Changes for page LTS5 LoRa HMI Touch Screen
Last modified by Dilisi S on 2025/02/26 19:24
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 1 removed)
Details
- Page properties
-
- Content
-
... ... @@ -29,11 +29,9 @@ 29 29 30 30 == 1.2 Features == 31 31 32 -* ESP32-WROOM MCU + Dragino LA66 LoRa Module 33 33 * Support Private LoRa protocol or LoRaWAN protocol 34 34 * Support WiFi & BLE wireless protocol 35 35 * 5.0" HMI touch screen 36 -* Support LVGL case. SquareLine program. 37 37 * Support RS485 Interface 38 38 * Open Source Project 39 39 * Wall Attachable. ... ... @@ -40,45 +40,32 @@ 40 40 * 5V DC power 41 41 * IP Rating: IP52 42 42 41 + 43 43 == 1.3 Specification == 44 44 45 -**LoRa**: 46 - 47 - 48 -**WiFi:** 49 - 50 -* 802.11b/g/n 51 -* Up to 150 Mbps data rate in 802.11n mode 52 -* Support A-MPDU and A-MSDU aggregation 53 -* zero point four μ S protection interval 54 -* Working channel center frequency range: 2412~~2484 MHz 55 - 56 -**Bluetooth:** 57 - 58 -* Bluetooth V4.2 BR/EDR and Bluetooth LE standard 59 -* Class-1, Class-2, and Class-3 transmitters. 60 -* AFH 61 -* CVSD and SBC 62 - 63 63 **Display:** 64 64 65 -* 5.0 Inch, 800x 48066 -* IPS CapacitiveTouchSCreen67 -* RGB color.68 -* DisplayArea: 120.7*75.80 mm46 +* Resolution: 0.01 °C 47 +* Accuracy Tolerance: Typ ±0.2 °C 48 +* Long Term Drift: < 0.03 °C/yr 49 +* Operating Range: -10 ~~ 50 °C or -40 ~~ 60 °C (depends on battery type, see [[FAQ>>||anchor="H6.5Whyiseedifferentworkingtemperatureforthedevice3F"]]) 69 69 51 + 70 70 71 71 == 1.4 Power Consumption == 72 72 73 -* External 5V DC power adapter55 +* External 5V DC power. 74 74 57 + 75 75 == 1.5 Storage & Operation Temperature == 76 76 77 -* Operation Temperature: -20 ~~ 70°C (No Dew) 78 -* Storage Temperature: -30 ~~ 70°C (No Dew) 79 79 61 +-10 ~~ 50 °C or -40 ~~ 60 °C (depends on battery type, see [[FAQ>>||anchor="H6.5Whyiseedifferentworkingtemperatureforthedevice3F"]]) 62 + 63 + 80 80 == 1.6 Applications == 81 81 66 + 82 82 * Smart Buildings & Home Automation 83 83 * Logistics and Supply Chain Management 84 84 * Smart Metering ... ... @@ -86,57 +86,1037 @@ 86 86 * Smart Cities 87 87 * Smart Factory 88 88 89 -= 2. Getting Start with Hello World = 90 90 91 -= =2.1Aboutthisdemo==75 += 2. Operation Mode = 92 92 93 - Inthis Getting Start Example, we will show how to desing a simple Display UI and upload it to LTS5.This UI hasa button ,whenuser clickthebutton. The Web UIwill jump toa new page.77 +== 2.1 How it work? == 94 94 95 95 96 - ==2.2InstallSoftwareRunningEnvironment==80 +Each PB01 is shipped with a worldwide unique set of LoRaWAN OTAA keys. To use PB01 in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After this, if PB01 is under this LoRaWAN network coverage, PB01 can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is** 20 minutes**. 97 97 98 -=== 2.2.1 Install Arduino IDE tool === 99 99 100 -== =2.2.2InstallSquareLineStudio===83 +== 2.2 How to Activate PB01? == 101 101 102 102 103 - ==2.3 PrograminSquareLineandconvertit toESP32 software==86 +(% style="color:red" %)** 1. Open enclosure from below position.** 104 104 88 +[[image:image-20220621093835-1.png]] 105 105 106 -== 2.4 Upload Firmware to ESP32 == 107 107 91 +(% style="color:red" %)** 2. Insert 2 x AAA LR03 batteries and the node is activated.** 108 108 109 - == 2.5 Test Result ==93 +[[image:image-20220621093835-2.png]] 110 110 111 111 112 -= 3. ExampleProject1: LoRaCentralDisplay=96 +(% style="color:red" %)** 3. Under the above conditions, users can also reactivate the node by long pressing the ACT button.** 113 113 114 -[[image:image-202 40916101737-1.png||height="468" width="683"]]98 +[[image:image-20220621093835-3.png]] 115 115 116 116 101 +User can check [[LED Status>>||anchor="H2.8LEDIndicator"]] to know the working state of PB01. 117 117 118 -= 4. Example Project 2: LoRa to LoRaWAN RS485 Alarm = 119 119 104 +== 2.3 Example to join LoRaWAN network == 120 120 106 + 107 +This section shows an example for how to join the [[TheThingsNetwork>>url:https://www.thethingsnetwork.org/]] LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure. 108 + 109 +(% _mstvisible="1" class="wikigeneratedid" %) 110 +Assume the LPS8v2 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the PB01 device in TTN V3 portal. 111 + 112 +[[image:image-20240705094824-4.png]] 113 + 114 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from PB01. 115 + 116 +Each PB01 is shipped with a sticker with the default DEV EUI as below: 117 + 118 +[[image:image-20230426083617-1.png||height="294" width="633"]] 119 + 120 + 121 +Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot: 122 + 123 +Create application. 124 + 125 +choose to create the device manually. 126 + 127 +Add JoinEUI(AppEUI), DevEUI, AppKey.(% style="display:none" %) 128 + 129 +[[image:image-20240507142116-1.png||height="410" width="1138"]](% style="display:none" %) (%%) 130 + 131 + 132 +[[image:image-20240507142157-2.png||height="559" width="1147"]] 133 + 134 +[[image:image-20240507142401-3.png||height="693" width="1202"]] 135 + 136 +[[image:image-20240507142651-4.png||height="760" width="1190"]] 137 + 138 +**Default mode OTAA**(% style="display:none" %) 139 + 140 + 141 +(% style="color:blue" %)**Step 2**(%%): Use ACT button to activate PB01 and it will auto join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel. 142 + 143 +[[image:image-20240507143104-5.png||height="434" width="1398"]] 144 + 145 + 146 +== 2.4 Uplink Payload == 147 + 148 + 149 +Uplink payloads include two types: Valid Sensor Value and other status / control command. 150 + 151 +* Valid Sensor Value: Use FPORT=2 152 +* Other control command: Use FPORT other than 2. 153 + 154 +=== 2.4.1 Uplink FPORT~=5, Device Status === 155 + 156 + 157 +Users can get the Device Status uplink through the downlink command: 158 + 159 +(% style="color:#4472c4" %)**Downlink: **(%%)**0x2601** 160 + 161 +Uplink the device configures with FPORT=5. 162 + 163 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:370px" %) 164 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)(% style="display:none" %) (%%)**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2** 165 +|(% style="width:99px" %)Value|(% style="width:62px" %)Sensor Model|(% style="width:80px" %)Firmware Version|(% style="width:82px" %)Frequency Band|(% style="width:85px" %)Sub-band|(% style="width:46px" %)BAT 166 + 167 +[[image:image-20240507152130-12.png||height="469" width="1366"]](% style="display:none" %) 168 + 169 +Example Payload (FPort=5): [[image:image-20240507152254-13.png||height="26" width="130"]] 170 + 171 + 172 +(% style="color:#4472c4" %)**Sensor Model**(%%): For PB01, this value is 0x35. 173 + 174 +(% style="color:#4472c4" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version. 175 + 176 +(% style="color:#4472c4" %)**Frequency Band**: 177 + 178 +*0x01: EU868 179 + 180 +*0x02: US915 181 + 182 +*0x03: IN865 183 + 184 +*0x04: AU915 185 + 186 +*0x05: KZ865 187 + 188 +*0x06: RU864 189 + 190 +*0x07: AS923 191 + 192 +*0x08: AS923-1 193 + 194 +*0x09: AS923-2 195 + 196 +*0x0a: AS923-3 197 + 198 + 199 +(% style="color:#4472c4" %)**Sub-Band**(%%): value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00) 200 + 201 +(% style="color:#4472c4" %)**BAT**(%%): shows the battery voltage for PB01. 202 + 203 +(% style="color:#4472c4" %)**Ex1**(%%): 0x0C DE = 3294mV 204 + 205 + 206 +=== 2.4.2 Uplink FPORT~=2, Real time sensor value === 207 + 208 + 209 +PB01 will send this uplink after Device Status uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1A0DownlinkCommandSet"]]. 210 + 211 +Uplink uses FPORT=2 and every 20 minutes send one uplink by default. 212 + 213 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:460px" %) 214 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 215 +**Size(bytes)** 216 +)))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)2|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 217 +**1** 218 +)))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 219 +**1** 220 +)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)((( 221 +**2** 222 +)))|=(% style="width: 40px;background-color:#4F81BD;color:white" %)((( 223 +**2** 224 +))) 225 +|(% style="width:97px" %)((( 226 +Value 227 +)))|(% style="width:39px" %)Battery|(% style="width:39px" %)((( 228 +Sound_ACK 229 + 230 +&Sound_key 231 +)))|(% style="width:100px" %)((( 232 +((( 233 +Alarm 234 +))) 235 +)))|(% style="width:77px" %)((( 236 +((( 237 +Temperature 238 +))) 239 +)))|(% style="width:47px" %)((( 240 +Humidity 241 +))) 242 + 243 +Example in TTN. 244 + 245 +[[image:image-20240507150155-11.png||height="549" width="1261"]] 246 + 247 +Example Payload (FPort=2): (% style="background-color:yellow" %)**0C EA 03 01 01 11 02 A8** 248 + 249 +==== (% style="color:blue" %)**Battery:**(%%) ==== 250 + 251 +Check the battery voltage. 252 + 253 +* Ex1: 0x0CEA = 3306mV 254 +* Ex2: 0x0D08 = 3336mV 255 + 256 +==== (% style="color:blue" %)**Sound_ACK & Sound_key:**(%%) ==== 257 + 258 +Key sound and ACK sound are enabled by default. 259 + 260 +* Example1: 0x03 261 + 262 + Sound_ACK: (03>>1) & 0x01=1, OPEN. 263 + 264 +**~ ** Sound_key: 03 & 0x01=1, OPEN. 265 + 266 +* Example2: 0x01 267 + 268 + Sound_ACK: (01>>1) & 0x01=0, CLOSE. 269 + 270 +**~ ** Sound_key: 01 & 0x01=1, OPEN. 271 + 272 + 273 +==== (% style="color:blue" %)**Alarm:**(%%) ==== 274 + 275 +Key alarm. 276 + 277 +* Ex1: 0x01 & 0x01=1, TRUE. 278 +* Ex2: 0x00 & 0x01=0, FALSE. 279 + 280 +==== (% style="color:blue" %)**Temperature:**(%%) ==== 281 + 282 +* Example1: 0x0111/10=27.3℃ 283 +* Example2: (0xFF0D-65536)/10=-24.3℃ 284 + 285 +If payload is: FF0D : (FF0D & 8000 == 1) , temp = (FF0D - 65536)/100 =-24.3℃ 286 + 287 +(FF0D & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative) 288 + 289 + 290 +==== (% style="color:blue" %)**Humidity:**(%%) ==== 291 + 292 +* Humidity: 0x02A8/10=68.0% 293 + 294 +=== 2.4.3 Uplink FPORT~=3, Datalog sensor value === 295 + 296 + 297 +PB01 stores sensor value and user can retrieve these history value via downlink command. The Datalog sensor value are sent via FPORT=3. 298 + 299 +[[image:image-20240510144912-1.png||height="471" width="1178"]](% style="display:none" %) 300 + 301 + 302 +* Each data entry is 11 bytes, to save airtime and battery, PB01 will send max bytes according to the current DR and Frequency bands.(% style="display:none" %) 303 + 304 +For example, in US915 band, the max payload for different DR is: 305 + 306 +1. **DR0**: max is 11 bytes so one entry of data 307 +1. **DR1**: max is 53 bytes so devices will upload 4 entries of data (total 44 bytes) 308 +1. **DR2**: total payload includes 11 entries of data 309 +1. **DR3**: total payload includes 22 entries of data. 310 + 311 +(% style="color:red" %)**Notice: PB01 will save 178 set of history data, If device doesn't have any data in the polling time. Device will uplink 11 bytes of 0.** 312 + 313 +See more info about the [[Datalog feature>>||anchor="H2.6A0DatalogFeature"]]. 314 + 315 +(% style="display:none" %) (%%) 316 + 317 +=== 2.4.4 Decoder in TTN V3 === 318 + 319 + 320 +In LoRaWAN protocol, the uplink payload is HEX format, user need to add a payload formatter/decoder in LoRaWAN Server to get human friendly string. 321 + 322 +In TTN , add formatter as below: 323 + 324 +[[image:image-20240507162814-16.png||height="778" width="1135"]] 325 + 326 +((( 327 +Please check the decoder from this link: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 328 +))) 329 + 330 +((( 331 + 332 +))) 333 + 334 +== 2.5 Show data on Datacake == 335 + 336 + 337 +((( 338 +Datacake IoT platform provides a human friendly interface to show the sensor data in charts, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps: 339 +))) 340 + 341 +((( 342 + 343 +))) 344 + 345 +((( 346 +(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network. 347 +))) 348 + 349 +((( 350 +(% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations. 351 +))) 352 + 353 +((( 354 +~1. Add Datacake: 355 +))) 356 + 357 +((( 358 +2. Select default key as Access Key: 359 +))) 360 + 361 +((( 362 +3. In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add PB01: 363 +))) 364 + 365 +((( 366 + Please refer to the figure below. 367 +))) 368 + 369 +[[image:image-20240510150924-2.png||height="612" width="1186"]] 370 + 371 + 372 +Log in to DATACAKE, copy the API under the account. 373 + 374 +[[image:image-20240510151944-3.png||height="581" width="1191"]] 375 + 376 + 377 + 378 +[[image:image-20240510152150-4.png||height="697" width="1188"]] 379 + 380 + 381 +[[image:image-20240510152300-5.png||height="298" width="1191"]] 382 + 383 + 384 +[[image:image-20240510152355-6.png||height="782" width="1193"]] 385 + 386 +[[image:image-20240510152542-8.png||height="545" width="739"]] 387 + 388 +[[image:image-20240510152634-9.png||height="748" width="740"]] 389 + 390 + 391 +[[image:image-20240510152809-10.png||height="607" width="732"]] 392 + 393 +[[image:image-20240510153934-14.png||height="460" width="1199"]] 394 + 395 + 396 +[[image:image-20240510153435-12.png||height="428" width="1197"]] 397 + 398 + 399 +Copy and paste the [[TTN decoder>>https://github.com/dragino/dragino-end-node-decoder]] here and save. 400 + 401 +[[image:image-20240510153624-13.png||height="468" width="1195"]] 402 + 403 + 404 +Visual widgets please read the DATACAKE documentation. 405 + 406 +(% style="display:none" %) (%%) 407 + 408 +== 2.6 Datalog Feature == 409 + 410 + 411 +(% _msthash="315262" _msttexthash="32283004" _mstvisible="1" %) 412 +When user want to retrieve sensor value, he can send a poll command from the IoT platform to ask sensor to send value in the required time slot. 413 + 414 + 415 +=== 2.6.1 Unix TimeStamp === 416 + 417 + 418 +Unix TimeStamp shows the sampling time of uplink payload. format base on 419 + 420 +[[image:image-20220523001219-11.png||_mstalt="450450" _mstvisible="3" height="97" width="627"]] 421 + 422 +User can get this time from link: [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/||_mstvisible="3"]] : 423 + 424 +For example: if the Unix Timestamp we got is hex 0x60137afd, we can convert it to Decimal: 1611889405. and then convert to the time: 2021 – Jan ~-~- 29 Friday 03:03:25 (GMT) 425 + 426 + 427 +[[image:1655782409139-256.png]] 428 + 429 + 430 +=== 2.6.2 Poll sensor value === 431 + 432 + 433 +((( 434 +User can poll sensor value based on timestamps from the server. Below is the downlink command. 435 +))) 436 + 437 +((( 438 +Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval. 439 +))) 440 + 441 +((( 442 +For example, downlink command [[image:image-20220621113526-13.png]] (% _mstvisible="3" style="display:none" %) 443 +))) 444 + 445 +((( 446 +Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00's data 447 +))) 448 + 449 +((( 450 +Uplink Internal =5s,means PB01 will send one packet every 5s. range 5~~255s. 451 +))) 452 + 453 + 454 +=== 2.6.3 Datalog Uplink payload === 455 + 456 + 457 +See [[Uplink FPORT=3, Datalog sensor value>>||anchor="H2.4.3A0UplinkFPORT3D32CDatalogsensorvalue"]] 458 + 459 +(% style="display:none" %) (%%) (% style="display:none" %) 460 + 461 +== 2.7 Button == 462 + 463 + 464 +* ACT button 465 + 466 +Long press this button PB01 will reset and join network again. 467 + 468 +[[image:image-20240510161626-17.png||height="192" width="224"]] 469 + 470 +* Alarm button 471 + 472 +Press the button PB01 will immediately uplink data, and alarm is "TRUE". 473 + 474 +[[image:image-20240705095149-5.png||height="164" width="162"]](% style="display:none" %) 475 + 476 + 477 +== 2.8 LED Indicator == 478 + 479 + 480 +((( 481 +The PB01 has a triple color LED which for easy showing different stage. 482 +))) 483 + 484 +Hold the ACT green light to rest, then the green flashing node restarts, the blue flashing once upon request for network access, and the green constant light for 5 seconds after successful network access 485 + 486 +((( 487 +(% style="color:#037691" %)**In a normal working state**: 488 +))) 489 + 490 +* When the node is restarted, hold the ACT (% style="color:green" %)**GREEN**(%%) lights up , then the (% style="color:green" %)**GREEN**(%%) flashing node restarts.The (% style="color:blue" %)**BLUE**(%%) flashing once upon request for network access, and the (% style="color:green" %)**GREEN**(%%) constant light for 5 seconds after successful network access(% style="color:#0000ff" %)**.** 491 +* During OTAA Join: 492 +** **For each Join Request uplink:** the (% style="color:green" %)**GREEN LED** (%%)will blink once. 493 +** **Once Join Successful:** the (% style="color:green" %)**GREEN LED**(%%) will be solid on for 5 seconds. 494 +* After joined, for each uplink, the (% style="color:blue" %)**BLUE LED**(%%) or (% style="color:green" %)**GREEN LED** (%%)will blink once. 495 +* Press the alarm button,The (% style="color:red" %)**RED**(%%) flashes until the node receives the ACK from the platform and the (% style="color:blue" %)**BLUE**(%%) light stays 5s. 496 + 497 +((( 498 + 499 +))) 500 + 501 +== 2.9 Buzzer == 502 + 503 + 504 +The PB01 has** button sound** and** ACK sound** and users can turn on or off both sounds by using [[AT+SOUND>>||anchor="H3.3A0Setbuttonsoundandbuttonalarm"]]. 505 + 506 +* (% style="color:#4f81bd" %)**Button sound**(%%)** **is the music produced by the node after the alarm button is pressed. 507 + 508 + Users can use[[ AT+OPTION>>||anchor="H3.4A0Setbuzzermusic2807E429"]] to set different button sounds. 509 + 510 +* (% style="color:#4f81bd" %)**ACK sound **(%%)is the notification tone that the node receives ACK. 511 + 512 += 3. Configure PB01 via AT command or LoRaWAN downlink = 513 + 514 + 515 +Users can configure PB01 via AT Command or LoRaWAN Downlink. 516 + 517 +* AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]]. 518 + 519 +* LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]] 520 + 521 +There are two kinds of commands to configure PB01, they are: 522 + 523 +* (% style="color:#4f81bd" %)**General Commands:** 524 + 525 +These commands are to configure: 526 + 527 +* General system settings like: uplink interval. 528 + 529 +* LoRaWAN protocol & radio-related commands. 530 + 531 +They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]] 532 + 533 + 534 +* (% style="color:#4f81bd" %)**Commands special design for PB01** 535 + 536 +These commands are only valid for PB01, as below: 537 + 538 +(% style="display:none" %) (%%) 539 + 540 +== 3.1 Downlink Command Set == 541 + 542 + 543 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %) 544 +|=(% style="width: 130px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 151px; background-color: rgb(79, 129, 189); color: white;" %)**Function**|=(% style="width: 92px; background-color: rgb(79, 129, 189); color: white;" %)**Response**|=(% style="width: 206px; background-color: rgb(79, 129, 189); color: white;" %)**Downlink** 545 +|(% style="width:130px" %)AT+TDC=?|(% style="width:151px" %)((( 546 + 547 + 548 +View current TDC time 549 +)))|(% style="width:92px" %)((( 550 +1200000 551 +OK 552 +)))|(% style="width:206px" %)Default 1200000(ms) 553 +|(% style="width:130px" %)AT+TDC=300000|(% style="width:151px" %)Set TDC time|(% style="width:92px" %)OK|(% style="width:206px" %)((( 554 +((( 555 +0X0100012C: 556 +01: fixed command 557 +00012C: 0X00012C= 558 + 559 +300(seconds) 560 +))) 561 + 562 +((( 563 + 564 +))) 565 +))) 566 +|(% style="width:130px" %)ATZ|(% style="width:151px" %)Reset node|(% style="width:92px" %) |(% style="width:206px" %)0x04FF 567 +|(% style="width:130px" %)AT+FDR|(% style="width:151px" %)Restore factory settings|(% style="width:92px" %) |(% style="width:206px" %)0X04FE 568 +|(% style="width:130px" %)AT+CFM=?|(% style="width:151px" %)View the current confirmation mode status|(% style="width:92px" %)((( 569 +0,7,0 570 + 571 +OK 572 +)))|(% style="width:206px" %)Default 0,7,0 573 +|(% style="width:130px" %)AT+CFM=1,7,1|(% style="width:151px" %)((( 574 +Confirmed uplink mode, the maximum number of retries is seven, and uplink fcnt increase by 1 for each retry 575 +)))|(% style="width:92px" %)((( 576 +OK 577 +)))|(% style="width:206px" %)((( 578 +05010701 579 + 580 +05: fixed command 581 + 582 +01:confirmed uplink 583 + 584 +07: retry 7 times 585 + 586 +01: fcnt count plus 1 587 +))) 588 +|(% style="width:130px" %)AT+NJM=?|(% style="width:151px" %)((( 589 +Check the current network connection method 590 +)))|(% style="width:92px" %)((( 591 +1 592 +OK 593 +)))|(% style="width:206px" %)Default 1 594 +|(% style="width:130px" %)AT+NJM=0|(% style="width:151px" %)Change the network connection method to ABP|(% style="width:92px" %)((( 595 +Attention:Take effect after ATZ 596 +OK 597 +)))|(% style="width:206px" %)((( 598 +0X2000: ABP 599 +0x2001: OTAA 600 +20: fixed command 601 +))) 602 +|(% style="width:130px" %)AT+RPL=?|(% style="width:151px" %)View current RPL settings|(% style="width:92px" %)((( 603 +0 604 +OK 605 +)))|(% style="width:206px" %)Default 0 606 +|(% style="width:130px" %)AT+RPL=1|(% style="width:151px" %)set RPL=1 |(% style="width:92px" %)OK|(% style="width:206px" %)((( 607 +0x2101: 608 +21: fixed command 609 +01: for details, check wiki 610 +))) 611 +|(% style="width:130px" %)AT+ADR=?|(% style="width:151px" %)View current ADR status|(% style="width:92px" %)((( 612 +1 613 +OK 614 +)))|(% style="width:206px" %)Default 0 615 +|(% style="width:130px" %)AT+ADR=0|(% style="width:151px" %)Set the ADR state to off|(% style="width:92px" %)OK|(% style="width:206px" %)((( 616 +0x2200: close 617 +0x2201: open 618 +22: fixed command 619 +))) 620 +|(% style="width:130px" %)AT+DR=?|(% style="width:151px" %)View the current DR settings|(% style="width:92px" %)OK|(% style="width:206px" %) 621 +|(% style="width:130px" %)AT+DR=1|(% style="width:151px" %)((( 622 +set DR to 1 623 +It takes effect only when ADR=0 624 +)))|(% style="width:92px" %)OK|(% style="width:206px" %)((( 625 +0X22000101: 626 +00: ADR=0 627 +01: DR=1 628 +01: TXP=1 629 +22: fixed command 630 +))) 631 +|(% style="width:130px" %)AT+TXP=?|(% style="width:151px" %)View the current TXP|(% style="width:92px" %)OK|(% style="width:206px" %) 632 +|(% style="width:130px" %)AT+TXP=1|(% style="width:151px" %)((( 633 +set TXP to 1 634 +It takes effect only when ADR=0 635 +)))|(% style="width:92px" %)OK|(% style="width:206px" %)((( 636 +0X22000101: 637 +00: ADR=0 638 +01: DR=1 639 +01: TXP=1 640 +22: fixed command 641 +))) 642 +|(% style="width:130px" %)AT+RJTDC=10|(% style="width:151px" %)Set RJTDC time interval|(% style="width:92px" %)OK|(% style="width:206px" %)((( 643 +0X26000A: 644 +26: fixed command 645 +000A: 0X000A=10(min) 646 +for details, check wiki 647 +))) 648 +|(% style="width:130px" %) |(% style="width:151px" %)((( 649 +((( 650 +~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_ 651 + 652 +Retrieve stored data for a specified period of time 653 +))) 654 + 655 +((( 656 + 657 +))) 658 +)))|(% style="width:92px" %) |(% style="width:206px" %)((( 659 +0X3161DE7C7061DE8A800A: 660 +31: fixed command 661 +61DE7C70:0X61DE7C70=2022/1/12 15:00:00 662 +61DE8A80:0X61DE8A80=2022/1/12 16:00:00 663 +0A: 0X0A=10(second) 664 +View details 2.6.2 665 +))) 666 +|(% style="width:130px" %)AT+DDETECT=?|(% style="width:151px" %)View the current DDETECT setting status and time|(% style="width:92px" %)((( 667 +1,1440,2880 668 +OK 669 +)))|(% style="width:206px" %)Default 1,1440,2880(min) 670 +|(% style="width:130px" %)AT+DDETECT=((( 671 +1,1440,2880 672 +)))|(% style="width:151px" %)((( 673 +Set DDETECT setting status and time 674 +((% style="color:red" %)When the node does not receive the downlink packet within the set time, it will re-enter the network(%%)) 675 +)))|(% style="width:92px" %)OK|(% style="width:206px" %)((( 676 +0X320005A0: close 677 +0X320105A0: open 678 +32: fixed command 679 +05A0: 0X05A0=1440(min) 680 +))) 681 + 682 +== 3.2 Set Password == 683 + 684 + 685 +Feature: Set device password, max 9 digits. 686 + 687 +(% style="color:#4f81bd" %)**AT Command: AT+PWORD** 688 + 689 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:372px" %) 690 +|(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:128px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:89px" %)**Response** 691 +|(% style="width:155px" %)AT+PWORD=?|(% style="width:124px" %)Show password|(% style="width:86px" %)((( 692 +123456 693 +OK 694 +))) 695 +|(% style="width:155px" %)AT+PWORD=999999|(% style="width:124px" %)Set password|(% style="width:86px" %)OK 696 + 697 +(% style="color:#4f81bd" %)**Downlink Command:** 698 + 699 +No downlink command for this feature. 700 + 701 + 702 +== 3.3 Set button sound and ACK sound == 703 + 704 + 705 +Feature: Turn on/off button sound and ACK alarm. 706 + 707 +(% style="color:#4f81bd" %)**AT Command: AT+SOUND** 708 + 709 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:372px" %) 710 +|(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:128px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:89px" %)**Response** 711 +|(% style="width:155px" %)((( 712 +AT+SOUND=? 713 +)))|(% style="width:124px" %)Get the current status of button sound and ACK sound|(% style="width:86px" %)((( 714 +1,1 715 +OK 716 +))) 717 +|(% style="width:155px" %)((( 718 +AT+SOUND=0,1 719 +)))|(% style="width:124px" %)Turn off the button sound and turn on ACK sound|(% style="width:86px" %)OK 720 + 721 +(% style="color:#4f81bd" %)**Downlink Command: 0xA1 ** 722 + 723 +Format: Command Code (0xA1) followed by 2 bytes mode value. 724 + 725 +The first byte after 0XA1 sets the button sound, and the second byte after 0XA1 sets the ACK sound.** (0: off, 1: on)** 726 + 727 +* **Example: **Downlink Payload: A10001 ~/~/ Set AT+SOUND=0,1 Turn off the button sound and turn on ACK sound. 728 + 729 +== 3.4 Set buzzer music type(0~~4) == 730 + 731 + 732 +Feature: Set different alarm key response sounds.There are five different types of button music. 733 + 734 +(% style="color:#4f81bd" %)**AT Command: AT+OPTION** 735 + 736 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:372px" %) 737 +|(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:128px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:89px" %)**Response** 738 +|(% style="width:155px" %)((( 739 +AT+OPTION=? 740 +)))|(% style="width:124px" %)((( 741 +Get the buzzer music type 742 +)))|(% style="width:86px" %)((( 743 +3 744 + 745 +OK 746 +))) 747 +|(% style="width:155px" %)AT+OPTION=1|(% style="width:124px" %)Set the buzzer music to type 1|(% style="width:86px" %)OK 748 + 749 +(% style="color:#4f81bd" %)**Downlink Command: 0xA3** 750 + 751 +Format: Command Code (0xA3) followed by 1 byte mode value. 752 + 753 +* **Example: **Downlink Payload: A300 ~/~/ Set AT+OPTION=0 Set the buzzer music to type 0. 754 + 755 +== 3.5 Set Valid Push Time == 756 + 757 + 758 +Feature: Set the holding time for pressing the alarm button to avoid miscontact. Values range from** 0 ~~1000ms**. 759 + 760 +(% style="color:#4f81bd" %)**AT Command: AT+STIME** 761 + 762 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:372px" %) 763 +|(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:128px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:89px" %)**Response** 764 +|(% style="width:155px" %)((( 765 +AT+STIME=? 766 +)))|(% style="width:124px" %)((( 767 +Get the button sound time 768 +)))|(% style="width:86px" %)((( 769 +0 770 +OK 771 +))) 772 +|(% style="width:155px" %)((( 773 +AT+STIME=1000 774 +)))|(% style="width:124px" %)Set the button sound time to 1000**ms**|(% style="width:86px" %)OK 775 + 776 +(% style="color:#4f81bd" %)**Downlink Command: 0xA2** 777 + 778 +Format: Command Code (0xA2) followed by 2 bytes mode value. 779 + 780 +* **Example: **Downlink Payload: A203E8 ~/~/ Set AT+STIME=1000 781 + 782 +**~ Explain: **Hold the alarm button for 10 seconds before the node will send the alarm packet. 783 + 784 + 785 + 786 += 4. Battery & How to replace = 787 + 788 +== 4.1 Battery Type and replace == 789 + 790 + 791 +PB01 uses 2 x AAA LR03(1.5v) batteries. If the batteries running low (shows 2.1v in the platform). Users can buy generic AAA battery and replace it. 792 + 793 +(% style="color:red" %)**Note: ** 794 + 795 +1. The PB01 doesn't have any screw, users can use nail to open it by the middle. 796 + 797 +[[image:image-20220621143535-5.png]] 798 + 799 + 800 +2. Make sure the direction is correct when install the AAA batteries. 801 + 802 +[[image:image-20220621143535-6.png]] 803 + 804 + 805 +== 4.2 Power Consumption Analyze == 806 + 807 + 808 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 809 + 810 +Instruction to use as below: 811 + 812 +(% style="color:blue" %)**Step 1**(%%): Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 813 + 814 +[[battery calculator>>https://www.dropbox.com/sh/sxrgszkac4ips0q/AAA4XjBI3HAHNpdbU3ALN1j0a/Battery%20Document/Battery_Analyze?dl=0&subfolder_nav_tracking=1]] 815 + 816 + 817 +(% style="color:blue" %)**Step 2**(%%): (% style="display:none" %) (%%)Open it and choose 818 + 819 +* Product Model 820 +* Uplink Interval 821 +* Working Mode 822 + 823 +And the Life expectation in difference case will be shown on the right. 824 + 825 +[[image:image-20220621143643-7.png||height="429" width="1326"]] 826 + 827 + 828 += 5. Accessories = 829 + 830 + 831 +* ((( 832 +(% class="wikigeneratedid" id="H5.2A0ProgramConverter28AS-0229" %) 833 +**Program Converter (AS-02)** 834 +))) 835 + 836 +AS-02 is an optional accessory, it is USB Type-C converter. AS-02 provide below feature: 837 + 838 +1. Access AT console of PB01 when used with USB-TTL adapter. [[See this link>>||anchor="H6.1HowtouseATCommandtoconfigurePB01"]]. 839 + 840 +[[image:image-20220621141724-3.png]] 841 + 842 + 121 121 = 6. FAQ = 122 122 123 -== 6.1 == 845 +== 6.1 How to use AT Command to configure PB01 == 124 124 125 125 848 +PB01 supports AT Command set. Users can use a USB to TTL adapter plus the Program Cable to connect to PB01 for using AT command, as below. 849 + 850 +[[image:image-20240511085914-1.png||height="570" width="602"]] 851 + 852 + 853 +**Connection:** 854 + 855 +* (% style="background-color:yellow" %)USB to TTL GND <~-~-> Program Converter GND pin 856 +* (% style="background-color:yellow" %)USB to TTL RXD <~-~-> Program Converter D+ pin 857 +* (% style="background-color:yellow" %)USB to TTL TXD <~-~-> Program Converter A11 pin 858 + 859 +((( 860 +In PC, User needs to set **serial tool**(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for PB01. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**(%%)) to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. 861 +))) 862 + 863 +((( 864 +Input password and ATZ to activate PB01, as shown below: 865 +))) 866 + 867 +[[image:image-20240510174509-18.png||height="572" width="791"]] 868 + 869 + 870 +== 6.2 AT Command and Downlink == 871 + 872 + 873 +((( 874 +Sending ATZ will reboot the node 875 +))) 876 + 877 +((( 878 +Sending AT+FDR will restore the node to factory settings 879 +))) 880 + 881 +((( 882 +Get the node's AT command setting by sending AT+CFG 883 +))) 884 + 885 +((( 886 + 887 +))) 888 + 889 +((( 890 +**Example:** 891 +))) 892 + 893 +((( 894 +AT+DEUI=FA 23 45 55 55 55 55 51 895 + 896 +AT+APPEUI=FF AA 23 45 42 42 41 11 897 + 898 +AT+APPKEY=AC D7 35 81 63 3C B6 05 F5 69 44 99 C1 12 BA 95 899 + 900 +AT+DADDR=FFFFFFFF 901 + 902 +AT+APPSKEY=FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 903 + 904 +AT+NWKSKEY=FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 905 + 906 +AT+ADR=1 907 + 908 +AT+TXP=7 909 + 910 +AT+DR=5 911 + 912 +AT+DCS=0 913 + 914 +AT+PNM=1 915 + 916 +AT+RX2FQ=869525000 917 + 918 +AT+RX2DR=0 919 + 920 +AT+RX1DL=5000 921 + 922 +AT+RX2DL=6000 923 + 924 +AT+JN1DL=5000 925 + 926 +AT+JN2DL=6000 927 + 928 +AT+NJM=1 929 + 930 +AT+NWKID=00 00 00 13 931 + 932 +AT+FCU=61 933 + 934 +AT+FCD=11 935 + 936 +AT+CLASS=A 937 + 938 +AT+NJS=1 939 + 940 +AT+RECVB=0: 941 + 942 +AT+RECV= 943 + 944 +AT+VER=EU868 v1.0.0 945 + 946 +AT+CFM=0,7,0 947 + 948 +AT+SNR=0 949 + 950 +AT+RSSI=0 951 + 952 +AT+TDC=1200000 953 + 954 +AT+PORT=2 955 + 956 +AT+PWORD=123456 957 + 958 +AT+CHS=0 959 + 960 +AT+RX1WTO=24 961 + 962 +AT+RX2WTO=6 963 + 964 +AT+DECRYPT=0 965 + 966 +AT+RJTDC=20 967 + 968 +AT+RPL=0 969 + 970 +AT+TIMESTAMP=systime= 2024/5/11 01:10:58 (1715389858) 971 + 972 +AT+LEAPSEC=18 973 + 974 +AT+SYNCMOD=1 975 + 976 +AT+SYNCTDC=10 977 + 978 +AT+SLEEP=0 979 + 980 +AT+ATDC=1 981 + 982 +AT+UUID=003C0C53013259E0 983 + 984 +AT+DDETECT=1,1440,2880 985 + 986 +AT+SETMAXNBTRANS=1,0 987 + 988 +AT+DISFCNTCHECK=0 989 + 990 +AT+DISMACANS=0 991 + 992 +AT+PNACKMD=0 993 + 994 +AT+SOUND=0,0 995 + 996 +AT+STIME=0 997 + 998 +AT+OPTION=3 999 +))) 1000 + 1001 +((( 1002 +**Example:** 1003 +))) 1004 + 1005 +[[image:image-20240511091518-2.png||height="601" width="836"]] 1006 + 1007 + 1008 +== 6.3 How to upgrade the firmware? == 1009 + 1010 + 1011 +PB01 requires a program converter to upload images to PB01, which is used to upload image to PB01 for: 1012 + 1013 +* Support new features 1014 +* For bug fix 1015 +* Change LoRaWAN bands. 1016 + 1017 + PB01 internal program is divided into bootloader and work program, shipping is included bootloader, the user can choose to directly update the work program. 1018 + 1019 +If the bootloader is erased for some reason, users will need to download the boot program and the work program. 1020 + 1021 + 1022 +=== 6.3.1 Update firmware (Assume device have bootloader) === 1023 + 1024 + 1025 +(% style="color:blue" %)**Step 1**(%%):** Connect UART as per FAQ 6.1** 1026 + 1027 +(% style="color:blue" %)**Step 2**(%%):** Update follow [[Instruction for update via DraginoSensorManagerUtility.exe>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H3.2.1UpdateafirmwareviaDraginoSensorManagerUtility.exe]]. ** 1028 + 1029 + 1030 +=== 6.3.2 Update firmware (Assume device doesn't have bootloader) === 1031 + 1032 + 1033 +Download both the boot program and the worker program** . **After update , device will have bootloader so can use above 6.3.1 method to update woke program. 1034 + 1035 +(% style="color:blue" %)**Step 1**(%%):** **Install [[TremoProgrammer>>url:https://www.dropbox.com/scl/fo/gk1rb5pnnjw4kv5m5cs0z/h?rlkey=906ouvgbvif721f9bj795vfrh&dl=0]] first. 1036 + 1037 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220615170542-5.png?rev=1.1||alt="image-20220615170542-5.png"]] 1038 + 1039 +(% style="color:blue" %)**Step 2**(%%): Hardware Connection 1040 + 1041 +Connect PC and PB01 via USB-TTL adapter . 1042 + 1043 +(% style="color:red" %)**Note: To download firmware in this way, you need to pull the boot pin(Program Converter D- pin) high to enter the burn mode. After burning, disconnect the boot pin of the node and the 3V3 pin of the USB-TTL adapter, and reset the node to exit the burning mode.** 1044 + 1045 +**Connection:** 1046 + 1047 +* (% style="background-color:yellow" %)USB-TTL GND <~-~-> Program Converter GND pin 1048 +* (% style="background-color:yellow" %)USB-TTL RXD <~-~-> Program Converter D+ pin 1049 +* (% style="background-color:yellow" %)USB-TTL TXD <~-~-> Program Converter A11 pin 1050 +* (% style="background-color:yellow" %)USB-TTL 3V3 <~-~-> Program Converter D- pin 1051 + 1052 +(% style="color:blue" %)**Step 3**(%%):** **Select the device port to be connected, baud rate and bin file to be downloaded. 1053 + 1054 +[[image:image-20240701160913-1.png]] 1055 + 1056 +Users need to reset the node to start downloading the program. 1057 +~1. Reinstall the battery to reset the node 1058 +2. Hold down the ACT button to reset the node (see [[2.7>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/PB01--LoRaWAN_Button_User_Manual/#H2.7Button]] ). 1059 + 1060 +When this interface appears, it indicates that the download has been completed. 1061 + 1062 +[[image:image-20240701160924-2.png]] 1063 + 1064 +Finally, Disconnect Program Converter D- pin, reset the node again , and the node exits burning mode. 1065 + 1066 + 1067 +== 6.4 How to change the LoRa Frequency Bands/Region? == 1068 + 1069 + 1070 +User can follow the introduction for [[how to upgrade image>>||anchor="H6.3A0Howtoupgradethefirmware3F"]]. When download the images, choose the required image file for download. 1071 + 1072 + 1073 +== 6.5 Why i see different working temperature for the device? == 1074 + 1075 + 1076 +The working temperature range of device depends on the battery user choose. 1077 + 1078 +* Normal AAA Battery can support -10 ~~ 50°C working range. 1079 +* Special AAA battery can support -40 ~~ 60 °C working range. For example: [[Energizer L92>>https://data.energizer.com/pdfs/l92.pdf]] 1080 + 126 126 = 7. Order Info = 127 127 128 -== 7.1 PartNumber==1083 +== 7.1 Main Device == 129 129 130 -Part Number: (% style="color:#4472c4" %)LTS5 131 131 1086 +Part Number: (% style="color:#4472c4" %)PB01-LW-XX(%%) (white button) / (% style="color:#4472c4" %)PB01-LR-XX(%%)(Red Button) 132 132 133 - ==7.2PackingInfo==1088 +(% style="color:#4472c4" %)**XX **(%%): The default frequency band 134 134 1090 +* (% style="color:red" %)**AS923**(%%)**: **LoRaWAN AS923 band 1091 +* (% style="color:red" %)**AU915**(%%)**: **LoRaWAN AU915 band 1092 +* (% style="color:red" %)**EU433**(%%)**: **LoRaWAN EU433 band 1093 +* (% style="color:red" %)**EU868**(%%)**:** LoRaWAN EU868 band 1094 +* (% style="color:red" %)**KR920**(%%)**: **LoRaWAN KR920 band 1095 +* (% style="color:red" %)**US915**(%%)**: **LoRaWAN US915 band 1096 +* (% style="color:red" %)**IN865**(%%)**: **LoRaWAN IN865 band 1097 +* (% style="color:red" %)**CN470**(%%)**: **LoRaWAN CN470 band 1098 + 1099 += 7. Packing Info = 1100 + 1101 + 135 135 **Package Includes**: 136 136 137 -* LTS5 HMI Touch Screen 138 -* 5V,2A DC Power Adapter. 139 -* USB Type C Program Cable 1104 +* PB01 LoRaWAN Push Button x 1 140 140 141 141 = 8. Support = 142 142 ... ... @@ -143,6 +143,7 @@ 143 143 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 144 144 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]. 145 145 1111 + 146 146 = 9. Reference material = 147 147 148 148 * Datasheet ... ... @@ -149,6 +149,7 @@ 149 149 * Source Code 150 150 * Mechinical 151 151 1118 + 152 152 = 10. FCC Warning = 153 153 154 154
- image-20240916101737-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -156.7 KB - Content