Show last authors
1
2 [[image:image-20240915231842-1.png]]
3
4
5 (% _mstvisible="1" %)
6 (% _msthash="315238" _msttexthash="18964465" _mstvisible="3" %)**Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17 = 1.  Introduction =
18
19 == 1.1  What is LTS5 LoRa HMI touch screen ==
20
21 LTS5 is a (% style="color:blue" %)LoRa / LoRaWAN HMI Touch Screen(%%) designed for display purpose of IoT project. It have a 5.0" HMI touch screen, and support WiFi, Bluetooch, LoRa wireless protocol.
22
23 LTS5 is an Open Source software project. The MCU is ESP32 and Dragino LA66 LoRa module. There are lots of development source for ESP32 which can greatly reduce the development time.
24
25 The HMI touch screen of LTS5 supports drap & drop design. Developer can use SquareLine to easily customize the display UI for different application.
26
27 LTS5 use LA66 LoRa module, this module can be program to support private LoRa protocol or LoRaWAN protocol.
28
29
30 == 1.2  Features ==
31
32 * Support Private LoRa protocol or LoRaWAN protocol
33 * Support WiFi & BLE wireless protocol
34 * 5.0" HMI touch screen
35 * Support LVGL case. SquareLine program.
36 * Support RS485 Interface
37 * Open Source Project
38 * Wall Attachable.
39 * 5V DC power
40 * IP Rating: IP52
41
42
43 == 1.3  Specification ==
44
45 **Display:**
46
47 * TFT Touch SCreen
48 * Accuracy Tolerance: Typ ±0.2 °C
49 * Long Term Drift: < 0.03 °C/yr
50 * Operating Range: -10 ~~ 50 °C  or -40 ~~ 60 °C (depends on battery type, see [[FAQ>>||anchor="H6.5Whyiseedifferentworkingtemperatureforthedevice3F"]])
51
52
53
54 == 1.4  Power Consumption ==
55
56 * External 5V DC power adapter
57
58
59 == 1.5  Storage & Operation Temperature ==
60
61
62 -10 ~~ 50 °C  or -40 ~~ 60 °C (depends on battery type, see [[FAQ>>||anchor="H6.5Whyiseedifferentworkingtemperatureforthedevice3F"]])
63
64
65 == 1.6  Applications ==
66
67
68 * Smart Buildings & Home Automation
69 * Logistics and Supply Chain Management
70 * Smart Metering
71 * Smart Agriculture
72 * Smart Cities
73 * Smart Factory
74
75
76 = 2.  Operation Mode =
77
78 == 2.1  How it work? ==
79
80
81 Each PB01 is shipped with a worldwide unique set of LoRaWAN OTAA keys. To use PB01 in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After this, if PB01 is under this LoRaWAN network coverage, PB01 can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is** 20 minutes**.
82
83
84 == 2.2  How to Activate PB01? ==
85
86
87 (% style="color:red" %)** 1.  Open enclosure from below position.**
88
89 [[image:image-20220621093835-1.png]]
90
91
92 (% style="color:red" %)** 2.  Insert 2 x AAA LR03 batteries and the node is activated.**
93
94 [[image:image-20220621093835-2.png]]
95
96
97 (% style="color:red" %)** 3. Under the above conditions, users can also reactivate the node by long pressing the ACT button.**
98
99 [[image:image-20220621093835-3.png]]
100
101
102 User can check [[LED Status>>||anchor="H2.8LEDIndicator"]] to know the working state of PB01.
103
104
105 == 2.3  Example to join LoRaWAN network ==
106
107
108 This section shows an example for how to join the [[TheThingsNetwork>>url:https://www.thethingsnetwork.org/]] LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
109
110 (% _mstvisible="1" class="wikigeneratedid" %)
111 Assume the LPS8v2 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the PB01 device in TTN V3 portal. 
112
113 [[image:image-20240705094824-4.png]]
114
115 (% style="color:blue" %)**Step 1**(%%):  Create a device in TTN V3 with the OTAA keys from PB01.
116
117 Each PB01 is shipped with a sticker with the default DEV EUI as below:
118
119 [[image:image-20230426083617-1.png||height="294" width="633"]]
120
121
122 Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
123
124 Create application.
125
126 choose to create the device manually.
127
128 Add JoinEUI(AppEUI), DevEUI, AppKey.(% style="display:none" %)
129
130 [[image:image-20240507142116-1.png||height="410" width="1138"]](% style="display:none" %) (%%)
131
132
133 [[image:image-20240507142157-2.png||height="559" width="1147"]]
134
135 [[image:image-20240507142401-3.png||height="693" width="1202"]]
136
137 [[image:image-20240507142651-4.png||height="760" width="1190"]]
138
139 **Default mode OTAA**(% style="display:none" %)
140
141
142 (% style="color:blue" %)**Step 2**(%%):  Use ACT button to activate PB01 and it will auto join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
143
144 [[image:image-20240507143104-5.png||height="434" width="1398"]]
145
146
147 == 2.4  Uplink Payload ==
148
149
150 Uplink payloads include two types: Valid Sensor Value and other status / control command.
151
152 * Valid Sensor Value: Use FPORT=2
153 * Other control command: Use FPORT other than 2.
154
155 === 2.4.1  Uplink FPORT~=5, Device Status ===
156
157
158 Users can  get the Device Status uplink through the downlink command:
159
160 (% style="color:#4472c4" %)**Downlink:  **(%%)**0x2601**
161
162 Uplink the device configures with FPORT=5.
163
164 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:370px" %)
165 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)(% style="display:none" %) (%%)**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**
166 |(% style="width:99px" %)Value|(% style="width:62px" %)Sensor Model|(% style="width:80px" %)Firmware Version|(% style="width:82px" %)Frequency Band|(% style="width:85px" %)Sub-band|(% style="width:46px" %)BAT
167
168 [[image:image-20240507152130-12.png||height="469" width="1366"]](% style="display:none" %)
169
170 Example Payload (FPort=5):  [[image:image-20240507152254-13.png||height="26" width="130"]]
171
172
173 (% style="color:#4472c4" %)**Sensor Model**(%%): For PB01, this value is 0x35.
174
175 (% style="color:#4472c4" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version.
176
177 (% style="color:#4472c4" %)**Frequency Band**:
178
179 *0x01: EU868
180
181 *0x02: US915
182
183 *0x03: IN865
184
185 *0x04: AU915
186
187 *0x05: KZ865
188
189 *0x06: RU864
190
191 *0x07: AS923
192
193 *0x08: AS923-1
194
195 *0x09: AS923-2
196
197 *0x0a: AS923-3
198
199
200 (% style="color:#4472c4" %)**Sub-Band**(%%): value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
201
202 (% style="color:#4472c4" %)**BAT**(%%): shows the battery voltage for PB01.
203
204 (% style="color:#4472c4" %)**Ex1**(%%): 0x0C DE = 3294mV
205
206
207 === 2.4.2  Uplink FPORT~=2, Real time sensor value ===
208
209
210 PB01 will send this uplink after Device Status uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1A0DownlinkCommandSet"]].
211
212 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
213
214 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:460px" %)
215 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
216 **Size(bytes)**
217 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)2|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
218 **1**
219 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
220 **1**
221 )))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)(((
222 **2**
223 )))|=(% style="width: 40px;background-color:#4F81BD;color:white" %)(((
224 **2**
225 )))
226 |(% style="width:97px" %)(((
227 Value
228 )))|(% style="width:39px" %)Battery|(% style="width:39px" %)(((
229 Sound_ACK
230
231 &Sound_key
232 )))|(% style="width:100px" %)(((
233 (((
234 Alarm
235 )))
236 )))|(% style="width:77px" %)(((
237 (((
238 Temperature
239 )))
240 )))|(% style="width:47px" %)(((
241 Humidity
242 )))
243
244 Example in TTN.
245
246 [[image:image-20240507150155-11.png||height="549" width="1261"]]
247
248 Example Payload (FPort=2):  (% style="background-color:yellow" %)**0C EA 03 01 01 11 02 A8**
249
250 ==== (% style="color:blue" %)**Battery:**(%%) ====
251
252 Check the battery voltage.
253
254 * Ex1: 0x0CEA = 3306mV
255 * Ex2: 0x0D08 = 3336mV
256
257 ==== (% style="color:blue" %)**Sound_ACK & Sound_key:**(%%) ====
258
259 Key sound and ACK sound are enabled by default.
260
261 * Example1: 0x03
262
263 Sound_ACK: (03>>1) & 0x01=1, OPEN.
264
265 **~ ** Sound_key:  03 & 0x01=1, OPEN.
266
267 * Example2: 0x01
268
269 Sound_ACK: (01>>1) & 0x01=0, CLOSE.
270
271 **~ ** Sound_key:  01 & 0x01=1, OPEN.
272
273
274 ==== (% style="color:blue" %)**Alarm:**(%%) ====
275
276 Key alarm.
277
278 * Ex1: 0x01 & 0x01=1, TRUE.
279 * Ex2: 0x00 & 0x01=0, FALSE.
280
281 ==== (% style="color:blue" %)**Temperature:**(%%) ====
282
283 * Example1:  0x0111/10=27.3℃
284 * Example2:  (0xFF0D-65536)/10=-24.3℃
285
286 If payload is: FF0D :  (FF0D & 8000 == 1) , temp = (FF0D - 65536)/100 =-24.3℃
287
288 (FF0D & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
289
290
291 ==== (% style="color:blue" %)**Humidity:**(%%) ====
292
293 * Humidity:    0x02A8/10=68.0%
294
295 === 2.4.3  Uplink FPORT~=3, Datalog sensor value ===
296
297
298 PB01 stores sensor value and user can retrieve these history value via downlink command. The Datalog sensor value are sent via FPORT=3.
299
300 [[image:image-20240510144912-1.png||height="471" width="1178"]](% style="display:none" %)
301
302
303 * Each data entry is 11 bytes, to save airtime and battery, PB01 will send max bytes according to the current DR and Frequency bands.(% style="display:none" %)
304
305 For example, in US915 band, the max payload for different DR is:
306
307 1. **DR0**: max is 11 bytes so one entry of data
308 1. **DR1**: max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
309 1. **DR2**: total payload includes 11 entries of data
310 1. **DR3**: total payload includes 22 entries of data.
311
312 (% style="color:red" %)**Notice: PB01 will save 178 set of history data, If device doesn't have any data in the polling time. Device will uplink 11 bytes of 0.**
313
314 See more info about the [[Datalog feature>>||anchor="H2.6A0DatalogFeature"]].
315
316 (% style="display:none" %) (%%)
317
318 === 2.4.4  Decoder in TTN V3 ===
319
320
321 In LoRaWAN protocol, the uplink payload is HEX format, user need to add a payload formatter/decoder in LoRaWAN Server to get human friendly string.
322
323 In TTN , add formatter as below:
324
325 [[image:image-20240507162814-16.png||height="778" width="1135"]]
326
327 (((
328 Please check the decoder from this link:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
329 )))
330
331 (((
332
333 )))
334
335 == 2.5 Show data on Datacake ==
336
337
338 (((
339 Datacake IoT platform provides a human friendly interface to show the sensor data in charts, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
340 )))
341
342 (((
343
344 )))
345
346 (((
347 (% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the LoRaWAN network.
348 )))
349
350 (((
351 (% style="color:blue" %)**Step 2**(%%):  Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
352 )))
353
354 (((
355 ~1. Add Datacake:
356 )))
357
358 (((
359 2. Select default key as Access Key:
360 )))
361
362 (((
363 3. In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add PB01:
364 )))
365
366 (((
367 Please refer to the figure below.
368 )))
369
370 [[image:image-20240510150924-2.png||height="612" width="1186"]]
371
372
373 Log in to DATACAKE, copy the API under the account.
374
375 [[image:image-20240510151944-3.png||height="581" width="1191"]]
376
377
378
379 [[image:image-20240510152150-4.png||height="697" width="1188"]]
380
381
382 [[image:image-20240510152300-5.png||height="298" width="1191"]]
383
384
385 [[image:image-20240510152355-6.png||height="782" width="1193"]]
386
387 [[image:image-20240510152542-8.png||height="545" width="739"]]
388
389 [[image:image-20240510152634-9.png||height="748" width="740"]]
390
391
392 [[image:image-20240510152809-10.png||height="607" width="732"]]
393
394 [[image:image-20240510153934-14.png||height="460" width="1199"]]
395
396
397 [[image:image-20240510153435-12.png||height="428" width="1197"]]
398
399
400 Copy and paste the [[TTN decoder>>https://github.com/dragino/dragino-end-node-decoder]] here and save.
401
402 [[image:image-20240510153624-13.png||height="468" width="1195"]]
403
404
405 Visual widgets please read the DATACAKE documentation.
406
407 (% style="display:none" %) (%%)
408
409 == 2.6  Datalog Feature ==
410
411
412 (% _msthash="315262" _msttexthash="32283004" _mstvisible="1" %)
413 When user want to retrieve sensor value, he can send a poll command from the IoT platform to ask sensor to send value in the required time slot.
414
415
416 === 2.6.1  Unix TimeStamp ===
417
418
419 Unix TimeStamp shows the sampling time of uplink payload. format base on
420
421 [[image:image-20220523001219-11.png||_mstalt="450450" _mstvisible="3" height="97" width="627"]]
422
423 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/||_mstvisible="3"]] :
424
425 For example: if the Unix Timestamp we got is hex 0x60137afd, we can convert it to Decimal: 1611889405. and then convert to the time: 2021 – Jan ~-~- 29 Friday 03:03:25 (GMT)
426
427
428 [[image:1655782409139-256.png]]
429
430
431 === 2.6.2  Poll sensor value ===
432
433
434 (((
435 User can poll sensor value based on timestamps from the server. Below is the downlink command.
436 )))
437
438 (((
439 Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval.
440 )))
441
442 (((
443 For example, downlink command [[image:image-20220621113526-13.png]] (% _mstvisible="3" style="display:none" %)
444 )))
445
446 (((
447 Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00's data
448 )))
449
450 (((
451 Uplink Internal =5s,means PB01 will send one packet every 5s. range 5~~255s.
452 )))
453
454
455 === 2.6.3  Datalog Uplink payload ===
456
457
458 See [[Uplink FPORT=3, Datalog sensor value>>||anchor="H2.4.3A0UplinkFPORT3D32CDatalogsensorvalue"]]
459
460 (% style="display:none" %) (%%) (% style="display:none" %)
461
462 == 2.7 Button ==
463
464
465 * ACT button
466
467 Long press this button PB01 will reset and join network again.
468
469 [[image:image-20240510161626-17.png||height="192" width="224"]]
470
471 * Alarm button
472
473 Press the button PB01 will immediately uplink data, and alarm is "TRUE".
474
475 [[image:image-20240705095149-5.png||height="164" width="162"]](% style="display:none" %)
476
477
478 == 2.8 LED Indicator ==
479
480
481 (((
482 The PB01 has a triple color LED which for easy showing different stage.
483 )))
484
485 Hold the ACT green light to rest, then the green flashing node restarts, the blue flashing once upon request for network access, and the green constant light for 5 seconds after successful network access
486
487 (((
488 (% style="color:#037691" %)**In a normal working state**:
489 )))
490
491 * When the node is restarted, hold the ACT (% style="color:green" %)**GREEN**(%%) lights up , then the (% style="color:green" %)**GREEN**(%%) flashing node restarts.The (% style="color:blue" %)**BLUE**(%%) flashing once upon request for network access, and the (% style="color:green" %)**GREEN**(%%) constant light for 5 seconds after successful network access(% style="color:#0000ff" %)**.**
492 * During OTAA Join:
493 ** **For each Join Request uplink:** the (% style="color:green" %)**GREEN LED** (%%)will blink once.
494 ** **Once Join Successful:** the (% style="color:green" %)**GREEN LED**(%%) will be solid on for 5 seconds.
495 * After joined, for each uplink, the (% style="color:blue" %)**BLUE LED**(%%) or (% style="color:green" %)**GREEN LED** (%%)will blink once.
496 * Press the alarm button,The (% style="color:red" %)**RED**(%%) flashes until the node receives the ACK from the platform and the (% style="color:blue" %)**BLUE**(%%) light stays 5s.
497
498 (((
499
500 )))
501
502 == 2.9 Buzzer ==
503
504
505 The PB01 has** button sound** and** ACK sound** and users can turn on or off both sounds by using [[AT+SOUND>>||anchor="H3.3A0Setbuttonsoundandbuttonalarm"]].
506
507 * (% style="color:#4f81bd" %)**Button sound**(%%)** **is the music produced by the node after the alarm button is pressed.
508
509 Users can use[[ AT+OPTION>>||anchor="H3.4A0Setbuzzermusic2807E429"]] to set different button sounds.
510
511 * (% style="color:#4f81bd" %)**ACK sound **(%%)is the notification tone that the node receives ACK.
512
513 = 3.  Configure PB01 via AT command or LoRaWAN downlink =
514
515
516 Users can configure PB01 via AT Command or LoRaWAN Downlink.
517
518 * AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
519
520 * LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
521
522 There are two kinds of commands to configure PB01, they are:
523
524 * (% style="color:#4f81bd" %)**General Commands:**
525
526 These commands are to configure:
527
528 * General system settings like: uplink interval.
529
530 * LoRaWAN protocol & radio-related commands.
531
532 They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
533
534
535 * (% style="color:#4f81bd" %)**Commands special design for PB01**
536
537 These commands are only valid for PB01, as below:
538
539 (% style="display:none" %) (%%)
540
541 == 3.1  Downlink Command Set ==
542
543
544 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
545 |=(% style="width: 130px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 151px; background-color: rgb(79, 129, 189); color: white;" %)**Function**|=(% style="width: 92px; background-color: rgb(79, 129, 189); color: white;" %)**Response**|=(% style="width: 206px; background-color: rgb(79, 129, 189); color: white;" %)**Downlink**
546 |(% style="width:130px" %)AT+TDC=?|(% style="width:151px" %)(((
547
548
549 View current TDC time
550 )))|(% style="width:92px" %)(((
551 1200000
552 OK
553 )))|(% style="width:206px" %)Default 1200000(ms)
554 |(% style="width:130px" %)AT+TDC=300000|(% style="width:151px" %)Set TDC time|(% style="width:92px" %)OK|(% style="width:206px" %)(((
555 (((
556 0X0100012C:
557 01: fixed command
558 00012C: 0X00012C=
559
560 300(seconds)
561 )))
562
563 (((
564
565 )))
566 )))
567 |(% style="width:130px" %)ATZ|(% style="width:151px" %)Reset node|(% style="width:92px" %) |(% style="width:206px" %)0x04FF
568 |(% style="width:130px" %)AT+FDR|(% style="width:151px" %)Restore factory settings|(% style="width:92px" %) |(% style="width:206px" %)0X04FE
569 |(% style="width:130px" %)AT+CFM=?|(% style="width:151px" %)View the current confirmation mode status|(% style="width:92px" %)(((
570 0,7,0
571
572 OK
573 )))|(% style="width:206px" %)Default 0,7,0
574 |(% style="width:130px" %)AT+CFM=1,7,1|(% style="width:151px" %)(((
575 Confirmed uplink mode, the maximum number of retries is seven, and uplink fcnt increase by 1 for each retry
576 )))|(% style="width:92px" %)(((
577 OK
578 )))|(% style="width:206px" %)(((
579 05010701
580
581 05: fixed command
582
583 01:confirmed uplink
584
585 07: retry 7 times
586
587 01: fcnt count plus 1
588 )))
589 |(% style="width:130px" %)AT+NJM=?|(% style="width:151px" %)(((
590 Check the current network connection method
591 )))|(% style="width:92px" %)(((
592 1
593 OK
594 )))|(% style="width:206px" %)Default 1
595 |(% style="width:130px" %)AT+NJM=0|(% style="width:151px" %)Change the network connection method to ABP|(% style="width:92px" %)(((
596 Attention:Take effect after ATZ
597 OK
598 )))|(% style="width:206px" %)(((
599 0X2000: ABP
600 0x2001: OTAA
601 20: fixed command
602 )))
603 |(% style="width:130px" %)AT+RPL=?|(% style="width:151px" %)View current RPL settings|(% style="width:92px" %)(((
604 0
605 OK
606 )))|(% style="width:206px" %)Default 0
607 |(% style="width:130px" %)AT+RPL=1|(% style="width:151px" %)set RPL=1    |(% style="width:92px" %)OK|(% style="width:206px" %)(((
608 0x2101:
609 21: fixed command
610 01: for details, check wiki
611 )))
612 |(% style="width:130px" %)AT+ADR=?|(% style="width:151px" %)View current ADR status|(% style="width:92px" %)(((
613 1
614 OK
615 )))|(% style="width:206px" %)Default 0
616 |(% style="width:130px" %)AT+ADR=0|(% style="width:151px" %)Set the ADR state to off|(% style="width:92px" %)OK|(% style="width:206px" %)(((
617 0x2200: close
618 0x2201: open
619 22: fixed command
620 )))
621 |(% style="width:130px" %)AT+DR=?|(% style="width:151px" %)View the current DR settings|(% style="width:92px" %)OK|(% style="width:206px" %)
622 |(% style="width:130px" %)AT+DR=1|(% style="width:151px" %)(((
623 set DR to 1
624 It takes effect only when ADR=0
625 )))|(% style="width:92px" %)OK|(% style="width:206px" %)(((
626 0X22000101:
627 00: ADR=0
628 01: DR=1
629 01: TXP=1
630 22: fixed command
631 )))
632 |(% style="width:130px" %)AT+TXP=?|(% style="width:151px" %)View the current TXP|(% style="width:92px" %)OK|(% style="width:206px" %)
633 |(% style="width:130px" %)AT+TXP=1|(% style="width:151px" %)(((
634 set TXP to 1
635 It takes effect only when ADR=0
636 )))|(% style="width:92px" %)OK|(% style="width:206px" %)(((
637 0X22000101:
638 00: ADR=0
639 01: DR=1
640 01: TXP=1
641 22: fixed command
642 )))
643 |(% style="width:130px" %)AT+RJTDC=10|(% style="width:151px" %)Set RJTDC time interval|(% style="width:92px" %)OK|(% style="width:206px" %)(((
644 0X26000A:
645 26: fixed command
646 000A: 0X000A=10(min)
647 for details, check wiki
648 )))
649 |(% style="width:130px" %) |(% style="width:151px" %)(((
650 (((
651 ~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_
652
653 Retrieve stored data for a specified period of time
654 )))
655
656 (((
657
658 )))
659 )))|(% style="width:92px" %) |(% style="width:206px" %)(((
660 0X3161DE7C7061DE8A800A:
661 31: fixed command
662 61DE7C70:0X61DE7C70=2022/1/12 15:00:00
663 61DE8A80:0X61DE8A80=2022/1/12 16:00:00
664 0A: 0X0A=10(second)
665 View details 2.6.2
666 )))
667 |(% style="width:130px" %)AT+DDETECT=?|(% style="width:151px" %)View the current DDETECT setting status and time|(% style="width:92px" %)(((
668 1,1440,2880
669 OK
670 )))|(% style="width:206px" %)Default 1,1440,2880(min)
671 |(% style="width:130px" %)AT+DDETECT=(((
672 1,1440,2880
673 )))|(% style="width:151px" %)(((
674 Set DDETECT setting status and time
675 ((% style="color:red" %)When the node does not receive the downlink packet within the set time, it will re-enter the network(%%))
676 )))|(% style="width:92px" %)OK|(% style="width:206px" %)(((
677 0X320005A0: close
678 0X320105A0: open
679 32: fixed command
680 05A0: 0X05A0=1440(min)
681 )))
682
683 == 3.2  Set Password ==
684
685
686 Feature: Set device password, max 9 digits.
687
688 (% style="color:#4f81bd" %)**AT Command: AT+PWORD**
689
690 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:372px" %)
691 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:128px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:89px" %)**Response**
692 |(% style="width:155px" %)AT+PWORD=?|(% style="width:124px" %)Show password|(% style="width:86px" %)(((
693 123456
694 OK
695 )))
696 |(% style="width:155px" %)AT+PWORD=999999|(% style="width:124px" %)Set password|(% style="width:86px" %)OK
697
698 (% style="color:#4f81bd" %)**Downlink Command:**
699
700 No downlink command for this feature.
701
702
703 == 3.3  Set button sound and ACK sound ==
704
705
706 Feature: Turn on/off button sound and ACK alarm.
707
708 (% style="color:#4f81bd" %)**AT Command: AT+SOUND**
709
710 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:372px" %)
711 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:128px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:89px" %)**Response**
712 |(% style="width:155px" %)(((
713 AT+SOUND=?
714 )))|(% style="width:124px" %)Get the current status of button sound and ACK sound|(% style="width:86px" %)(((
715 1,1
716 OK
717 )))
718 |(% style="width:155px" %)(((
719 AT+SOUND=0,1
720 )))|(% style="width:124px" %)Turn off the button sound and turn on ACK sound|(% style="width:86px" %)OK
721
722 (% style="color:#4f81bd" %)**Downlink Command: 0xA1 **
723
724 Format: Command Code (0xA1) followed by 2 bytes mode value.
725
726 The first byte after 0XA1 sets the button sound, and the second byte after 0XA1 sets the ACK sound.** (0: off, 1: on)**
727
728 * **Example: **Downlink Payload: A10001  ~/~/ Set AT+SOUND=0,1  Turn off the button sound and turn on ACK sound.
729
730 == 3.4  Set buzzer music type(0~~4) ==
731
732
733 Feature: Set different alarm key response sounds.There are five different types of button music.
734
735 (% style="color:#4f81bd" %)**AT Command: AT+OPTION**
736
737 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:372px" %)
738 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:128px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:89px" %)**Response**
739 |(% style="width:155px" %)(((
740 AT+OPTION=?
741 )))|(% style="width:124px" %)(((
742 Get the buzzer music type
743 )))|(% style="width:86px" %)(((
744 3
745
746 OK
747 )))
748 |(% style="width:155px" %)AT+OPTION=1|(% style="width:124px" %)Set the buzzer music to type 1|(% style="width:86px" %)OK
749
750 (% style="color:#4f81bd" %)**Downlink Command: 0xA3**
751
752 Format: Command Code (0xA3) followed by 1 byte mode value.
753
754 * **Example: **Downlink Payload: A300  ~/~/ Set AT+OPTION=0  Set the buzzer music to type 0.
755
756 == 3.5  Set Valid Push Time ==
757
758
759 Feature: Set the holding time for pressing the alarm button to avoid miscontact. Values range from** 0 ~~1000ms**.
760
761 (% style="color:#4f81bd" %)**AT Command: AT+STIME**
762
763 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:372px" %)
764 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:128px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:89px" %)**Response**
765 |(% style="width:155px" %)(((
766 AT+STIME=?
767 )))|(% style="width:124px" %)(((
768 Get the button sound time
769 )))|(% style="width:86px" %)(((
770 0
771 OK
772 )))
773 |(% style="width:155px" %)(((
774 AT+STIME=1000
775 )))|(% style="width:124px" %)Set the button sound time to 1000**ms**|(% style="width:86px" %)OK
776
777 (% style="color:#4f81bd" %)**Downlink Command: 0xA2**
778
779 Format: Command Code (0xA2) followed by 2 bytes mode value.
780
781 * **Example: **Downlink Payload: A203E8  ~/~/ Set AT+STIME=1000  
782
783 **~ Explain: **Hold the alarm button for 10 seconds before the node will send the alarm packet.
784
785
786
787
788 = 6. FAQ =
789
790 == 6.1 ==
791
792
793 = 7. Order Info =
794
795 == 7.1  Part Number ==
796
797 Part Number: (% style="color:#4472c4" %)LTS5
798
799
800
801 == 7.2  Packing Info ==
802
803 **Package Includes**:
804
805 * LTS5 HMI Touch Screen
806 * 5V,2A DC Power Adapter.
807 * USB Type C Program Cable
808
809
810 = 8. Support =
811
812 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
813 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
814
815
816 = 9.  Reference material =
817
818 * Datasheet
819 * Source Code
820 * Mechinical
821
822
823 = 10. FCC Warning =
824
825
826 This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
827
828 (1) This device may not cause harmful interference;
829
830 (2) this device must accept any interference received,including interference that may cause undesired operation.
831
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0