Changes for page LTS5 LoRa HMI Touch Screen
Last modified by Dilisi S on 2025/02/26 19:24
Change comment:
There is no comment for this version
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 20 removed)
- 1727229396732-319.png
- 1727229550717-684.png
- 1727229582471-566.png
- 1727229618724-758.png
- 1727229653254-680.png
- 1727229682537-381.png
- 1727229715361-392.png
- 1727229740592-843.png
- 1727229760857-521.png
- 1727229798126-306.png
- 1727229821582-258.png
- 1727229845835-509.png
- 1727229892636-154.png
- 1727229926561-300.png
- 1727229955611-607.png
- 1727229990795-405.png
- 1727230012478-930.png
- 1727231038705-173.png
- image-20240915231842-1.png
- image-20240916101737-1.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -LTS5 LoRa HMITouch Screen1 +LTS5 LoRa Touch Screen - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. xieby1 +XWiki.Edwin - Content
-
... ... @@ -1,7 +1,10 @@ 1 - 2 -[[image:image-2024091 5231842-1.png]]1 +(% style="text-align:center" %) 2 +[[image:image-20240705094013-3.png]] 3 3 4 4 5 + 6 + 7 + 5 5 (% _mstvisible="1" %) 6 6 (% _msthash="315238" _msttexthash="18964465" _mstvisible="3" %)**Table of Contents:** 7 7 ... ... @@ -16,68 +16,67 @@ 16 16 17 17 = 1. Introduction = 18 18 19 -== 1.1 What is LTS5LoRaHMI touchscreen ==22 +== 1.1 What is PB01 LoRaWAN Push Button == 20 20 21 -LTS5 is a (% style="color:blue" %)LoRa / LoRaWAN HMI Touch Screen(%%) designed for display purpose of IoT project. It have a 5.0" HMI touch screen, and support WiFi, Bluetooch, LoRa wireless protocol. 22 22 23 -L TS5is anOpen Sourcesoftware project.TheMCUisESP32andDraginoLA66LoRamodule.Thereare lotsofdevelopmentsourceforESP32 whichcangreatlyreducethe development time.25 +PB01 LoRaWAN Button is a LoRaWAN wireless device with one (% style="color:blue" %)**push button**(%%). Once user push the button, PB01 will transfer the signal to IoT server via Long Range LoRaWAN wireless protocol. PB01 also senses the (% style="color:blue" %)**environment temperature & humidity**(%%) and will also uplink these data to IoT Server. 24 24 25 - TheHMI touchscreenofLTS5supportsdrap& dropdesign.Developer canuseSquareLinetoeasilycustomize thedisplayUI fordifferentapplication.27 +PB01 supports (% style="color:blue" %)** 2 x AAA batteries**(%%) and works for a long time up to several years*. User can replace the batteries easily after they are finished. 26 26 27 - LTS5useLA66 LoRamodule,thismodulecanbe programtosupportprivateLoRaprotocolorLoRaWANprotocol.29 +PB01 has a built-in speaker, it can pronouns different sound when press button and get reply from server. The speaker can by disable if user want it. 28 28 31 +PB01 is fully compatible with LoRaWAN v1.0.3 protocol, it can work with standard LoRaWAN gateway. 29 29 33 +*Battery life depends how often to send data, please see [[battery analyzer>>||anchor="H4.2A0PowerConsumptionAnalyze"]]. 34 + 35 + 30 30 == 1.2 Features == 31 31 32 -* ESP32-WROOM MCU + Dragino LA66 LoRa Module 33 -* Support Private LoRa protocol or LoRaWAN protocol 34 -* Support WiFi & BLE wireless protocol 35 -* 5.0" HMI touch screen 36 -* Support LVGL case. SquareLine program. 37 -* Support RS485 Interface 38 -* Open Source Project 38 + 39 39 * Wall Attachable. 40 -* 5V DC power 40 +* LoRaWAN v1.0.3 Class A protocol. 41 +* 1 x push button. Different Color available. 42 +* Built-in Temperature & Humidity sensor 43 +* Built-in speaker 44 +* Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915 45 +* AT Commands to change parameters 46 +* Remote configure parameters via LoRaWAN Downlink 47 +* Firmware upgradable via program port 48 +* Support 2 x AAA LR03 batteries. 41 41 * IP Rating: IP52 42 42 43 43 == 1.3 Specification == 44 44 45 -**LoRa**: 46 46 54 +**Built-in Temperature Sensor:** 47 47 48 -**WiFi:** 56 +* Resolution: 0.01 °C 57 +* Accuracy Tolerance: Typ ±0.2 °C 58 +* Long Term Drift: < 0.03 °C/yr 59 +* Operating Range: -10 ~~ 50 °C or -40 ~~ 60 °C (depends on battery type, see [[FAQ>>||anchor="H6.5Whyiseedifferentworkingtemperatureforthedevice3F"]]) 49 49 50 -* 802.11b/g/n 51 -* Up to 150 Mbps data rate in 802.11n mode 52 -* Support A-MPDU and A-MSDU aggregation 53 -* zero point four μ S protection interval 54 -* Working channel center frequency range: 2412~~2484 MHz 61 +**Built-in Humidity Sensor:** 55 55 56 -**Bluetooth:** 63 +* Resolution: 0.01 %RH 64 +* Accuracy Tolerance: Typ ±1.8 %RH 65 +* Long Term Drift: < 0.2% RH/yr 66 +* Operating Range: 0 ~~ 99.0 %RH(no Dew) 57 57 58 -* Bluetooth V4.2 BR/EDR and Bluetooth LE standard 59 -* Class-1, Class-2, and Class-3 transmitters. 60 -* AFH 61 -* CVSD and SBC 68 +== 1.4 Power Consumption == 62 62 63 -**Display:** 64 64 65 -* 5.0 Inch , 800 x 480 66 -* IPS Capacitive Touch SCreen 67 -* RGB color. 68 -* Display Area: 120.7*75.80 mm 71 +PB01 : Idle: 5uA, Transmit: max 110mA 69 69 70 -== 1.4 Power Consumption == 71 71 72 -* External 5V DC power adapter 73 - 74 74 == 1.5 Storage & Operation Temperature == 75 75 76 -* Operation Temperature: -20 ~~ 70°C (No Dew) 77 -* Storage Temperature: -30 ~~ 70°C (No Dew) 78 78 77 +-10 ~~ 50 °C or -40 ~~ 60 °C (depends on battery type, see [[FAQ>>||anchor="H6.5Whyiseedifferentworkingtemperatureforthedevice3F"]]) 78 + 79 + 79 79 == 1.6 Applications == 80 80 82 + 81 81 * Smart Buildings & Home Automation 82 82 * Logistics and Supply Chain Management 83 83 * Smart Metering ... ... @@ -85,168 +85,1049 @@ 85 85 * Smart Cities 86 86 * Smart Factory 87 87 88 -= 2. Getting Startwith HelloWorld =90 += 2. Operation Mode = 89 89 90 -== 2.1 Aboutthisdemo ==92 +== 2.1 How it work? == 91 91 92 -In this Getting Start Example, we will show how to design a simple Display UI and upload it to LTS5. This UI has a button , when user click the button. The Web UI will jump to a new page. 93 93 94 - ==2.2InstallSoftwareRunningEnvironment==95 +Each PB01 is shipped with a worldwide unique set of LoRaWAN OTAA keys. To use PB01 in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After this, if PB01 is under this LoRaWAN network coverage, PB01 can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is** 20 minutes**. 95 95 96 -The ESP MCU can be developed using ESP-IDF, Arduino, or MicroPython. For this project, we utilize ESP-IDF for compilation and Visual Studio Code (VSCode) for editing. 97 97 98 -== =2.2.1InstallVSCodeand ESP-IDF extension===98 +== 2.2 How to Activate PB01? == 99 99 100 -Firstly, download and install VSCode for your computer's operating system from the official website: [[Download Visual Studio Code - Mac, Linux, Windows>>url:https://code.visualstudio.com/download]]. 101 101 102 - Next,you needtoinstalltheESP-IDFextensionwithin VSCode.Thedetailedoperationsteps areillustratedinimage 1.101 +(% style="color:red" %)** 1. Open enclosure from below position.** 103 103 104 -[[image: 1727229396732-319.png]]103 +[[image:image-20220621093835-1.png]] 105 105 106 - image 1 ESP-IDF extension install 107 107 108 - Linksforference:[[InstallESP32ESP-IDF onWindowsand IntegratewithVScode(esp32tutorials.com)>>url:https://esp32tutorials.com/install-esp32-esp-idf-windows-integrate-vs-code/#:~~:text=In%20this%20tutorial,%20we%20will%20show%20you%20how%20to%20install]]106 +(% style="color:red" %)** 2. Insert 2 x AAA LR03 batteries and the node is activated.** 109 109 110 - === 2.2.2 Install SquareLineStudio ===108 +[[image:image-20220621093835-2.png]] 111 111 112 -The version we are utilizing for this software is 1.4.2. You can download it from the official link: [[SquareLine Studio - Download the current version of SquareLine Studio>>url:https://squareline.io/downloads#lastRelease]]. 113 113 114 - Pleasenote that thissoftwarenecessitates theregistrationofalicensepriorto usage,and various licensescome withdistinct limitations. For instance,the free version imposesrestrictionssuchasaimitof1 component, 150 widgets,and 10 screens.However, for first-timedownloads,youare grantedunrestricted access for a periodof 30 days without theneedfor immediate registration.111 +(% style="color:red" %)** 3. Under the above conditions, users can also reactivate the node by long pressing the ACT button.** 115 115 116 - == 2.3 Simple usageof SquareLine StudioandexportUIcode ==113 +[[image:image-20220621093835-3.png]] 117 117 118 -After launching and logging in to this software, create a project as shown in the following image 2. The version of LVGL is 8.3.11. 119 119 120 -[[i mage:1727229550717-684.png]]116 +User can check [[LED Status>>||anchor="H2.8LEDIndicator"]] to know the working state of PB01. 121 121 122 - image 2 create a SquareLine project 123 123 124 - Next,weneed to make somesettings forthis project. By clickingin the specifiedorder on image3, we canseethe page as shownin image 4.119 +== 2.3 Example to join LoRaWAN network == 125 125 126 -[[image:1727229582471-566.png]] 127 127 128 - ge3project settings122 +This section shows an example for how to join the [[TheThingsNetwork>>url:https://www.thethingsnetwork.org/]] LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure. 129 129 130 -[[image:1727229618724-758.png]] 124 +(% _mstvisible="1" class="wikigeneratedid" %) 125 +Assume the LPS8v2 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the PB01 device in TTN V3 portal. 131 131 132 - 4 modify project settings127 +[[image:image-20240705094824-4.png]] 133 133 134 - Nowwe canstart to usethis software.The stepsforcreatingthisUI are shownin image5-10.129 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from PB01. 135 135 136 - [[image:1727229653254-680.png]]131 +Each PB01 is shipped with a sticker with the default DEV EUI as below: 137 137 138 - 5 createa UI(1)133 +[[image:image-20230426083617-1.png||height="294" width="633"]] 139 139 140 -[[image:1727231038705-173.png]] 141 141 142 - mage6createa UI(2)136 +Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot: 143 143 144 - [[image:1727229682537-381.png]]138 +Create application. 145 145 146 - image7createaUI(3)140 +choose to create the device manually. 147 147 148 - Werepeatthesteps of screen1 in screen2.Then we getscreen2 asshownin image8.142 +Add JoinEUI(AppEUI), DevEUI, AppKey.(% style="display:none" %) 149 149 150 -[[image:1727229715361-392.png]] 144 +[[image:image-20240507142116-1.png||height="410" width="1138"]](% style="display:none" %) (%%) 145 + 151 151 152 - 8 createa UI(4)147 +[[image:image-20240507142157-2.png||height="559" width="1147"]] 153 153 154 - Finally, weadd click event for screen changeto button1in screen1(shownin image)andbutton2in screen2.149 +[[image:image-20240507142401-3.png||height="693" width="1202"]] 155 155 156 -[[image: 1727229740592-843.png]]151 +[[image:image-20240507142651-4.png||height="760" width="1190"]] 157 157 158 - image9createa UI(5)153 +**Default mode OTAA**(% style="display:none" %) 159 159 160 -The event settings of button1 are as image 10 shown. The event adding operation of button2 is similar to button1. 161 161 162 - [[image:1727229760857-521.png]]156 +(% style="color:blue" %)**Step 2**(%%): Use ACT button to activate PB01 and it will auto join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel. 163 163 164 - createa UI(6)158 +[[image:image-20240507143104-5.png||height="434" width="1398"]] 165 165 166 -== 2.4 Integrate UI Code to ESP-IDF Project == 167 167 168 - Toachievetheintegrating, we first need to export the UI code, then makesome modifications, and finallyrelocate the UI codeto a specific position within the project.161 +== 2.4 Uplink Payload == 169 169 170 -[[image:1727229798126-306.png]] 171 171 172 - image11exportUIfile164 +Uplink payloads include two types: Valid Sensor Value and other status / control command. 173 173 174 -[[image:1727229821582-258.png]] 166 +* Valid Sensor Value: Use FPORT=2 167 +* Other control command: Use FPORT other than 2. 175 175 176 - mage12 exportedUI file169 +=== 2.4.1 Uplink FPORT~=5, Device Status === 177 177 178 -Create a empty directory entitled ‘ui’ in path “basic_prj/app_components/ui/”, and then copy all UI code exported to this directory. 179 179 180 - [[image:1727229845835-509.png]]172 +Users can get the Device Status uplink through the downlink command: 181 181 182 - image13openCMakeLists.txt174 +(% style="color:#4472c4" %)**Downlink: **(%%)**0x2601** 183 183 184 - [[image:1727229892636-154.png]]176 +Uplink the device configures with FPORT=5. 185 185 186 - image 14 modify CMakeLists.txt 178 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:370px" %) 179 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)(% style="display:none" %) (%%)**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2** 180 +|(% style="width:99px" %)Value|(% style="width:62px" %)Sensor Model|(% style="width:80px" %)Firmware Version|(% style="width:82px" %)Frequency Band|(% style="width:85px" %)Sub-band|(% style="width:46px" %)BAT 187 187 188 - Thelast stepof integrating is addingtwolines of codein main.c file.182 +[[image:image-20240507152130-12.png||height="469" width="1366"]](% style="display:none" %) 189 189 190 -[[image: 1727229926561-300.png]]184 +Example Payload (FPort=5): [[image:image-20240507152254-13.png||height="26" width="130"]] 191 191 192 - image 15 add “ui.h” 193 193 194 - [[image:1727229955611-607.png]]187 +(% style="color:#4472c4" %)**Sensor Model**(%%): For PB01, this value is 0x35. 195 195 196 - ge 16add“ui_init()”189 +(% style="color:#4472c4" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version. 197 197 198 - ==2.5 TestResult==191 +(% style="color:#4472c4" %)**Frequency Band**: 199 199 200 - By pressing the button lying bottom right, the screen can switch to another as expected.This indicates that theUI file has been successfully integrated into the project and is now effective.193 +*0x01: EU868 201 201 202 - [[image:1727229990795-405.png]]195 +*0x02: US915 203 203 204 - image 17 screen1197 +*0x03: IN865 205 205 206 - [[image:1727230012478-930.png]]199 +*0x04: AU915 207 207 208 - image 18screen2201 +*0x05: KZ865 209 209 210 - = 3. Example Project 1:LoRa Central Display =203 +*0x06: RU864 211 211 212 - [[image:image-20240916101737-1.png||height="468"width="683"]]205 +*0x07: AS923 213 213 207 +*0x08: AS923-1 214 214 209 +*0x09: AS923-2 215 215 216 - = 4. Example Project 2:LoRaWAN RS485 Alarm =211 +*0x0a: AS923-3 217 217 218 218 214 +(% style="color:#4472c4" %)**Sub-Band**(%%): value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00) 215 + 216 +(% style="color:#4472c4" %)**BAT**(%%): shows the battery voltage for PB01. 217 + 218 +(% style="color:#4472c4" %)**Ex1**(%%): 0x0C DE = 3294mV 219 + 220 + 221 +=== 2.4.2 Uplink FPORT~=2, Real time sensor value === 222 + 223 + 224 +PB01 will send this uplink after Device Status uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1A0DownlinkCommandSet"]]. 225 + 226 +Uplink uses FPORT=2 and every 20 minutes send one uplink by default. 227 + 228 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:460px" %) 229 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 230 +**Size(bytes)** 231 +)))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)2|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 232 +**1** 233 +)))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 234 +**1** 235 +)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)((( 236 +**2** 237 +)))|=(% style="width: 40px;background-color:#4F81BD;color:white" %)((( 238 +**2** 239 +))) 240 +|(% style="width:97px" %)((( 241 +Value 242 +)))|(% style="width:39px" %)Battery|(% style="width:39px" %)((( 243 +Sound_ACK 244 + 245 +&Sound_key 246 +)))|(% style="width:100px" %)((( 247 +((( 248 +Alarm 249 +))) 250 +)))|(% style="width:77px" %)((( 251 +((( 252 +Temperature 253 +))) 254 +)))|(% style="width:47px" %)((( 255 +Humidity 256 +))) 257 + 258 +Example in TTN. 259 + 260 +[[image:image-20240507150155-11.png||height="549" width="1261"]] 261 + 262 +Example Payload (FPort=2): (% style="background-color:yellow" %)**0C EA 03 01 01 11 02 A8** 263 + 264 +==== (% style="color:blue" %)**Battery:**(%%) ==== 265 + 266 +Check the battery voltage. 267 + 268 +* Ex1: 0x0CEA = 3306mV 269 +* Ex2: 0x0D08 = 3336mV 270 + 271 +==== (% style="color:blue" %)**Sound_ACK & Sound_key:**(%%) ==== 272 + 273 +Key sound and ACK sound are enabled by default. 274 + 275 +* Example1: 0x03 276 + 277 + Sound_ACK: (03>>1) & 0x01=1, OPEN. 278 + 279 +**~ ** Sound_key: 03 & 0x01=1, OPEN. 280 + 281 +* Example2: 0x01 282 + 283 + Sound_ACK: (01>>1) & 0x01=0, CLOSE. 284 + 285 +**~ ** Sound_key: 01 & 0x01=1, OPEN. 286 + 287 + 288 +==== (% style="color:blue" %)**Alarm:**(%%) ==== 289 + 290 +Key alarm. 291 + 292 +* Ex1: 0x01 & 0x01=1, TRUE. 293 +* Ex2: 0x00 & 0x01=0, FALSE. 294 + 295 +==== (% style="color:blue" %)**Temperature:**(%%) ==== 296 + 297 +* Example1: 0x0111/10=27.3℃ 298 +* Example2: (0xFF0D-65536)/10=-24.3℃ 299 + 300 +If payload is: FF0D : (FF0D & 8000 == 1) , temp = (FF0D - 65536)/100 =-24.3℃ 301 + 302 +(FF0D & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative) 303 + 304 + 305 +==== (% style="color:blue" %)**Humidity:**(%%) ==== 306 + 307 +* Humidity: 0x02A8/10=68.0% 308 + 309 +=== 2.4.3 Uplink FPORT~=3, Datalog sensor value === 310 + 311 + 312 +PB01 stores sensor value and user can retrieve these history value via downlink command. The Datalog sensor value are sent via FPORT=3. 313 + 314 +[[image:image-20240510144912-1.png||height="471" width="1178"]](% style="display:none" %) 315 + 316 + 317 +* Each data entry is 11 bytes, to save airtime and battery, PB01 will send max bytes according to the current DR and Frequency bands.(% style="display:none" %) 318 + 319 +For example, in US915 band, the max payload for different DR is: 320 + 321 +1. **DR0**: max is 11 bytes so one entry of data 322 +1. **DR1**: max is 53 bytes so devices will upload 4 entries of data (total 44 bytes) 323 +1. **DR2**: total payload includes 11 entries of data 324 +1. **DR3**: total payload includes 22 entries of data. 325 + 326 +(% style="color:red" %)**Notice: PB01 will save 178 set of history data, If device doesn't have any data in the polling time. Device will uplink 11 bytes of 0.** 327 + 328 +See more info about the [[Datalog feature>>||anchor="H2.6A0DatalogFeature"]]. 329 + 330 +(% style="display:none" %) (%%) 331 + 332 +=== 2.4.4 Decoder in TTN V3 === 333 + 334 + 335 +In LoRaWAN protocol, the uplink payload is HEX format, user need to add a payload formatter/decoder in LoRaWAN Server to get human friendly string. 336 + 337 +In TTN , add formatter as below: 338 + 339 +[[image:image-20240507162814-16.png||height="778" width="1135"]] 340 + 341 +((( 342 +Please check the decoder from this link: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 343 +))) 344 + 345 +((( 346 + 347 +))) 348 + 349 +== 2.5 Show data on Datacake == 350 + 351 + 352 +((( 353 +Datacake IoT platform provides a human friendly interface to show the sensor data in charts, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps: 354 +))) 355 + 356 +((( 357 + 358 +))) 359 + 360 +((( 361 +(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network. 362 +))) 363 + 364 +((( 365 +(% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations. 366 +))) 367 + 368 +((( 369 +~1. Add Datacake: 370 +))) 371 + 372 +((( 373 +2. Select default key as Access Key: 374 +))) 375 + 376 +((( 377 +3. In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add PB01: 378 +))) 379 + 380 +((( 381 + Please refer to the figure below. 382 +))) 383 + 384 +[[image:image-20240510150924-2.png||height="612" width="1186"]] 385 + 386 + 387 +Log in to DATACAKE, copy the API under the account. 388 + 389 +[[image:image-20240510151944-3.png||height="581" width="1191"]] 390 + 391 + 392 + 393 +[[image:image-20240510152150-4.png||height="697" width="1188"]] 394 + 395 + 396 +[[image:image-20240510152300-5.png||height="298" width="1191"]] 397 + 398 + 399 +[[image:image-20240510152355-6.png||height="782" width="1193"]] 400 + 401 +[[image:image-20240510152542-8.png||height="545" width="739"]] 402 + 403 +[[image:image-20240510152634-9.png||height="748" width="740"]] 404 + 405 + 406 +[[image:image-20240510152809-10.png||height="607" width="732"]] 407 + 408 +[[image:image-20240510153934-14.png||height="460" width="1199"]] 409 + 410 + 411 +[[image:image-20240510153435-12.png||height="428" width="1197"]] 412 + 413 + 414 +Copy and paste the [[TTN decoder>>https://github.com/dragino/dragino-end-node-decoder]] here and save. 415 + 416 +[[image:image-20240510153624-13.png||height="468" width="1195"]] 417 + 418 + 419 +Visual widgets please read the DATACAKE documentation. 420 + 421 +(% style="display:none" %) (%%) 422 + 423 +== 2.6 Datalog Feature == 424 + 425 + 426 +(% _msthash="315262" _msttexthash="32283004" _mstvisible="1" %) 427 +When user want to retrieve sensor value, he can send a poll command from the IoT platform to ask sensor to send value in the required time slot. 428 + 429 + 430 +=== 2.6.1 Unix TimeStamp === 431 + 432 + 433 +Unix TimeStamp shows the sampling time of uplink payload. format base on 434 + 435 +[[image:image-20220523001219-11.png||_mstalt="450450" _mstvisible="3" height="97" width="627"]] 436 + 437 +User can get this time from link: [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/||_mstvisible="3"]] : 438 + 439 +For example: if the Unix Timestamp we got is hex 0x60137afd, we can convert it to Decimal: 1611889405. and then convert to the time: 2021 – Jan ~-~- 29 Friday 03:03:25 (GMT) 440 + 441 + 442 +[[image:1655782409139-256.png]] 443 + 444 + 445 +=== 2.6.2 Poll sensor value === 446 + 447 + 448 +((( 449 +User can poll sensor value based on timestamps from the server. Below is the downlink command. 450 +))) 451 + 452 +((( 453 +Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval. 454 +))) 455 + 456 +((( 457 +For example, downlink command [[image:image-20220621113526-13.png]] (% _mstvisible="3" style="display:none" %) 458 +))) 459 + 460 +((( 461 +Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00's data 462 +))) 463 + 464 +((( 465 +Uplink Internal =5s,means PB01 will send one packet every 5s. range 5~~255s. 466 +))) 467 + 468 + 469 +=== 2.6.3 Datalog Uplink payload === 470 + 471 + 472 +See [[Uplink FPORT=3, Datalog sensor value>>||anchor="H2.4.3A0UplinkFPORT3D32CDatalogsensorvalue"]] 473 + 474 +(% style="display:none" %) (%%) (% style="display:none" %) 475 + 476 +== 2.7 Button == 477 + 478 + 479 +* ACT button 480 + 481 +Long press this button PB01 will reset and join network again. 482 + 483 +[[image:image-20240510161626-17.png||height="192" width="224"]] 484 + 485 +* Alarm button 486 + 487 +Press the button PB01 will immediately uplink data, and alarm is "TRUE". 488 + 489 +[[image:image-20240705095149-5.png||height="164" width="162"]](% style="display:none" %) 490 + 491 + 492 +== 2.8 LED Indicator == 493 + 494 + 495 +((( 496 +The PB01 has a triple color LED which for easy showing different stage. 497 +))) 498 + 499 +Hold the ACT green light to rest, then the green flashing node restarts, the blue flashing once upon request for network access, and the green constant light for 5 seconds after successful network access 500 + 501 +((( 502 +(% style="color:#037691" %)**In a normal working state**: 503 +))) 504 + 505 +* When the node is restarted, hold the ACT (% style="color:green" %)**GREEN**(%%) lights up , then the (% style="color:green" %)**GREEN**(%%) flashing node restarts.The (% style="color:blue" %)**BLUE**(%%) flashing once upon request for network access, and the (% style="color:green" %)**GREEN**(%%) constant light for 5 seconds after successful network access(% style="color:#0000ff" %)**.** 506 +* During OTAA Join: 507 +** **For each Join Request uplink:** the (% style="color:green" %)**GREEN LED** (%%)will blink once. 508 +** **Once Join Successful:** the (% style="color:green" %)**GREEN LED**(%%) will be solid on for 5 seconds. 509 +* After joined, for each uplink, the (% style="color:blue" %)**BLUE LED**(%%) or (% style="color:green" %)**GREEN LED** (%%)will blink once. 510 +* Press the alarm button,The (% style="color:red" %)**RED**(%%) flashes until the node receives the ACK from the platform and the (% style="color:blue" %)**BLUE**(%%) light stays 5s. 511 + 512 +((( 513 + 514 +))) 515 + 516 +== 2.9 Buzzer == 517 + 518 + 519 +The PB01 has** button sound** and** ACK sound** and users can turn on or off both sounds by using [[AT+SOUND>>||anchor="H3.3A0Setbuttonsoundandbuttonalarm"]]. 520 + 521 +* (% style="color:#4f81bd" %)**Button sound**(%%)** **is the music produced by the node after the alarm button is pressed. 522 + 523 + Users can use[[ AT+OPTION>>||anchor="H3.4A0Setbuzzermusic2807E429"]] to set different button sounds. 524 + 525 +* (% style="color:#4f81bd" %)**ACK sound **(%%)is the notification tone that the node receives ACK. 526 + 527 += 3. Configure PB01 via AT command or LoRaWAN downlink = 528 + 529 + 530 +Users can configure PB01 via AT Command or LoRaWAN Downlink. 531 + 532 +* AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]]. 533 + 534 +* LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]] 535 + 536 +There are two kinds of commands to configure PB01, they are: 537 + 538 +* (% style="color:#4f81bd" %)**General Commands:** 539 + 540 +These commands are to configure: 541 + 542 +* General system settings like: uplink interval. 543 + 544 +* LoRaWAN protocol & radio-related commands. 545 + 546 +They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]] 547 + 548 + 549 +* (% style="color:#4f81bd" %)**Commands special design for PB01** 550 + 551 +These commands are only valid for PB01, as below: 552 + 553 +(% style="display:none" %) (%%) 554 + 555 +== 3.1 Downlink Command Set == 556 + 557 + 558 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %) 559 +|=(% style="width: 130px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 151px; background-color: rgb(79, 129, 189); color: white;" %)**Function**|=(% style="width: 92px; background-color: rgb(79, 129, 189); color: white;" %)**Response**|=(% style="width: 206px; background-color: rgb(79, 129, 189); color: white;" %)**Downlink** 560 +|(% style="width:130px" %)AT+TDC=?|(% style="width:151px" %)((( 561 + 562 + 563 +View current TDC time 564 +)))|(% style="width:92px" %)((( 565 +1200000 566 +OK 567 +)))|(% style="width:206px" %)Default 1200000(ms) 568 +|(% style="width:130px" %)AT+TDC=300000|(% style="width:151px" %)Set TDC time|(% style="width:92px" %)OK|(% style="width:206px" %)((( 569 +((( 570 +0X0100012C: 571 +01: fixed command 572 +00012C: 0X00012C= 573 + 574 +300(seconds) 575 +))) 576 + 577 +((( 578 + 579 +))) 580 +))) 581 +|(% style="width:130px" %)ATZ|(% style="width:151px" %)Reset node|(% style="width:92px" %) |(% style="width:206px" %)0x04FF 582 +|(% style="width:130px" %)AT+FDR|(% style="width:151px" %)Restore factory settings|(% style="width:92px" %) |(% style="width:206px" %)0X04FE 583 +|(% style="width:130px" %)AT+CFM=?|(% style="width:151px" %)View the current confirmation mode status|(% style="width:92px" %)((( 584 +0,7,0 585 + 586 +OK 587 +)))|(% style="width:206px" %)Default 0,7,0 588 +|(% style="width:130px" %)AT+CFM=1,7,1|(% style="width:151px" %)((( 589 +Confirmed uplink mode, the maximum number of retries is seven, and uplink fcnt increase by 1 for each retry 590 +)))|(% style="width:92px" %)((( 591 +OK 592 +)))|(% style="width:206px" %)((( 593 +05010701 594 + 595 +05: fixed command 596 + 597 +01:confirmed uplink 598 + 599 +07: retry 7 times 600 + 601 +01: fcnt count plus 1 602 +))) 603 +|(% style="width:130px" %)AT+NJM=?|(% style="width:151px" %)((( 604 +Check the current network connection method 605 +)))|(% style="width:92px" %)((( 606 +1 607 +OK 608 +)))|(% style="width:206px" %)Default 1 609 +|(% style="width:130px" %)AT+NJM=0|(% style="width:151px" %)Change the network connection method to ABP|(% style="width:92px" %)((( 610 +Attention:Take effect after ATZ 611 +OK 612 +)))|(% style="width:206px" %)((( 613 +0X2000: ABP 614 +0x2001: OTAA 615 +20: fixed command 616 +))) 617 +|(% style="width:130px" %)AT+RPL=?|(% style="width:151px" %)View current RPL settings|(% style="width:92px" %)((( 618 +0 619 +OK 620 +)))|(% style="width:206px" %)Default 0 621 +|(% style="width:130px" %)AT+RPL=1|(% style="width:151px" %)set RPL=1 |(% style="width:92px" %)OK|(% style="width:206px" %)((( 622 +0x2101: 623 +21: fixed command 624 +01: for details, check wiki 625 +))) 626 +|(% style="width:130px" %)AT+ADR=?|(% style="width:151px" %)View current ADR status|(% style="width:92px" %)((( 627 +1 628 +OK 629 +)))|(% style="width:206px" %)Default 0 630 +|(% style="width:130px" %)AT+ADR=0|(% style="width:151px" %)Set the ADR state to off|(% style="width:92px" %)OK|(% style="width:206px" %)((( 631 +0x2200: close 632 +0x2201: open 633 +22: fixed command 634 +))) 635 +|(% style="width:130px" %)AT+DR=?|(% style="width:151px" %)View the current DR settings|(% style="width:92px" %)OK|(% style="width:206px" %) 636 +|(% style="width:130px" %)AT+DR=1|(% style="width:151px" %)((( 637 +set DR to 1 638 +It takes effect only when ADR=0 639 +)))|(% style="width:92px" %)OK|(% style="width:206px" %)((( 640 +0X22000101: 641 +00: ADR=0 642 +01: DR=1 643 +01: TXP=1 644 +22: fixed command 645 +))) 646 +|(% style="width:130px" %)AT+TXP=?|(% style="width:151px" %)View the current TXP|(% style="width:92px" %)OK|(% style="width:206px" %) 647 +|(% style="width:130px" %)AT+TXP=1|(% style="width:151px" %)((( 648 +set TXP to 1 649 +It takes effect only when ADR=0 650 +)))|(% style="width:92px" %)OK|(% style="width:206px" %)((( 651 +0X22000101: 652 +00: ADR=0 653 +01: DR=1 654 +01: TXP=1 655 +22: fixed command 656 +))) 657 +|(% style="width:130px" %)AT+RJTDC=10|(% style="width:151px" %)Set RJTDC time interval|(% style="width:92px" %)OK|(% style="width:206px" %)((( 658 +0X26000A: 659 +26: fixed command 660 +000A: 0X000A=10(min) 661 +for details, check wiki 662 +))) 663 +|(% style="width:130px" %) |(% style="width:151px" %)((( 664 +((( 665 +~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_ 666 + 667 +Retrieve stored data for a specified period of time 668 +))) 669 + 670 +((( 671 + 672 +))) 673 +)))|(% style="width:92px" %) |(% style="width:206px" %)((( 674 +0X3161DE7C7061DE8A800A: 675 +31: fixed command 676 +61DE7C70:0X61DE7C70=2022/1/12 15:00:00 677 +61DE8A80:0X61DE8A80=2022/1/12 16:00:00 678 +0A: 0X0A=10(second) 679 +View details 2.6.2 680 +))) 681 +|(% style="width:130px" %)AT+DDETECT=?|(% style="width:151px" %)View the current DDETECT setting status and time|(% style="width:92px" %)((( 682 +1,1440,2880 683 +OK 684 +)))|(% style="width:206px" %)Default 1,1440,2880(min) 685 +|(% style="width:130px" %)AT+DDETECT=((( 686 +1,1440,2880 687 +)))|(% style="width:151px" %)((( 688 +Set DDETECT setting status and time 689 +((% style="color:red" %)When the node does not receive the downlink packet within the set time, it will re-enter the network(%%)) 690 +)))|(% style="width:92px" %)OK|(% style="width:206px" %)((( 691 +0X320005A0: close 692 +0X320105A0: open 693 +32: fixed command 694 +05A0: 0X05A0=1440(min) 695 +))) 696 + 697 +== 3.2 Set Password == 698 + 699 + 700 +Feature: Set device password, max 9 digits. 701 + 702 +(% style="color:#4f81bd" %)**AT Command: AT+PWORD** 703 + 704 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:372px" %) 705 +|(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:128px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:89px" %)**Response** 706 +|(% style="width:155px" %)AT+PWORD=?|(% style="width:124px" %)Show password|(% style="width:86px" %)((( 707 +123456 708 +OK 709 +))) 710 +|(% style="width:155px" %)AT+PWORD=999999|(% style="width:124px" %)Set password|(% style="width:86px" %)OK 711 + 712 +(% style="color:#4f81bd" %)**Downlink Command:** 713 + 714 +No downlink command for this feature. 715 + 716 + 717 +== 3.3 Set button sound and ACK sound == 718 + 719 + 720 +Feature: Turn on/off button sound and ACK alarm. 721 + 722 +(% style="color:#4f81bd" %)**AT Command: AT+SOUND** 723 + 724 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:372px" %) 725 +|(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:128px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:89px" %)**Response** 726 +|(% style="width:155px" %)((( 727 +AT+SOUND=? 728 +)))|(% style="width:124px" %)Get the current status of button sound and ACK sound|(% style="width:86px" %)((( 729 +1,1 730 +OK 731 +))) 732 +|(% style="width:155px" %)((( 733 +AT+SOUND=0,1 734 +)))|(% style="width:124px" %)Turn off the button sound and turn on ACK sound|(% style="width:86px" %)OK 735 + 736 +(% style="color:#4f81bd" %)**Downlink Command: 0xA1 ** 737 + 738 +Format: Command Code (0xA1) followed by 2 bytes mode value. 739 + 740 +The first byte after 0XA1 sets the button sound, and the second byte after 0XA1 sets the ACK sound.** (0: off, 1: on)** 741 + 742 +* **Example: **Downlink Payload: A10001 ~/~/ Set AT+SOUND=0,1 Turn off the button sound and turn on ACK sound. 743 + 744 + 745 +== 3.4 Set buzzer music type(0~~4) == 746 + 747 + 748 +Feature: Set different alarm key response sounds.There are five different types of button music. 749 + 750 +(% style="color:#4f81bd" %)**AT Command: AT+OPTION** 751 + 752 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:372px" %) 753 +|(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:128px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:89px" %)**Response** 754 +|(% style="width:155px" %)((( 755 +AT+OPTION=? 756 +)))|(% style="width:124px" %)((( 757 +Get the buzzer music type 758 +)))|(% style="width:86px" %)((( 759 +3 760 + 761 +OK 762 +))) 763 +|(% style="width:155px" %)AT+OPTION=1|(% style="width:124px" %)Set the buzzer music to type 1|(% style="width:86px" %)OK 764 + 765 +(% style="color:#4f81bd" %)**Downlink Command: 0xA3** 766 + 767 +Format: Command Code (0xA3) followed by 1 byte mode value. 768 + 769 +* **Example: **Downlink Payload: A300 ~/~/ Set AT+OPTION=0 Set the buzzer music to type 0. 770 + 771 +== 3.5 Set Valid Push Time == 772 + 773 + 774 +Feature: Set the holding time for pressing the alarm button to avoid miscontact. Values range from** 0 ~~1000ms**. 775 + 776 +(% style="color:#4f81bd" %)**AT Command: AT+STIME** 777 + 778 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:372px" %) 779 +|(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:128px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:89px" %)**Response** 780 +|(% style="width:155px" %)((( 781 +AT+STIME=? 782 +)))|(% style="width:124px" %)((( 783 +Get the button sound time 784 +)))|(% style="width:86px" %)((( 785 +0 786 +OK 787 +))) 788 +|(% style="width:155px" %)((( 789 +AT+STIME=1000 790 +)))|(% style="width:124px" %)Set the button sound time to 1000**ms**|(% style="width:86px" %)OK 791 + 792 +(% style="color:#4f81bd" %)**Downlink Command: 0xA2** 793 + 794 +Format: Command Code (0xA2) followed by 2 bytes mode value. 795 + 796 +* **Example: **Downlink Payload: A203E8 ~/~/ Set AT+STIME=1000 797 + 798 +**~ Explain: **Hold the alarm button for 10 seconds before the node will send the alarm packet. 799 + 800 + 801 + 802 += 4. Battery & How to replace = 803 + 804 +== 4.1 Battery Type and replace == 805 + 806 + 807 +PB01 uses 2 x AAA LR03(1.5v) batteries. If the batteries running low (shows 2.1v in the platform). Users can buy generic AAA battery and replace it. 808 + 809 +(% style="color:red" %)**Note: ** 810 + 811 +1. The PB01 doesn't have any screw, users can use nail to open it by the middle. 812 + 813 +[[image:image-20220621143535-5.png]] 814 + 815 + 816 +2. Make sure the direction is correct when install the AAA batteries. 817 + 818 +[[image:image-20220621143535-6.png]] 819 + 820 + 821 +== 4.2 Power Consumption Analyze == 822 + 823 + 824 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 825 + 826 +Instruction to use as below: 827 + 828 +(% style="color:blue" %)**Step 1**(%%): Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 829 + 830 +[[battery calculator>>https://www.dropbox.com/sh/sxrgszkac4ips0q/AAA4XjBI3HAHNpdbU3ALN1j0a/Battery%20Document/Battery_Analyze?dl=0&subfolder_nav_tracking=1]] 831 + 832 + 833 +(% style="color:blue" %)**Step 2**(%%): (% style="display:none" %) (%%)Open it and choose 834 + 835 +* Product Model 836 +* Uplink Interval 837 +* Working Mode 838 + 839 +And the Life expectation in difference case will be shown on the right. 840 + 841 +[[image:image-20220621143643-7.png||height="429" width="1326"]] 842 + 843 + 844 += 5. Accessories = 845 + 846 + 847 +* ((( 848 +(% class="wikigeneratedid" id="H5.2A0ProgramConverter28AS-0229" %) 849 +**Program Converter (AS-02)** 850 +))) 851 + 852 +AS-02 is an optional accessory, it is USB Type-C converter. AS-02 provide below feature: 853 + 854 +1. Access AT console of PB01 when used with USB-TTL adapter. [[See this link>>||anchor="H6.1HowtouseATCommandtoconfigurePB01"]]. 855 + 856 +[[image:image-20220621141724-3.png]] 857 + 858 + 219 219 = 6. FAQ = 220 220 221 -== 6.1 == 861 +== 6.1 How to use AT Command to configure PB01 == 222 222 223 223 864 +PB01 supports AT Command set. Users can use a USB to TTL adapter plus the Program Cable to connect to PB01 for using AT command, as below. 865 + 866 +[[image:image-20240511085914-1.png||height="570" width="602"]] 867 + 868 + 869 +**Connection:** 870 + 871 +* (% style="background-color:yellow" %)USB to TTL GND <~-~-> Program Converter GND pin 872 +* (% style="background-color:yellow" %)USB to TTL RXD <~-~-> Program Converter D+ pin 873 +* (% style="background-color:yellow" %)USB to TTL TXD <~-~-> Program Converter A11 pin 874 + 875 +((( 876 +In PC, User needs to set **serial tool**(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for PB01. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**(%%)) to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. 877 +))) 878 + 879 +((( 880 +Input password and ATZ to activate PB01, as shown below: 881 +))) 882 + 883 +[[image:image-20240510174509-18.png||height="572" width="791"]] 884 + 885 + 886 +== 6.2 AT Command and Downlink == 887 + 888 + 889 +((( 890 +Sending ATZ will reboot the node 891 +))) 892 + 893 +((( 894 +Sending AT+FDR will restore the node to factory settings 895 +))) 896 + 897 +((( 898 +Get the node's AT command setting by sending AT+CFG 899 +))) 900 + 901 +((( 902 + 903 +))) 904 + 905 +((( 906 +**Example:** 907 +))) 908 + 909 +((( 910 +AT+DEUI=FA 23 45 55 55 55 55 51 911 + 912 +AT+APPEUI=FF AA 23 45 42 42 41 11 913 + 914 +AT+APPKEY=AC D7 35 81 63 3C B6 05 F5 69 44 99 C1 12 BA 95 915 + 916 +AT+DADDR=FFFFFFFF 917 + 918 +AT+APPSKEY=FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 919 + 920 +AT+NWKSKEY=FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 921 + 922 +AT+ADR=1 923 + 924 +AT+TXP=7 925 + 926 +AT+DR=5 927 + 928 +AT+DCS=0 929 + 930 +AT+PNM=1 931 + 932 +AT+RX2FQ=869525000 933 + 934 +AT+RX2DR=0 935 + 936 +AT+RX1DL=5000 937 + 938 +AT+RX2DL=6000 939 + 940 +AT+JN1DL=5000 941 + 942 +AT+JN2DL=6000 943 + 944 +AT+NJM=1 945 + 946 +AT+NWKID=00 00 00 13 947 + 948 +AT+FCU=61 949 + 950 +AT+FCD=11 951 + 952 +AT+CLASS=A 953 + 954 +AT+NJS=1 955 + 956 +AT+RECVB=0: 957 + 958 +AT+RECV= 959 + 960 +AT+VER=EU868 v1.0.0 961 + 962 +AT+CFM=0,7,0 963 + 964 +AT+SNR=0 965 + 966 +AT+RSSI=0 967 + 968 +AT+TDC=1200000 969 + 970 +AT+PORT=2 971 + 972 +AT+PWORD=123456 973 + 974 +AT+CHS=0 975 + 976 +AT+RX1WTO=24 977 + 978 +AT+RX2WTO=6 979 + 980 +AT+DECRYPT=0 981 + 982 +AT+RJTDC=20 983 + 984 +AT+RPL=0 985 + 986 +AT+TIMESTAMP=systime= 2024/5/11 01:10:58 (1715389858) 987 + 988 +AT+LEAPSEC=18 989 + 990 +AT+SYNCMOD=1 991 + 992 +AT+SYNCTDC=10 993 + 994 +AT+SLEEP=0 995 + 996 +AT+ATDC=1 997 + 998 +AT+UUID=003C0C53013259E0 999 + 1000 +AT+DDETECT=1,1440,2880 1001 + 1002 +AT+SETMAXNBTRANS=1,0 1003 + 1004 +AT+DISFCNTCHECK=0 1005 + 1006 +AT+DISMACANS=0 1007 + 1008 +AT+PNACKMD=0 1009 + 1010 +AT+SOUND=0,0 1011 + 1012 +AT+STIME=0 1013 + 1014 +AT+OPTION=3 1015 +))) 1016 + 1017 +((( 1018 +**Example:** 1019 +))) 1020 + 1021 +[[image:image-20240511091518-2.png||height="601" width="836"]] 1022 + 1023 + 1024 +== 6.3 How to upgrade the firmware? == 1025 + 1026 + 1027 +PB01 requires a program converter to upload images to PB01, which is used to upload image to PB01 for: 1028 + 1029 +* Support new features 1030 +* For bug fix 1031 +* Change LoRaWAN bands. 1032 + 1033 + PB01 internal program is divided into bootloader and work program, shipping is included bootloader, the user can choose to directly update the work program. 1034 + 1035 +If the bootloader is erased for some reason, users will need to download the boot program and the work program. 1036 + 1037 + 1038 +=== 6.3.1 Update firmware (Assume device have bootloader) === 1039 + 1040 + 1041 +(% style="color:blue" %)**Step 1**(%%):** Connect UART as per FAQ 6.1** 1042 + 1043 +(% style="color:blue" %)**Step 2**(%%):** Update follow [[Instruction for update via DraginoSensorManagerUtility.exe>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H3.2.1UpdateafirmwareviaDraginoSensorManagerUtility.exe]]. ** 1044 + 1045 + 1046 +=== 6.3.2 Update firmware (Assume device doesn't have bootloader) === 1047 + 1048 + 1049 +Download both the boot program and the worker program** . **After update , device will have bootloader so can use above 6.3.1 method to update woke program. 1050 + 1051 +(% style="color:blue" %)**Step 1**(%%):** **Install [[TremoProgrammer>>url:https://www.dropbox.com/scl/fo/gk1rb5pnnjw4kv5m5cs0z/h?rlkey=906ouvgbvif721f9bj795vfrh&dl=0]] first. 1052 + 1053 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220615170542-5.png?rev=1.1||alt="image-20220615170542-5.png"]] 1054 + 1055 +(% style="color:blue" %)**Step 2**(%%): Hardware Connection 1056 + 1057 +Connect PC and PB01 via USB-TTL adapter . 1058 + 1059 +(% style="color:red" %)**Note: To download firmware in this way, you need to pull the boot pin(Program Converter D- pin) high to enter the burn mode. After burning, disconnect the boot pin of the node and the 3V3 pin of the USB-TTL adapter, and reset the node to exit the burning mode.** 1060 + 1061 +**Connection:** 1062 + 1063 +* (% style="background-color:yellow" %)USB-TTL GND <~-~-> Program Converter GND pin 1064 +* (% style="background-color:yellow" %)USB-TTL RXD <~-~-> Program Converter D+ pin 1065 +* (% style="background-color:yellow" %)USB-TTL TXD <~-~-> Program Converter A11 pin 1066 +* (% style="background-color:yellow" %)USB-TTL 3V3 <~-~-> Program Converter D- pin 1067 + 1068 +(% style="color:blue" %)**Step 3**(%%):** **Select the device port to be connected, baud rate and bin file to be downloaded. 1069 + 1070 +[[image:image-20240701160913-1.png]] 1071 + 1072 +Users need to reset the node to start downloading the program. 1073 +~1. Reinstall the battery to reset the node 1074 +2. Hold down the ACT button to reset the node (see [[2.7>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/PB01--LoRaWAN_Button_User_Manual/#H2.7Button]] ). 1075 + 1076 +When this interface appears, it indicates that the download has been completed. 1077 + 1078 +[[image:image-20240701160924-2.png]] 1079 + 1080 +Finally, Disconnect Program Converter D- pin, reset the node again , and the node exits burning mode. 1081 + 1082 + 1083 +== 6.4 How to change the LoRa Frequency Bands/Region? == 1084 + 1085 + 1086 +User can follow the introduction for [[how to upgrade image>>||anchor="H6.3A0Howtoupgradethefirmware3F"]]. When download the images, choose the required image file for download. 1087 + 1088 + 1089 +== 6.5 Why i see different working temperature for the device? == 1090 + 1091 + 1092 +The working temperature range of device depends on the battery user choose. 1093 + 1094 +* Normal AAA Battery can support -10 ~~ 50°C working range. 1095 +* Special AAA battery can support -40 ~~ 60 °C working range. For example: [[Energizer L92>>https://data.energizer.com/pdfs/l92.pdf]] 1096 + 224 224 = 7. Order Info = 225 225 226 -== 7.1 PartNumber==1099 +== 7.1 Main Device == 227 227 228 -Part Number: (% style="color:#4472c4" %)LTS5 229 229 1102 +Part Number: (% style="color:#4472c4" %)PB01-LW-XX(%%) (white button) / (% style="color:#4472c4" %)PB01-LR-XX(%%)(Red Button) 230 230 231 - ==7.2PackingInfo==1104 +(% style="color:#4472c4" %)**XX **(%%): The default frequency band 232 232 1106 +* (% style="color:red" %)**AS923**(%%)**: **LoRaWAN AS923 band 1107 +* (% style="color:red" %)**AU915**(%%)**: **LoRaWAN AU915 band 1108 +* (% style="color:red" %)**EU433**(%%)**: **LoRaWAN EU433 band 1109 +* (% style="color:red" %)**EU868**(%%)**:** LoRaWAN EU868 band 1110 +* (% style="color:red" %)**KR920**(%%)**: **LoRaWAN KR920 band 1111 +* (% style="color:red" %)**US915**(%%)**: **LoRaWAN US915 band 1112 +* (% style="color:red" %)**IN865**(%%)**: **LoRaWAN IN865 band 1113 +* (% style="color:red" %)**CN470**(%%)**: **LoRaWAN CN470 band 1114 + 1115 += 7. Packing Info = 1116 + 1117 + 233 233 **Package Includes**: 234 234 235 -* LTS5 HMI Touch Screen 236 -* 5V,2A DC Power Adapter. 237 -* USB Type C Program Cable 1120 +* PB01 LoRaWAN Push Button x 1 238 238 239 239 = 8. Support = 240 240 1124 + 241 241 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 242 242 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]. 243 243 244 244 = 9. Reference material = 245 245 246 -* Datasheet 247 -* Source Code 248 -* Mechinical 249 249 1131 +* [[Datasheet, photos, decoder, firmware>>https://www.dropbox.com/scl/fo/y7pvm58wcr8319d5o4ujr/APZtqlbzRCNbHoPWTmmMMWs?rlkey=wfh93x2dhcev3ydn0846rinf0&st=kdp6lg7t&dl=0]] 1132 + 250 250 = 10. FCC Warning = 251 251 252 252
- 1727229396732-319.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.xieby - Size
-
... ... @@ -1,1 +1,0 @@ 1 -197.2 KB - Content
- 1727229550717-684.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.xieby - Size
-
... ... @@ -1,1 +1,0 @@ 1 -113.9 KB - Content
- 1727229582471-566.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.xieby - Size
-
... ... @@ -1,1 +1,0 @@ 1 -73.6 KB - Content
- 1727229618724-758.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.xieby - Size
-
... ... @@ -1,1 +1,0 @@ 1 -118.7 KB - Content
- 1727229653254-680.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.xieby - Size
-
... ... @@ -1,1 +1,0 @@ 1 -116.2 KB - Content
- 1727229682537-381.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.xieby - Size
-
... ... @@ -1,1 +1,0 @@ 1 -51.5 KB - Content
- 1727229715361-392.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.xieby - Size
-
... ... @@ -1,1 +1,0 @@ 1 -75.2 KB - Content
- 1727229740592-843.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.xieby - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.3 KB - Content
- 1727229760857-521.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.xieby - Size
-
... ... @@ -1,1 +1,0 @@ 1 -24.7 KB - Content
- 1727229798126-306.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.xieby - Size
-
... ... @@ -1,1 +1,0 @@ 1 -53.6 KB - Content
- 1727229821582-258.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.xieby - Size
-
... ... @@ -1,1 +1,0 @@ 1 -76.1 KB - Content
- 1727229845835-509.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.xieby - Size
-
... ... @@ -1,1 +1,0 @@ 1 -68.3 KB - Content
- 1727229892636-154.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.xieby - Size
-
... ... @@ -1,1 +1,0 @@ 1 -192.0 KB - Content
- 1727229926561-300.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.xieby - Size
-
... ... @@ -1,1 +1,0 @@ 1 -178.0 KB - Content
- 1727229955611-607.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.xieby - Size
-
... ... @@ -1,1 +1,0 @@ 1 -100.4 KB - Content
- 1727229990795-405.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.xieby - Size
-
... ... @@ -1,1 +1,0 @@ 1 -383.6 KB - Content
- 1727230012478-930.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.xieby - Size
-
... ... @@ -1,1 +1,0 @@ 1 -477.1 KB - Content
- 1727231038705-173.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.xieby - Size
-
... ... @@ -1,1 +1,0 @@ 1 -94.6 KB - Content
- image-20240915231842-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -157.4 KB - Content
- image-20240916101737-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -156.7 KB - Content