-1.png||height="193" width="193"]]
153
154 * Measuring Range: -100KPa~~0~~100KPa(Optional measuring range).
155 * Accuracy: 0.5% F.S, resolution is 0.05%.
156 * Overload: 300% F.S
157 * Zero temperature drift: ±0.03%F.S/°C
158 * Operating temperature: -20°C~~60°C
159 * Storage temperature:  -20°C~~60°C
160 * Compensation temperature: 0~~50°C
161
162 == 1.5 Application and Installation ==
163
164 === 1.5.1 Thread Installation Type ===
165
166
167 (% style="color:blue" %)**Application:**
168
169 * Hydraulic Pressure
170 * Petrochemical Industry
171 * Health and Medical
172 * Food & Beverage Processing
173 * Auto-controlling house
174 * Constant Pressure Water Supply
175 * Liquid Pressure measuring
176
177 Order the suitable thread size and install to measure the air / liquid pressure
178
179 [[image:1675071670469-145.png]]
180
181
182 === 1.5.2 Immersion Type ===
183
184
185 (% style="color:blue" %)**Application:**
186
187 Liquid & Water Pressure / Level detect.
188
189 [[image:1675071725288-579.png]]
190
191
192 Below is the wiring to for connect the probe to the device.
193
194 The Immersion Type Sensor has different variant which defined by Ixx. For example, this means two points:
195
196 * Cable Length: 10 Meters
197 * Water Detect Range: 0 ~~ 10 Meters.
198
199 [[image:1675071736646-450.png]]
200
201
202 [[image:1675071776102-240.png]]
203
204 Size of immersion type water depth sensor:
205
206 [[image:image-20250401102131-1.png||height="268" width="707"]]
207
208
209 === 1.5.3 Wireless Differential Air Pressure Sensor ===
210
211
212 (% style="color:blue" %)**Application:**
213
214 Indoor Air Control & Filter clogging Detect.
215
216 [[image:image-20240513100129-6.png]]
217
218 [[image:image-20240513100135-7.png]]
219
220
221 Below is the wiring to for connect the probe to the device.
222
223 [[image:image-20240513093957-1.png]]
224
225
226 Size of wind pressure transmitter:
227
228 [[image:image-20240513094047-2.png||height="462" width="518"]]
229
230 (% style="color:red" %)**Note: The above dimensions are measured by hand, and the numerical error of the shell is within ±0.2mm.**
231
232
233 == 1.6 Sleep mode and working mode ==
234
235
236 **Deep Sleep Mode:** Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
237
238 **Working Mode: **In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
239
240
241 == 1.7 Button & LEDs ==
242
243
244 [[image:image-20250419092225-1.jpeg]]
245
246 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
247 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)Behavior on ACT|=(% style="width: 117px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 226px;background-color:#4F81BD;color:white" %)Action
248 |[[image:1749540420016-961.png]] 1~~3s|(% style="background-color:#f2f2f2; width:117px" %)Send an uplink|(% style="background-color:#f2f2f2; width:225px" %)(((
249 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, blue led will blink once.
250 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
251 )))
252 |[[image:1749540423574-437.png]] >3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
253 Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network.
254 Green led will solidly turn on for 5 seconds after joined in network.
255 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
256 )))
257 |[[image:1749540397649-875.png]] x5|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)Red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
258
259 == 1.8 Pin Mapping ==
260
261
262 [[image:1675072568006-274.png]]
263
264
265 == 1.9 BLE connection ==
266
267
268 PS-LB/LS support BLE remote configure.
269
270
271 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
272
273 * Press button to send an uplink
274 * Press button to active device.
275 * Device Power on or reset.
276
277 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
278
279
280 == 1.10 Mechanical ==
281
282 === 1.10.1 for LB version ===
283
284
285 [[image:image-20250401163530-1.jpeg]]
286
287
288 === 1.10.2 for LS version ===
289
290
291 [[image:image-20250401163539-2.jpeg]]
292
293
294 = 2. Configure PS-LB/LS to connect to LoRaWAN network =
295
296 == 2.1 How it works ==
297
298
299 The PS-LB/LS is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
300
301
302 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
303
304
305 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
306
307 [[image:image-20250419162538-1.png]]
308
309
310 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
311
312
313 (% style="color:blue" %)**Step 1: Create a device in TTN with the OTAA keys from PS-LB/LS.**
314
315 Each PS-LB/LS is shipped with a sticker with the default device EUI as below:
316
317 [[image:image-20230426085320-1.png||height="234" width="504"]]
318
319
320 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
321
322 **Create the application.**
323
324 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SAC01L_LoRaWAN_Temperature%26Humidity_Sensor_User_Manual/WebHome/image-20250423093843-1.png?width=756&height=264&rev=1.1||alt="image-20250423093843-1.png"]]
325
326 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111305-2.png?width=1000&height=572&rev=1.1||alt="image-20240907111305-2.png"]]
327
328
329 **Add devices to the created Application.**
330
331 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111659-3.png?width=977&height=185&rev=1.1||alt="image-20240907111659-3.png"]]
332
333 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111820-5.png?width=975&height=377&rev=1.1||alt="image-20240907111820-5.png"]]
334
335
336 **Enter end device specifics manually.**
337
338 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112136-6.png?width=697&height=687&rev=1.1||alt="image-20240907112136-6.png"]]
339
340
341 **Add DevEUI and AppKey. Customize a platform ID for the device.**
342
343 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112427-7.png?rev=1.1||alt="image-20240907112427-7.png"]]
344
345
346 (% style="color:blue" %)**Step 2: Add decoder.**
347
348 In TTN, user can add a custom payload so it shows friendly reading.
349
350 Click this link to get the decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/]]
351
352 Below is TTN screen shot:
353
354 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140556-1.png?width=1184&height=488&rev=1.1||alt="image-20241009140556-1.png" height="488" width="1184"]]
355
356 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140603-2.png?width=1168&height=562&rev=1.1||alt="image-20241009140603-2.png" height="562" width="1168"]]
357
358
359 (% style="color:blue" %)**Step 3: Activate on PS-LB/LS**
360
361 Press the button for 5 seconds to activate the PS-LB/LS.
362
363 Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network. Green led will solidly turn on for 5 seconds after joined in network.
364
365 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
366
367
368 == 2.3 ​Uplink Payload ==
369
370 === 2.3.1 Device Status, FPORT~=5 ===
371
372
373 Include device configure status. Once PS-LB/LS Joined the network, it will uplink this message to the server.
374
375 Users can also use the downlink command(0x26 01) to ask PS-LB/LS to resend this uplink.
376
377 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
378 |(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
379 |(% style="background-color:#f2f2f2; width:103px" %)Size (bytes)|(% style="background-color:#f2f2f2; width:72px" %)1|(% style="background-color:#f2f2f2" %)2|(% style="background-color:#f2f2f2; width:91px" %)1|(% style="background-color:#f2f2f2; width:86px" %)1|(% style="background-color:#f2f2f2; width:44px" %)2
380 |(% style="background-color:#f2f2f2; width:103px" %)Value|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT
381
382 Example parse in TTNv3
383
384 [[image:1675144504430-490.png]]
385
386
387 Sensor Model: For PS-LB/LS, this value is 0x16
388
389 Firmware Version: 0x0100, Means: v1.0.0 version
390
391 Frequency Band:
392
393 *0x01: EU868
394
395 *0x02: US915
396
397 *0x03: IN865
398
399 *0x04: AU915
400
401 *0x05: KZ865
402
403 *0x06: RU864
404
405 *0x07: AS923
406
407 *0x08: AS923-1
408
409 *0x09: AS923-2
410
411 *0x0a: AS923-3
412
413 *0x0b: CN470
414
415 *0x0c: EU433
416
417 *0x0d: KR920
418
419 *0x0e: MA869
420
421
422 Sub-Band:
423
424 AU915 and US915:value 0x00 ~~ 0x08
425
426 CN470: value 0x0B ~~ 0x0C
427
428 Other Bands: Always 0x00
429
430
431 Battery Info:
432
433 Check the battery voltage.
434
435 Ex1: 0x0B45 = 2885mV
436
437 Ex2: 0x0B49 = 2889mV
438
439
440 === 2.3.2 Sensor value, FPORT~=2 ===
441
442
443 Uplink payload includes in total 9 bytes.
444
445
446 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
447 |(% style="background-color:#4f81bd; color:white; width:97px" %)(((
448 **Size(bytes)**
449 )))|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:71px" %)**2**|(% style="background-color:#4f81bd; color:white; width:98px" %)**2**|(% style="background-color:#4f81bd; color:white; width:73px" %)**2**|(% style="background-color:#4f81bd; color:white; width:122px" %)**1**
450 |(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
451
452 [[image:1675144608950-310.png]]
453
454
455 === 2.3.3 Battery Info ===
456
457
458 Check the battery voltage for PS-LB/LS.
459
460 Ex1: 0x0B45 = 2885mV
461
462 Ex2: 0x0B49 = 2889mV
463
464
465 === 2.3.4 Probe Model ===
466
467
468 PS-LB/LS has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
469
470 For example.
471
472 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
473 |(% style="background-color:#4f81bd; color:white" %)**Part Number**|(% style="background-color:#4f81bd; color:white" %)**Probe Used**|(% style="background-color:#4f81bd; color:white" %)**4~~20mA scale**|(% style="background-color:#4f81bd; color:white" %)**Example: 12mA meaning**
474 |(% style="background-color:#f2f2f2" %)PS-LB/LS-I3|(% style="background-color:#f2f2f2" %)immersion type with 3 meters cable|(% style="background-color:#f2f2f2" %)0~~3 meters|(% style="background-color:#f2f2f2" %)1.5 meters pure water
475 |(% style="background-color:#f2f2f2" %)PS-LB/LS-I5|(% style="background-color:#f2f2f2" %)immersion type with 5 meters cable|(% style="background-color:#f2f2f2" %)0~~5 meters|(% style="background-color:#f2f2f2" %)2.5 meters pure water
476 |(% style="background-color:#f2f2f2" %)PS-LB/LS-T20-B|(% style="background-color:#f2f2f2" %)T20 threaded probe|(% style="background-color:#f2f2f2" %)0~~1MPa|(% style="background-color:#f2f2f2" %)0.5MPa air / gas or water pressure
477
478 The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.
479
480
481 When connecting to current sensors sold by our company, you can convert current readings to corresponding values by simply configuring the [[AT+PROBE>>||anchor="H3.3.4SettheProbeModel"]] command. If you prefer not to configure this command on the sensor, you can uniformly handle the conversion in the payload decoder instead.
482
483 **Examples for decoder implementation:**
484
485 ~1. For AT+PROBE=0005, add the following processing in your decoder:
486
487 [[image:image-20250512144042-1.png]]
488
489 [[image:image-20250512144122-2.png]]
490
491 2. For AT+PROBE=0102, add the following processing in your decoder(Corresponding to the position shown in the above screenshot).
492
493 bytes[i]=0x01;bytes[1+i]=0x02;
494
495 bytes[2]=0x01;bytes[3]=0x02;
496
497
498 === 2.3.5 0~~20mA value (IDC_IN) ===
499
500
501 The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
502
503 Example:
504
505 27AE(H) = 10158 (D)/1000 = 10.158mA.
506
507
508 Instead of pressure probe, User can also connect a general 4~~20mA in this port to support different types of 4~~20mA sensors. below is the connection example:
509
510 [[image:image-20230225154759-1.png||height="408" width="741"]]
511
512
513 === 2.3.6 0~~30V value (pin VDC_IN) ===
514
515
516 Measure the voltage value. The range is 0 to 30V.
517
518 Example:
519
520 138E(H) = 5006(D)/1000= 5.006V
521
522
523 === 2.3.7 IN1&IN2&INT pin ===
524
525
526 IN1 and IN2 are used as digital input pins.
527
528 Example:
529
530 09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
531
532 09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
533
534
535 This data field shows if this packet is generated by Interrupt Pin or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
536
537 Example:
538
539 09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
540
541 09 (H): 0x09&0x01=1              0x00: Normal uplink packet.
542
543 0x01: Interrupt Uplink Packet.
544
545
546 === 2.3.8 Sensor value, FPORT~=7 ===
547
548
549 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
550 |(% style="background-color:#4f81bd; color:white; width:65px" %)(((
551 **Size(bytes)**
552 )))|(% style="background-color:#4f81bd; color:white; width:35px" %)**2**|(% style="background-color:#4f81bd; color:white; width:400px" %)**n**
553 |(% style="width:94px" %)Value|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)(((
554
555
556 Voltage value, each 2 bytes is a set of voltage values.
557 )))
558
559 [[image:image-20230220171300-1.png||height="207" width="863"]]
560
561 Multiple sets of data collected are displayed in this form:
562
563 [voltage value1], [voltage value2], [voltage value3],…[voltage value n/2]
564
565
566 === 2.3.9 ​Decode payload in The Things Network ===
567
568
569 While using TTN network, you can add the payload format to decode the payload.
570
571 [[image:1675144839454-913.png]]
572
573
574 PS-LB/LS TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
575
576
577 == 2.4 Uplink Interval ==
578
579
580 The PS-LB/LS by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval||style="background-color: rgb(255, 255, 255);"]]
581
582
583 == 2.5 Show Data in DataCake IoT Server ==
584
585
586 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
587
588 Step 1: Be sure that your device is programmed and properly connected to the network at this time.
589
590 Step 2: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
591
592 [[image:1675144951092-237.png]]
593
594
595 [[image:1675144960452-126.png]]
596
597
598 Step 3: Create an account or log in Datacake.
599
600 Step 4: Create PS-LB/LS product.
601
602 [[image:1675145004465-869.png]]
603
604
605 [[image:1675145018212-853.png]]
606
607
608 [[image:1675145029119-717.png]]
609
610
611 Step 5: add payload decode
612
613 [[image:1675145051360-659.png]]
614
615
616 [[image:1675145060812-420.png]]
617
618
619 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
620
621 [[image:1675145081239-376.png]]
622
623
624 == 2.6 Datalog Feature (Since V1.1) ==
625
626
627 When a user wants to retrieve sensor value, he can send a poll command from the IoT platform to ask the sensor to send value in the required time slot.
628
629
630 === 2.6.1 Unix TimeStamp ===
631
632
633 PS-LB uses Unix TimeStamp format based on
634
635 [[image:image-20250401163826-3.jpeg]]
636
637 Users can get this time from the link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
638
639 Below is the converter example:
640
641 [[image:image-20250401163906-4.jpeg]]
642
643
644 === 2.6.2 Set Device Time ===
645
646
647 There are two ways to set the device's time:
648
649
650 ~1. Through LoRaWAN MAC Command (Default settings)
651
652 Users need to set SYNCMOD=1 to enable sync time via the MAC command.
653
654 Once CPL01 Joined the LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to CPL01. If CPL01 fails to get the time from the server, CPL01 will use the internal time and wait for the next time request ~[[[via Device Status (FPORT=5)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/#H2.3.1DeviceStatus2CFPORT3D5]]].
655
656 Note: LoRaWAN Server needs to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature.
657
658
659 2. Manually Set Time
660
661 Users need to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
662
663
664 === 2.6.3 Poll sensor value ===
665
666 Users can poll sensor values based on timestamps. Below is the downlink command.
667
668 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:470px" %)
669 |=(% colspan="4" style="width: 160px; background-color:#4F81BD;color:white" %)Downlink Command to poll Open/Close status (0x31)
670 |(% style="background-color:#f2f2f2; width:67px" %)1byte|(% style="background-color:#f2f2f2; width:145px" %)4bytes|(% style="background-color:#f2f2f2; width:133px" %)4bytes|(% style="background-color:#f2f2f2; width:163px" %)1byte
671 |(% style="background-color:#f2f2f2; width:67px" %)31|(% style="background-color:#f2f2f2; width:145px" %)Timestamp start|(% style="background-color:#f2f2f2; width:133px" %)(((
672 Timestamp end
673 )))|(% style="background-color:#f2f2f2; width:163px" %)Uplink Interval
674
675 Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
676
677 For example, downlink command[[image:image-20250117104812-1.png]]
678
679 Is to check 2024/12/20 09:34:59 to 2024/12/20 14:34:59's data
680
681 Uplink Internal =5s,means PS-LB will send one packet every 5s. range 5~~255s.
682
683
684 === 2.6.4 Datalog Uplink payload (FPORT~=3) ===
685
686
687 The Datalog uplinks will use below payload format.
688
689 Retrieval data payload:
690
691 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
692 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
693 Size(bytes)
694 )))|=(% style="width: 70px; background-color:#4F81BD;color:white" %)2|=(% style="width: 70px; background-color:#4F81BD;color:white" %)2|=(% style="width: 80px; background-color: rgb(79, 129, 189); color: white;" %)2|=(% style="width: 150px; background-color: rgb(79, 129, 189); color: white;" %)1|=(% style="width: 80px; background-color: rgb(79, 129, 189); color: white;" %)4
695 |(% style="width:103px" %)Value|(% style="width:68px" %)(((
696 Probe_mod
697 )))|(% style="width:104px" %)(((
698 VDC_intput_V
699 )))|(% style="width:83px" %)(((
700 IDC_intput_mA
701 )))|(% style="width:201px" %)(((
702 IN1_pin_level& IN2_pin_level& Exti_pin_level&Exti_status
703 )))|(% style="width:86px" %)Unix Time Stamp
704
705 IN1_pin_level & IN2_pin_level & Exti_pin_level & Exti_status:
706
707 [[image:image-20250117104847-4.png]]
708
709
710 No ACK Message:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for PNACKMD=1 feature)
711
712 Poll Message Flag: 1: This message is a poll message reply.
713
714 * Poll Message Flag is set to 1.
715
716 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
717
718 For example, in US915 band, the max payload for different DR is:
719
720 a) DR0: max is 11 bytes so one entry of data
721
722 b) DR1: max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
723
724 c) DR2: total payload includes 11 entries of data
725
726 d) DR3: total payload includes 22 entries of data.
727
728 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
729
730 Example:
731
732 If PS-LB-NA has below data inside Flash:
733
734 [[image:image-20250117104837-3.png]]
735
736
737 If user sends below downlink command: 316788D9BF6788DB6305
738
739 Where : Start time: 6788D9BF = time 25/1/16 10:04:47
740
741 Stop time: 6788DB63 = time 25/1/16 10:11:47
742
743
744 PA-LB-NA will uplink this payload.
745
746 [[image:image-20250117104827-2.png]]
747
748
749 00001B620000406788D9BF  00000D130000406788D9FB  00000D120000406788DA37  00000D110000406788DA73  00000D100000406788DAAF  00000D100000406788DAEB  00000D0F0000406788DB27  00000D100000406788DB63
750
751
752 Where the first 11 bytes is for the first entry :
753
754
755 0000  0D10  0000  40  6788DB63
756
757
758 Probe_mod = 0x0000 = 0000
759
760
761 VDC_intput_V = 0x0D10/1000=3.344V
762
763 IDC_intput_mA = 0x0000/1000=0mA
764
765
766 IN1_pin_level = (0x40& 0x08)? "High":"Low" = 0(Low)
767
768 IN2_pin_level = (0x40& 0x04)? "High":"Low" = 0(Low)
769
770 Exti_pin_level = (0x40& 0x02)? "High":"Low" = 0(Low)
771
772 Exti_status = (0x40& 0x01)? "True":"False" = 0(False)
773
774
775 Unix time is 0x6788DB63 = 1737022307s = 2025/1/16 10:11:47
776
777 Its data format is:
778
779 [Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level, IN2_pin_level, Exti_pin_level, water_deep, Data_time],[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level, IN2_pin_level, Exti_pin_level, water_deep, Data_time],...
780
781 Note: water_deep in the data needs to be converted using decoding to get it.
782
783
784 === 2.6.5 Decoder in TTN V3 ===
785
786 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652862574387-195.png?width=722&height=359&rev=1.1||alt="1652862574387-195.png" height="359" width="722"]]
787
788 Please check the decoder from this link: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
789
790
791 == 2.7 Frequency Plans ==
792
793
794 The PS-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country.
795
796 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/a>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
797
798
799 == 2.8 Report on Change Feature (Since firmware V1.2) ==
800
801 === 2.8.1 Uplink payload(Enable ROC) ===
802
803
804 Used to Monitor the IDC and VDC increments, and send ROC uplink when the IDC or VDC changes exceed.
805
806 With ROC enabled, the payload is as follows:
807
808 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
809 |(% style="background-color:#4f81bd; color:white; width:97px" %)(((
810 Size(bytes)
811 )))|(% style="background-color:#4f81bd; color:white; width:48px" %)2|(% style="background-color:#4f81bd; color:white; width:71px" %)2|(% style="background-color:#4f81bd; color:white; width:98px" %)2|(% style="background-color:#4f81bd; color:white; width:73px" %)2|(% style="background-color:#4f81bd; color:white; width:122px" %)1
812 |(% style="width:98px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)(((
813 [[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]] & ROC_flag
814 )))
815
816 IN1 &IN2 , Interrupt  flag , ROC_flag:
817
818 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
819 |(% style="background-color:#4f81bd; color:white; width:50px" %)Size(bit)|(% style="background-color:#4f81bd; color:white; width:60px" %)bit7|(% style="background-color:#4f81bd; color:white; width:62px" %)bit6|(% style="background-color:#4f81bd; color:white; width:62px" %)bit5|(% style="background-color:#4f81bd; color:white; width:65px" %)bit4|(% style="background-color:#4f81bd; color:white; width:56px" %)bit3|(% style="background-color:#4f81bd; color:white; width:55px" %)bit2|(% style="background-color:#4f81bd; color:white; width:55px" %)bit1|(% style="background-color:#4f81bd; color:white; width:50px" %)bit0
820 |(% style="width:75px" %)Value|(% style="width:89px" %)IDC_Roc_flagL|(% style="width:46.5834px" %)IDC_Roc_flagH|(% style="width:1px" %)VDC_Roc_flagL|(% style="width:89px" %)VDC_Roc_flagH|(% style="width:89px" %)IN1_pin_level|(% style="width:103px" %)IN2_pin_level|(% style="width:103px" %)Exti_pin_level|(% style="width:103px" %)Exti_status
821
822 * IDC_Roc_flagL
823
824 80 (H): (0x80&0x80)=80(H)=1000 0000(B)  bit7=1, "TRUE", This uplink is triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
825
826 60 (H): (0x60&0x80)=0  bit7=0, "FALSE", This uplink is not triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
827
828
829 * IDC_Roc_flagH
830
831 60 (H): (0x60&0x40)=60(H)=01000 0000(B)  bit6=1, "TRUE", This uplink is triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
832
833 80 (H): (0x80&0x40)=0  bit6=0, "FALSE", This uplink is not triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
834
835
836 * VDC_Roc_flagL
837
838 20 (H): (0x20&0x20)=20(H)=0010 0000(B)  bit5=1, "TRUE", This uplink is triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
839
840 90 (H): (0x90&0x20)=0  bit5=0, "FALSE", This uplink is not triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
841
842
843 * VDC_Roc_flagH
844
845 90 (H): (0x90&0x10)=10(H)=0001 0000(B)  bit4=1, "TRUE", This uplink is triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
846
847 20 (H): (0x20&0x10)=0  bit4=0, "FALSE", This uplink is not triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
848
849
850 * IN1_pin_level & IN2_pin_level
851
852 IN1 and IN2 are used as digital input pins.
853
854 80 (H): (0x80&0x08)=0  IN1 pin is low level.
855
856 80 (H): (0x09&0x04)=0    IN2 pin is low level.
857
858
859 * Exti_pin_level &Exti_status
860
861 This data field shows whether the packet is generated by an interrupt pin.
862
863 Note: The Internet pin of the old motherboard is a separate pin in the screw terminal, and the interrupt pin of the new motherboard(SIB V1.3) is the GPIO_EXTI pin.
864
865 Exti_pin_level:  80 (H): (0x80&0x02)=0  "low", The level of the interrupt pin.
866
867 Exti_status: 80 (H): (0x80&0x01)=0  "False", Normal uplink packet.
868
869
870 === 2.8.2 Set the Report on Change ===
871
872
873 Feature: Get or Set the Report on Change.
874
875
876 ==== 2.8.2.1 Wave alarm mode ====
877
878
879 Feature: By setting the detection period and a change value, the IDC/VDC variable is monitored whether it exceeds the set change value. If this change value is exceeded, the ROC uplink is sent and the comparison value is flushed.
880
881 * Change value: The amount by which the next detection value increases/decreases relative to the previous detection value.
882 * Comparison value: A parameter to compare with the latest ROC test.
883
884 AT Command: AT+ROC
885
886 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
887 |=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 154px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 193px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
888 |(% style="width:143px" %)AT+ROC=?|(% style="width:154px" %)Show current ROC setting|(% style="width:197px" %)(((
889 0,0,0,0(default)
890 OK
891 )))
892 |(% colspan="1" rowspan="4" style="width:143px" %)(((
893 AT+ROC=a,b,c,d
894 )))|(% style="width:154px" %)(((
895 **a:** Enable or disable the ROC
896 )))|(% style="width:197px" %)(((
897 **0:** off
898 **1:** Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value.
899 **2:** Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value. In addition, the comparison value is refreshed when the device sends packets ([[TDC>>||anchor="H3.3.1SetTransmitIntervalTime"]] or [[ACT>>||anchor="H1.7Button26LEDs"]]).
900 )))
901 |(% style="width:154px" %)**b:** Set the detection interval|(% style="width:197px" %)(((
902 Range:  0~~65535s
903 )))
904 |(% style="width:154px" %)**c:** Setting the IDC change value|(% style="width:197px" %)Unit: uA
905 |(% style="width:154px" %)**d:** Setting the VDC change value|(% style="width:197px" %)Unit: mV
906
907 Example:
908
909 * AT+ROC=0,0,0,0  ~/~/ The ROC function is not used.
910 * AT+ROC=1,60,3000, 500  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA) or VDC (>500mV), sends an ROC uplink, and the comparison value is refreshed.
911 * AT+ROC=1,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage.
912 * AT+ROC=2,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage. In addition, if the change in the IDC does not exceed 3mA, then the ROC uplink is not sent, and the comparison value is not refreshed by the ROC uplink packet. However, if the device TDC time arrives, or if the user manually sends packets, then the IDC comparison value is also refreshed.
913
914 Downlink Command: 0x09 aa bb cc dd
915
916 Format: Function code (0x09) followed by 4 bytes.
917
918 aa: 1 byte; Set the wave alarm mode.
919
920 bb: 2 bytes; Set the detection interval. (second)
921
922 cc: 2 bytes; Setting the IDC change threshold. (uA)
923
924 dd: 2 bytes; Setting the VDC change threshold. (mV)
925
926 Example:
927
928 * Downlink Payload: 09 01 00 3C 0B B8 01 F4  ~/~/ Equal to AT+ROC=1,60,3000, 500
929 * Downlink Payload: 09 01 00 3C 0B B8 00 00  ~/~/ Equal to AT+ROC=1,60,3000,0
930 * Downlink Payload: 09 02 00 3C 0B B8 00 00  ~/~/ Equal to AT+ROC=2,60,3000,0
931
932 Screenshot of parsing example in TTN:
933
934 * AT+ROC=1,60,3000, 500.
935
936 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/PS-LB-NA--LoRaWAN_Analog_Sensor_User_Manual/WebHome/image-20241019170902-1.png?width=1454&height=450&rev=1.1||alt="image-20241019170902-1.png"]]
937
938
939 ==== 2.8.2.2 Over-threshold alarm mode ====
940
941
942 Feature: Monitors whether the IDC/VDC exceeds the threshold by setting the detection period and threshold. Alarm if the threshold is exceeded.
943
944 AT Command: AT+ROC=3,a,b,c,d,e
945
946 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
947 |=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 160px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 187px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
948 |(% style="width:143px" %)AT+ROC=?|(% style="width:160px" %)Show current ROC setting|(% style="width:185px" %)(((
949 0,0,0,0(default)
950 OK
951 )))
952 |(% colspan="1" rowspan="5" style="width:143px" %)(((
953 AT+ROC=3,a,b,c,d,e
954 )))|(% style="width:160px" %)(((
955 **a:** Set the detection interval
956 )))|(% style="width:185px" %)(((
957 Range:  0~~65535s
958 )))
959 |(% style="width:160px" %)**b:** Set the IDC alarm trigger condition|(% style="width:185px" %)(((
960 **0:** Less than the set IDC threshold, Alarm
961 **1:** Greater than the set IDC threshold, Alarm
962 )))
963 |(% style="width:160px" %)(((
964 **c: ** IDC alarm threshold
965 )))|(% style="width:185px" %)(((
966 Unit: uA
967 )))
968 |(% style="width:160px" %)**d:** Set the VDC alarm trigger condition|(% style="width:185px" %)(((
969 **0:** Less than the set VDC threshold, Alarm
970 **1:** Greater than the set VDC threshold, Alarm
971 )))
972 |(% style="width:160px" %)**e:** VDC alarm threshold|(% style="width:185px" %)Unit: mV
973
974 Example:
975
976 * AT+ROC=3,60,0,3000,0,5000  ~/~/ The data is checked every 60 seconds. If the IDC is less than 3mA or the VDC is less than 5000mV, an alarm is generated.
977 * AT+ROC=3,180,1,3000,1,5000  ~/~/ The data is checked every 180 seconds. If the IDC is greater than 3mA or the VDC is greater than 5000mV, an alarm is generated.
978 * AT+ROC=3,300,0,3000,1,5000  ~/~/ The data is checked every 300 seconds. If the IDC is less than 3mA or the VDC is greater than 5000mV, an alarm is generated.
979
980 Downlink Command: 0x09 03 aa bb cc dd ee
981
982 Format: Function code (0x09) followed by 03 and the remaining 5 bytes.
983
984 aa: 2 bytes; Set the detection interval.(second)
985
986 bb: 1 byte; Set the IDC alarm trigger condition.
987
988 cc: 2 bytes; IDC alarm threshold.(uA)
989
990
991 dd: 1 byte; Set the VDC alarm trigger condition.
992
993 ee: 2 bytes; VDC alarm threshold.(mV)
994
995 Example:
996
997 * Downlink Payload: 09 03 00 3C 00 0B B8 00 13 38 ~/~/ Equal to AT+ROC=3,60,0,3000,0,5000
998 * Downlink Payload: 09 03 00 b4 01 0B B8 01 13 38  ~/~/ Equal to AT+ROC=3,60,1,3000,1,5000
999 * Downlink Payload: 09 03 01 2C 00 0B B8 01 13 38  ~/~/ Equal to AT+ROC=3,60,0,3000,1,5000
1000
1001 Screenshot of parsing example in TTN:
1002
1003 * AT+ROC=3,60,0,3000,0,5000
1004
1005 [[image:image-20250116180030-2.png]]
1006
1007
1008 == 2.9 ​Firmware Change Log ==
1009
1010
1011 Firmware download link:
1012
1013 [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
1014
1015
1016 = 3. Configure PS-LB/LS =
1017
1018 == 3.1 Configure Methods ==
1019
1020
1021 PS-LB/LS supports below configure method:
1022
1023 * AT Command via Bluetooth Connection (Recommand Way): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
1024 * AT Command via UART Connection : See [[FAQ>>||anchor="H6.FAQ"]].
1025 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>url:http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
1026
1027 == 3.2 General Commands ==
1028
1029
1030 These commands are to configure:
1031
1032 * General system settings like: uplink interval.
1033 * LoRaWAN protocol & radio related command.
1034
1035 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
1036
1037 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
1038
1039
1040 == 3.3 Commands special design for PS-LB/LS ==
1041
1042
1043 These commands only valid for PS-LB/LS, as below:
1044
1045
1046 === 3.3.1 Set Transmit Interval Time ===
1047
1048
1049 Feature: Change LoRaWAN End Node Transmit Interval.
1050
1051 AT Command: AT+TDC
1052
1053 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1054 |=(% style="width: 160px; background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 160px; background-color:#4F81BD;color:white" %)Function|=(% style="width: 190px;background-color:#4F81BD;color:white" %)Response
1055 |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=?|(% style="background-color:#f2f2f2; width:166px" %)Show current transmit Interval|(% style="background-color:#f2f2f2" %)(((
1056 30000
1057 OK
1058 the interval is 30000ms = 30s
1059 )))
1060 |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=60000|(% style="background-color:#f2f2f2; width:166px" %)Set Transmit Interval|(% style="background-color:#f2f2f2" %)(((
1061 OK
1062 Set transmit interval to 60000ms = 60 seconds
1063 )))
1064
1065 Downlink Command: 0x01
1066
1067 Format: Command Code (0x01) followed by 3 bytes time value.
1068
1069 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1070
1071 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
1072 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
1073
1074 === 3.3.2 Set Interrupt Mode ===
1075
1076
1077 Feature, Set Interrupt mode for GPIO_EXIT.
1078
1079 AT Command: AT+INTMOD
1080
1081 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1082 |=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 160px;background-color:#4F81BD;color:white" %)Response
1083 |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=?|(% style="background-color:#f2f2f2; width:196px" %)Show current interrupt mode|(% style="background-color:#f2f2f2; width:157px" %)(((
1084 0
1085 OK
1086 the mode is 0 =Disable Interrupt
1087 )))
1088 |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=2|(% style="background-color:#f2f2f2; width:196px" %)(((
1089 Set Transmit Interval
1090 0. (Disable Interrupt),
1091 ~1. (Trigger by rising and falling edge)
1092 2. (Trigger by falling edge)
1093 3. (Trigger by rising edge)
1094 )))|(% style="background-color:#f2f2f2; width:157px" %)OK
1095
1096 Downlink Command: 0x06
1097
1098 Format: Command Code (0x06) followed by 3 bytes.
1099
1100 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1101
1102 * Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
1103 * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
1104
1105 === 3.3.3 Set the output time ===
1106
1107
1108 Feature, Control the output 3V3 , 5V or 12V.
1109
1110 AT Command: AT+3V3T
1111
1112 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:474px" %)
1113 |=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 201px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response
1114 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=?|(% style="background-color:#f2f2f2; width:201px" %)Show 3V3 open time.|(% style="background-color:#f2f2f2; width:116px" %)(((
1115 0
1116 OK
1117 )))
1118 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=0|(% style="background-color:#f2f2f2; width:201px" %)Normally open 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
1119 OK
1120 default setting
1121 )))
1122 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=1000|(% style="background-color:#f2f2f2; width:201px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:116px" %)(((
1123 OK
1124 )))
1125 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=65535|(% style="background-color:#f2f2f2; width:201px" %)Normally closed 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
1126 OK
1127 )))
1128
1129 AT Command: AT+5VT
1130
1131 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:470px" %)
1132 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response
1133 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=?|(% style="background-color:#f2f2f2; width:196px" %)Show 5V open time.|(% style="background-color:#f2f2f2; width:114px" %)(((
1134 0
1135 OK
1136 )))
1137 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=0|(% style="background-color:#f2f2f2; width:196px" %)Normally closed 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
1138 OK
1139 default setting
1140 )))
1141 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=1000|(% style="background-color:#f2f2f2; width:196px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:114px" %)(((
1142 OK
1143 )))
1144 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=65535|(% style="background-color:#f2f2f2; width:196px" %)Normally open 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
1145 OK
1146 )))
1147
1148 AT Command: AT+12VT
1149
1150 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:443px" %)
1151 |=(% style="width: 156px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 199px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 88px;background-color:#4F81BD;color:white" %)Response
1152 |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=?|(% style="background-color:#f2f2f2; width:199px" %)Show 12V open time.|(% style="background-color:#f2f2f2; width:83px" %)(((
1153 0
1154 OK
1155 )))
1156 |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=0|(% style="background-color:#f2f2f2; width:199px" %)Normally closed 12V power supply.|(% style="background-color:#f2f2f2; width:83px" %)OK
1157 |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=500|(% style="background-color:#f2f2f2; width:199px" %)Close after a delay of 500 milliseconds.|(% style="background-color:#f2f2f2; width:83px" %)(((
1158 OK
1159 )))
1160
1161 Downlink Command: 0x07
1162
1163 Format: Command Code (0x07) followed by 3 bytes.
1164
1165 The first byte is which power, the second and third bytes are the time to turn on.
1166
1167 * Example 1: Downlink Payload: 070101F4  ~-~-->  AT+3V3T=500
1168 * Example 2: Downlink Payload: 0701FFFF   ~-~-->  AT+3V3T=65535
1169 * Example 3: Downlink Payload: 070203E8  ~-~-->  AT+5VT=1000
1170 * Example 4: Downlink Payload: 07020000  ~-~-->  AT+5VT=0
1171 * Example 5: Downlink Payload: 070301F4  ~-~-->  AT+12VT=500
1172 * Example 6: Downlink Payload: 07030000  ~-~-->  AT+12VT=0
1173
1174 Note: Before v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 65535 milliseconds. After v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 180 seconds.
1175
1176 Therefore, the corresponding downlink command is increased by one byte to five bytes.
1177
1178 Example:
1179
1180 * 120s=120000ms(D) =0x01D4C0(H), Downlink Payload: 07 01 01 D4 C0  ~-~-->  AT+3V3T=120000
1181 * 100s=100000ms(D) =0x0186A0(H), Downlink Payload: 07 02 01 86 A0  ~-~-->  AT+5VT=100000
1182 * 80s=80000ms(D) =0x013880(H), Downlink Payload: 07 03 01 38 80  ~-~-->  AT+12VT=80000
1183
1184 === 3.3.4 Set the Probe Model ===
1185
1186
1187 Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value.
1188
1189 AT Command: AT +PROBE
1190
1191 AT+PROBE=aabb
1192
1193 When aa=00, it is the water depth mode, and the current is converted into the water depth value; bb is the probe at a depth of several meters.
1194
1195 When aa=01, it is the pressure mode, which converts the current into a pressure value;
1196
1197 bb represents which type of pressure sensor it is.
1198
1199 (A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C)
1200
1201 When aa=02, it is the Differential Pressure Sensor , which converts the current into a pressure value;
1202
1203 bb represents which type of pressure sensor it is.
1204
1205 (0~~100Pa->01,0~~200Pa->02,0~~300Pa->03,0~~1KPa->04,0~~2KPa->05,0~~3KPa->06,0~~4KPa->07,0~~5KPa->08,0~~10KPa->09,-100~~ 100Pa->0A,-200~~ 200Pa->0B,-1~~ 1KPa->0C)
1206
1207 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1208 |(% style="background-color:#4f81bd; color:white; width:154px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:269px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response
1209 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=?|(% style="background-color:#f2f2f2; width:269px" %)Get or Set the probe model.|(% style="background-color:#f2f2f2" %)0
1210 OK
1211 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0003|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 3m type.|(% style="background-color:#f2f2f2" %)OK
1212 |(% style="background-color:#f2f2f2; width:154px" %)(((
1213 AT+PROBE=000A
1214 )))|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 10m type.|(% style="background-color:#f2f2f2" %)OK
1215 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0064|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 100m type.|(% style="background-color:#f2f2f2" %)OK
1216 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0101|(% style="background-color:#f2f2f2; width:269px" %)Set pressure transmitters mode, first type(A).|(% style="background-color:#f2f2f2" %)OK
1217 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0000|(% style="background-color:#f2f2f2; width:269px" %)Initial state, no settings.|(% style="background-color:#f2f2f2" %)OK
1218
1219 Downlink Command: 0x08
1220
1221 Format: Command Code (0x08) followed by 2 bytes.
1222
1223 * Example 1: Downlink Payload: 080003  ~-~-->  AT+PROBE=0003
1224 * Example 2: Downlink Payload: 080101  ~-~-->  AT+PROBE=0101
1225
1226 === 3.3.5 Multiple collections are one uplink (Since firmware V1.1) ===
1227
1228
1229 Added AT+STDC command to collect the voltage of VDC_INPUT/IDC_INPUT multiple times and upload it at one time.
1230
1231 AT Command: AT +STDC
1232
1233 AT+STDC=aa,bb,cc
1234
1235 aa:
1236 0: means disable this function and use TDC to send packets.
1237 1: means that the function is enabled to send packets by collecting VDC data for multiple times.
1238 2: means that the function is enabled to send packets by collecting IDC data for multiple times.
1239 bb: Each collection interval (s), the value is 1~~65535
1240 cc: the number of collection times, the value is 1~~120
1241
1242 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1243 |(% style="background-color:#4f81bd; color:white; width:160px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:215px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response
1244 |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=?|(% style="background-color:#f2f2f2; width:215px" %)Get the mode of multiple acquisitions and one uplink.|(% style="background-color:#f2f2f2" %)1,10,18
1245 OK
1246 |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=1,10,18|(% style="background-color:#f2f2f2; width:215px" %)Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(% style="background-color:#f2f2f2" %)(((
1247 Attention:Take effect after ATZ
1248 OK
1249 )))
1250 |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=0, 0,0|(% style="background-color:#f2f2f2; width:215px" %)(((
1251
1252
1253 Use the TDC interval to send packets.(default)
1254
1255
1256 )))|(% style="background-color:#f2f2f2" %)(((
1257 Attention:Take effect after ATZ
1258 OK
1259 )))
1260
1261 Downlink Command: 0xAE
1262
1263 Format: Command Code (0xAE) followed by 4 bytes.
1264
1265 * Example 1: Downlink Payload: AE 01 02 58 12 ~-~-->  AT+STDC=1,600,18
1266
1267 == 3.4 Print data entries base on page(Since v1.1.0) ==
1268
1269
1270 Feature: Print the sector data from start page to stop page (max is 416 pages).
1271
1272 (% style="color:#4f81bd" %)**AT Command: AT+PDTA**
1273
1274 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1275 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1276 |(% style="width:156px" %)(((
1277 AT+PDTA=1,1
1278 Print page 1 to 1
1279 )))|(% style="width:311px" %)(((
1280 Stop Tx events when read sensor data
1281
1282 8031000 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1283
1284 8031010 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1285
1286 8031020 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1287
1288 8031030 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1289
1290 8031040 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1291
1292 8031050 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1293
1294 8031060 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1295
1296 8031070 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1297
1298 Start Tx events
1299
1300
1301 OK
1302 )))
1303
1304 (% style="color:#4f81bd" %)**Downlink Command:**
1305
1306 No downlink commands for feature
1307
1308
1309 == 3.5 Print last few data entries(Since v1.1.0) ==
1310
1311
1312 Feature: Print the last few data entries
1313
1314
1315 (% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
1316
1317 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1318 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1319 |(% style="width:156px" %)(((
1320 AT+PLDTA=10
1321 Print last 10 entries
1322 )))|(% style="width:311px" %)(((
1323 Stop Tx events when read sensor data
1324
1325 0001 2025/5/19 06:16:50 3246 in1:low in2:low exti:low status:false vdc:3.352 idc:0.000 proble:0000 water_deep:0.000
1326
1327 0002 2025/5/19 06:17:50 3246 in1:low in2:low exti:low status:false vdc:3.352 idc:0.000 proble:0000 water_deep:0.000
1328
1329 0003 2025/5/19 06:18:50 3246 in1:low in2:low exti:low status:false vdc:3.352 idc:0.000 proble:0000 water_deep:0.000
1330
1331 0004 2025/5/19 06:19:50 3246 in1:low in2:low exti:low status:false vdc:3.352 idc:0.000 proble:0000 water_deep:0.000
1332
1333 0005 2025/5/19 06:20:50 3246 in1:low in2:low exti:low status:false vdc:3.352 idc:0.000 proble:0000 water_deep:0.000
1334
1335 0006 2025/5/19 06:21:50 3246 in1:low in2:low exti:low status:false vdc:3.351 idc:0.000 proble:0000 water_deep:0.000
1336
1337 0007 2025/5/19 06:22:50 3240 in1:low in2:low exti:low status:false vdc:3.351 idc:0.000 proble:0000 water_deep:0.000
1338
1339 0008 2025/5/19 06:26:44 3276 in1:low in2:low exti:low status:false vdc:3.385 idc:0.000 proble:0000 water_deep:0.000
1340
1341 0009 2025/5/19 06:27:36 3246 in1:low in2:low exti:low status:false vdc:3.351 idc:0.000 proble:0000 water_deep:0.000
1342
1343 0010 2025/5/19 06:28:36 3240 in1:low in2:low exti:low status:false vdc:3.351 idc:0.000 proble:0000 water_deep:0.000
1344
1345 Start Tx events
1346
1347 OK
1348 )))
1349
1350 (% style="color:#4f81bd" %)**Downlink Command:**
1351
1352 No downlink commands for feature
1353
1354
1355 == 3.6 Clear Flash Record(Since v1.1.0) ==
1356
1357
1358 Feature: Clear flash storage for data log feature.
1359
1360 (% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
1361
1362 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:503px" %)
1363 |(% style="background-color:#4f81bd; color:white; width:157px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:137px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:209px" %)**Response**
1364 |(% style="width:155px" %)AT+CLRDTA |(% style="width:134px" %)Clear date record|(% style="width:209px" %)(((
1365 Clear all stored sensor data…
1366
1367 OK
1368 )))
1369
1370 (% style="color:#4f81bd" %)**Downlink Command: 0xA3**
1371
1372 * Example: 0xA301  ~/~/  Same as AT+CLRDTA
1373
1374 = 4. Battery & Power Consumption =
1375
1376
1377 PS-LB use ER26500 + SPC1520 battery pack and PS-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1378
1379 [[Battery Info & Power Consumption Analyze>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1380
1381
1382 = 5. OTA firmware update =
1383
1384
1385 Please see this link for how to do OTA firmware update: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1386
1387
1388 = 6. FAQ =
1389
1390 == 6.1 How to use AT Command via UART to access device? ==
1391
1392
1393 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
1394
1395
1396 == 6.2 How to update firmware via UART port? ==
1397
1398
1399 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
1400
1401
1402 == 6.3 How to change the LoRa Frequency Bands/Region? ==
1403
1404
1405 You can follow the instructions for [[how to upgrade image>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]].
1406 When downloading the images, choose the required image file for download. ​
1407
1408
1409 == 6.4 How to measure the depth of other liquids other than water? ==
1410
1411
1412 Test the current values at the depth of different liquids and convert them to a linear scale.
1413 Replace its ratio with the ratio of water to current in the decoder.
1414
1415 Example:
1416
1417 Measure the corresponding current of the sensor when the liquid depth is 2.04m and 0.51m.
1418
1419 Calculate scale factor:
1420 Use these two data to calculate the current and depth scaling factors:(7.888-5.035)/(2.04-0.51)=1.86470588235294
1421
1422 Calculation formula:
1423
1424 Use the calibration formula:(Current current - Minimum calibration current)/Scale factor + Minimum actual calibration height
1425
1426 Actual calculations:
1427
1428 Use this formula to calculate the value corresponding to the current at a depth of 1.5 meters: (6.918-5.035)/1.86470588235294+0.51=1.519810726
1429
1430 Error:
1431
1432 0.009810726
1433
1434
1435 [[image:image-20240329175044-1.png]]
1436
1437
1438 == 6.5 Cable & Probe Material Compatibility(Immersion type) ==
1439
1440
1441 Since the installation method of immersion sensors requires immersion in a liquid environment, the discussion of liquids that can be safely installed is very important.
1442
1443 (% style="color:blue" %)**The material of the immersed part of the immersion sensor:**
1444
1445 * **Cable Jacket**: Black polyurethane (PU) – Resistant to water, oils, and mild chemicals.
1446 * **Probe Material**: 316 stainless steel – Corrosion-resistant in most industrial/marine environments.
1447
1448 (% style="color:blue" %)**Chemical Compatibility:**
1449
1450 * **Polyurethane (PU) Cable:** Resists water, oils, fuels, and mild chemicals but may degrade with prolonged exposure to strong acids, bases, or solvents (e.g., acetone, chlorinated hydrocarbons).
1451 * 3**16 Stainless Steel Probe:** Suitable for water, seawater, mild acids/alkalis, and industrial fluids. Avoid highly concentrated acids (e.g., hydrochloric acid) or chlorides at high temperatures.
1452
1453 **Chemical Resistance Chart for Polyurethane (PU) Cable**
1454
1455 [[image:image-20250603171424-1.png||height="429" width="625"]]
1456
1457 **Chemical Resistance Chart for 316 Stainless Steel Probe**
1458
1459 [[image:image-20250603171503-2.png||height="350" width="616"]]
1460
1461
1462 = 7. Troubleshooting =
1463
1464 == 7.1 Water Depth Always shows 0 in payload ==
1465
1466
1467 If your device's IDC_intput_mA is normal, but your reading always shows 0, please refer to the following points:
1468
1469 ~1. Please set it to mod1
1470
1471 2. Please set the command [[AT+PROBE>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/PS-LB%20--%20LoRaWAN%20Pressure%20Sensor/#H3.3.4SettheProbeModel]] according to the model of your sensor
1472
1473 3. Check the connection status of the sensor
1474
1475
1476 = 8. Order Info =
1477
1478 == 8.1 Thread Installation Type & Immersion Type Pressure Sensor ==
1479
1480
1481 Part Number: (% style="color:blue" %)**PS-NB/NS-Txx-YY  or  PS-NB/NS-Ixx-YY**
1482
1483 (% style="color:blue" %)**XX:**(%%)** Pressure Range and Thread Type **
1484
1485 (% style="color:blue" %)**YY:**(%%)** The default frequency band**
1486
1487 * YY: Frequency Bands, options: EU433,CN470,EU868,IN865,KR920,AS923,AU915,US915
1488
1489 [[image:image-20241021093209-1.png]]
1490
1491
1492 == 8.2 Wireless Differential Air Pressure Sensor ==
1493
1494
1495 Part Number: (% style="color:blue" %)**PS-LB-Dxx-YY  or  PS-LS-Dxx-YY **
1496
1497 (% style="color:blue" %)**XX:**(%%)** Differential Pressure Range**
1498
1499 (% style="color:blue" %)**YY:**(%%)** The default frequency band**
1500
1501 * YY: Frequency Bands, options: EU433,CN470,EU868,IN865,KR920,AS923,AU915,US915
1502
1503 [[image:image-20250401174215-1.png||height="486" width="656"]]
1504
1505
1506 = 9. ​Packing Info =
1507
1508
1509 Package Includes:
1510
1511 * PS-LB/LS-Txx/Ixx, PS-LB/LS-Dxx   LoRaWAN Pressure Sensor
1512
1513 Dimension and weight:
1514
1515 * Device Size: cm
1516 * Device Weight: g
1517 * Package Size / pcs : cm
1518 * Weight / pcs : g
1519
1520 = 10. Support =
1521
1522
1523 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1524
1525 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]].