<
From version < 26.2 >
edited by BoYang Xie
on 2024/09/25 10:49
To version < 2.1 >
edited by Edwin Chen
on 2024/09/15 23:17
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LTS5 LoRa HMI Touch Screen
1 +LTS5 LoRa Touch Screen
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.xieby
1 +XWiki.Edwin
Content
... ... @@ -1,7 +1,10 @@
1 -
2 -[[image:image-20240915231842-1.png]]
1 +(% style="text-align:center" %)
2 +[[image:image-20240705094013-3.png]]
3 3  
4 4  
5 +
6 +
7 +
5 5  (% _mstvisible="1" %)
6 6  (% _msthash="315238" _msttexthash="18964465" _mstvisible="3" %)**Table of Contents:**
7 7  
... ... @@ -16,68 +16,67 @@
16 16  
17 17  = 1.  Introduction =
18 18  
19 -== 1.1  What is LTS5 LoRa HMI touch screen ==
22 +== 1.1  What is PB01 LoRaWAN Push Button ==
20 20  
21 -LTS5 is a (% style="color:blue" %)LoRa / LoRaWAN HMI Touch Screen(%%) designed for display purpose of IoT project. It have a 5.0" HMI touch screen, and support WiFi, Bluetooch, LoRa wireless protocol.
22 22  
23 -LTS5 is an Open Source software project. The MCU is ESP32 and Dragino LA66 LoRa module. There are lots of development source for ESP32 which can greatly reduce the development time.
25 +PB01 LoRaWAN Button is a LoRaWAN wireless device with one (% style="color:blue" %)**push button**(%%). Once user push the button, PB01 will transfer the signal to IoT server via Long Range LoRaWAN wireless protocol. PB01 also senses the (% style="color:blue" %)**environment temperature & humidity**(%%) and will also uplink these data to IoT Server.
24 24  
25 -The HMI touch screen of LTS5 supports drap & drop design. Developer can use SquareLine to easily customize the display UI for different application.
27 +PB01 supports (% style="color:blue" %)** 2 x AAA batteries**(%%) and works for a long time up to several years*. User can replace the batteries easily after they are finished.
26 26  
27 -LTS5 use LA66 LoRa module, this module can be program to support private LoRa protocol or LoRaWAN protocol.
29 +PB01 has a built-in speaker, it can pronouns different sound when press button and get reply from server. The speaker can by disable if user want it.
28 28  
31 +PB01 is fully compatible with LoRaWAN v1.0.3 protocol, it can work with standard LoRaWAN gateway.
29 29  
33 +*Battery life depends how often to send data, please see [[battery analyzer>>||anchor="H4.2A0PowerConsumptionAnalyze"]].
34 +
35 +
30 30  == 1.2  Features ==
31 31  
32 -* ESP32-WROOM MCU + Dragino LA66 LoRa Module
33 -* Support Private LoRa protocol or LoRaWAN protocol
34 -* Support WiFi & BLE wireless protocol
35 -* 5.0" HMI touch screen
36 -* Support LVGL case. SquareLine program.
37 -* Support RS485 Interface
38 -* Open Source Project
38 +
39 39  * Wall Attachable.
40 -* 5V DC power
40 +* LoRaWAN v1.0.3 Class A protocol.
41 +* 1 x push button. Different Color available.
42 +* Built-in Temperature & Humidity sensor
43 +* Built-in speaker
44 +* Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
45 +* AT Commands to change parameters
46 +* Remote configure parameters via LoRaWAN Downlink
47 +* Firmware upgradable via program port
48 +* Support 2 x AAA LR03 batteries.
41 41  * IP Rating: IP52
42 42  
43 43  == 1.3  Specification ==
44 44  
45 -**LoRa**:
46 46  
54 +**Built-in Temperature Sensor:**
47 47  
48 -**WiFi:**
56 +* Resolution: 0.01 °C
57 +* Accuracy Tolerance: Typ ±0.2 °C
58 +* Long Term Drift: < 0.03 °C/yr
59 +* Operating Range: -10 ~~ 50 °C  or -40 ~~ 60 °C (depends on battery type, see [[FAQ>>||anchor="H6.5Whyiseedifferentworkingtemperatureforthedevice3F"]])
49 49  
50 -* 802.11b/g/n
51 -* Up to 150 Mbps data rate in 802.11n mode
52 -* Support A-MPDU and A-MSDU aggregation
53 -* zero point four μ S protection interval
54 -* Working channel center frequency range: 2412~~2484 MHz
61 +**Built-in Humidity Sensor:**
55 55  
56 -**Bluetooth:**
63 +* Resolution: 0.01 %RH
64 +* Accuracy Tolerance: Typ ±1.8 %RH
65 +* Long Term Drift: < 0.2% RH/yr
66 +* Operating Range: 0 ~~ 99.0 %RH(no Dew)
57 57  
58 -* Bluetooth V4.2 BR/EDR and Bluetooth LE standard
59 -* Class-1, Class-2, and Class-3 transmitters.
60 -* AFH
61 -* CVSD and SBC
68 +== 1.4  Power Consumption ==
62 62  
63 -**Display:**
64 64  
65 -* 5.0 Inch , 800 x 480
66 -* IPS Capacitive Touch SCreen
67 -* RGB color.
68 -* Display Area: 120.7*75.80 mm
71 +PB01 : Idle: 5uA, Transmit: max 110mA
69 69  
70 -== 1.4  Power Consumption ==
71 71  
72 -* External 5V DC power adapter
73 -
74 74  == 1.5  Storage & Operation Temperature ==
75 75  
76 -* Operation Temperature: -20 ~~ 70°C  (No Dew)
77 -* Storage Temperature: -30 ~~ 70°C  (No Dew)
78 78  
77 +-10 ~~ 50 °C  or -40 ~~ 60 °C (depends on battery type, see [[FAQ>>||anchor="H6.5Whyiseedifferentworkingtemperatureforthedevice3F"]])
78 +
79 +
79 79  == 1.6  Applications ==
80 80  
82 +
81 81  * Smart Buildings & Home Automation
82 82  * Logistics and Supply Chain Management
83 83  * Smart Metering
... ... @@ -85,168 +85,1049 @@
85 85  * Smart Cities
86 86  * Smart Factory
87 87  
88 -= 2.  Getting Start with Hello World =
90 += 2.  Operation Mode =
89 89  
90 -== 2.1  About this demo ==
92 +== 2.1  How it work? ==
91 91  
92 -In this Getting Start Example, we will show how to design a simple Display UI and upload it to LTS5. This UI has  a button , when user click the button. The Web UI will jump to a new page.
93 93  
94 -== 2.2  Install Software Running Environment ==
95 +Each PB01 is shipped with a worldwide unique set of LoRaWAN OTAA keys. To use PB01 in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After this, if PB01 is under this LoRaWAN network coverage, PB01 can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is** 20 minutes**.
95 95  
96 -The ESP MCU can be developed using ESP-IDF, Arduino, or MicroPython. For this project, we utilize ESP-IDF for compilation and Visual Studio Code (VSCode) for editing.
97 97  
98 -=== 2.2.1 Install VSCode and ESP-IDF extension ===
98 +== 2.2  How to Activate PB01? ==
99 99  
100 -Firstly, download and install VSCode for your computer's operating system from the official website: [[Download Visual Studio Code - Mac, Linux, Windows>>url:https://code.visualstudio.com/download]].
101 101  
102 -Next, you need to install the ESP-IDF extension within VSCode. The detailed operation steps are illustrated in image 1.
101 +(% style="color:red" %)** 1.  Open enclosure from below position.**
103 103  
104 -[[image:1727229396732-319.png]]
103 +[[image:image-20220621093835-1.png]]
105 105  
106 - image 1 ESP-IDF extension install
107 107  
108 -Links for reference: [[Install ESP32 ESP-IDF on Windows and Integrate with VS code (esp32tutorials.com)>>url:https://esp32tutorials.com/install-esp32-esp-idf-windows-integrate-vs-code/#:~~:text=In%20this%20tutorial,%20we%20will%20show%20you%20how%20to%20install]]
106 +(% style="color:red" %)** 2 Insert 2 x AAA LR03 batteries and the node is activated.**
109 109  
110 -=== 2.2.2 Install SquareLine Studio ===
108 +[[image:image-20220621093835-2.png]]
111 111  
112 -The version we are utilizing for this software is 1.4.2. You can download it from the official link: [[SquareLine Studio - Download the current version of SquareLine Studio>>url:https://squareline.io/downloads#lastRelease]].
113 113  
114 -Please note that this software necessitates the registration of a license prior to usage, and various licenses come with distinct limitations. For instance, the free version imposes restrictions such as a limit of 1 component, 150 widgets, and 10 screens. However, for first-time downloads, you are granted unrestricted access for a period of 30 days without the need for immediate registration.
111 +(% style="color:red" %)** 3. Under the above conditions, users can also reactivate the node by long pressing the ACT button.**
115 115  
116 -== 2.3 Simple usage of SquareLine Studio and export UI code ==
113 +[[image:image-20220621093835-3.png]]
117 117  
118 -After launching and logging in to this software, create a project as shown in the following image 2. The version of LVGL is 8.3.11.
119 119  
120 -[[image:1727229550717-684.png]]
116 +User can check [[LED Status>>||anchor="H2.8LEDIndicator"]] to know the working state of PB01.
121 121  
122 - image 2 create a SquareLine project
123 123  
124 -Next, we need to make some settings for this project. By clicking in the specified order on image 3, we can see the page as shown in image 4.
119 +== 2.3  Example to join LoRaWAN network ==
125 125  
126 -[[image:1727229582471-566.png]]
127 127  
128 - image 3 project settings
122 +This section shows an example for how to join the [[TheThingsNetwork>>url:https://www.thethingsnetwork.org/]] LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
129 129  
130 -[[image:1727229618724-758.png]]
124 +(% _mstvisible="1" class="wikigeneratedid" %)
125 +Assume the LPS8v2 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the PB01 device in TTN V3 portal. 
131 131  
132 - image 4 modify project settings
127 +[[image:image-20240705094824-4.png]]
133 133  
134 -Now we can start to use this software. The steps for creating this UI are shown in image 5-10.
129 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN V3 with the OTAA keys from PB01.
135 135  
136 -[[image:1727229653254-680.png]]
131 +Each PB01 is shipped with a sticker with the default DEV EUI as below:
137 137  
138 - image 5 create a UI(1)
133 +[[image:image-20230426083617-1.png||height="294" width="633"]]
139 139  
140 -[[image:1727231038705-173.png]]
141 141  
142 - image 6 create a UI(2)
136 +Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
143 143  
144 -[[image:1727229682537-381.png]]
138 +Create application.
145 145  
146 - image 7 create a UI(3)
140 +choose to create the device manually.
147 147  
148 -We repeat the steps of screen1 in screen2. Then we get screen2 as shown in image 8.
142 +Add JoinEUI(AppEUI), DevEUI, AppKey.(% style="display:none" %)
149 149  
150 -[[image:1727229715361-392.png]]
144 +[[image:image-20240507142116-1.png||height="410" width="1138"]](% style="display:none" %) (%%)
145 +
151 151  
152 - image 8 create a UI(4)
147 +[[image:image-20240507142157-2.png||height="559" width="1147"]]
153 153  
154 -Finally, we add click event for screen change to button1 in screen1(shown in image 9) and button2 in screen2.
149 +[[image:image-20240507142401-3.png||height="693" width="1202"]]
155 155  
156 -[[image:1727229740592-843.png]]
151 +[[image:image-20240507142651-4.png||height="760" width="1190"]]
157 157  
158 - image 9 create a UI(5)
153 +**Default mode OTAA**(% style="display:none" %)
159 159  
160 -The event settings of button1 are as image 10 shown. The event adding operation of button2 is similar to button1.
161 161  
162 -[[image:1727229760857-521.png]]
156 +(% style="color:blue" %)**Step 2**(%%):  Use ACT button to activate PB01 and it will auto join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
163 163  
164 - image 10 create a UI(6)
158 +[[image:image-20240507143104-5.png||height="434" width="1398"]]
165 165  
166 -== 2.4 Integrate UI Code to ESP-IDF Project ==
167 167  
168 -To achieve the integrating, we first need to export the UI code, then make some modifications, and finally relocate the UI code to a specific position within the project.
161 +== 2.4  Uplink Payload ==
169 169  
170 -[[image:1727229798126-306.png]]
171 171  
172 - image 11 export UI file
164 +Uplink payloads include two types: Valid Sensor Value and other status / control command.
173 173  
174 -[[image:1727229821582-258.png]]
166 +* Valid Sensor Value: Use FPORT=2
167 +* Other control command: Use FPORT other than 2.
175 175  
176 - image 12 exported UI file
169 +=== 2.4.1  Uplink FPORT~=5, Device Status ===
177 177  
178 -Create a empty directory entitled ‘ui’ in path “basic_prj/app_components/ui/”, and then copy all UI code exported to this directory.
179 179  
180 -[[image:1727229845835-509.png]]
172 +Users caget the Device Status uplink through the downlink command:
181 181  
182 - image 13 open CMakeLists.txt
174 +(% style="color:#4472c4" %)**Downlink:  **(%%)**0x2601**
183 183  
184 -[[image:1727229892636-154.png]]
176 +Uplink the device configures with FPORT=5.
185 185  
186 - image 14 modify CMakeLists.txt
178 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:370px" %)
179 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)(% style="display:none" %) (%%)**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**
180 +|(% style="width:99px" %)Value|(% style="width:62px" %)Sensor Model|(% style="width:80px" %)Firmware Version|(% style="width:82px" %)Frequency Band|(% style="width:85px" %)Sub-band|(% style="width:46px" %)BAT
187 187  
188 -The last step of integrating is adding two lines of code in main.c file.
182 +[[image:image-20240507152130-12.png||height="469" width="1366"]](% style="display:none" %)
189 189  
190 -[[image:1727229926561-300.png]]
184 +Example Payload (FPort=5):  [[image:image-20240507152254-13.png||height="26" width="130"]]
191 191  
192 - image 15 add “ui.h”
193 193  
194 -[[image:1727229955611-607.png]]
187 +(% style="color:#4472c4" %)**Sensor Model**(%%): For PB01, this value is 0x35.
195 195  
196 - image 16 add “ui_init()”
189 +(% style="color:#4472c4" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version.
197 197  
198 -== 2.5 Test Result ==
191 +(% style="color:#4472c4" %)**Frequency Band**:
199 199  
200 -By pressing the button lying bottom right, the screen can switch to another as expected. This indicates that the UI file has been successfully integrated into the project and is now effective.
193 +*0x01: EU868
201 201  
202 -[[image:1727229990795-405.png]]
195 +*0x02: US915
203 203  
204 - image 17 screen1
197 +*0x03: IN865
205 205  
206 -[[image:1727230012478-930.png]]
199 +*0x04: AU915
207 207  
208 - image 18 screen2
201 +*0x05: KZ865
209 209  
210 -= 3. Example Project 1: LoRa Central Display =
203 +*0x06: RU864
211 211  
212 -[[image:image-20240916101737-1.png||height="468" width="683"]]
205 +*0x07: AS923
213 213  
207 +*0x08: AS923-1
214 214  
209 +*0x09: AS923-2
215 215  
216 -= 4. Example Project 2: LoRaWAN RS485 Alarm =
211 +*0x0a: AS923-3
217 217  
218 218  
214 +(% style="color:#4472c4" %)**Sub-Band**(%%): value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
215 +
216 +(% style="color:#4472c4" %)**BAT**(%%): shows the battery voltage for PB01.
217 +
218 +(% style="color:#4472c4" %)**Ex1**(%%): 0x0C DE = 3294mV
219 +
220 +
221 +=== 2.4.2  Uplink FPORT~=2, Real time sensor value ===
222 +
223 +
224 +PB01 will send this uplink after Device Status uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1A0DownlinkCommandSet"]].
225 +
226 +Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
227 +
228 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:460px" %)
229 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
230 +**Size(bytes)**
231 +)))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)2|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
232 +**1**
233 +)))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
234 +**1**
235 +)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)(((
236 +**2**
237 +)))|=(% style="width: 40px;background-color:#4F81BD;color:white" %)(((
238 +**2**
239 +)))
240 +|(% style="width:97px" %)(((
241 +Value
242 +)))|(% style="width:39px" %)Battery|(% style="width:39px" %)(((
243 +Sound_ACK
244 +
245 +&Sound_key
246 +)))|(% style="width:100px" %)(((
247 +(((
248 +Alarm
249 +)))
250 +)))|(% style="width:77px" %)(((
251 +(((
252 +Temperature
253 +)))
254 +)))|(% style="width:47px" %)(((
255 +Humidity
256 +)))
257 +
258 +Example in TTN.
259 +
260 +[[image:image-20240507150155-11.png||height="549" width="1261"]]
261 +
262 +Example Payload (FPort=2):  (% style="background-color:yellow" %)**0C EA 03 01 01 11 02 A8**
263 +
264 +==== (% style="color:blue" %)**Battery:**(%%) ====
265 +
266 +Check the battery voltage.
267 +
268 +* Ex1: 0x0CEA = 3306mV
269 +* Ex2: 0x0D08 = 3336mV
270 +
271 +==== (% style="color:blue" %)**Sound_ACK & Sound_key:**(%%) ====
272 +
273 +Key sound and ACK sound are enabled by default.
274 +
275 +* Example1: 0x03
276 +
277 + Sound_ACK: (03>>1) & 0x01=1, OPEN.
278 +
279 +**~ ** Sound_key:  03 & 0x01=1, OPEN.
280 +
281 +* Example2: 0x01
282 +
283 + Sound_ACK: (01>>1) & 0x01=0, CLOSE.
284 +
285 +**~ ** Sound_key:  01 & 0x01=1, OPEN.
286 +
287 +
288 +==== (% style="color:blue" %)**Alarm:**(%%) ====
289 +
290 +Key alarm.
291 +
292 +* Ex1: 0x01 & 0x01=1, TRUE.
293 +* Ex2: 0x00 & 0x01=0, FALSE.
294 +
295 +==== (% style="color:blue" %)**Temperature:**(%%) ====
296 +
297 +* Example1:  0x0111/10=27.3℃
298 +* Example2:  (0xFF0D-65536)/10=-24.3℃
299 +
300 +If payload is: FF0D :  (FF0D & 8000 == 1) , temp = (FF0D - 65536)/100 =-24.3℃
301 +
302 +(FF0D & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
303 +
304 +
305 +==== (% style="color:blue" %)**Humidity:**(%%) ====
306 +
307 +* Humidity:    0x02A8/10=68.0%
308 +
309 +=== 2.4.3  Uplink FPORT~=3, Datalog sensor value ===
310 +
311 +
312 +PB01 stores sensor value and user can retrieve these history value via downlink command. The Datalog sensor value are sent via FPORT=3.
313 +
314 +[[image:image-20240510144912-1.png||height="471" width="1178"]](% style="display:none" %)
315 +
316 +
317 +* Each data entry is 11 bytes, to save airtime and battery, PB01 will send max bytes according to the current DR and Frequency bands.(% style="display:none" %)
318 +
319 +For example, in US915 band, the max payload for different DR is:
320 +
321 +1. **DR0**: max is 11 bytes so one entry of data
322 +1. **DR1**: max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
323 +1. **DR2**: total payload includes 11 entries of data
324 +1. **DR3**: total payload includes 22 entries of data.
325 +
326 +(% style="color:red" %)**Notice: PB01 will save 178 set of history data, If device doesn't have any data in the polling time. Device will uplink 11 bytes of 0.**
327 +
328 +See more info about the [[Datalog feature>>||anchor="H2.6A0DatalogFeature"]].
329 +
330 +(% style="display:none" %) (%%)
331 +
332 +=== 2.4.4  Decoder in TTN V3 ===
333 +
334 +
335 +In LoRaWAN protocol, the uplink payload is HEX format, user need to add a payload formatter/decoder in LoRaWAN Server to get human friendly string.
336 +
337 +In TTN , add formatter as below:
338 +
339 +[[image:image-20240507162814-16.png||height="778" width="1135"]]
340 +
341 +(((
342 +Please check the decoder from this link:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
343 +)))
344 +
345 +(((
346 +
347 +)))
348 +
349 +== 2.5 Show data on Datacake ==
350 +
351 +
352 +(((
353 +Datacake IoT platform provides a human friendly interface to show the sensor data in charts, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
354 +)))
355 +
356 +(((
357 +
358 +)))
359 +
360 +(((
361 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the LoRaWAN network.
362 +)))
363 +
364 +(((
365 +(% style="color:blue" %)**Step 2**(%%):  Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
366 +)))
367 +
368 +(((
369 +~1. Add Datacake:
370 +)))
371 +
372 +(((
373 +2. Select default key as Access Key:
374 +)))
375 +
376 +(((
377 +3. In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add PB01:
378 +)))
379 +
380 +(((
381 + Please refer to the figure below.
382 +)))
383 +
384 +[[image:image-20240510150924-2.png||height="612" width="1186"]]
385 +
386 +
387 +Log in to DATACAKE, copy the API under the account.
388 +
389 +[[image:image-20240510151944-3.png||height="581" width="1191"]]
390 +
391 +
392 +
393 +[[image:image-20240510152150-4.png||height="697" width="1188"]]
394 +
395 +
396 +[[image:image-20240510152300-5.png||height="298" width="1191"]]
397 +
398 +
399 +[[image:image-20240510152355-6.png||height="782" width="1193"]]
400 +
401 +[[image:image-20240510152542-8.png||height="545" width="739"]]
402 +
403 +[[image:image-20240510152634-9.png||height="748" width="740"]]
404 +
405 +
406 +[[image:image-20240510152809-10.png||height="607" width="732"]]
407 +
408 +[[image:image-20240510153934-14.png||height="460" width="1199"]]
409 +
410 +
411 +[[image:image-20240510153435-12.png||height="428" width="1197"]]
412 +
413 +
414 +Copy and paste the [[TTN decoder>>https://github.com/dragino/dragino-end-node-decoder]] here and save.
415 +
416 +[[image:image-20240510153624-13.png||height="468" width="1195"]]
417 +
418 +
419 +Visual widgets please read the DATACAKE documentation.
420 +
421 +(% style="display:none" %) (%%)
422 +
423 +== 2.6  Datalog Feature ==
424 +
425 +
426 +(% _msthash="315262" _msttexthash="32283004" _mstvisible="1" %)
427 +When user want to retrieve sensor value, he can send a poll command from the IoT platform to ask sensor to send value in the required time slot.
428 +
429 +
430 +=== 2.6.1  Unix TimeStamp ===
431 +
432 +
433 +Unix TimeStamp shows the sampling time of uplink payload. format base on
434 +
435 +[[image:image-20220523001219-11.png||_mstalt="450450" _mstvisible="3" height="97" width="627"]]
436 +
437 +User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/||_mstvisible="3"]] :
438 +
439 +For example: if the Unix Timestamp we got is hex 0x60137afd, we can convert it to Decimal: 1611889405. and then convert to the time: 2021 – Jan ~-~- 29 Friday 03:03:25 (GMT)
440 +
441 +
442 +[[image:1655782409139-256.png]]
443 +
444 +
445 +=== 2.6.2  Poll sensor value ===
446 +
447 +
448 +(((
449 +User can poll sensor value based on timestamps from the server. Below is the downlink command.
450 +)))
451 +
452 +(((
453 +Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval.
454 +)))
455 +
456 +(((
457 +For example, downlink command [[image:image-20220621113526-13.png]] (% _mstvisible="3" style="display:none" %)
458 +)))
459 +
460 +(((
461 +Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00's data
462 +)))
463 +
464 +(((
465 +Uplink Internal =5s,means PB01 will send one packet every 5s. range 5~~255s.
466 +)))
467 +
468 +
469 +=== 2.6.3  Datalog Uplink payload ===
470 +
471 +
472 +See [[Uplink FPORT=3, Datalog sensor value>>||anchor="H2.4.3A0UplinkFPORT3D32CDatalogsensorvalue"]]
473 +
474 +(% style="display:none" %) (%%) (% style="display:none" %)
475 +
476 +== 2.7 Button ==
477 +
478 +
479 +* ACT button
480 +
481 +Long press this button PB01 will reset and join network again.
482 +
483 +[[image:image-20240510161626-17.png||height="192" width="224"]]
484 +
485 +* Alarm button
486 +
487 +Press the button PB01 will immediately uplink data, and alarm is "TRUE".
488 +
489 +[[image:image-20240705095149-5.png||height="164" width="162"]](% style="display:none" %)
490 +
491 +
492 +== 2.8 LED Indicator ==
493 +
494 +
495 +(((
496 +The PB01 has a triple color LED which for easy showing different stage.
497 +)))
498 +
499 +Hold the ACT green light to rest, then the green flashing node restarts, the blue flashing once upon request for network access, and the green constant light for 5 seconds after successful network access
500 +
501 +(((
502 +(% style="color:#037691" %)**In a normal working state**:
503 +)))
504 +
505 +* When the node is restarted, hold the ACT (% style="color:green" %)**GREEN**(%%) lights up , then the (% style="color:green" %)**GREEN**(%%) flashing node restarts.The (% style="color:blue" %)**BLUE**(%%) flashing once upon request for network access, and the (% style="color:green" %)**GREEN**(%%) constant light for 5 seconds after successful network access(% style="color:#0000ff" %)**.**
506 +* During OTAA Join:
507 +** **For each Join Request uplink:** the (% style="color:green" %)**GREEN LED** (%%)will blink once.
508 +** **Once Join Successful:** the (% style="color:green" %)**GREEN LED**(%%) will be solid on for 5 seconds.
509 +* After joined, for each uplink, the (% style="color:blue" %)**BLUE LED**(%%) or (% style="color:green" %)**GREEN LED** (%%)will blink once.
510 +* Press the alarm button,The (% style="color:red" %)**RED**(%%) flashes until the node receives the ACK from the platform and the (% style="color:blue" %)**BLUE**(%%) light stays 5s.
511 +
512 +(((
513 +
514 +)))
515 +
516 +== 2.9 Buzzer ==
517 +
518 +
519 +The PB01 has** button sound** and** ACK sound** and users can turn on or off both sounds by using [[AT+SOUND>>||anchor="H3.3A0Setbuttonsoundandbuttonalarm"]].
520 +
521 +* (% style="color:#4f81bd" %)**Button sound**(%%)** **is the music produced by the node after the alarm button is pressed.
522 +
523 + Users can use[[ AT+OPTION>>||anchor="H3.4A0Setbuzzermusic2807E429"]] to set different button sounds.
524 +
525 +* (% style="color:#4f81bd" %)**ACK sound **(%%)is the notification tone that the node receives ACK.
526 +
527 += 3.  Configure PB01 via AT command or LoRaWAN downlink =
528 +
529 +
530 +Users can configure PB01 via AT Command or LoRaWAN Downlink.
531 +
532 +* AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
533 +
534 +* LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
535 +
536 +There are two kinds of commands to configure PB01, they are:
537 +
538 +* (% style="color:#4f81bd" %)**General Commands:**
539 +
540 +These commands are to configure:
541 +
542 +* General system settings like: uplink interval.
543 +
544 +* LoRaWAN protocol & radio-related commands.
545 +
546 +They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
547 +
548 +
549 +* (% style="color:#4f81bd" %)**Commands special design for PB01**
550 +
551 +These commands are only valid for PB01, as below:
552 +
553 +(% style="display:none" %) (%%)
554 +
555 +== 3.1  Downlink Command Set ==
556 +
557 +
558 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
559 +|=(% style="width: 130px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 151px; background-color: rgb(79, 129, 189); color: white;" %)**Function**|=(% style="width: 92px; background-color: rgb(79, 129, 189); color: white;" %)**Response**|=(% style="width: 206px; background-color: rgb(79, 129, 189); color: white;" %)**Downlink**
560 +|(% style="width:130px" %)AT+TDC=?|(% style="width:151px" %)(((
561 +
562 +
563 +View current TDC time
564 +)))|(% style="width:92px" %)(((
565 +1200000
566 +OK
567 +)))|(% style="width:206px" %)Default 1200000(ms)
568 +|(% style="width:130px" %)AT+TDC=300000|(% style="width:151px" %)Set TDC time|(% style="width:92px" %)OK|(% style="width:206px" %)(((
569 +(((
570 +0X0100012C:
571 +01: fixed command
572 +00012C: 0X00012C=
573 +
574 +300(seconds)
575 +)))
576 +
577 +(((
578 +
579 +)))
580 +)))
581 +|(% style="width:130px" %)ATZ|(% style="width:151px" %)Reset node|(% style="width:92px" %) |(% style="width:206px" %)0x04FF
582 +|(% style="width:130px" %)AT+FDR|(% style="width:151px" %)Restore factory settings|(% style="width:92px" %) |(% style="width:206px" %)0X04FE
583 +|(% style="width:130px" %)AT+CFM=?|(% style="width:151px" %)View the current confirmation mode status|(% style="width:92px" %)(((
584 +0,7,0
585 +
586 +OK
587 +)))|(% style="width:206px" %)Default 0,7,0
588 +|(% style="width:130px" %)AT+CFM=1,7,1|(% style="width:151px" %)(((
589 +Confirmed uplink mode, the maximum number of retries is seven, and uplink fcnt increase by 1 for each retry
590 +)))|(% style="width:92px" %)(((
591 +OK
592 +)))|(% style="width:206px" %)(((
593 +05010701
594 +
595 +05: fixed command
596 +
597 +01:confirmed uplink
598 +
599 +07: retry 7 times
600 +
601 +01: fcnt count plus 1
602 +)))
603 +|(% style="width:130px" %)AT+NJM=?|(% style="width:151px" %)(((
604 +Check the current network connection method
605 +)))|(% style="width:92px" %)(((
606 +1
607 +OK
608 +)))|(% style="width:206px" %)Default 1
609 +|(% style="width:130px" %)AT+NJM=0|(% style="width:151px" %)Change the network connection method to ABP|(% style="width:92px" %)(((
610 +Attention:Take effect after ATZ
611 +OK
612 +)))|(% style="width:206px" %)(((
613 +0X2000: ABP
614 +0x2001: OTAA
615 +20: fixed command
616 +)))
617 +|(% style="width:130px" %)AT+RPL=?|(% style="width:151px" %)View current RPL settings|(% style="width:92px" %)(((
618 +0
619 +OK
620 +)))|(% style="width:206px" %)Default 0
621 +|(% style="width:130px" %)AT+RPL=1|(% style="width:151px" %)set RPL=1    |(% style="width:92px" %)OK|(% style="width:206px" %)(((
622 +0x2101:
623 +21: fixed command
624 +01: for details, check wiki
625 +)))
626 +|(% style="width:130px" %)AT+ADR=?|(% style="width:151px" %)View current ADR status|(% style="width:92px" %)(((
627 +1
628 +OK
629 +)))|(% style="width:206px" %)Default 0
630 +|(% style="width:130px" %)AT+ADR=0|(% style="width:151px" %)Set the ADR state to off|(% style="width:92px" %)OK|(% style="width:206px" %)(((
631 +0x2200: close
632 +0x2201: open
633 +22: fixed command
634 +)))
635 +|(% style="width:130px" %)AT+DR=?|(% style="width:151px" %)View the current DR settings|(% style="width:92px" %)OK|(% style="width:206px" %)
636 +|(% style="width:130px" %)AT+DR=1|(% style="width:151px" %)(((
637 +set DR to 1
638 +It takes effect only when ADR=0
639 +)))|(% style="width:92px" %)OK|(% style="width:206px" %)(((
640 +0X22000101:
641 +00: ADR=0
642 +01: DR=1
643 +01: TXP=1
644 +22: fixed command
645 +)))
646 +|(% style="width:130px" %)AT+TXP=?|(% style="width:151px" %)View the current TXP|(% style="width:92px" %)OK|(% style="width:206px" %)
647 +|(% style="width:130px" %)AT+TXP=1|(% style="width:151px" %)(((
648 +set TXP to 1
649 +It takes effect only when ADR=0
650 +)))|(% style="width:92px" %)OK|(% style="width:206px" %)(((
651 +0X22000101:
652 +00: ADR=0
653 +01: DR=1
654 +01: TXP=1
655 +22: fixed command
656 +)))
657 +|(% style="width:130px" %)AT+RJTDC=10|(% style="width:151px" %)Set RJTDC time interval|(% style="width:92px" %)OK|(% style="width:206px" %)(((
658 +0X26000A:
659 +26: fixed command
660 +000A: 0X000A=10(min)
661 +for details, check wiki
662 +)))
663 +|(% style="width:130px" %) |(% style="width:151px" %)(((
664 +(((
665 +~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_
666 +
667 +Retrieve stored data for a specified period of time
668 +)))
669 +
670 +(((
671 +
672 +)))
673 +)))|(% style="width:92px" %) |(% style="width:206px" %)(((
674 +0X3161DE7C7061DE8A800A:
675 +31: fixed command
676 +61DE7C70:0X61DE7C70=2022/1/12 15:00:00
677 +61DE8A80:0X61DE8A80=2022/1/12 16:00:00
678 +0A: 0X0A=10(second)
679 +View details 2.6.2
680 +)))
681 +|(% style="width:130px" %)AT+DDETECT=?|(% style="width:151px" %)View the current DDETECT setting status and time|(% style="width:92px" %)(((
682 +1,1440,2880
683 +OK
684 +)))|(% style="width:206px" %)Default 1,1440,2880(min)
685 +|(% style="width:130px" %)AT+DDETECT=(((
686 +1,1440,2880
687 +)))|(% style="width:151px" %)(((
688 +Set DDETECT setting status and time
689 +((% style="color:red" %)When the node does not receive the downlink packet within the set time, it will re-enter the network(%%))
690 +)))|(% style="width:92px" %)OK|(% style="width:206px" %)(((
691 +0X320005A0: close
692 +0X320105A0: open
693 +32: fixed command
694 +05A0: 0X05A0=1440(min)
695 +)))
696 +
697 +== 3.2  Set Password ==
698 +
699 +
700 +Feature: Set device password, max 9 digits.
701 +
702 +(% style="color:#4f81bd" %)**AT Command: AT+PWORD**
703 +
704 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:372px" %)
705 +|(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:128px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:89px" %)**Response**
706 +|(% style="width:155px" %)AT+PWORD=?|(% style="width:124px" %)Show password|(% style="width:86px" %)(((
707 +123456
708 +OK
709 +)))
710 +|(% style="width:155px" %)AT+PWORD=999999|(% style="width:124px" %)Set password|(% style="width:86px" %)OK
711 +
712 +(% style="color:#4f81bd" %)**Downlink Command:**
713 +
714 +No downlink command for this feature.
715 +
716 +
717 +== 3.3  Set button sound and ACK sound ==
718 +
719 +
720 +Feature: Turn on/off button sound and ACK alarm.
721 +
722 +(% style="color:#4f81bd" %)**AT Command: AT+SOUND**
723 +
724 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:372px" %)
725 +|(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:128px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:89px" %)**Response**
726 +|(% style="width:155px" %)(((
727 +AT+SOUND=?
728 +)))|(% style="width:124px" %)Get the current status of button sound and ACK sound|(% style="width:86px" %)(((
729 +1,1
730 +OK
731 +)))
732 +|(% style="width:155px" %)(((
733 +AT+SOUND=0,1
734 +)))|(% style="width:124px" %)Turn off the button sound and turn on ACK sound|(% style="width:86px" %)OK
735 +
736 +(% style="color:#4f81bd" %)**Downlink Command: 0xA1 **
737 +
738 +Format: Command Code (0xA1) followed by 2 bytes mode value.
739 +
740 +The first byte after 0XA1 sets the button sound, and the second byte after 0XA1 sets the ACK sound.** (0: off, 1: on)**
741 +
742 +* **Example: **Downlink Payload: A10001  ~/~/ Set AT+SOUND=0,1  Turn off the button sound and turn on ACK sound.
743 +
744 +
745 +== 3.4  Set buzzer music type(0~~4) ==
746 +
747 +
748 +Feature: Set different alarm key response sounds.There are five different types of button music.
749 +
750 +(% style="color:#4f81bd" %)**AT Command: AT+OPTION**
751 +
752 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:372px" %)
753 +|(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:128px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:89px" %)**Response**
754 +|(% style="width:155px" %)(((
755 +AT+OPTION=?
756 +)))|(% style="width:124px" %)(((
757 +Get the buzzer music type
758 +)))|(% style="width:86px" %)(((
759 +3
760 +
761 +OK
762 +)))
763 +|(% style="width:155px" %)AT+OPTION=1|(% style="width:124px" %)Set the buzzer music to type 1|(% style="width:86px" %)OK
764 +
765 +(% style="color:#4f81bd" %)**Downlink Command: 0xA3**
766 +
767 +Format: Command Code (0xA3) followed by 1 byte mode value.
768 +
769 +* **Example: **Downlink Payload: A300  ~/~/ Set AT+OPTION=0  Set the buzzer music to type 0.
770 +
771 +== 3.5  Set Valid Push Time ==
772 +
773 +
774 +Feature: Set the holding time for pressing the alarm button to avoid miscontact. Values range from** 0 ~~1000ms**.
775 +
776 +(% style="color:#4f81bd" %)**AT Command: AT+STIME**
777 +
778 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:372px" %)
779 +|(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:128px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:89px" %)**Response**
780 +|(% style="width:155px" %)(((
781 +AT+STIME=?
782 +)))|(% style="width:124px" %)(((
783 +Get the button sound time
784 +)))|(% style="width:86px" %)(((
785 +0
786 +OK
787 +)))
788 +|(% style="width:155px" %)(((
789 +AT+STIME=1000
790 +)))|(% style="width:124px" %)Set the button sound time to 1000**ms**|(% style="width:86px" %)OK
791 +
792 +(% style="color:#4f81bd" %)**Downlink Command: 0xA2**
793 +
794 +Format: Command Code (0xA2) followed by 2 bytes mode value.
795 +
796 +* **Example: **Downlink Payload: A203E8  ~/~/ Set AT+STIME=1000  
797 +
798 +**~ Explain: **Hold the alarm button for 10 seconds before the node will send the alarm packet.
799 +
800 +
801 +
802 += 4.  Battery & How to replace =
803 +
804 +== 4.1  Battery Type and replace ==
805 +
806 +
807 +PB01 uses 2 x AAA LR03(1.5v) batteries. If the batteries running low (shows 2.1v in the platform). Users can buy generic AAA battery and replace it.
808 +
809 +(% style="color:red" %)**Note: **
810 +
811 +1.  The PB01 doesn't have any screw, users can use nail to open it by the middle.
812 +
813 +[[image:image-20220621143535-5.png]]
814 +
815 +
816 +2.  Make sure the direction is correct when install the AAA batteries.
817 +
818 +[[image:image-20220621143535-6.png]]
819 +
820 +
821 +== 4.2  Power Consumption Analyze ==
822 +
823 +
824 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
825 +
826 +Instruction to use as below:
827 +
828 +(% style="color:blue" %)**Step 1**(%%):  Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
829 +
830 +[[battery calculator>>https://www.dropbox.com/sh/sxrgszkac4ips0q/AAA4XjBI3HAHNpdbU3ALN1j0a/Battery%20Document/Battery_Analyze?dl=0&subfolder_nav_tracking=1]]
831 +
832 +
833 +(% style="color:blue" %)**Step 2**(%%):  (% style="display:none" %) (%%)Open it and choose
834 +
835 +* Product Model
836 +* Uplink Interval
837 +* Working Mode
838 +
839 +And the Life expectation in difference case will be shown on the right.
840 +
841 +[[image:image-20220621143643-7.png||height="429" width="1326"]]
842 +
843 +
844 += 5.  Accessories =
845 +
846 +
847 +* (((
848 +(% class="wikigeneratedid" id="H5.2A0ProgramConverter28AS-0229" %)
849 +**Program Converter (AS-02)**
850 +)))
851 +
852 +AS-02 is an optional accessory, it is USB Type-C converter. AS-02 provide below feature:
853 +
854 +1. Access AT console of PB01 when used with USB-TTL adapter. [[See this link>>||anchor="H6.1HowtouseATCommandtoconfigurePB01"]].
855 +
856 +[[image:image-20220621141724-3.png]]
857 +
858 +
219 219  = 6. FAQ =
220 220  
221 -== 6.1 ==
861 +== 6.1 How to use AT Command to configure PB01 ==
222 222  
223 223  
864 +PB01 supports AT Command set. Users can use a USB to TTL adapter plus the Program Cable to connect to PB01 for using AT command, as below.
865 +
866 +[[image:image-20240511085914-1.png||height="570" width="602"]]
867 +
868 +
869 +**Connection:**
870 +
871 +* (% style="background-color:yellow" %)USB to TTL GND <~-~-> Program Converter GND pin
872 +* (% style="background-color:yellow" %)USB to TTL RXD  <~-~-> Program Converter D+ pin
873 +* (% style="background-color:yellow" %)USB to TTL TXD  <~-~-> Program Converter A11 pin
874 +
875 +(((
876 +In PC, User needs to set **serial tool**(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for PB01. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**(%%)) to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again.
877 +)))
878 +
879 +(((
880 +Input password and ATZ to activate PB01, as shown below:
881 +)))
882 +
883 +[[image:image-20240510174509-18.png||height="572" width="791"]]
884 +
885 +
886 +== 6.2  AT Command and Downlink ==
887 +
888 +
889 +(((
890 +Sending ATZ will reboot the node
891 +)))
892 +
893 +(((
894 +Sending AT+FDR will restore the node to factory settings
895 +)))
896 +
897 +(((
898 +Get the node's AT command setting by sending AT+CFG
899 +)))
900 +
901 +(((
902 +
903 +)))
904 +
905 +(((
906 +**Example:**                                           
907 +)))
908 +
909 +(((
910 +AT+DEUI=FA 23 45 55 55 55 55 51
911 +
912 +AT+APPEUI=FF AA 23 45 42 42 41 11
913 +
914 +AT+APPKEY=AC D7 35 81 63 3C B6 05 F5 69 44 99 C1 12 BA 95
915 +
916 +AT+DADDR=FFFFFFFF
917 +
918 +AT+APPSKEY=FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
919 +
920 +AT+NWKSKEY=FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
921 +
922 +AT+ADR=1
923 +
924 +AT+TXP=7
925 +
926 +AT+DR=5
927 +
928 +AT+DCS=0
929 +
930 +AT+PNM=1
931 +
932 +AT+RX2FQ=869525000
933 +
934 +AT+RX2DR=0
935 +
936 +AT+RX1DL=5000
937 +
938 +AT+RX2DL=6000
939 +
940 +AT+JN1DL=5000
941 +
942 +AT+JN2DL=6000
943 +
944 +AT+NJM=1
945 +
946 +AT+NWKID=00 00 00 13
947 +
948 +AT+FCU=61
949 +
950 +AT+FCD=11
951 +
952 +AT+CLASS=A
953 +
954 +AT+NJS=1
955 +
956 +AT+RECVB=0:
957 +
958 +AT+RECV=
959 +
960 +AT+VER=EU868 v1.0.0
961 +
962 +AT+CFM=0,7,0
963 +
964 +AT+SNR=0
965 +
966 +AT+RSSI=0
967 +
968 +AT+TDC=1200000
969 +
970 +AT+PORT=2
971 +
972 +AT+PWORD=123456
973 +
974 +AT+CHS=0
975 +
976 +AT+RX1WTO=24
977 +
978 +AT+RX2WTO=6
979 +
980 +AT+DECRYPT=0
981 +
982 +AT+RJTDC=20
983 +
984 +AT+RPL=0
985 +
986 +AT+TIMESTAMP=systime= 2024/5/11 01:10:58 (1715389858)
987 +
988 +AT+LEAPSEC=18
989 +
990 +AT+SYNCMOD=1
991 +
992 +AT+SYNCTDC=10
993 +
994 +AT+SLEEP=0
995 +
996 +AT+ATDC=1
997 +
998 +AT+UUID=003C0C53013259E0
999 +
1000 +AT+DDETECT=1,1440,2880
1001 +
1002 +AT+SETMAXNBTRANS=1,0
1003 +
1004 +AT+DISFCNTCHECK=0
1005 +
1006 +AT+DISMACANS=0
1007 +
1008 +AT+PNACKMD=0
1009 +
1010 +AT+SOUND=0,0
1011 +
1012 +AT+STIME=0
1013 +
1014 +AT+OPTION=3
1015 +)))
1016 +
1017 +(((
1018 +**Example:**
1019 +)))
1020 +
1021 +[[image:image-20240511091518-2.png||height="601" width="836"]]
1022 +
1023 +
1024 +== 6.3  How to upgrade the firmware? ==
1025 +
1026 +
1027 +PB01 requires a program converter to upload images to PB01, which is used to upload image to PB01 for:
1028 +
1029 +* Support new features
1030 +* For bug fix
1031 +* Change LoRaWAN bands.
1032 +
1033 + PB01 internal program is divided into bootloader and work program, shipping is included bootloader, the user can choose to directly update the work program.
1034 +
1035 +If the bootloader is erased for some reason, users will need to download the boot program and the work program.
1036 +
1037 +
1038 +=== 6.3.1 Update firmware (Assume device have bootloader) ===
1039 +
1040 +
1041 +(% style="color:blue" %)**Step 1**(%%):** Connect UART as per FAQ 6.1**
1042 +
1043 +(% style="color:blue" %)**Step 2**(%%):** Update follow [[Instruction for update via DraginoSensorManagerUtility.exe>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H3.2.1UpdateafirmwareviaDraginoSensorManagerUtility.exe]]. **
1044 +
1045 +
1046 +=== 6.3.2 Update firmware (Assume device doesn't have bootloader) ===
1047 +
1048 +
1049 +Download both the boot program and the worker program** . **After update , device will have bootloader so can use above 6.3.1 method to update woke program.
1050 +
1051 +(% style="color:blue" %)**Step 1**(%%):** **Install [[TremoProgrammer>>url:https://www.dropbox.com/scl/fo/gk1rb5pnnjw4kv5m5cs0z/h?rlkey=906ouvgbvif721f9bj795vfrh&dl=0]]  first.
1052 +
1053 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220615170542-5.png?rev=1.1||alt="image-20220615170542-5.png"]]
1054 +
1055 +(% style="color:blue" %)**Step 2**(%%): Hardware Connection
1056 +
1057 +Connect PC and PB01 via USB-TTL adapter .
1058 +
1059 +(% style="color:red" %)**Note: To download firmware in this way, you need to pull the boot pin(Program Converter D- pin) high to enter the burn mode. After burning, disconnect the boot pin of the node and the 3V3 pin of the USB-TTL adapter, and reset the node to exit the burning mode.**
1060 +
1061 +**Connection:**
1062 +
1063 +* (% style="background-color:yellow" %)USB-TTL GND <~-~-> Program Converter GND pin
1064 +* (% style="background-color:yellow" %)USB-TTL RXD  <~-~-> Program Converter D+ pin
1065 +* (% style="background-color:yellow" %)USB-TTL TXD  <~-~-> Program Converter A11 pin
1066 +* (% style="background-color:yellow" %)USB-TTL 3V3 <~-~-> Program Converter D- pin
1067 +
1068 +(% style="color:blue" %)**Step 3**(%%):** **Select the device port to be connected, baud rate and bin file to be downloaded.
1069 +
1070 +[[image:image-20240701160913-1.png]]
1071 +
1072 +Users need to reset the node to start downloading the program.
1073 +~1. Reinstall the battery to reset the node
1074 +2. Hold down the ACT button to reset the node (see [[2.7>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/PB01--LoRaWAN_Button_User_Manual/#H2.7Button]] ).
1075 +
1076 +When this interface appears, it indicates that the download has been completed.
1077 +
1078 +[[image:image-20240701160924-2.png]]
1079 +
1080 +Finally, Disconnect Program Converter D- pin, reset the node again , and the node exits burning mode.
1081 +
1082 +
1083 +== 6.4  How to change the LoRa Frequency Bands/Region? ==
1084 +
1085 +
1086 +User can follow the introduction for [[how to upgrade image>>||anchor="H6.3A0Howtoupgradethefirmware3F"]]. When download the images, choose the required image file for download.
1087 +
1088 +
1089 +== 6.5 Why i see different working temperature for the device? ==
1090 +
1091 +
1092 +The working temperature range of device depends on the battery user choose.
1093 +
1094 +* Normal AAA Battery can support -10 ~~ 50°C working range.
1095 +* Special AAA battery can support -40 ~~ 60 °C working range. For example: [[Energizer L92>>https://data.energizer.com/pdfs/l92.pdf]]
1096 +
224 224  = 7. Order Info =
225 225  
226 -== 7.1  Part Number ==
1099 +== 7.1  Main Device ==
227 227  
228 -Part Number: (% style="color:#4472c4" %)LTS5
229 229  
1102 +Part Number: (% style="color:#4472c4" %)PB01-LW-XX(%%) (white button) / (% style="color:#4472c4" %)PB01-LR-XX(%%)(Red Button)
230 230  
231 -== 7.2  Packing Info ==
1104 +(% style="color:#4472c4" %)**XX **(%%): The default frequency band
232 232  
1106 +* (% style="color:red" %)**AS923**(%%)**: **LoRaWAN AS923 band
1107 +* (% style="color:red" %)**AU915**(%%)**: **LoRaWAN AU915 band
1108 +* (% style="color:red" %)**EU433**(%%)**: **LoRaWAN EU433 band
1109 +* (% style="color:red" %)**EU868**(%%)**:** LoRaWAN EU868 band
1110 +* (% style="color:red" %)**KR920**(%%)**: **LoRaWAN KR920 band
1111 +* (% style="color:red" %)**US915**(%%)**: **LoRaWAN US915 band
1112 +* (% style="color:red" %)**IN865**(%%)**:  **LoRaWAN IN865 band
1113 +* (% style="color:red" %)**CN470**(%%)**: **LoRaWAN CN470 band
1114 +
1115 += 7. Packing Info =
1116 +
1117 +
233 233  **Package Includes**:
234 234  
235 -* LTS5 HMI Touch Screen
236 -* 5V,2A DC Power Adapter.
237 -* USB Type C Program Cable
1120 +* PB01 LoRaWAN Push Button x 1
238 238  
239 239  = 8. Support =
240 240  
1124 +
241 241  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
242 242  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
243 243  
244 244  = 9.  Reference material =
245 245  
246 -* Datasheet
247 -* Source Code
248 -* Mechinical
249 249  
1131 +* [[Datasheet, photos, decoder, firmware>>https://www.dropbox.com/scl/fo/y7pvm58wcr8319d5o4ujr/APZtqlbzRCNbHoPWTmmMMWs?rlkey=wfh93x2dhcev3ydn0846rinf0&st=kdp6lg7t&dl=0]]
1132 +
250 250  = 10. FCC Warning =
251 251  
252 252  
1727229396732-319.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.xieby
Size
... ... @@ -1,1 +1,0 @@
1 -197.2 KB
Content
1727229550717-684.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.xieby
Size
... ... @@ -1,1 +1,0 @@
1 -113.9 KB
Content
1727229582471-566.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.xieby
Size
... ... @@ -1,1 +1,0 @@
1 -73.6 KB
Content
1727229618724-758.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.xieby
Size
... ... @@ -1,1 +1,0 @@
1 -118.7 KB
Content
1727229653254-680.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.xieby
Size
... ... @@ -1,1 +1,0 @@
1 -116.2 KB
Content
1727229682537-381.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.xieby
Size
... ... @@ -1,1 +1,0 @@
1 -51.5 KB
Content
1727229715361-392.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.xieby
Size
... ... @@ -1,1 +1,0 @@
1 -75.2 KB
Content
1727229740592-843.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.xieby
Size
... ... @@ -1,1 +1,0 @@
1 -87.3 KB
Content
1727229760857-521.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.xieby
Size
... ... @@ -1,1 +1,0 @@
1 -24.7 KB
Content
1727229798126-306.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.xieby
Size
... ... @@ -1,1 +1,0 @@
1 -53.6 KB
Content
1727229821582-258.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.xieby
Size
... ... @@ -1,1 +1,0 @@
1 -76.1 KB
Content
1727229845835-509.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.xieby
Size
... ... @@ -1,1 +1,0 @@
1 -68.3 KB
Content
1727229892636-154.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.xieby
Size
... ... @@ -1,1 +1,0 @@
1 -192.0 KB
Content
1727229926561-300.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.xieby
Size
... ... @@ -1,1 +1,0 @@
1 -178.0 KB
Content
1727229955611-607.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.xieby
Size
... ... @@ -1,1 +1,0 @@
1 -100.4 KB
Content
1727229990795-405.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.xieby
Size
... ... @@ -1,1 +1,0 @@
1 -383.6 KB
Content
1727230012478-930.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.xieby
Size
... ... @@ -1,1 +1,0 @@
1 -477.1 KB
Content
1727231038705-173.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.xieby
Size
... ... @@ -1,1 +1,0 @@
1 -94.6 KB
Content
image-20240915231842-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -157.4 KB
Content
image-20240916101737-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -156.7 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0