<
From version < 4.11 >
edited by Edwin Chen
on 2024/09/16 09:36
To version < 29.1 >
edited by BoYang Xie
on 2024/09/28 08:51
>
Change comment: Uploaded new attachment "1727484665746-713.png", version {1}

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Edwin
1 +XWiki.xieby
Content
... ... @@ -40,7 +40,6 @@
40 40  * 5V DC power
41 41  * IP Rating: IP52
42 42  
43 -
44 44  == 1.3  Specification ==
45 45  
46 46  **LoRa**:
... ... @@ -68,22 +68,17 @@
68 68  * RGB color.
69 69  * Display Area: 120.7*75.80 mm
70 70  
71 -
72 -
73 73  == 1.4  Power Consumption ==
74 74  
75 75  * External 5V DC power adapter
76 76  
77 -
78 78  == 1.5  Storage & Operation Temperature ==
79 79  
80 80  * Operation Temperature: -20 ~~ 70°C  (No Dew)
81 81  * Storage Temperature: -30 ~~ 70°C  (No Dew)
82 82  
83 -
84 84  == 1.6  Applications ==
85 85  
86 -
87 87  * Smart Buildings & Home Automation
88 88  * Logistics and Supply Chain Management
89 89  * Smart Metering
... ... @@ -91,722 +91,141 @@
91 91  * Smart Cities
92 92  * Smart Factory
93 93  
88 += 2.  Getting Start with Hello World =
94 94  
95 -= 2.  Operation Mode =
90 +== 2.1  About this demo ==
96 96  
97 -== 2.1  How it work? ==
92 +In this Getting Start Example, we will show how to design a simple Display UI and upload it to LTS5. This UI has  a button , when user click the button. The Web UI will jump to a new page.
98 98  
94 +== 2.2  Install Software Running Environment ==
99 99  
100 -Each PB01 is shipped with a worldwide unique set of LoRaWAN OTAA keys. To use PB01 in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After this, if PB01 is under this LoRaWAN network coverage, PB01 can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is** 20 minutes**.
96 +The ESP MCU can be developed using ESP-IDF, Arduino, or MicroPython. For this project, we utilize ESP-IDF for compilation and Visual Studio Code (VSCode) for editing.
101 101  
98 +=== 2.2.1 Install VSCode and ESP-IDF extension ===
102 102  
103 -== 2.2  How to Activate PB01? ==
100 +Firstly, download and install VSCode for your computer's operating system from the official website: [[Download Visual Studio Code - Mac, Linux, Windows>>url:https://code.visualstudio.com/download]].
104 104  
102 +Next, you need to install the ESP-IDF extension within VSCode. The detailed operation steps are illustrated in image 1.
105 105  
106 -(% style="color:red" %)** 1.  Open enclosure from below position.**
104 +[[image:1727229396732-319.png]]
107 107  
108 -[[image:image-20220621093835-1.png]]
106 + image 1 ESP-IDF extension install
109 109  
108 +Links for reference: [[Install ESP32 ESP-IDF on Windows and Integrate with VS code (esp32tutorials.com)>>url:https://esp32tutorials.com/install-esp32-esp-idf-windows-integrate-vs-code/#:~~:text=In%20this%20tutorial,%20we%20will%20show%20you%20how%20to%20install]]
110 110  
111 -(% style="color:red" %)** 2.  Insert 2 x AAA LR03 batteries and the node is activated.**
110 +=== 2.2.2 Install SquareLine Studio ===
112 112  
113 -[[image:image-20220621093835-2.png]]
112 +The version we are utilizing for this software is 1.4.2. You can download it from the official link: [[SquareLine Studio - Download the current version of SquareLine Studio>>url:https://squareline.io/downloads#lastRelease]].
114 114  
114 +Please note that this software necessitates the registration of a license prior to usage, and various licenses come with distinct limitations. For instance, the free version imposes restrictions such as a limit of 1 component, 150 widgets, and 10 screens. However, for first-time downloads, you are granted unrestricted access for a period of 30 days without the need for immediate registration.
115 115  
116 -(% style="color:red" %)** 3. Under the above conditions, users can also reactivate the node by long pressing the ACT button.**
116 +== 2.3 Simple usage of SquareLine Studio and export UI code ==
117 117  
118 -[[image:image-20220621093835-3.png]]
118 +After launching and logging in to this software, create a project as shown in the following image 2. The version of LVGL is 8.3.11.
119 119  
120 120  
121 -User can check [[LED Status>>||anchor="H2.8LEDIndicator"]] to know the working state of PB01.
121 +[[image:1727233636007-933.png]]
122 122  
123 + image 2 create a SquareLine project
123 123  
124 -== 2.3  Example to join LoRaWAN network ==
125 +Next, we need to make some settings for this project. By clicking in the specified order on image 3, we can see the page as shown in image 4.
125 125  
127 +[[image:1727229582471-566.png]]
126 126  
127 -This section shows an example for how to join the [[TheThingsNetwork>>url:https://www.thethingsnetwork.org/]] LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
129 + image 3 project settings
128 128  
129 -(% _mstvisible="1" class="wikigeneratedid" %)
130 -Assume the LPS8v2 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the PB01 device in TTN V3 portal. 
131 +[[image:1727229618724-758.png]]
131 131  
132 -[[image:image-20240705094824-4.png]]
133 + image 4 modify project settings
133 133  
134 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN V3 with the OTAA keys from PB01.
135 +Now we can start to use this software. The steps for creating this UI are shown in image 5-10.
135 135  
136 -Each PB01 is shipped with a sticker with the default DEV EUI as below:
137 +[[image:1727229653254-680.png]]
137 137  
138 -[[image:image-20230426083617-1.png||height="294" width="633"]]
139 + image 5 create a UI(1)
139 139  
141 +[[image:1727231038705-173.png]]
140 140  
141 -Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
143 + image 6 create a UI(2)
142 142  
143 -Create application.
145 +[[image:1727229682537-381.png]]
144 144  
145 -choose to create the device manually.
147 + image 7 create a UI(3)
146 146  
147 -Add JoinEUI(AppEUI), DevEUI, AppKey.(% style="display:none" %)
149 +We repeat the steps of screen1 in screen2. Then we get screen2 as shown in image 8.
148 148  
149 -[[image:image-20240507142116-1.png||height="410" width="1138"]](% style="display:none" %) (%%)
150 -
151 +[[image:1727229715361-392.png]]
151 151  
152 -[[image:image-20240507142157-2.png||height="559" width="1147"]]
153 + image 8 create a UI(4)
153 153  
154 -[[image:image-20240507142401-3.png||height="693" width="1202"]]
155 +Finally, we add click event for screen change to button1 in screen1(shown in image 9) and button2 in screen2.
155 155  
156 -[[image:image-20240507142651-4.png||height="760" width="1190"]]
157 +[[image:1727229740592-843.png]]
157 157  
158 -**Default mode OTAA**(% style="display:none" %)
159 + image 9 create a UI(5)
159 159  
161 +The event settings of button1 are as image 10 shown. The event adding operation of button2 is similar to button1.
160 160  
161 -(% style="color:blue" %)**Step 2**(%%):  Use ACT button to activate PB01 and it will auto join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
163 +[[image:1727229760857-521.png]]
162 162  
163 -[[image:image-20240507143104-5.png||height="434" width="1398"]]
165 + image 10 create a UI(6)
164 164  
167 +== 2.4 Integrate UI Code to ESP-IDF Project ==
165 165  
166 -== 2.4  Uplink Payload ==
169 +To achieve the integrating, we first need to export the UI code, then make some modifications, and finally relocate the UI code to a specific position within the project.
167 167  
171 +[[image:1727229798126-306.png]]
168 168  
169 -Uplink payloads include two types: Valid Sensor Value and other status / control command.
173 + image 11 export UI file
170 170  
171 -* Valid Sensor Value: Use FPORT=2
172 -* Other control command: Use FPORT other than 2.
175 +[[image:1727229821582-258.png]]
173 173  
174 -=== 2.4.1  Uplink FPORT~=5, Device Status ===
177 + image 12 exported UI file
175 175  
179 +Create a empty directory entitled ‘ui’ in path “basic_prj/app_components/ui/”, and then copy all UI code exported to this directory.
176 176  
177 -Users caget the Device Status uplink through the downlink command:
181 +[[image:1727229845835-509.png]]
178 178  
179 -(% style="color:#4472c4" %)**Downlink:  **(%%)**0x2601**
183 + image 13 open CMakeLists.txt
180 180  
181 -Uplink the device configures with FPORT=5.
185 +[[image:1727229892636-154.png]]
182 182  
183 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:370px" %)
184 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)(% style="display:none" %) (%%)**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**
185 -|(% style="width:99px" %)Value|(% style="width:62px" %)Sensor Model|(% style="width:80px" %)Firmware Version|(% style="width:82px" %)Frequency Band|(% style="width:85px" %)Sub-band|(% style="width:46px" %)BAT
187 + image 14 modify CMakeLists.txt
186 186  
187 -[[image:image-20240507152130-12.png||height="469" width="1366"]](% style="display:none" %)
189 +The last step of integrating is adding two lines of code in main.c file.
188 188  
189 -Example Payload (FPort=5):  [[image:image-20240507152254-13.png||height="26" width="130"]]
191 +[[image:1727229926561-300.png]]
190 190  
193 + image 15 add “ui.h”
191 191  
192 -(% style="color:#4472c4" %)**Sensor Model**(%%): For PB01, this value is 0x35.
195 +[[image:1727229955611-607.png]]
193 193  
194 -(% style="color:#4472c4" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version.
197 + image 16 add “ui_init()”
195 195  
196 -(% style="color:#4472c4" %)**Frequency Band**:
199 +== 2.5 Test Result ==
197 197  
198 -*0x01: EU868
201 +By pressing the button lying bottom right, the screen can switch to another as expected. This indicates that the UI file has been successfully integrated into the project and is now effective.
199 199  
200 -*0x02: US915
203 +[[image:1727229990795-405.png]]
201 201  
202 -*0x03: IN865
205 + image 17 screen1
203 203  
204 -*0x04: AU915
207 +[[image:1727230012478-930.png]]
205 205  
206 -*0x05: KZ865
209 + image 18 screen2
207 207  
208 -*0x06: RU864
211 += 3. Example Project 1: LoRa Central Display =
209 209  
210 -*0x07: AS923
213 +[[image:image-20240916101737-1.png||height="468" width="683"]]
211 211  
212 -*0x08: AS923-1
213 213  
214 -*0x09: AS923-2
215 215  
216 -*0x0a: AS923-3
217 += 4. Example Project 2: LoRaWAN RS485 Alarm =
217 217  
218 218  
219 -(% style="color:#4472c4" %)**Sub-Band**(%%): value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
220 -
221 -(% style="color:#4472c4" %)**BAT**(%%): shows the battery voltage for PB01.
222 -
223 -(% style="color:#4472c4" %)**Ex1**(%%): 0x0C DE = 3294mV
224 -
225 -
226 -=== 2.4.2  Uplink FPORT~=2, Real time sensor value ===
227 -
228 -
229 -PB01 will send this uplink after Device Status uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1A0DownlinkCommandSet"]].
230 -
231 -Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
232 -
233 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:460px" %)
234 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
235 -**Size(bytes)**
236 -)))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)2|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
237 -**1**
238 -)))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
239 -**1**
240 -)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)(((
241 -**2**
242 -)))|=(% style="width: 40px;background-color:#4F81BD;color:white" %)(((
243 -**2**
244 -)))
245 -|(% style="width:97px" %)(((
246 -Value
247 -)))|(% style="width:39px" %)Battery|(% style="width:39px" %)(((
248 -Sound_ACK
249 -
250 -&Sound_key
251 -)))|(% style="width:100px" %)(((
252 -(((
253 -Alarm
254 -)))
255 -)))|(% style="width:77px" %)(((
256 -(((
257 -Temperature
258 -)))
259 -)))|(% style="width:47px" %)(((
260 -Humidity
261 -)))
262 -
263 -Example in TTN.
264 -
265 -[[image:image-20240507150155-11.png||height="549" width="1261"]]
266 -
267 -Example Payload (FPort=2):  (% style="background-color:yellow" %)**0C EA 03 01 01 11 02 A8**
268 -
269 -==== (% style="color:blue" %)**Battery:**(%%) ====
270 -
271 -Check the battery voltage.
272 -
273 -* Ex1: 0x0CEA = 3306mV
274 -* Ex2: 0x0D08 = 3336mV
275 -
276 -==== (% style="color:blue" %)**Sound_ACK & Sound_key:**(%%) ====
277 -
278 -Key sound and ACK sound are enabled by default.
279 -
280 -* Example1: 0x03
281 -
282 - Sound_ACK: (03>>1) & 0x01=1, OPEN.
283 -
284 -**~ ** Sound_key:  03 & 0x01=1, OPEN.
285 -
286 -* Example2: 0x01
287 -
288 - Sound_ACK: (01>>1) & 0x01=0, CLOSE.
289 -
290 -**~ ** Sound_key:  01 & 0x01=1, OPEN.
291 -
292 -
293 -==== (% style="color:blue" %)**Alarm:**(%%) ====
294 -
295 -Key alarm.
296 -
297 -* Ex1: 0x01 & 0x01=1, TRUE.
298 -* Ex2: 0x00 & 0x01=0, FALSE.
299 -
300 -==== (% style="color:blue" %)**Temperature:**(%%) ====
301 -
302 -* Example1:  0x0111/10=27.3℃
303 -* Example2:  (0xFF0D-65536)/10=-24.3℃
304 -
305 -If payload is: FF0D :  (FF0D & 8000 == 1) , temp = (FF0D - 65536)/100 =-24.3℃
306 -
307 -(FF0D & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
308 -
309 -
310 -==== (% style="color:blue" %)**Humidity:**(%%) ====
311 -
312 -* Humidity:    0x02A8/10=68.0%
313 -
314 -=== 2.4.3  Uplink FPORT~=3, Datalog sensor value ===
315 -
316 -
317 -PB01 stores sensor value and user can retrieve these history value via downlink command. The Datalog sensor value are sent via FPORT=3.
318 -
319 -[[image:image-20240510144912-1.png||height="471" width="1178"]](% style="display:none" %)
320 -
321 -
322 -* Each data entry is 11 bytes, to save airtime and battery, PB01 will send max bytes according to the current DR and Frequency bands.(% style="display:none" %)
323 -
324 -For example, in US915 band, the max payload for different DR is:
325 -
326 -1. **DR0**: max is 11 bytes so one entry of data
327 -1. **DR1**: max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
328 -1. **DR2**: total payload includes 11 entries of data
329 -1. **DR3**: total payload includes 22 entries of data.
330 -
331 -(% style="color:red" %)**Notice: PB01 will save 178 set of history data, If device doesn't have any data in the polling time. Device will uplink 11 bytes of 0.**
332 -
333 -See more info about the [[Datalog feature>>||anchor="H2.6A0DatalogFeature"]].
334 -
335 -(% style="display:none" %) (%%)
336 -
337 -=== 2.4.4  Decoder in TTN V3 ===
338 -
339 -
340 -In LoRaWAN protocol, the uplink payload is HEX format, user need to add a payload formatter/decoder in LoRaWAN Server to get human friendly string.
341 -
342 -In TTN , add formatter as below:
343 -
344 -[[image:image-20240507162814-16.png||height="778" width="1135"]]
345 -
346 -(((
347 -Please check the decoder from this link:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
348 -)))
349 -
350 -(((
351 -
352 -)))
353 -
354 -== 2.5 Show data on Datacake ==
355 -
356 -
357 -(((
358 -Datacake IoT platform provides a human friendly interface to show the sensor data in charts, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
359 -)))
360 -
361 -(((
362 -
363 -)))
364 -
365 -(((
366 -(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the LoRaWAN network.
367 -)))
368 -
369 -(((
370 -(% style="color:blue" %)**Step 2**(%%):  Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
371 -)))
372 -
373 -(((
374 -~1. Add Datacake:
375 -)))
376 -
377 -(((
378 -2. Select default key as Access Key:
379 -)))
380 -
381 -(((
382 -3. In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add PB01:
383 -)))
384 -
385 -(((
386 - Please refer to the figure below.
387 -)))
388 -
389 -[[image:image-20240510150924-2.png||height="612" width="1186"]]
390 -
391 -
392 -Log in to DATACAKE, copy the API under the account.
393 -
394 -[[image:image-20240510151944-3.png||height="581" width="1191"]]
395 -
396 -
397 -
398 -[[image:image-20240510152150-4.png||height="697" width="1188"]]
399 -
400 -
401 -[[image:image-20240510152300-5.png||height="298" width="1191"]]
402 -
403 -
404 -[[image:image-20240510152355-6.png||height="782" width="1193"]]
405 -
406 -[[image:image-20240510152542-8.png||height="545" width="739"]]
407 -
408 -[[image:image-20240510152634-9.png||height="748" width="740"]]
409 -
410 -
411 -[[image:image-20240510152809-10.png||height="607" width="732"]]
412 -
413 -[[image:image-20240510153934-14.png||height="460" width="1199"]]
414 -
415 -
416 -[[image:image-20240510153435-12.png||height="428" width="1197"]]
417 -
418 -
419 -Copy and paste the [[TTN decoder>>https://github.com/dragino/dragino-end-node-decoder]] here and save.
420 -
421 -[[image:image-20240510153624-13.png||height="468" width="1195"]]
422 -
423 -
424 -Visual widgets please read the DATACAKE documentation.
425 -
426 -(% style="display:none" %) (%%)
427 -
428 -== 2.6  Datalog Feature ==
429 -
430 -
431 -(% _msthash="315262" _msttexthash="32283004" _mstvisible="1" %)
432 -When user want to retrieve sensor value, he can send a poll command from the IoT platform to ask sensor to send value in the required time slot.
433 -
434 -
435 -=== 2.6.1  Unix TimeStamp ===
436 -
437 -
438 -Unix TimeStamp shows the sampling time of uplink payload. format base on
439 -
440 -[[image:image-20220523001219-11.png||_mstalt="450450" _mstvisible="3" height="97" width="627"]]
441 -
442 -User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/||_mstvisible="3"]] :
443 -
444 -For example: if the Unix Timestamp we got is hex 0x60137afd, we can convert it to Decimal: 1611889405. and then convert to the time: 2021 – Jan ~-~- 29 Friday 03:03:25 (GMT)
445 -
446 -
447 -[[image:1655782409139-256.png]]
448 -
449 -
450 -=== 2.6.2  Poll sensor value ===
451 -
452 -
453 -(((
454 -User can poll sensor value based on timestamps from the server. Below is the downlink command.
455 -)))
456 -
457 -(((
458 -Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval.
459 -)))
460 -
461 -(((
462 -For example, downlink command [[image:image-20220621113526-13.png]] (% _mstvisible="3" style="display:none" %)
463 -)))
464 -
465 -(((
466 -Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00's data
467 -)))
468 -
469 -(((
470 -Uplink Internal =5s,means PB01 will send one packet every 5s. range 5~~255s.
471 -)))
472 -
473 -
474 -=== 2.6.3  Datalog Uplink payload ===
475 -
476 -
477 -See [[Uplink FPORT=3, Datalog sensor value>>||anchor="H2.4.3A0UplinkFPORT3D32CDatalogsensorvalue"]]
478 -
479 -(% style="display:none" %) (%%) (% style="display:none" %)
480 -
481 -== 2.7 Button ==
482 -
483 -
484 -* ACT button
485 -
486 -Long press this button PB01 will reset and join network again.
487 -
488 -[[image:image-20240510161626-17.png||height="192" width="224"]]
489 -
490 -* Alarm button
491 -
492 -Press the button PB01 will immediately uplink data, and alarm is "TRUE".
493 -
494 -[[image:image-20240705095149-5.png||height="164" width="162"]](% style="display:none" %)
495 -
496 -
497 -== 2.8 LED Indicator ==
498 -
499 -
500 -(((
501 -The PB01 has a triple color LED which for easy showing different stage.
502 -)))
503 -
504 -Hold the ACT green light to rest, then the green flashing node restarts, the blue flashing once upon request for network access, and the green constant light for 5 seconds after successful network access
505 -
506 -(((
507 -(% style="color:#037691" %)**In a normal working state**:
508 -)))
509 -
510 -* When the node is restarted, hold the ACT (% style="color:green" %)**GREEN**(%%) lights up , then the (% style="color:green" %)**GREEN**(%%) flashing node restarts.The (% style="color:blue" %)**BLUE**(%%) flashing once upon request for network access, and the (% style="color:green" %)**GREEN**(%%) constant light for 5 seconds after successful network access(% style="color:#0000ff" %)**.**
511 -* During OTAA Join:
512 -** **For each Join Request uplink:** the (% style="color:green" %)**GREEN LED** (%%)will blink once.
513 -** **Once Join Successful:** the (% style="color:green" %)**GREEN LED**(%%) will be solid on for 5 seconds.
514 -* After joined, for each uplink, the (% style="color:blue" %)**BLUE LED**(%%) or (% style="color:green" %)**GREEN LED** (%%)will blink once.
515 -* Press the alarm button,The (% style="color:red" %)**RED**(%%) flashes until the node receives the ACK from the platform and the (% style="color:blue" %)**BLUE**(%%) light stays 5s.
516 -
517 -(((
518 -
519 -)))
520 -
521 -== 2.9 Buzzer ==
522 -
523 -
524 -The PB01 has** button sound** and** ACK sound** and users can turn on or off both sounds by using [[AT+SOUND>>||anchor="H3.3A0Setbuttonsoundandbuttonalarm"]].
525 -
526 -* (% style="color:#4f81bd" %)**Button sound**(%%)** **is the music produced by the node after the alarm button is pressed.
527 -
528 - Users can use[[ AT+OPTION>>||anchor="H3.4A0Setbuzzermusic2807E429"]] to set different button sounds.
529 -
530 -* (% style="color:#4f81bd" %)**ACK sound **(%%)is the notification tone that the node receives ACK.
531 -
532 -= 3.  Configure PB01 via AT command or LoRaWAN downlink =
533 -
534 -
535 -Users can configure PB01 via AT Command or LoRaWAN Downlink.
536 -
537 -* AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
538 -
539 -* LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
540 -
541 -There are two kinds of commands to configure PB01, they are:
542 -
543 -* (% style="color:#4f81bd" %)**General Commands:**
544 -
545 -These commands are to configure:
546 -
547 -* General system settings like: uplink interval.
548 -
549 -* LoRaWAN protocol & radio-related commands.
550 -
551 -They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
552 -
553 -
554 -* (% style="color:#4f81bd" %)**Commands special design for PB01**
555 -
556 -These commands are only valid for PB01, as below:
557 -
558 -(% style="display:none" %) (%%)
559 -
560 -== 3.1  Downlink Command Set ==
561 -
562 -
563 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
564 -|=(% style="width: 130px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 151px; background-color: rgb(79, 129, 189); color: white;" %)**Function**|=(% style="width: 92px; background-color: rgb(79, 129, 189); color: white;" %)**Response**|=(% style="width: 206px; background-color: rgb(79, 129, 189); color: white;" %)**Downlink**
565 -|(% style="width:130px" %)AT+TDC=?|(% style="width:151px" %)(((
566 -
567 -
568 -View current TDC time
569 -)))|(% style="width:92px" %)(((
570 -1200000
571 -OK
572 -)))|(% style="width:206px" %)Default 1200000(ms)
573 -|(% style="width:130px" %)AT+TDC=300000|(% style="width:151px" %)Set TDC time|(% style="width:92px" %)OK|(% style="width:206px" %)(((
574 -(((
575 -0X0100012C:
576 -01: fixed command
577 -00012C: 0X00012C=
578 -
579 -300(seconds)
580 -)))
581 -
582 -(((
583 -
584 -)))
585 -)))
586 -|(% style="width:130px" %)ATZ|(% style="width:151px" %)Reset node|(% style="width:92px" %) |(% style="width:206px" %)0x04FF
587 -|(% style="width:130px" %)AT+FDR|(% style="width:151px" %)Restore factory settings|(% style="width:92px" %) |(% style="width:206px" %)0X04FE
588 -|(% style="width:130px" %)AT+CFM=?|(% style="width:151px" %)View the current confirmation mode status|(% style="width:92px" %)(((
589 -0,7,0
590 -
591 -OK
592 -)))|(% style="width:206px" %)Default 0,7,0
593 -|(% style="width:130px" %)AT+CFM=1,7,1|(% style="width:151px" %)(((
594 -Confirmed uplink mode, the maximum number of retries is seven, and uplink fcnt increase by 1 for each retry
595 -)))|(% style="width:92px" %)(((
596 -OK
597 -)))|(% style="width:206px" %)(((
598 -05010701
599 -
600 -05: fixed command
601 -
602 -01:confirmed uplink
603 -
604 -07: retry 7 times
605 -
606 -01: fcnt count plus 1
607 -)))
608 -|(% style="width:130px" %)AT+NJM=?|(% style="width:151px" %)(((
609 -Check the current network connection method
610 -)))|(% style="width:92px" %)(((
611 -1
612 -OK
613 -)))|(% style="width:206px" %)Default 1
614 -|(% style="width:130px" %)AT+NJM=0|(% style="width:151px" %)Change the network connection method to ABP|(% style="width:92px" %)(((
615 -Attention:Take effect after ATZ
616 -OK
617 -)))|(% style="width:206px" %)(((
618 -0X2000: ABP
619 -0x2001: OTAA
620 -20: fixed command
621 -)))
622 -|(% style="width:130px" %)AT+RPL=?|(% style="width:151px" %)View current RPL settings|(% style="width:92px" %)(((
623 -0
624 -OK
625 -)))|(% style="width:206px" %)Default 0
626 -|(% style="width:130px" %)AT+RPL=1|(% style="width:151px" %)set RPL=1    |(% style="width:92px" %)OK|(% style="width:206px" %)(((
627 -0x2101:
628 -21: fixed command
629 -01: for details, check wiki
630 -)))
631 -|(% style="width:130px" %)AT+ADR=?|(% style="width:151px" %)View current ADR status|(% style="width:92px" %)(((
632 -1
633 -OK
634 -)))|(% style="width:206px" %)Default 0
635 -|(% style="width:130px" %)AT+ADR=0|(% style="width:151px" %)Set the ADR state to off|(% style="width:92px" %)OK|(% style="width:206px" %)(((
636 -0x2200: close
637 -0x2201: open
638 -22: fixed command
639 -)))
640 -|(% style="width:130px" %)AT+DR=?|(% style="width:151px" %)View the current DR settings|(% style="width:92px" %)OK|(% style="width:206px" %)
641 -|(% style="width:130px" %)AT+DR=1|(% style="width:151px" %)(((
642 -set DR to 1
643 -It takes effect only when ADR=0
644 -)))|(% style="width:92px" %)OK|(% style="width:206px" %)(((
645 -0X22000101:
646 -00: ADR=0
647 -01: DR=1
648 -01: TXP=1
649 -22: fixed command
650 -)))
651 -|(% style="width:130px" %)AT+TXP=?|(% style="width:151px" %)View the current TXP|(% style="width:92px" %)OK|(% style="width:206px" %)
652 -|(% style="width:130px" %)AT+TXP=1|(% style="width:151px" %)(((
653 -set TXP to 1
654 -It takes effect only when ADR=0
655 -)))|(% style="width:92px" %)OK|(% style="width:206px" %)(((
656 -0X22000101:
657 -00: ADR=0
658 -01: DR=1
659 -01: TXP=1
660 -22: fixed command
661 -)))
662 -|(% style="width:130px" %)AT+RJTDC=10|(% style="width:151px" %)Set RJTDC time interval|(% style="width:92px" %)OK|(% style="width:206px" %)(((
663 -0X26000A:
664 -26: fixed command
665 -000A: 0X000A=10(min)
666 -for details, check wiki
667 -)))
668 -|(% style="width:130px" %) |(% style="width:151px" %)(((
669 -(((
670 -~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_
671 -
672 -Retrieve stored data for a specified period of time
673 -)))
674 -
675 -(((
676 -
677 -)))
678 -)))|(% style="width:92px" %) |(% style="width:206px" %)(((
679 -0X3161DE7C7061DE8A800A:
680 -31: fixed command
681 -61DE7C70:0X61DE7C70=2022/1/12 15:00:00
682 -61DE8A80:0X61DE8A80=2022/1/12 16:00:00
683 -0A: 0X0A=10(second)
684 -View details 2.6.2
685 -)))
686 -|(% style="width:130px" %)AT+DDETECT=?|(% style="width:151px" %)View the current DDETECT setting status and time|(% style="width:92px" %)(((
687 -1,1440,2880
688 -OK
689 -)))|(% style="width:206px" %)Default 1,1440,2880(min)
690 -|(% style="width:130px" %)AT+DDETECT=(((
691 -1,1440,2880
692 -)))|(% style="width:151px" %)(((
693 -Set DDETECT setting status and time
694 -((% style="color:red" %)When the node does not receive the downlink packet within the set time, it will re-enter the network(%%))
695 -)))|(% style="width:92px" %)OK|(% style="width:206px" %)(((
696 -0X320005A0: close
697 -0X320105A0: open
698 -32: fixed command
699 -05A0: 0X05A0=1440(min)
700 -)))
701 -
702 -== 3.2  Set Password ==
703 -
704 -
705 -Feature: Set device password, max 9 digits.
706 -
707 -(% style="color:#4f81bd" %)**AT Command: AT+PWORD**
708 -
709 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:372px" %)
710 -|(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:128px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:89px" %)**Response**
711 -|(% style="width:155px" %)AT+PWORD=?|(% style="width:124px" %)Show password|(% style="width:86px" %)(((
712 -123456
713 -OK
714 -)))
715 -|(% style="width:155px" %)AT+PWORD=999999|(% style="width:124px" %)Set password|(% style="width:86px" %)OK
716 -
717 -(% style="color:#4f81bd" %)**Downlink Command:**
718 -
719 -No downlink command for this feature.
720 -
721 -
722 -== 3.3  Set button sound and ACK sound ==
723 -
724 -
725 -Feature: Turn on/off button sound and ACK alarm.
726 -
727 -(% style="color:#4f81bd" %)**AT Command: AT+SOUND**
728 -
729 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:372px" %)
730 -|(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:128px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:89px" %)**Response**
731 -|(% style="width:155px" %)(((
732 -AT+SOUND=?
733 -)))|(% style="width:124px" %)Get the current status of button sound and ACK sound|(% style="width:86px" %)(((
734 -1,1
735 -OK
736 -)))
737 -|(% style="width:155px" %)(((
738 -AT+SOUND=0,1
739 -)))|(% style="width:124px" %)Turn off the button sound and turn on ACK sound|(% style="width:86px" %)OK
740 -
741 -(% style="color:#4f81bd" %)**Downlink Command: 0xA1 **
742 -
743 -Format: Command Code (0xA1) followed by 2 bytes mode value.
744 -
745 -The first byte after 0XA1 sets the button sound, and the second byte after 0XA1 sets the ACK sound.** (0: off, 1: on)**
746 -
747 -* **Example: **Downlink Payload: A10001  ~/~/ Set AT+SOUND=0,1  Turn off the button sound and turn on ACK sound.
748 -
749 -== 3.4  Set buzzer music type(0~~4) ==
750 -
751 -
752 -Feature: Set different alarm key response sounds.There are five different types of button music.
753 -
754 -(% style="color:#4f81bd" %)**AT Command: AT+OPTION**
755 -
756 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:372px" %)
757 -|(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:128px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:89px" %)**Response**
758 -|(% style="width:155px" %)(((
759 -AT+OPTION=?
760 -)))|(% style="width:124px" %)(((
761 -Get the buzzer music type
762 -)))|(% style="width:86px" %)(((
763 -3
764 -
765 -OK
766 -)))
767 -|(% style="width:155px" %)AT+OPTION=1|(% style="width:124px" %)Set the buzzer music to type 1|(% style="width:86px" %)OK
768 -
769 -(% style="color:#4f81bd" %)**Downlink Command: 0xA3**
770 -
771 -Format: Command Code (0xA3) followed by 1 byte mode value.
772 -
773 -* **Example: **Downlink Payload: A300  ~/~/ Set AT+OPTION=0  Set the buzzer music to type 0.
774 -
775 -== 3.5  Set Valid Push Time ==
776 -
777 -
778 -Feature: Set the holding time for pressing the alarm button to avoid miscontact. Values range from** 0 ~~1000ms**.
779 -
780 -(% style="color:#4f81bd" %)**AT Command: AT+STIME**
781 -
782 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:372px" %)
783 -|(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:128px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:89px" %)**Response**
784 -|(% style="width:155px" %)(((
785 -AT+STIME=?
786 -)))|(% style="width:124px" %)(((
787 -Get the button sound time
788 -)))|(% style="width:86px" %)(((
789 -0
790 -OK
791 -)))
792 -|(% style="width:155px" %)(((
793 -AT+STIME=1000
794 -)))|(% style="width:124px" %)Set the button sound time to 1000**ms**|(% style="width:86px" %)OK
795 -
796 -(% style="color:#4f81bd" %)**Downlink Command: 0xA2**
797 -
798 -Format: Command Code (0xA2) followed by 2 bytes mode value.
799 -
800 -* **Example: **Downlink Payload: A203E8  ~/~/ Set AT+STIME=1000  
801 -
802 -**~ Explain: **Hold the alarm button for 10 seconds before the node will send the alarm packet.
803 -
804 -
805 -
806 -
807 807  = 6. FAQ =
808 808  
809 -== 6.1 ==
222 +== 6.1 ==
810 810  
811 811  
812 812  = 7. Order Info =
... ... @@ -815,7 +815,6 @@
815 815  
816 816  Part Number: (% style="color:#4472c4" %)LTS5
817 817  
818 -
819 819  
820 820  == 7.2  Packing Info ==
821 821  
... ... @@ -825,13 +825,11 @@
825 825  * 5V,2A DC Power Adapter.
826 826  * USB Type C Program Cable
827 827  
828 -
829 829  = 8. Support =
830 830  
831 831  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
832 832  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
833 833  
834 -
835 835  = 9.  Reference material =
836 836  
837 837  * Datasheet
... ... @@ -838,7 +838,6 @@
838 838  * Source Code
839 839  * Mechinical
840 840  
841 -
842 842  = 10. FCC Warning =
843 843  
844 844  
1727229396732-319.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.xieby
Size
... ... @@ -1,0 +1,1 @@
1 +197.2 KB
Content
1727229550717-684.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.xieby
Size
... ... @@ -1,0 +1,1 @@
1 +113.9 KB
Content
1727229582471-566.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.xieby
Size
... ... @@ -1,0 +1,1 @@
1 +73.6 KB
Content
1727229618724-758.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.xieby
Size
... ... @@ -1,0 +1,1 @@
1 +118.7 KB
Content
1727229653254-680.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.xieby
Size
... ... @@ -1,0 +1,1 @@
1 +116.2 KB
Content
1727229682537-381.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.xieby
Size
... ... @@ -1,0 +1,1 @@
1 +51.5 KB
Content
1727229715361-392.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.xieby
Size
... ... @@ -1,0 +1,1 @@
1 +75.2 KB
Content
1727229740592-843.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.xieby
Size
... ... @@ -1,0 +1,1 @@
1 +87.3 KB
Content
1727229760857-521.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.xieby
Size
... ... @@ -1,0 +1,1 @@
1 +24.7 KB
Content
1727229798126-306.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.xieby
Size
... ... @@ -1,0 +1,1 @@
1 +53.6 KB
Content
1727229821582-258.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.xieby
Size
... ... @@ -1,0 +1,1 @@
1 +76.1 KB
Content
1727229845835-509.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.xieby
Size
... ... @@ -1,0 +1,1 @@
1 +68.3 KB
Content
1727229892636-154.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.xieby
Size
... ... @@ -1,0 +1,1 @@
1 +192.0 KB
Content
1727229926561-300.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.xieby
Size
... ... @@ -1,0 +1,1 @@
1 +178.0 KB
Content
1727229955611-607.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.xieby
Size
... ... @@ -1,0 +1,1 @@
1 +100.4 KB
Content
1727229990795-405.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.xieby
Size
... ... @@ -1,0 +1,1 @@
1 +383.6 KB
Content
1727230012478-930.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.xieby
Size
... ... @@ -1,0 +1,1 @@
1 +477.1 KB
Content
1727231038705-173.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.xieby
Size
... ... @@ -1,0 +1,1 @@
1 +94.6 KB
Content
1727233636007-933.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.xieby
Size
... ... @@ -1,0 +1,1 @@
1 +114.8 KB
Content
1727484665746-713.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.xieby
Size
... ... @@ -1,0 +1,1 @@
1 +94.9 KB
Content
image-20240916101737-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +156.7 KB
Content
image-20240925110638-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.xieby
Size
... ... @@ -1,0 +1,1 @@
1 +262.7 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0