Changes for page LTS5 LoRa HMI Touch Screen
Last modified by Dilisi S on 2025/02/26 19:24
Change comment:
There is no comment for this version
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 20 added, 0 removed)
- 1727229396732-319.png
- 1727229550717-684.png
- 1727229582471-566.png
- 1727229618724-758.png
- 1727229653254-680.png
- 1727229682537-381.png
- 1727229715361-392.png
- 1727229740592-843.png
- 1727229760857-521.png
- 1727229798126-306.png
- 1727229821582-258.png
- 1727229845835-509.png
- 1727229892636-154.png
- 1727229926561-300.png
- 1727229955611-607.png
- 1727229990795-405.png
- 1727230012478-930.png
- 1727231038705-173.png
- image-20240915231842-1.png
- image-20240916101737-1.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -LTS5 LoRa Touch Screen 1 +LTS5 LoRa HMI Touch Screen - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Edwin1 +XWiki.xieby - Content
-
... ... @@ -1,10 +1,7 @@ 1 - (%style="text-align:center"%)2 -[[image:image-20240 705094013-3.png]]1 + 2 +[[image:image-20240915231842-1.png]] 3 3 4 4 5 - 6 - 7 - 8 8 (% _mstvisible="1" %) 9 9 (% _msthash="315238" _msttexthash="18964465" _mstvisible="3" %)**Table of Contents:** 10 10 ... ... @@ -19,67 +19,68 @@ 19 19 20 20 = 1. Introduction = 21 21 22 -== 1.1 What is PB01LoRaWANPushButton ==19 +== 1.1 What is LTS5 LoRa HMI touch screen == 23 23 21 +LTS5 is a (% style="color:blue" %)LoRa / LoRaWAN HMI Touch Screen(%%) designed for display purpose of IoT project. It have a 5.0" HMI touch screen, and support WiFi, Bluetooch, LoRa wireless protocol. 24 24 25 - PB01LoRaWANButtonis aLoRaWAN wirelessdevicewith one (%style="color:blue"%)**push button**(%%).Onceuserpushthe button,PB01will transferthe signal toIoT server viaLongRangeLoRaWANwireless protocol.PB01 also sensesthe(% style="color:blue"%)**environmenttemperature&humidity**(%%)andwillalsouplinkthesedatato IoT Server.23 +LTS5 is an Open Source software project. The MCU is ESP32 and Dragino LA66 LoRa module. There are lots of development source for ESP32 which can greatly reduce the development time. 26 26 27 - PB01supports(%style="color:blue"%)**2x AAA batteries**(%%) and worksforlongtime uptoseveralyears*.Usercanreplacethe batterieseasilyaftertheyarefinished.25 +The HMI touch screen of LTS5 supports drap & drop design. Developer can use SquareLine to easily customize the display UI for different application. 28 28 29 - PB01has abuilt-in speaker,itcan pronouns differentsoundwhenpress buttonandgetreply fromserver.Thespeakeran by disableif userwantit.27 +LTS5 use LA66 LoRa module, this module can be program to support private LoRa protocol or LoRaWAN protocol. 30 30 31 -PB01 is fully compatible with LoRaWAN v1.0.3 protocol, it can work with standard LoRaWAN gateway. 32 32 33 -*Battery life depends how often to send data, please see [[battery analyzer>>||anchor="H4.2A0PowerConsumptionAnalyze"]]. 34 - 35 - 36 36 == 1.2 Features == 37 37 38 - 32 +* ESP32-WROOM MCU + Dragino LA66 LoRa Module 33 +* Support Private LoRa protocol or LoRaWAN protocol 34 +* Support WiFi & BLE wireless protocol 35 +* 5.0" HMI touch screen 36 +* Support LVGL case. SquareLine program. 37 +* Support RS485 Interface 38 +* Open Source Project 39 39 * Wall Attachable. 40 -* LoRaWAN v1.0.3 Class A protocol. 41 -* 1 x push button. Different Color available. 42 -* Built-in Temperature & Humidity sensor 43 -* Built-in speaker 44 -* Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915 45 -* AT Commands to change parameters 46 -* Remote configure parameters via LoRaWAN Downlink 47 -* Firmware upgradable via program port 48 -* Support 2 x AAA LR03 batteries. 40 +* 5V DC power 49 49 * IP Rating: IP52 50 50 51 51 == 1.3 Specification == 52 52 45 +**LoRa**: 53 53 54 -**Built-in Temperature Sensor:** 55 55 56 -* Resolution: 0.01 °C 57 -* Accuracy Tolerance: Typ ±0.2 °C 58 -* Long Term Drift: < 0.03 °C/yr 59 -* Operating Range: -10 ~~ 50 °C or -40 ~~ 60 °C (depends on battery type, see [[FAQ>>||anchor="H6.5Whyiseedifferentworkingtemperatureforthedevice3F"]]) 48 +**WiFi:** 60 60 61 -**Built-in Humidity Sensor:** 50 +* 802.11b/g/n 51 +* Up to 150 Mbps data rate in 802.11n mode 52 +* Support A-MPDU and A-MSDU aggregation 53 +* zero point four μ S protection interval 54 +* Working channel center frequency range: 2412~~2484 MHz 62 62 63 -* Resolution: 0.01 %RH 64 -* Accuracy Tolerance: Typ ±1.8 %RH 65 -* Long Term Drift: < 0.2% RH/yr 66 -* Operating Range: 0 ~~ 99.0 %RH(no Dew) 56 +**Bluetooth:** 67 67 68 -== 1.4 Power Consumption == 58 +* Bluetooth V4.2 BR/EDR and Bluetooth LE standard 59 +* Class-1, Class-2, and Class-3 transmitters. 60 +* AFH 61 +* CVSD and SBC 69 69 63 +**Display:** 70 70 71 -PB01 : Idle: 5uA, Transmit: max 110mA 65 +* 5.0 Inch , 800 x 480 66 +* IPS Capacitive Touch SCreen 67 +* RGB color. 68 +* Display Area: 120.7*75.80 mm 72 72 70 +== 1.4 Power Consumption == 73 73 72 +* External 5V DC power adapter 73 + 74 74 == 1.5 Storage & Operation Temperature == 75 75 76 +* Operation Temperature: -20 ~~ 70°C (No Dew) 77 +* Storage Temperature: -30 ~~ 70°C (No Dew) 76 76 77 --10 ~~ 50 °C or -40 ~~ 60 °C (depends on battery type, see [[FAQ>>||anchor="H6.5Whyiseedifferentworkingtemperatureforthedevice3F"]]) 78 - 79 - 80 80 == 1.6 Applications == 81 81 82 - 83 83 * Smart Buildings & Home Automation 84 84 * Logistics and Supply Chain Management 85 85 * Smart Metering ... ... @@ -87,1049 +87,168 @@ 87 87 * Smart Cities 88 88 * Smart Factory 89 89 90 -= 2. OperationMode=88 += 2. Getting Start with Hello World = 91 91 92 -== 2.1 Howitwork?==90 +== 2.1 About this demo == 93 93 92 +In this Getting Start Example, we will show how to design a simple Display UI and upload it to LTS5. This UI has a button , when user click the button. The Web UI will jump to a new page. 94 94 95 - EachPB01isshipped withaworldwideunique setofLoRaWAN OTAA keys. To use PB01 in a LoRaWAN network, userneeds to input the OTAA keys inLoRaWANnetwork server. After this, if PB01 is under this LoRaWAN network coverage,PB01 canjoin the LoRaWAN network and start totransmit sensor data.The default period for each uplink is** 20 minutes**.94 +== 2.2 Install Software Running Environment == 96 96 96 +The ESP MCU can be developed using ESP-IDF, Arduino, or MicroPython. For this project, we utilize ESP-IDF for compilation and Visual Studio Code (VSCode) for editing. 97 97 98 -== 2.2 HowtoActivatePB01?==98 +=== 2.2.1 Install VSCode and ESP-IDF extension === 99 99 100 +Firstly, download and install VSCode for your computer's operating system from the official website: [[Download Visual Studio Code - Mac, Linux, Windows>>url:https://code.visualstudio.com/download]]. 100 100 101 - (% style="color:red"%)**1.Openenclosurefrombelowposition.**102 +Next, you need to install the ESP-IDF extension within VSCode. The detailed operation steps are illustrated in image 1. 102 102 103 -[[image: image-20220621093835-1.png]]104 +[[image:1727229396732-319.png]] 104 104 106 + image 1 ESP-IDF extension install 105 105 106 - (%style="color:red"%)**2.Insert2xAAALR03batterieshenodeactivated.**108 +Links for reference: [[Install ESP32 ESP-IDF on Windows and Integrate with VS code (esp32tutorials.com)>>url:https://esp32tutorials.com/install-esp32-esp-idf-windows-integrate-vs-code/#:~~:text=In%20this%20tutorial,%20we%20will%20show%20you%20how%20to%20install]] 107 107 108 - [[image:image-20220621093835-2.png]]110 +=== 2.2.2 Install SquareLine Studio === 109 109 112 +The version we are utilizing for this software is 1.4.2. You can download it from the official link: [[SquareLine Studio - Download the current version of SquareLine Studio>>url:https://squareline.io/downloads#lastRelease]]. 110 110 111 - (%style="color:red"%)**3.Under the above conditions,users canalsoreactivate the nodebylongpressingtheACTbutton.**114 +Please note that this software necessitates the registration of a license prior to usage, and various licenses come with distinct limitations. For instance, the free version imposes restrictions such as a limit of 1 component, 150 widgets, and 10 screens. However, for first-time downloads, you are granted unrestricted access for a period of 30 days without the need for immediate registration. 112 112 113 - [[image:image-20220621093835-3.png]]116 +== 2.3 Simple usage of SquareLine Studio and export UI code == 114 114 118 +After launching and logging in to this software, create a project as shown in the following image 2. The version of LVGL is 8.3.11. 115 115 116 - User can check[[LED Status>>||anchor="H2.8LEDIndicator"]] to know the workingstateof PB01.120 +[[image:1727229550717-684.png]] 117 117 122 + image 2 create a SquareLine project 118 118 119 - ==2.3Example tojoinLoRaWANnetwork==124 +Next, we need to make some settings for this project. By clicking in the specified order on image 3, we can see the page as shown in image 4. 120 120 126 +[[image:1727229582471-566.png]] 121 121 122 - Thissectionshowsanexampleforhowtojointhe[[TheThingsNetwork>>url:https://www.thethingsnetwork.org/]]LoRaWANIoTserver.UsageswithotherLoRaWANIoTserversareofsimilarprocedure.128 + image 3 project settings 123 123 124 -(% _mstvisible="1" class="wikigeneratedid" %) 125 -Assume the LPS8v2 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the PB01 device in TTN V3 portal. 130 +[[image:1727229618724-758.png]] 126 126 127 - [[image:image-20240705094824-4.png]]132 + image 4 modify project settings 128 128 129 - (%style="color:blue"%)**Step1**(%%):Create a device inTTN V3 withtheOTAA keysfromPB01.134 +Now we can start to use this software. The steps for creating this UI are shown in image 5-10. 130 130 131 - Each PB01is shipped withasticker with the default DEV EUI as below:136 +[[image:1727229653254-680.png]] 132 132 133 - [[image:image-20230426083617-1.png||height="294"width="633"]]138 + image 5 create a UI(1) 134 134 140 +[[image:1727231038705-173.png]] 135 135 136 - EnterthesekeysintheLoRaWANServerportal.BelowisTTNV3screenshot:142 + image 6 create a UI(2) 137 137 138 - Createapplication.144 +[[image:1727229682537-381.png]] 139 139 140 - choosetocreatethe device manually.146 + image 7 create a UI(3) 141 141 142 - AddJoinEUI(AppEUI), DevEUI,AppKey.(%style="display:none"%)148 +We repeat the steps of screen1 in screen2. Then we get screen2 as shown in image 8. 143 143 144 -[[image:image-20240507142116-1.png||height="410" width="1138"]](% style="display:none" %) (%%) 145 - 150 +[[image:1727229715361-392.png]] 146 146 147 - [[image:image-20240507142157-2.png||height="559"width="1147"]]152 + image 8 create a UI(4) 148 148 149 - [[image:image-20240507142401-3.png||height="693"width="1202"]]154 +Finally, we add click event for screen change to button1 in screen1(shown in image 9) and button2 in screen2. 150 150 151 -[[image: image-20240507142651-4.png||height="760" width="1190"]]156 +[[image:1727229740592-843.png]] 152 152 153 - **DefaultmodeOTAA**(%style="display:none"%)158 + image 9 create a UI(5) 154 154 160 +The event settings of button1 are as image 10 shown. The event adding operation of button2 is similar to button1. 155 155 156 - (% style="color:blue" %)**Step 2**(%%): Use ACT button to activatePB01and it will auto join to the TTN V3 network.After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.162 +[[image:1727229760857-521.png]] 157 157 158 - [[image:image-20240507143104-5.png||height="434"width="1398"]]164 + image 10 create a UI(6) 159 159 166 +== 2.4 Integrate UI Code to ESP-IDF Project == 160 160 161 - ==2.4UplinkPayload==168 +To achieve the integrating, we first need to export the UI code, then make some modifications, and finally relocate the UI code to a specific position within the project. 162 162 170 +[[image:1727229798126-306.png]] 163 163 164 - Uplinkpayloadsincludetwotypes:ValidSensorValueandotherstatus/controlcommand.172 + image 11 export UI file 165 165 166 -* Valid Sensor Value: Use FPORT=2 167 -* Other control command: Use FPORT other than 2. 174 +[[image:1727229821582-258.png]] 168 168 169 - ===2.4.1UplinkFPORT~=5,DeviceStatus===176 + image 12 exported UI file 170 170 178 +Create a empty directory entitled ‘ui’ in path “basic_prj/app_components/ui/”, and then copy all UI code exported to this directory. 171 171 172 - Users canget the Device Status uplink through the downlink command:180 +[[image:1727229845835-509.png]] 173 173 174 - (%style="color:#4472c4"%)**Downlink:**(%%)**0x2601**182 + image 13 open CMakeLists.txt 175 175 176 - Uplink the device configures with FPORT=5.184 +[[image:1727229892636-154.png]] 177 177 178 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:370px" %) 179 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)(% style="display:none" %) (%%)**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2** 180 -|(% style="width:99px" %)Value|(% style="width:62px" %)Sensor Model|(% style="width:80px" %)Firmware Version|(% style="width:82px" %)Frequency Band|(% style="width:85px" %)Sub-band|(% style="width:46px" %)BAT 186 + image 14 modify CMakeLists.txt 181 181 182 - [[image:image-20240507152130-12.png||height="469"width="1366"]](%style="display:none"%)188 +The last step of integrating is adding two lines of code in main.c file. 183 183 184 - Example Payload (FPort=5):[[image:image-20240507152254-13.png||height="26" width="130"]]190 +[[image:1727229926561-300.png]] 185 185 192 + image 15 add “ui.h” 186 186 187 - (% style="color:#4472c4" %)**Sensor Model**(%%): For PB01, this value is0x35.194 +[[image:1727229955611-607.png]] 188 188 189 - (%style="color:#4472c4"%)**FirmwareVersion**(%%): 0x0100,Means:v1.0.0 version.196 + image 16 add “ui_init()” 190 190 191 - (%style="color:#4472c4"%)**FrequencyBand**:198 +== 2.5 Test Result == 192 192 193 - *0x01:EU868200 +By pressing the button lying bottom right, the screen can switch to another as expected. This indicates that the UI file has been successfully integrated into the project and is now effective. 194 194 195 - *0x02:US915202 +[[image:1727229990795-405.png]] 196 196 197 - *0x03:IN865204 + image 17 screen1 198 198 199 - *0x04: AU915206 +[[image:1727230012478-930.png]] 200 200 201 - *0x05:KZ865208 + image 18 screen2 202 202 203 - *0x06: RU864210 += 3. Example Project 1: LoRa Central Display = 204 204 205 - *0x07:AS923212 +[[image:image-20240916101737-1.png||height="468" width="683"]] 206 206 207 -*0x08: AS923-1 208 208 209 -*0x09: AS923-2 210 210 211 - *0x0a: AS923-3216 += 4. Example Project 2: LoRaWAN RS485 Alarm = 212 212 213 213 214 -(% style="color:#4472c4" %)**Sub-Band**(%%): value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00) 215 - 216 -(% style="color:#4472c4" %)**BAT**(%%): shows the battery voltage for PB01. 217 - 218 -(% style="color:#4472c4" %)**Ex1**(%%): 0x0C DE = 3294mV 219 - 220 - 221 -=== 2.4.2 Uplink FPORT~=2, Real time sensor value === 222 - 223 - 224 -PB01 will send this uplink after Device Status uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1A0DownlinkCommandSet"]]. 225 - 226 -Uplink uses FPORT=2 and every 20 minutes send one uplink by default. 227 - 228 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:460px" %) 229 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 230 -**Size(bytes)** 231 -)))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)2|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 232 -**1** 233 -)))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 234 -**1** 235 -)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)((( 236 -**2** 237 -)))|=(% style="width: 40px;background-color:#4F81BD;color:white" %)((( 238 -**2** 239 -))) 240 -|(% style="width:97px" %)((( 241 -Value 242 -)))|(% style="width:39px" %)Battery|(% style="width:39px" %)((( 243 -Sound_ACK 244 - 245 -&Sound_key 246 -)))|(% style="width:100px" %)((( 247 -((( 248 -Alarm 249 -))) 250 -)))|(% style="width:77px" %)((( 251 -((( 252 -Temperature 253 -))) 254 -)))|(% style="width:47px" %)((( 255 -Humidity 256 -))) 257 - 258 -Example in TTN. 259 - 260 -[[image:image-20240507150155-11.png||height="549" width="1261"]] 261 - 262 -Example Payload (FPort=2): (% style="background-color:yellow" %)**0C EA 03 01 01 11 02 A8** 263 - 264 -==== (% style="color:blue" %)**Battery:**(%%) ==== 265 - 266 -Check the battery voltage. 267 - 268 -* Ex1: 0x0CEA = 3306mV 269 -* Ex2: 0x0D08 = 3336mV 270 - 271 -==== (% style="color:blue" %)**Sound_ACK & Sound_key:**(%%) ==== 272 - 273 -Key sound and ACK sound are enabled by default. 274 - 275 -* Example1: 0x03 276 - 277 - Sound_ACK: (03>>1) & 0x01=1, OPEN. 278 - 279 -**~ ** Sound_key: 03 & 0x01=1, OPEN. 280 - 281 -* Example2: 0x01 282 - 283 - Sound_ACK: (01>>1) & 0x01=0, CLOSE. 284 - 285 -**~ ** Sound_key: 01 & 0x01=1, OPEN. 286 - 287 - 288 -==== (% style="color:blue" %)**Alarm:**(%%) ==== 289 - 290 -Key alarm. 291 - 292 -* Ex1: 0x01 & 0x01=1, TRUE. 293 -* Ex2: 0x00 & 0x01=0, FALSE. 294 - 295 -==== (% style="color:blue" %)**Temperature:**(%%) ==== 296 - 297 -* Example1: 0x0111/10=27.3℃ 298 -* Example2: (0xFF0D-65536)/10=-24.3℃ 299 - 300 -If payload is: FF0D : (FF0D & 8000 == 1) , temp = (FF0D - 65536)/100 =-24.3℃ 301 - 302 -(FF0D & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative) 303 - 304 - 305 -==== (% style="color:blue" %)**Humidity:**(%%) ==== 306 - 307 -* Humidity: 0x02A8/10=68.0% 308 - 309 -=== 2.4.3 Uplink FPORT~=3, Datalog sensor value === 310 - 311 - 312 -PB01 stores sensor value and user can retrieve these history value via downlink command. The Datalog sensor value are sent via FPORT=3. 313 - 314 -[[image:image-20240510144912-1.png||height="471" width="1178"]](% style="display:none" %) 315 - 316 - 317 -* Each data entry is 11 bytes, to save airtime and battery, PB01 will send max bytes according to the current DR and Frequency bands.(% style="display:none" %) 318 - 319 -For example, in US915 band, the max payload for different DR is: 320 - 321 -1. **DR0**: max is 11 bytes so one entry of data 322 -1. **DR1**: max is 53 bytes so devices will upload 4 entries of data (total 44 bytes) 323 -1. **DR2**: total payload includes 11 entries of data 324 -1. **DR3**: total payload includes 22 entries of data. 325 - 326 -(% style="color:red" %)**Notice: PB01 will save 178 set of history data, If device doesn't have any data in the polling time. Device will uplink 11 bytes of 0.** 327 - 328 -See more info about the [[Datalog feature>>||anchor="H2.6A0DatalogFeature"]]. 329 - 330 -(% style="display:none" %) (%%) 331 - 332 -=== 2.4.4 Decoder in TTN V3 === 333 - 334 - 335 -In LoRaWAN protocol, the uplink payload is HEX format, user need to add a payload formatter/decoder in LoRaWAN Server to get human friendly string. 336 - 337 -In TTN , add formatter as below: 338 - 339 -[[image:image-20240507162814-16.png||height="778" width="1135"]] 340 - 341 -((( 342 -Please check the decoder from this link: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 343 -))) 344 - 345 -((( 346 - 347 -))) 348 - 349 -== 2.5 Show data on Datacake == 350 - 351 - 352 -((( 353 -Datacake IoT platform provides a human friendly interface to show the sensor data in charts, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps: 354 -))) 355 - 356 -((( 357 - 358 -))) 359 - 360 -((( 361 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network. 362 -))) 363 - 364 -((( 365 -(% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations. 366 -))) 367 - 368 -((( 369 -~1. Add Datacake: 370 -))) 371 - 372 -((( 373 -2. Select default key as Access Key: 374 -))) 375 - 376 -((( 377 -3. In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add PB01: 378 -))) 379 - 380 -((( 381 - Please refer to the figure below. 382 -))) 383 - 384 -[[image:image-20240510150924-2.png||height="612" width="1186"]] 385 - 386 - 387 -Log in to DATACAKE, copy the API under the account. 388 - 389 -[[image:image-20240510151944-3.png||height="581" width="1191"]] 390 - 391 - 392 - 393 -[[image:image-20240510152150-4.png||height="697" width="1188"]] 394 - 395 - 396 -[[image:image-20240510152300-5.png||height="298" width="1191"]] 397 - 398 - 399 -[[image:image-20240510152355-6.png||height="782" width="1193"]] 400 - 401 -[[image:image-20240510152542-8.png||height="545" width="739"]] 402 - 403 -[[image:image-20240510152634-9.png||height="748" width="740"]] 404 - 405 - 406 -[[image:image-20240510152809-10.png||height="607" width="732"]] 407 - 408 -[[image:image-20240510153934-14.png||height="460" width="1199"]] 409 - 410 - 411 -[[image:image-20240510153435-12.png||height="428" width="1197"]] 412 - 413 - 414 -Copy and paste the [[TTN decoder>>https://github.com/dragino/dragino-end-node-decoder]] here and save. 415 - 416 -[[image:image-20240510153624-13.png||height="468" width="1195"]] 417 - 418 - 419 -Visual widgets please read the DATACAKE documentation. 420 - 421 -(% style="display:none" %) (%%) 422 - 423 -== 2.6 Datalog Feature == 424 - 425 - 426 -(% _msthash="315262" _msttexthash="32283004" _mstvisible="1" %) 427 -When user want to retrieve sensor value, he can send a poll command from the IoT platform to ask sensor to send value in the required time slot. 428 - 429 - 430 -=== 2.6.1 Unix TimeStamp === 431 - 432 - 433 -Unix TimeStamp shows the sampling time of uplink payload. format base on 434 - 435 -[[image:image-20220523001219-11.png||_mstalt="450450" _mstvisible="3" height="97" width="627"]] 436 - 437 -User can get this time from link: [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/||_mstvisible="3"]] : 438 - 439 -For example: if the Unix Timestamp we got is hex 0x60137afd, we can convert it to Decimal: 1611889405. and then convert to the time: 2021 – Jan ~-~- 29 Friday 03:03:25 (GMT) 440 - 441 - 442 -[[image:1655782409139-256.png]] 443 - 444 - 445 -=== 2.6.2 Poll sensor value === 446 - 447 - 448 -((( 449 -User can poll sensor value based on timestamps from the server. Below is the downlink command. 450 -))) 451 - 452 -((( 453 -Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval. 454 -))) 455 - 456 -((( 457 -For example, downlink command [[image:image-20220621113526-13.png]] (% _mstvisible="3" style="display:none" %) 458 -))) 459 - 460 -((( 461 -Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00's data 462 -))) 463 - 464 -((( 465 -Uplink Internal =5s,means PB01 will send one packet every 5s. range 5~~255s. 466 -))) 467 - 468 - 469 -=== 2.6.3 Datalog Uplink payload === 470 - 471 - 472 -See [[Uplink FPORT=3, Datalog sensor value>>||anchor="H2.4.3A0UplinkFPORT3D32CDatalogsensorvalue"]] 473 - 474 -(% style="display:none" %) (%%) (% style="display:none" %) 475 - 476 -== 2.7 Button == 477 - 478 - 479 -* ACT button 480 - 481 -Long press this button PB01 will reset and join network again. 482 - 483 -[[image:image-20240510161626-17.png||height="192" width="224"]] 484 - 485 -* Alarm button 486 - 487 -Press the button PB01 will immediately uplink data, and alarm is "TRUE". 488 - 489 -[[image:image-20240705095149-5.png||height="164" width="162"]](% style="display:none" %) 490 - 491 - 492 -== 2.8 LED Indicator == 493 - 494 - 495 -((( 496 -The PB01 has a triple color LED which for easy showing different stage. 497 -))) 498 - 499 -Hold the ACT green light to rest, then the green flashing node restarts, the blue flashing once upon request for network access, and the green constant light for 5 seconds after successful network access 500 - 501 -((( 502 -(% style="color:#037691" %)**In a normal working state**: 503 -))) 504 - 505 -* When the node is restarted, hold the ACT (% style="color:green" %)**GREEN**(%%) lights up , then the (% style="color:green" %)**GREEN**(%%) flashing node restarts.The (% style="color:blue" %)**BLUE**(%%) flashing once upon request for network access, and the (% style="color:green" %)**GREEN**(%%) constant light for 5 seconds after successful network access(% style="color:#0000ff" %)**.** 506 -* During OTAA Join: 507 -** **For each Join Request uplink:** the (% style="color:green" %)**GREEN LED** (%%)will blink once. 508 -** **Once Join Successful:** the (% style="color:green" %)**GREEN LED**(%%) will be solid on for 5 seconds. 509 -* After joined, for each uplink, the (% style="color:blue" %)**BLUE LED**(%%) or (% style="color:green" %)**GREEN LED** (%%)will blink once. 510 -* Press the alarm button,The (% style="color:red" %)**RED**(%%) flashes until the node receives the ACK from the platform and the (% style="color:blue" %)**BLUE**(%%) light stays 5s. 511 - 512 -((( 513 - 514 -))) 515 - 516 -== 2.9 Buzzer == 517 - 518 - 519 -The PB01 has** button sound** and** ACK sound** and users can turn on or off both sounds by using [[AT+SOUND>>||anchor="H3.3A0Setbuttonsoundandbuttonalarm"]]. 520 - 521 -* (% style="color:#4f81bd" %)**Button sound**(%%)** **is the music produced by the node after the alarm button is pressed. 522 - 523 - Users can use[[ AT+OPTION>>||anchor="H3.4A0Setbuzzermusic2807E429"]] to set different button sounds. 524 - 525 -* (% style="color:#4f81bd" %)**ACK sound **(%%)is the notification tone that the node receives ACK. 526 - 527 -= 3. Configure PB01 via AT command or LoRaWAN downlink = 528 - 529 - 530 -Users can configure PB01 via AT Command or LoRaWAN Downlink. 531 - 532 -* AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]]. 533 - 534 -* LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]] 535 - 536 -There are two kinds of commands to configure PB01, they are: 537 - 538 -* (% style="color:#4f81bd" %)**General Commands:** 539 - 540 -These commands are to configure: 541 - 542 -* General system settings like: uplink interval. 543 - 544 -* LoRaWAN protocol & radio-related commands. 545 - 546 -They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]] 547 - 548 - 549 -* (% style="color:#4f81bd" %)**Commands special design for PB01** 550 - 551 -These commands are only valid for PB01, as below: 552 - 553 -(% style="display:none" %) (%%) 554 - 555 -== 3.1 Downlink Command Set == 556 - 557 - 558 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %) 559 -|=(% style="width: 130px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 151px; background-color: rgb(79, 129, 189); color: white;" %)**Function**|=(% style="width: 92px; background-color: rgb(79, 129, 189); color: white;" %)**Response**|=(% style="width: 206px; background-color: rgb(79, 129, 189); color: white;" %)**Downlink** 560 -|(% style="width:130px" %)AT+TDC=?|(% style="width:151px" %)((( 561 - 562 - 563 -View current TDC time 564 -)))|(% style="width:92px" %)((( 565 -1200000 566 -OK 567 -)))|(% style="width:206px" %)Default 1200000(ms) 568 -|(% style="width:130px" %)AT+TDC=300000|(% style="width:151px" %)Set TDC time|(% style="width:92px" %)OK|(% style="width:206px" %)((( 569 -((( 570 -0X0100012C: 571 -01: fixed command 572 -00012C: 0X00012C= 573 - 574 -300(seconds) 575 -))) 576 - 577 -((( 578 - 579 -))) 580 -))) 581 -|(% style="width:130px" %)ATZ|(% style="width:151px" %)Reset node|(% style="width:92px" %) |(% style="width:206px" %)0x04FF 582 -|(% style="width:130px" %)AT+FDR|(% style="width:151px" %)Restore factory settings|(% style="width:92px" %) |(% style="width:206px" %)0X04FE 583 -|(% style="width:130px" %)AT+CFM=?|(% style="width:151px" %)View the current confirmation mode status|(% style="width:92px" %)((( 584 -0,7,0 585 - 586 -OK 587 -)))|(% style="width:206px" %)Default 0,7,0 588 -|(% style="width:130px" %)AT+CFM=1,7,1|(% style="width:151px" %)((( 589 -Confirmed uplink mode, the maximum number of retries is seven, and uplink fcnt increase by 1 for each retry 590 -)))|(% style="width:92px" %)((( 591 -OK 592 -)))|(% style="width:206px" %)((( 593 -05010701 594 - 595 -05: fixed command 596 - 597 -01:confirmed uplink 598 - 599 -07: retry 7 times 600 - 601 -01: fcnt count plus 1 602 -))) 603 -|(% style="width:130px" %)AT+NJM=?|(% style="width:151px" %)((( 604 -Check the current network connection method 605 -)))|(% style="width:92px" %)((( 606 -1 607 -OK 608 -)))|(% style="width:206px" %)Default 1 609 -|(% style="width:130px" %)AT+NJM=0|(% style="width:151px" %)Change the network connection method to ABP|(% style="width:92px" %)((( 610 -Attention:Take effect after ATZ 611 -OK 612 -)))|(% style="width:206px" %)((( 613 -0X2000: ABP 614 -0x2001: OTAA 615 -20: fixed command 616 -))) 617 -|(% style="width:130px" %)AT+RPL=?|(% style="width:151px" %)View current RPL settings|(% style="width:92px" %)((( 618 -0 619 -OK 620 -)))|(% style="width:206px" %)Default 0 621 -|(% style="width:130px" %)AT+RPL=1|(% style="width:151px" %)set RPL=1 |(% style="width:92px" %)OK|(% style="width:206px" %)((( 622 -0x2101: 623 -21: fixed command 624 -01: for details, check wiki 625 -))) 626 -|(% style="width:130px" %)AT+ADR=?|(% style="width:151px" %)View current ADR status|(% style="width:92px" %)((( 627 -1 628 -OK 629 -)))|(% style="width:206px" %)Default 0 630 -|(% style="width:130px" %)AT+ADR=0|(% style="width:151px" %)Set the ADR state to off|(% style="width:92px" %)OK|(% style="width:206px" %)((( 631 -0x2200: close 632 -0x2201: open 633 -22: fixed command 634 -))) 635 -|(% style="width:130px" %)AT+DR=?|(% style="width:151px" %)View the current DR settings|(% style="width:92px" %)OK|(% style="width:206px" %) 636 -|(% style="width:130px" %)AT+DR=1|(% style="width:151px" %)((( 637 -set DR to 1 638 -It takes effect only when ADR=0 639 -)))|(% style="width:92px" %)OK|(% style="width:206px" %)((( 640 -0X22000101: 641 -00: ADR=0 642 -01: DR=1 643 -01: TXP=1 644 -22: fixed command 645 -))) 646 -|(% style="width:130px" %)AT+TXP=?|(% style="width:151px" %)View the current TXP|(% style="width:92px" %)OK|(% style="width:206px" %) 647 -|(% style="width:130px" %)AT+TXP=1|(% style="width:151px" %)((( 648 -set TXP to 1 649 -It takes effect only when ADR=0 650 -)))|(% style="width:92px" %)OK|(% style="width:206px" %)((( 651 -0X22000101: 652 -00: ADR=0 653 -01: DR=1 654 -01: TXP=1 655 -22: fixed command 656 -))) 657 -|(% style="width:130px" %)AT+RJTDC=10|(% style="width:151px" %)Set RJTDC time interval|(% style="width:92px" %)OK|(% style="width:206px" %)((( 658 -0X26000A: 659 -26: fixed command 660 -000A: 0X000A=10(min) 661 -for details, check wiki 662 -))) 663 -|(% style="width:130px" %) |(% style="width:151px" %)((( 664 -((( 665 -~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_ 666 - 667 -Retrieve stored data for a specified period of time 668 -))) 669 - 670 -((( 671 - 672 -))) 673 -)))|(% style="width:92px" %) |(% style="width:206px" %)((( 674 -0X3161DE7C7061DE8A800A: 675 -31: fixed command 676 -61DE7C70:0X61DE7C70=2022/1/12 15:00:00 677 -61DE8A80:0X61DE8A80=2022/1/12 16:00:00 678 -0A: 0X0A=10(second) 679 -View details 2.6.2 680 -))) 681 -|(% style="width:130px" %)AT+DDETECT=?|(% style="width:151px" %)View the current DDETECT setting status and time|(% style="width:92px" %)((( 682 -1,1440,2880 683 -OK 684 -)))|(% style="width:206px" %)Default 1,1440,2880(min) 685 -|(% style="width:130px" %)AT+DDETECT=((( 686 -1,1440,2880 687 -)))|(% style="width:151px" %)((( 688 -Set DDETECT setting status and time 689 -((% style="color:red" %)When the node does not receive the downlink packet within the set time, it will re-enter the network(%%)) 690 -)))|(% style="width:92px" %)OK|(% style="width:206px" %)((( 691 -0X320005A0: close 692 -0X320105A0: open 693 -32: fixed command 694 -05A0: 0X05A0=1440(min) 695 -))) 696 - 697 -== 3.2 Set Password == 698 - 699 - 700 -Feature: Set device password, max 9 digits. 701 - 702 -(% style="color:#4f81bd" %)**AT Command: AT+PWORD** 703 - 704 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:372px" %) 705 -|(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:128px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:89px" %)**Response** 706 -|(% style="width:155px" %)AT+PWORD=?|(% style="width:124px" %)Show password|(% style="width:86px" %)((( 707 -123456 708 -OK 709 -))) 710 -|(% style="width:155px" %)AT+PWORD=999999|(% style="width:124px" %)Set password|(% style="width:86px" %)OK 711 - 712 -(% style="color:#4f81bd" %)**Downlink Command:** 713 - 714 -No downlink command for this feature. 715 - 716 - 717 -== 3.3 Set button sound and ACK sound == 718 - 719 - 720 -Feature: Turn on/off button sound and ACK alarm. 721 - 722 -(% style="color:#4f81bd" %)**AT Command: AT+SOUND** 723 - 724 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:372px" %) 725 -|(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:128px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:89px" %)**Response** 726 -|(% style="width:155px" %)((( 727 -AT+SOUND=? 728 -)))|(% style="width:124px" %)Get the current status of button sound and ACK sound|(% style="width:86px" %)((( 729 -1,1 730 -OK 731 -))) 732 -|(% style="width:155px" %)((( 733 -AT+SOUND=0,1 734 -)))|(% style="width:124px" %)Turn off the button sound and turn on ACK sound|(% style="width:86px" %)OK 735 - 736 -(% style="color:#4f81bd" %)**Downlink Command: 0xA1 ** 737 - 738 -Format: Command Code (0xA1) followed by 2 bytes mode value. 739 - 740 -The first byte after 0XA1 sets the button sound, and the second byte after 0XA1 sets the ACK sound.** (0: off, 1: on)** 741 - 742 -* **Example: **Downlink Payload: A10001 ~/~/ Set AT+SOUND=0,1 Turn off the button sound and turn on ACK sound. 743 - 744 - 745 -== 3.4 Set buzzer music type(0~~4) == 746 - 747 - 748 -Feature: Set different alarm key response sounds.There are five different types of button music. 749 - 750 -(% style="color:#4f81bd" %)**AT Command: AT+OPTION** 751 - 752 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:372px" %) 753 -|(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:128px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:89px" %)**Response** 754 -|(% style="width:155px" %)((( 755 -AT+OPTION=? 756 -)))|(% style="width:124px" %)((( 757 -Get the buzzer music type 758 -)))|(% style="width:86px" %)((( 759 -3 760 - 761 -OK 762 -))) 763 -|(% style="width:155px" %)AT+OPTION=1|(% style="width:124px" %)Set the buzzer music to type 1|(% style="width:86px" %)OK 764 - 765 -(% style="color:#4f81bd" %)**Downlink Command: 0xA3** 766 - 767 -Format: Command Code (0xA3) followed by 1 byte mode value. 768 - 769 -* **Example: **Downlink Payload: A300 ~/~/ Set AT+OPTION=0 Set the buzzer music to type 0. 770 - 771 -== 3.5 Set Valid Push Time == 772 - 773 - 774 -Feature: Set the holding time for pressing the alarm button to avoid miscontact. Values range from** 0 ~~1000ms**. 775 - 776 -(% style="color:#4f81bd" %)**AT Command: AT+STIME** 777 - 778 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:372px" %) 779 -|(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:128px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:89px" %)**Response** 780 -|(% style="width:155px" %)((( 781 -AT+STIME=? 782 -)))|(% style="width:124px" %)((( 783 -Get the button sound time 784 -)))|(% style="width:86px" %)((( 785 -0 786 -OK 787 -))) 788 -|(% style="width:155px" %)((( 789 -AT+STIME=1000 790 -)))|(% style="width:124px" %)Set the button sound time to 1000**ms**|(% style="width:86px" %)OK 791 - 792 -(% style="color:#4f81bd" %)**Downlink Command: 0xA2** 793 - 794 -Format: Command Code (0xA2) followed by 2 bytes mode value. 795 - 796 -* **Example: **Downlink Payload: A203E8 ~/~/ Set AT+STIME=1000 797 - 798 -**~ Explain: **Hold the alarm button for 10 seconds before the node will send the alarm packet. 799 - 800 - 801 - 802 -= 4. Battery & How to replace = 803 - 804 -== 4.1 Battery Type and replace == 805 - 806 - 807 -PB01 uses 2 x AAA LR03(1.5v) batteries. If the batteries running low (shows 2.1v in the platform). Users can buy generic AAA battery and replace it. 808 - 809 -(% style="color:red" %)**Note: ** 810 - 811 -1. The PB01 doesn't have any screw, users can use nail to open it by the middle. 812 - 813 -[[image:image-20220621143535-5.png]] 814 - 815 - 816 -2. Make sure the direction is correct when install the AAA batteries. 817 - 818 -[[image:image-20220621143535-6.png]] 819 - 820 - 821 -== 4.2 Power Consumption Analyze == 822 - 823 - 824 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 825 - 826 -Instruction to use as below: 827 - 828 -(% style="color:blue" %)**Step 1**(%%): Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 829 - 830 -[[battery calculator>>https://www.dropbox.com/sh/sxrgszkac4ips0q/AAA4XjBI3HAHNpdbU3ALN1j0a/Battery%20Document/Battery_Analyze?dl=0&subfolder_nav_tracking=1]] 831 - 832 - 833 -(% style="color:blue" %)**Step 2**(%%): (% style="display:none" %) (%%)Open it and choose 834 - 835 -* Product Model 836 -* Uplink Interval 837 -* Working Mode 838 - 839 -And the Life expectation in difference case will be shown on the right. 840 - 841 -[[image:image-20220621143643-7.png||height="429" width="1326"]] 842 - 843 - 844 -= 5. Accessories = 845 - 846 - 847 -* ((( 848 -(% class="wikigeneratedid" id="H5.2A0ProgramConverter28AS-0229" %) 849 -**Program Converter (AS-02)** 850 -))) 851 - 852 -AS-02 is an optional accessory, it is USB Type-C converter. AS-02 provide below feature: 853 - 854 -1. Access AT console of PB01 when used with USB-TTL adapter. [[See this link>>||anchor="H6.1HowtouseATCommandtoconfigurePB01"]]. 855 - 856 -[[image:image-20220621141724-3.png]] 857 - 858 - 859 859 = 6. FAQ = 860 860 861 -== 6.1 How to use AT Command to configure PB01==221 +== 6.1 == 862 862 863 863 864 -PB01 supports AT Command set. Users can use a USB to TTL adapter plus the Program Cable to connect to PB01 for using AT command, as below. 865 - 866 -[[image:image-20240511085914-1.png||height="570" width="602"]] 867 - 868 - 869 -**Connection:** 870 - 871 -* (% style="background-color:yellow" %)USB to TTL GND <~-~-> Program Converter GND pin 872 -* (% style="background-color:yellow" %)USB to TTL RXD <~-~-> Program Converter D+ pin 873 -* (% style="background-color:yellow" %)USB to TTL TXD <~-~-> Program Converter A11 pin 874 - 875 -((( 876 -In PC, User needs to set **serial tool**(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for PB01. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**(%%)) to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. 877 -))) 878 - 879 -((( 880 -Input password and ATZ to activate PB01, as shown below: 881 -))) 882 - 883 -[[image:image-20240510174509-18.png||height="572" width="791"]] 884 - 885 - 886 -== 6.2 AT Command and Downlink == 887 - 888 - 889 -((( 890 -Sending ATZ will reboot the node 891 -))) 892 - 893 -((( 894 -Sending AT+FDR will restore the node to factory settings 895 -))) 896 - 897 -((( 898 -Get the node's AT command setting by sending AT+CFG 899 -))) 900 - 901 -((( 902 - 903 -))) 904 - 905 -((( 906 -**Example:** 907 -))) 908 - 909 -((( 910 -AT+DEUI=FA 23 45 55 55 55 55 51 911 - 912 -AT+APPEUI=FF AA 23 45 42 42 41 11 913 - 914 -AT+APPKEY=AC D7 35 81 63 3C B6 05 F5 69 44 99 C1 12 BA 95 915 - 916 -AT+DADDR=FFFFFFFF 917 - 918 -AT+APPSKEY=FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 919 - 920 -AT+NWKSKEY=FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 921 - 922 -AT+ADR=1 923 - 924 -AT+TXP=7 925 - 926 -AT+DR=5 927 - 928 -AT+DCS=0 929 - 930 -AT+PNM=1 931 - 932 -AT+RX2FQ=869525000 933 - 934 -AT+RX2DR=0 935 - 936 -AT+RX1DL=5000 937 - 938 -AT+RX2DL=6000 939 - 940 -AT+JN1DL=5000 941 - 942 -AT+JN2DL=6000 943 - 944 -AT+NJM=1 945 - 946 -AT+NWKID=00 00 00 13 947 - 948 -AT+FCU=61 949 - 950 -AT+FCD=11 951 - 952 -AT+CLASS=A 953 - 954 -AT+NJS=1 955 - 956 -AT+RECVB=0: 957 - 958 -AT+RECV= 959 - 960 -AT+VER=EU868 v1.0.0 961 - 962 -AT+CFM=0,7,0 963 - 964 -AT+SNR=0 965 - 966 -AT+RSSI=0 967 - 968 -AT+TDC=1200000 969 - 970 -AT+PORT=2 971 - 972 -AT+PWORD=123456 973 - 974 -AT+CHS=0 975 - 976 -AT+RX1WTO=24 977 - 978 -AT+RX2WTO=6 979 - 980 -AT+DECRYPT=0 981 - 982 -AT+RJTDC=20 983 - 984 -AT+RPL=0 985 - 986 -AT+TIMESTAMP=systime= 2024/5/11 01:10:58 (1715389858) 987 - 988 -AT+LEAPSEC=18 989 - 990 -AT+SYNCMOD=1 991 - 992 -AT+SYNCTDC=10 993 - 994 -AT+SLEEP=0 995 - 996 -AT+ATDC=1 997 - 998 -AT+UUID=003C0C53013259E0 999 - 1000 -AT+DDETECT=1,1440,2880 1001 - 1002 -AT+SETMAXNBTRANS=1,0 1003 - 1004 -AT+DISFCNTCHECK=0 1005 - 1006 -AT+DISMACANS=0 1007 - 1008 -AT+PNACKMD=0 1009 - 1010 -AT+SOUND=0,0 1011 - 1012 -AT+STIME=0 1013 - 1014 -AT+OPTION=3 1015 -))) 1016 - 1017 -((( 1018 -**Example:** 1019 -))) 1020 - 1021 -[[image:image-20240511091518-2.png||height="601" width="836"]] 1022 - 1023 - 1024 -== 6.3 How to upgrade the firmware? == 1025 - 1026 - 1027 -PB01 requires a program converter to upload images to PB01, which is used to upload image to PB01 for: 1028 - 1029 -* Support new features 1030 -* For bug fix 1031 -* Change LoRaWAN bands. 1032 - 1033 - PB01 internal program is divided into bootloader and work program, shipping is included bootloader, the user can choose to directly update the work program. 1034 - 1035 -If the bootloader is erased for some reason, users will need to download the boot program and the work program. 1036 - 1037 - 1038 -=== 6.3.1 Update firmware (Assume device have bootloader) === 1039 - 1040 - 1041 -(% style="color:blue" %)**Step 1**(%%):** Connect UART as per FAQ 6.1** 1042 - 1043 -(% style="color:blue" %)**Step 2**(%%):** Update follow [[Instruction for update via DraginoSensorManagerUtility.exe>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H3.2.1UpdateafirmwareviaDraginoSensorManagerUtility.exe]]. ** 1044 - 1045 - 1046 -=== 6.3.2 Update firmware (Assume device doesn't have bootloader) === 1047 - 1048 - 1049 -Download both the boot program and the worker program** . **After update , device will have bootloader so can use above 6.3.1 method to update woke program. 1050 - 1051 -(% style="color:blue" %)**Step 1**(%%):** **Install [[TremoProgrammer>>url:https://www.dropbox.com/scl/fo/gk1rb5pnnjw4kv5m5cs0z/h?rlkey=906ouvgbvif721f9bj795vfrh&dl=0]] first. 1052 - 1053 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220615170542-5.png?rev=1.1||alt="image-20220615170542-5.png"]] 1054 - 1055 -(% style="color:blue" %)**Step 2**(%%): Hardware Connection 1056 - 1057 -Connect PC and PB01 via USB-TTL adapter . 1058 - 1059 -(% style="color:red" %)**Note: To download firmware in this way, you need to pull the boot pin(Program Converter D- pin) high to enter the burn mode. After burning, disconnect the boot pin of the node and the 3V3 pin of the USB-TTL adapter, and reset the node to exit the burning mode.** 1060 - 1061 -**Connection:** 1062 - 1063 -* (% style="background-color:yellow" %)USB-TTL GND <~-~-> Program Converter GND pin 1064 -* (% style="background-color:yellow" %)USB-TTL RXD <~-~-> Program Converter D+ pin 1065 -* (% style="background-color:yellow" %)USB-TTL TXD <~-~-> Program Converter A11 pin 1066 -* (% style="background-color:yellow" %)USB-TTL 3V3 <~-~-> Program Converter D- pin 1067 - 1068 -(% style="color:blue" %)**Step 3**(%%):** **Select the device port to be connected, baud rate and bin file to be downloaded. 1069 - 1070 -[[image:image-20240701160913-1.png]] 1071 - 1072 -Users need to reset the node to start downloading the program. 1073 -~1. Reinstall the battery to reset the node 1074 -2. Hold down the ACT button to reset the node (see [[2.7>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/PB01--LoRaWAN_Button_User_Manual/#H2.7Button]] ). 1075 - 1076 -When this interface appears, it indicates that the download has been completed. 1077 - 1078 -[[image:image-20240701160924-2.png]] 1079 - 1080 -Finally, Disconnect Program Converter D- pin, reset the node again , and the node exits burning mode. 1081 - 1082 - 1083 -== 6.4 How to change the LoRa Frequency Bands/Region? == 1084 - 1085 - 1086 -User can follow the introduction for [[how to upgrade image>>||anchor="H6.3A0Howtoupgradethefirmware3F"]]. When download the images, choose the required image file for download. 1087 - 1088 - 1089 -== 6.5 Why i see different working temperature for the device? == 1090 - 1091 - 1092 -The working temperature range of device depends on the battery user choose. 1093 - 1094 -* Normal AAA Battery can support -10 ~~ 50°C working range. 1095 -* Special AAA battery can support -40 ~~ 60 °C working range. For example: [[Energizer L92>>https://data.energizer.com/pdfs/l92.pdf]] 1096 - 1097 1097 = 7. Order Info = 1098 1098 1099 -== 7.1 MainDevice==226 +== 7.1 Part Number == 1100 1100 228 +Part Number: (% style="color:#4472c4" %)LTS5 1101 1101 1102 -Part Number: (% style="color:#4472c4" %)PB01-LW-XX(%%) (white button) / (% style="color:#4472c4" %)PB01-LR-XX(%%)(Red Button) 1103 1103 1104 - (% style="color:#4472c4"%)**XX **(%%): The default frequencyband231 +== 7.2 Packing Info == 1105 1105 1106 -* (% style="color:red" %)**AS923**(%%)**: **LoRaWAN AS923 band 1107 -* (% style="color:red" %)**AU915**(%%)**: **LoRaWAN AU915 band 1108 -* (% style="color:red" %)**EU433**(%%)**: **LoRaWAN EU433 band 1109 -* (% style="color:red" %)**EU868**(%%)**:** LoRaWAN EU868 band 1110 -* (% style="color:red" %)**KR920**(%%)**: **LoRaWAN KR920 band 1111 -* (% style="color:red" %)**US915**(%%)**: **LoRaWAN US915 band 1112 -* (% style="color:red" %)**IN865**(%%)**: **LoRaWAN IN865 band 1113 -* (% style="color:red" %)**CN470**(%%)**: **LoRaWAN CN470 band 1114 - 1115 -= 7. Packing Info = 1116 - 1117 - 1118 1118 **Package Includes**: 1119 1119 1120 -* PB01 LoRaWAN Push Button x 1 235 +* LTS5 HMI Touch Screen 236 +* 5V,2A DC Power Adapter. 237 +* USB Type C Program Cable 1121 1121 1122 1122 = 8. Support = 1123 1123 1124 - 1125 1125 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1126 1126 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]. 1127 1127 1128 1128 = 9. Reference material = 1129 1129 246 +* Datasheet 247 +* Source Code 248 +* Mechinical 1130 1130 1131 -* [[Datasheet, photos, decoder, firmware>>https://www.dropbox.com/scl/fo/y7pvm58wcr8319d5o4ujr/APZtqlbzRCNbHoPWTmmMMWs?rlkey=wfh93x2dhcev3ydn0846rinf0&st=kdp6lg7t&dl=0]] 1132 - 1133 1133 = 10. FCC Warning = 1134 1134 1135 1135
- 1727229396732-319.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.xieby - Size
-
... ... @@ -1,0 +1,1 @@ 1 +197.2 KB - Content
- 1727229550717-684.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.xieby - Size
-
... ... @@ -1,0 +1,1 @@ 1 +113.9 KB - Content
- 1727229582471-566.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.xieby - Size
-
... ... @@ -1,0 +1,1 @@ 1 +73.6 KB - Content
- 1727229618724-758.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.xieby - Size
-
... ... @@ -1,0 +1,1 @@ 1 +118.7 KB - Content
- 1727229653254-680.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.xieby - Size
-
... ... @@ -1,0 +1,1 @@ 1 +116.2 KB - Content
- 1727229682537-381.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.xieby - Size
-
... ... @@ -1,0 +1,1 @@ 1 +51.5 KB - Content
- 1727229715361-392.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.xieby - Size
-
... ... @@ -1,0 +1,1 @@ 1 +75.2 KB - Content
- 1727229740592-843.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.xieby - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.3 KB - Content
- 1727229760857-521.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.xieby - Size
-
... ... @@ -1,0 +1,1 @@ 1 +24.7 KB - Content
- 1727229798126-306.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.xieby - Size
-
... ... @@ -1,0 +1,1 @@ 1 +53.6 KB - Content
- 1727229821582-258.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.xieby - Size
-
... ... @@ -1,0 +1,1 @@ 1 +76.1 KB - Content
- 1727229845835-509.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.xieby - Size
-
... ... @@ -1,0 +1,1 @@ 1 +68.3 KB - Content
- 1727229892636-154.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.xieby - Size
-
... ... @@ -1,0 +1,1 @@ 1 +192.0 KB - Content
- 1727229926561-300.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.xieby - Size
-
... ... @@ -1,0 +1,1 @@ 1 +178.0 KB - Content
- 1727229955611-607.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.xieby - Size
-
... ... @@ -1,0 +1,1 @@ 1 +100.4 KB - Content
- 1727229990795-405.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.xieby - Size
-
... ... @@ -1,0 +1,1 @@ 1 +383.6 KB - Content
- 1727230012478-930.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.xieby - Size
-
... ... @@ -1,0 +1,1 @@ 1 +477.1 KB - Content
- 1727231038705-173.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.xieby - Size
-
... ... @@ -1,0 +1,1 @@ 1 +94.6 KB - Content
- image-20240915231842-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +157.4 KB - Content
- image-20240916101737-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +156.7 KB - Content