Changes for page LTS5 LoRa HMI Touch Screen
Last modified by Dilisi S on 2025/02/26 19:24
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -65,9 +65,8 @@ 65 65 66 66 * 5.0 Inch , 800 x 480 67 67 * IPS Capacitive Touch SCreen 68 -* Accuracy Tolerance: Typ ±0.2 °C 69 -* Long Term Drift: < 0.03 °C/yr 70 -* Operating Range: -10 ~~ 50 °C or -40 ~~ 60 °C (depends on battery type, see [[FAQ>>||anchor="H6.5Whyiseedifferentworkingtemperatureforthedevice3F"]]) 68 +* RGB color. 69 +* Display Area: 120.7*75.80 mm 71 71 72 72 73 73 ... ... @@ -84,7 +84,6 @@ 84 84 85 85 == 1.6 Applications == 86 86 87 - 88 88 * Smart Buildings & Home Automation 89 89 * Logistics and Supply Chain Management 90 90 * Smart Metering ... ... @@ -93,718 +93,35 @@ 93 93 * Smart Factory 94 94 95 95 96 -= 2. OperationMode=94 += 2. Getting Start with Hello World = 97 97 98 -== 2.1 Howitwork?==96 +== 2.1 About this demo == 99 99 98 +In this Getting Start Example, we will show how to desing a simple Display UI and upload it to LTS5. This UI has a button , when user click the button. The Web UI will jump to a new page. 100 100 101 -Each PB01 is shipped with a worldwide unique set of LoRaWAN OTAA keys. To use PB01 in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After this, if PB01 is under this LoRaWAN network coverage, PB01 can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is** 20 minutes**. 102 102 101 +== 2.2 Install Software Running Environment == 103 103 104 -== 2.2 HowtoActivatePB01?==103 +=== 2.2.1 Install Arduino IDE tool === 105 105 105 +=== 2.2.2 Install SquareLine Studio === 106 106 107 -(% style="color:red" %)** 1. Open enclosure from below position.** 108 108 109 - [[image:image-20220621093835-1.png]]108 +== 2.3 Program in SquareLine and convert it to ESP32 software == 110 110 111 111 112 - (% style="color:red"%)**2.Insert2 x AAA LR03 batteriesandthe nodeisactivated.**111 +== 2.4 Upload Firmware to ESP32 == 113 113 114 -[[image:image-20220621093835-2.png]] 115 115 114 +== 2.5 Test Result == 116 116 117 -(% style="color:red" %)** 3. Under the above conditions, users can also reactivate the node by long pressing the ACT button.** 118 118 119 - [[image:image-20220621093835-3.png]]117 += 3. Example Project 1: LoRa Central Display = 120 120 121 121 122 - Usercancheck [[LED Status>>||anchor="H2.8LEDIndicator"]]toknowtheworkingstate of PB01.120 += 4. Example Project 2: LoRa to LoRaWAN RS485 Alarm = 123 123 124 124 125 -== 2.3 Example to join LoRaWAN network == 126 - 127 - 128 -This section shows an example for how to join the [[TheThingsNetwork>>url:https://www.thethingsnetwork.org/]] LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure. 129 - 130 -(% _mstvisible="1" class="wikigeneratedid" %) 131 -Assume the LPS8v2 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the PB01 device in TTN V3 portal. 132 - 133 -[[image:image-20240705094824-4.png]] 134 - 135 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from PB01. 136 - 137 -Each PB01 is shipped with a sticker with the default DEV EUI as below: 138 - 139 -[[image:image-20230426083617-1.png||height="294" width="633"]] 140 - 141 - 142 -Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot: 143 - 144 -Create application. 145 - 146 -choose to create the device manually. 147 - 148 -Add JoinEUI(AppEUI), DevEUI, AppKey.(% style="display:none" %) 149 - 150 -[[image:image-20240507142116-1.png||height="410" width="1138"]](% style="display:none" %) (%%) 151 - 152 - 153 -[[image:image-20240507142157-2.png||height="559" width="1147"]] 154 - 155 -[[image:image-20240507142401-3.png||height="693" width="1202"]] 156 - 157 -[[image:image-20240507142651-4.png||height="760" width="1190"]] 158 - 159 -**Default mode OTAA**(% style="display:none" %) 160 - 161 - 162 -(% style="color:blue" %)**Step 2**(%%): Use ACT button to activate PB01 and it will auto join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel. 163 - 164 -[[image:image-20240507143104-5.png||height="434" width="1398"]] 165 - 166 - 167 -== 2.4 Uplink Payload == 168 - 169 - 170 -Uplink payloads include two types: Valid Sensor Value and other status / control command. 171 - 172 -* Valid Sensor Value: Use FPORT=2 173 -* Other control command: Use FPORT other than 2. 174 - 175 -=== 2.4.1 Uplink FPORT~=5, Device Status === 176 - 177 - 178 -Users can get the Device Status uplink through the downlink command: 179 - 180 -(% style="color:#4472c4" %)**Downlink: **(%%)**0x2601** 181 - 182 -Uplink the device configures with FPORT=5. 183 - 184 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:370px" %) 185 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)(% style="display:none" %) (%%)**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2** 186 -|(% style="width:99px" %)Value|(% style="width:62px" %)Sensor Model|(% style="width:80px" %)Firmware Version|(% style="width:82px" %)Frequency Band|(% style="width:85px" %)Sub-band|(% style="width:46px" %)BAT 187 - 188 -[[image:image-20240507152130-12.png||height="469" width="1366"]](% style="display:none" %) 189 - 190 -Example Payload (FPort=5): [[image:image-20240507152254-13.png||height="26" width="130"]] 191 - 192 - 193 -(% style="color:#4472c4" %)**Sensor Model**(%%): For PB01, this value is 0x35. 194 - 195 -(% style="color:#4472c4" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version. 196 - 197 -(% style="color:#4472c4" %)**Frequency Band**: 198 - 199 -*0x01: EU868 200 - 201 -*0x02: US915 202 - 203 -*0x03: IN865 204 - 205 -*0x04: AU915 206 - 207 -*0x05: KZ865 208 - 209 -*0x06: RU864 210 - 211 -*0x07: AS923 212 - 213 -*0x08: AS923-1 214 - 215 -*0x09: AS923-2 216 - 217 -*0x0a: AS923-3 218 - 219 - 220 -(% style="color:#4472c4" %)**Sub-Band**(%%): value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00) 221 - 222 -(% style="color:#4472c4" %)**BAT**(%%): shows the battery voltage for PB01. 223 - 224 -(% style="color:#4472c4" %)**Ex1**(%%): 0x0C DE = 3294mV 225 - 226 - 227 -=== 2.4.2 Uplink FPORT~=2, Real time sensor value === 228 - 229 - 230 -PB01 will send this uplink after Device Status uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1A0DownlinkCommandSet"]]. 231 - 232 -Uplink uses FPORT=2 and every 20 minutes send one uplink by default. 233 - 234 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:460px" %) 235 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 236 -**Size(bytes)** 237 -)))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)2|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 238 -**1** 239 -)))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 240 -**1** 241 -)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)((( 242 -**2** 243 -)))|=(% style="width: 40px;background-color:#4F81BD;color:white" %)((( 244 -**2** 245 -))) 246 -|(% style="width:97px" %)((( 247 -Value 248 -)))|(% style="width:39px" %)Battery|(% style="width:39px" %)((( 249 -Sound_ACK 250 - 251 -&Sound_key 252 -)))|(% style="width:100px" %)((( 253 -((( 254 -Alarm 255 -))) 256 -)))|(% style="width:77px" %)((( 257 -((( 258 -Temperature 259 -))) 260 -)))|(% style="width:47px" %)((( 261 -Humidity 262 -))) 263 - 264 -Example in TTN. 265 - 266 -[[image:image-20240507150155-11.png||height="549" width="1261"]] 267 - 268 -Example Payload (FPort=2): (% style="background-color:yellow" %)**0C EA 03 01 01 11 02 A8** 269 - 270 -==== (% style="color:blue" %)**Battery:**(%%) ==== 271 - 272 -Check the battery voltage. 273 - 274 -* Ex1: 0x0CEA = 3306mV 275 -* Ex2: 0x0D08 = 3336mV 276 - 277 -==== (% style="color:blue" %)**Sound_ACK & Sound_key:**(%%) ==== 278 - 279 -Key sound and ACK sound are enabled by default. 280 - 281 -* Example1: 0x03 282 - 283 - Sound_ACK: (03>>1) & 0x01=1, OPEN. 284 - 285 -**~ ** Sound_key: 03 & 0x01=1, OPEN. 286 - 287 -* Example2: 0x01 288 - 289 - Sound_ACK: (01>>1) & 0x01=0, CLOSE. 290 - 291 -**~ ** Sound_key: 01 & 0x01=1, OPEN. 292 - 293 - 294 -==== (% style="color:blue" %)**Alarm:**(%%) ==== 295 - 296 -Key alarm. 297 - 298 -* Ex1: 0x01 & 0x01=1, TRUE. 299 -* Ex2: 0x00 & 0x01=0, FALSE. 300 - 301 -==== (% style="color:blue" %)**Temperature:**(%%) ==== 302 - 303 -* Example1: 0x0111/10=27.3℃ 304 -* Example2: (0xFF0D-65536)/10=-24.3℃ 305 - 306 -If payload is: FF0D : (FF0D & 8000 == 1) , temp = (FF0D - 65536)/100 =-24.3℃ 307 - 308 -(FF0D & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative) 309 - 310 - 311 -==== (% style="color:blue" %)**Humidity:**(%%) ==== 312 - 313 -* Humidity: 0x02A8/10=68.0% 314 - 315 -=== 2.4.3 Uplink FPORT~=3, Datalog sensor value === 316 - 317 - 318 -PB01 stores sensor value and user can retrieve these history value via downlink command. The Datalog sensor value are sent via FPORT=3. 319 - 320 -[[image:image-20240510144912-1.png||height="471" width="1178"]](% style="display:none" %) 321 - 322 - 323 -* Each data entry is 11 bytes, to save airtime and battery, PB01 will send max bytes according to the current DR and Frequency bands.(% style="display:none" %) 324 - 325 -For example, in US915 band, the max payload for different DR is: 326 - 327 -1. **DR0**: max is 11 bytes so one entry of data 328 -1. **DR1**: max is 53 bytes so devices will upload 4 entries of data (total 44 bytes) 329 -1. **DR2**: total payload includes 11 entries of data 330 -1. **DR3**: total payload includes 22 entries of data. 331 - 332 -(% style="color:red" %)**Notice: PB01 will save 178 set of history data, If device doesn't have any data in the polling time. Device will uplink 11 bytes of 0.** 333 - 334 -See more info about the [[Datalog feature>>||anchor="H2.6A0DatalogFeature"]]. 335 - 336 -(% style="display:none" %) (%%) 337 - 338 -=== 2.4.4 Decoder in TTN V3 === 339 - 340 - 341 -In LoRaWAN protocol, the uplink payload is HEX format, user need to add a payload formatter/decoder in LoRaWAN Server to get human friendly string. 342 - 343 -In TTN , add formatter as below: 344 - 345 -[[image:image-20240507162814-16.png||height="778" width="1135"]] 346 - 347 -((( 348 -Please check the decoder from this link: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 349 -))) 350 - 351 -((( 352 - 353 -))) 354 - 355 -== 2.5 Show data on Datacake == 356 - 357 - 358 -((( 359 -Datacake IoT platform provides a human friendly interface to show the sensor data in charts, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps: 360 -))) 361 - 362 -((( 363 - 364 -))) 365 - 366 -((( 367 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network. 368 -))) 369 - 370 -((( 371 -(% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations. 372 -))) 373 - 374 -((( 375 -~1. Add Datacake: 376 -))) 377 - 378 -((( 379 -2. Select default key as Access Key: 380 -))) 381 - 382 -((( 383 -3. In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add PB01: 384 -))) 385 - 386 -((( 387 - Please refer to the figure below. 388 -))) 389 - 390 -[[image:image-20240510150924-2.png||height="612" width="1186"]] 391 - 392 - 393 -Log in to DATACAKE, copy the API under the account. 394 - 395 -[[image:image-20240510151944-3.png||height="581" width="1191"]] 396 - 397 - 398 - 399 -[[image:image-20240510152150-4.png||height="697" width="1188"]] 400 - 401 - 402 -[[image:image-20240510152300-5.png||height="298" width="1191"]] 403 - 404 - 405 -[[image:image-20240510152355-6.png||height="782" width="1193"]] 406 - 407 -[[image:image-20240510152542-8.png||height="545" width="739"]] 408 - 409 -[[image:image-20240510152634-9.png||height="748" width="740"]] 410 - 411 - 412 -[[image:image-20240510152809-10.png||height="607" width="732"]] 413 - 414 -[[image:image-20240510153934-14.png||height="460" width="1199"]] 415 - 416 - 417 -[[image:image-20240510153435-12.png||height="428" width="1197"]] 418 - 419 - 420 -Copy and paste the [[TTN decoder>>https://github.com/dragino/dragino-end-node-decoder]] here and save. 421 - 422 -[[image:image-20240510153624-13.png||height="468" width="1195"]] 423 - 424 - 425 -Visual widgets please read the DATACAKE documentation. 426 - 427 -(% style="display:none" %) (%%) 428 - 429 -== 2.6 Datalog Feature == 430 - 431 - 432 -(% _msthash="315262" _msttexthash="32283004" _mstvisible="1" %) 433 -When user want to retrieve sensor value, he can send a poll command from the IoT platform to ask sensor to send value in the required time slot. 434 - 435 - 436 -=== 2.6.1 Unix TimeStamp === 437 - 438 - 439 -Unix TimeStamp shows the sampling time of uplink payload. format base on 440 - 441 -[[image:image-20220523001219-11.png||_mstalt="450450" _mstvisible="3" height="97" width="627"]] 442 - 443 -User can get this time from link: [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/||_mstvisible="3"]] : 444 - 445 -For example: if the Unix Timestamp we got is hex 0x60137afd, we can convert it to Decimal: 1611889405. and then convert to the time: 2021 – Jan ~-~- 29 Friday 03:03:25 (GMT) 446 - 447 - 448 -[[image:1655782409139-256.png]] 449 - 450 - 451 -=== 2.6.2 Poll sensor value === 452 - 453 - 454 -((( 455 -User can poll sensor value based on timestamps from the server. Below is the downlink command. 456 -))) 457 - 458 -((( 459 -Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval. 460 -))) 461 - 462 -((( 463 -For example, downlink command [[image:image-20220621113526-13.png]] (% _mstvisible="3" style="display:none" %) 464 -))) 465 - 466 -((( 467 -Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00's data 468 -))) 469 - 470 -((( 471 -Uplink Internal =5s,means PB01 will send one packet every 5s. range 5~~255s. 472 -))) 473 - 474 - 475 -=== 2.6.3 Datalog Uplink payload === 476 - 477 - 478 -See [[Uplink FPORT=3, Datalog sensor value>>||anchor="H2.4.3A0UplinkFPORT3D32CDatalogsensorvalue"]] 479 - 480 -(% style="display:none" %) (%%) (% style="display:none" %) 481 - 482 -== 2.7 Button == 483 - 484 - 485 -* ACT button 486 - 487 -Long press this button PB01 will reset and join network again. 488 - 489 -[[image:image-20240510161626-17.png||height="192" width="224"]] 490 - 491 -* Alarm button 492 - 493 -Press the button PB01 will immediately uplink data, and alarm is "TRUE". 494 - 495 -[[image:image-20240705095149-5.png||height="164" width="162"]](% style="display:none" %) 496 - 497 - 498 -== 2.8 LED Indicator == 499 - 500 - 501 -((( 502 -The PB01 has a triple color LED which for easy showing different stage. 503 -))) 504 - 505 -Hold the ACT green light to rest, then the green flashing node restarts, the blue flashing once upon request for network access, and the green constant light for 5 seconds after successful network access 506 - 507 -((( 508 -(% style="color:#037691" %)**In a normal working state**: 509 -))) 510 - 511 -* When the node is restarted, hold the ACT (% style="color:green" %)**GREEN**(%%) lights up , then the (% style="color:green" %)**GREEN**(%%) flashing node restarts.The (% style="color:blue" %)**BLUE**(%%) flashing once upon request for network access, and the (% style="color:green" %)**GREEN**(%%) constant light for 5 seconds after successful network access(% style="color:#0000ff" %)**.** 512 -* During OTAA Join: 513 -** **For each Join Request uplink:** the (% style="color:green" %)**GREEN LED** (%%)will blink once. 514 -** **Once Join Successful:** the (% style="color:green" %)**GREEN LED**(%%) will be solid on for 5 seconds. 515 -* After joined, for each uplink, the (% style="color:blue" %)**BLUE LED**(%%) or (% style="color:green" %)**GREEN LED** (%%)will blink once. 516 -* Press the alarm button,The (% style="color:red" %)**RED**(%%) flashes until the node receives the ACK from the platform and the (% style="color:blue" %)**BLUE**(%%) light stays 5s. 517 - 518 -((( 519 - 520 -))) 521 - 522 -== 2.9 Buzzer == 523 - 524 - 525 -The PB01 has** button sound** and** ACK sound** and users can turn on or off both sounds by using [[AT+SOUND>>||anchor="H3.3A0Setbuttonsoundandbuttonalarm"]]. 526 - 527 -* (% style="color:#4f81bd" %)**Button sound**(%%)** **is the music produced by the node after the alarm button is pressed. 528 - 529 - Users can use[[ AT+OPTION>>||anchor="H3.4A0Setbuzzermusic2807E429"]] to set different button sounds. 530 - 531 -* (% style="color:#4f81bd" %)**ACK sound **(%%)is the notification tone that the node receives ACK. 532 - 533 -= 3. Configure PB01 via AT command or LoRaWAN downlink = 534 - 535 - 536 -Users can configure PB01 via AT Command or LoRaWAN Downlink. 537 - 538 -* AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]]. 539 - 540 -* LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]] 541 - 542 -There are two kinds of commands to configure PB01, they are: 543 - 544 -* (% style="color:#4f81bd" %)**General Commands:** 545 - 546 -These commands are to configure: 547 - 548 -* General system settings like: uplink interval. 549 - 550 -* LoRaWAN protocol & radio-related commands. 551 - 552 -They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]] 553 - 554 - 555 -* (% style="color:#4f81bd" %)**Commands special design for PB01** 556 - 557 -These commands are only valid for PB01, as below: 558 - 559 -(% style="display:none" %) (%%) 560 - 561 -== 3.1 Downlink Command Set == 562 - 563 - 564 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %) 565 -|=(% style="width: 130px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 151px; background-color: rgb(79, 129, 189); color: white;" %)**Function**|=(% style="width: 92px; background-color: rgb(79, 129, 189); color: white;" %)**Response**|=(% style="width: 206px; background-color: rgb(79, 129, 189); color: white;" %)**Downlink** 566 -|(% style="width:130px" %)AT+TDC=?|(% style="width:151px" %)((( 567 - 568 - 569 -View current TDC time 570 -)))|(% style="width:92px" %)((( 571 -1200000 572 -OK 573 -)))|(% style="width:206px" %)Default 1200000(ms) 574 -|(% style="width:130px" %)AT+TDC=300000|(% style="width:151px" %)Set TDC time|(% style="width:92px" %)OK|(% style="width:206px" %)((( 575 -((( 576 -0X0100012C: 577 -01: fixed command 578 -00012C: 0X00012C= 579 - 580 -300(seconds) 581 -))) 582 - 583 -((( 584 - 585 -))) 586 -))) 587 -|(% style="width:130px" %)ATZ|(% style="width:151px" %)Reset node|(% style="width:92px" %) |(% style="width:206px" %)0x04FF 588 -|(% style="width:130px" %)AT+FDR|(% style="width:151px" %)Restore factory settings|(% style="width:92px" %) |(% style="width:206px" %)0X04FE 589 -|(% style="width:130px" %)AT+CFM=?|(% style="width:151px" %)View the current confirmation mode status|(% style="width:92px" %)((( 590 -0,7,0 591 - 592 -OK 593 -)))|(% style="width:206px" %)Default 0,7,0 594 -|(% style="width:130px" %)AT+CFM=1,7,1|(% style="width:151px" %)((( 595 -Confirmed uplink mode, the maximum number of retries is seven, and uplink fcnt increase by 1 for each retry 596 -)))|(% style="width:92px" %)((( 597 -OK 598 -)))|(% style="width:206px" %)((( 599 -05010701 600 - 601 -05: fixed command 602 - 603 -01:confirmed uplink 604 - 605 -07: retry 7 times 606 - 607 -01: fcnt count plus 1 608 -))) 609 -|(% style="width:130px" %)AT+NJM=?|(% style="width:151px" %)((( 610 -Check the current network connection method 611 -)))|(% style="width:92px" %)((( 612 -1 613 -OK 614 -)))|(% style="width:206px" %)Default 1 615 -|(% style="width:130px" %)AT+NJM=0|(% style="width:151px" %)Change the network connection method to ABP|(% style="width:92px" %)((( 616 -Attention:Take effect after ATZ 617 -OK 618 -)))|(% style="width:206px" %)((( 619 -0X2000: ABP 620 -0x2001: OTAA 621 -20: fixed command 622 -))) 623 -|(% style="width:130px" %)AT+RPL=?|(% style="width:151px" %)View current RPL settings|(% style="width:92px" %)((( 624 -0 625 -OK 626 -)))|(% style="width:206px" %)Default 0 627 -|(% style="width:130px" %)AT+RPL=1|(% style="width:151px" %)set RPL=1 |(% style="width:92px" %)OK|(% style="width:206px" %)((( 628 -0x2101: 629 -21: fixed command 630 -01: for details, check wiki 631 -))) 632 -|(% style="width:130px" %)AT+ADR=?|(% style="width:151px" %)View current ADR status|(% style="width:92px" %)((( 633 -1 634 -OK 635 -)))|(% style="width:206px" %)Default 0 636 -|(% style="width:130px" %)AT+ADR=0|(% style="width:151px" %)Set the ADR state to off|(% style="width:92px" %)OK|(% style="width:206px" %)((( 637 -0x2200: close 638 -0x2201: open 639 -22: fixed command 640 -))) 641 -|(% style="width:130px" %)AT+DR=?|(% style="width:151px" %)View the current DR settings|(% style="width:92px" %)OK|(% style="width:206px" %) 642 -|(% style="width:130px" %)AT+DR=1|(% style="width:151px" %)((( 643 -set DR to 1 644 -It takes effect only when ADR=0 645 -)))|(% style="width:92px" %)OK|(% style="width:206px" %)((( 646 -0X22000101: 647 -00: ADR=0 648 -01: DR=1 649 -01: TXP=1 650 -22: fixed command 651 -))) 652 -|(% style="width:130px" %)AT+TXP=?|(% style="width:151px" %)View the current TXP|(% style="width:92px" %)OK|(% style="width:206px" %) 653 -|(% style="width:130px" %)AT+TXP=1|(% style="width:151px" %)((( 654 -set TXP to 1 655 -It takes effect only when ADR=0 656 -)))|(% style="width:92px" %)OK|(% style="width:206px" %)((( 657 -0X22000101: 658 -00: ADR=0 659 -01: DR=1 660 -01: TXP=1 661 -22: fixed command 662 -))) 663 -|(% style="width:130px" %)AT+RJTDC=10|(% style="width:151px" %)Set RJTDC time interval|(% style="width:92px" %)OK|(% style="width:206px" %)((( 664 -0X26000A: 665 -26: fixed command 666 -000A: 0X000A=10(min) 667 -for details, check wiki 668 -))) 669 -|(% style="width:130px" %) |(% style="width:151px" %)((( 670 -((( 671 -~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_ 672 - 673 -Retrieve stored data for a specified period of time 674 -))) 675 - 676 -((( 677 - 678 -))) 679 -)))|(% style="width:92px" %) |(% style="width:206px" %)((( 680 -0X3161DE7C7061DE8A800A: 681 -31: fixed command 682 -61DE7C70:0X61DE7C70=2022/1/12 15:00:00 683 -61DE8A80:0X61DE8A80=2022/1/12 16:00:00 684 -0A: 0X0A=10(second) 685 -View details 2.6.2 686 -))) 687 -|(% style="width:130px" %)AT+DDETECT=?|(% style="width:151px" %)View the current DDETECT setting status and time|(% style="width:92px" %)((( 688 -1,1440,2880 689 -OK 690 -)))|(% style="width:206px" %)Default 1,1440,2880(min) 691 -|(% style="width:130px" %)AT+DDETECT=((( 692 -1,1440,2880 693 -)))|(% style="width:151px" %)((( 694 -Set DDETECT setting status and time 695 -((% style="color:red" %)When the node does not receive the downlink packet within the set time, it will re-enter the network(%%)) 696 -)))|(% style="width:92px" %)OK|(% style="width:206px" %)((( 697 -0X320005A0: close 698 -0X320105A0: open 699 -32: fixed command 700 -05A0: 0X05A0=1440(min) 701 -))) 702 - 703 -== 3.2 Set Password == 704 - 705 - 706 -Feature: Set device password, max 9 digits. 707 - 708 -(% style="color:#4f81bd" %)**AT Command: AT+PWORD** 709 - 710 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:372px" %) 711 -|(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:128px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:89px" %)**Response** 712 -|(% style="width:155px" %)AT+PWORD=?|(% style="width:124px" %)Show password|(% style="width:86px" %)((( 713 -123456 714 -OK 715 -))) 716 -|(% style="width:155px" %)AT+PWORD=999999|(% style="width:124px" %)Set password|(% style="width:86px" %)OK 717 - 718 -(% style="color:#4f81bd" %)**Downlink Command:** 719 - 720 -No downlink command for this feature. 721 - 722 - 723 -== 3.3 Set button sound and ACK sound == 724 - 725 - 726 -Feature: Turn on/off button sound and ACK alarm. 727 - 728 -(% style="color:#4f81bd" %)**AT Command: AT+SOUND** 729 - 730 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:372px" %) 731 -|(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:128px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:89px" %)**Response** 732 -|(% style="width:155px" %)((( 733 -AT+SOUND=? 734 -)))|(% style="width:124px" %)Get the current status of button sound and ACK sound|(% style="width:86px" %)((( 735 -1,1 736 -OK 737 -))) 738 -|(% style="width:155px" %)((( 739 -AT+SOUND=0,1 740 -)))|(% style="width:124px" %)Turn off the button sound and turn on ACK sound|(% style="width:86px" %)OK 741 - 742 -(% style="color:#4f81bd" %)**Downlink Command: 0xA1 ** 743 - 744 -Format: Command Code (0xA1) followed by 2 bytes mode value. 745 - 746 -The first byte after 0XA1 sets the button sound, and the second byte after 0XA1 sets the ACK sound.** (0: off, 1: on)** 747 - 748 -* **Example: **Downlink Payload: A10001 ~/~/ Set AT+SOUND=0,1 Turn off the button sound and turn on ACK sound. 749 - 750 -== 3.4 Set buzzer music type(0~~4) == 751 - 752 - 753 -Feature: Set different alarm key response sounds.There are five different types of button music. 754 - 755 -(% style="color:#4f81bd" %)**AT Command: AT+OPTION** 756 - 757 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:372px" %) 758 -|(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:128px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:89px" %)**Response** 759 -|(% style="width:155px" %)((( 760 -AT+OPTION=? 761 -)))|(% style="width:124px" %)((( 762 -Get the buzzer music type 763 -)))|(% style="width:86px" %)((( 764 -3 765 - 766 -OK 767 -))) 768 -|(% style="width:155px" %)AT+OPTION=1|(% style="width:124px" %)Set the buzzer music to type 1|(% style="width:86px" %)OK 769 - 770 -(% style="color:#4f81bd" %)**Downlink Command: 0xA3** 771 - 772 -Format: Command Code (0xA3) followed by 1 byte mode value. 773 - 774 -* **Example: **Downlink Payload: A300 ~/~/ Set AT+OPTION=0 Set the buzzer music to type 0. 775 - 776 -== 3.5 Set Valid Push Time == 777 - 778 - 779 -Feature: Set the holding time for pressing the alarm button to avoid miscontact. Values range from** 0 ~~1000ms**. 780 - 781 -(% style="color:#4f81bd" %)**AT Command: AT+STIME** 782 - 783 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:372px" %) 784 -|(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:128px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:89px" %)**Response** 785 -|(% style="width:155px" %)((( 786 -AT+STIME=? 787 -)))|(% style="width:124px" %)((( 788 -Get the button sound time 789 -)))|(% style="width:86px" %)((( 790 -0 791 -OK 792 -))) 793 -|(% style="width:155px" %)((( 794 -AT+STIME=1000 795 -)))|(% style="width:124px" %)Set the button sound time to 1000**ms**|(% style="width:86px" %)OK 796 - 797 -(% style="color:#4f81bd" %)**Downlink Command: 0xA2** 798 - 799 -Format: Command Code (0xA2) followed by 2 bytes mode value. 800 - 801 -* **Example: **Downlink Payload: A203E8 ~/~/ Set AT+STIME=1000 802 - 803 -**~ Explain: **Hold the alarm button for 10 seconds before the node will send the alarm packet. 804 - 805 - 806 - 807 - 808 808 = 6. FAQ = 809 809 810 810 == 6.1 ==