From version 1.1 >
edited by Edwin Chen
on 2024/09/15 23:15
To version < 4.2 >
edited by Edwin Chen
on 2024/09/16 08:33
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LTS5 LoRa Touch Screen
1 +LTS5 LoRa HMI Touch Screen
Content
... ... @@ -1,0 +1,1126 @@
1 +
2 +[[image:image-20240915231842-1.png]]
3 +
4 +
5 +(% _mstvisible="1" %)
6 +(% _msthash="315238" _msttexthash="18964465" _mstvisible="3" %)**Table of Contents:**
7 +
8 +{{toc/}}
9 +
10 +
11 +
12 +
13 +
14 +
15 +
16 +
17 += 1.  Introduction =
18 +
19 +== 1.1  What is LTS5 LoRa HMI touch screen ==
20 +
21 +LTS5 is a (% style="color:blue" %)LoRa / LoRaWAN HMI Touch Screen(%%) designed for display purpose of IoT project. It have a 5.0" HMI touch screen, and support WiFi, Bluetooch, LoRa wireless protocol.
22 +
23 +LTS5 is an Open Source software project. The MCU is ESP32 and Dragino LA66 LoRa module. There are lots of development source for ESP32 which can greatly reduce the development time.
24 +
25 +The HMI touch screen of LTS5 supports drap & drop design. Developer can use SquareLine to easily customize the display UI for different application.
26 +
27 +LTS5 use LA66 LoRa module, this module can be program to support private LoRa protocol or LoRaWAN protocol.
28 +
29 +
30 +== 1.2  Features ==
31 +
32 +* Support Private LoRa protocol or LoRaWAN protocol
33 +* Support WiFi & BLE wireless protocol
34 +* 5.0" HMI touch screen
35 +* Support RS485 Interface
36 +* Open Source Project
37 +* Wall Attachable.
38 +* 5V DC power
39 +* IP Rating: IP52
40 +
41 +
42 +== 1.3  Specification ==
43 +
44 +**Display:**
45 +
46 +* Resolution: 0.01 °C
47 +* Accuracy Tolerance: Typ ±0.2 °C
48 +* Long Term Drift: < 0.03 °C/yr
49 +* Operating Range: -10 ~~ 50 °C  or -40 ~~ 60 °C (depends on battery type, see [[FAQ>>||anchor="H6.5Whyiseedifferentworkingtemperatureforthedevice3F"]])
50 +
51 +
52 +
53 +== 1.4  Power Consumption ==
54 +
55 +* External 5V DC power.
56 +
57 +
58 +== 1.5  Storage & Operation Temperature ==
59 +
60 +
61 +-10 ~~ 50 °C  or -40 ~~ 60 °C (depends on battery type, see [[FAQ>>||anchor="H6.5Whyiseedifferentworkingtemperatureforthedevice3F"]])
62 +
63 +
64 +== 1.6  Applications ==
65 +
66 +
67 +* Smart Buildings & Home Automation
68 +* Logistics and Supply Chain Management
69 +* Smart Metering
70 +* Smart Agriculture
71 +* Smart Cities
72 +* Smart Factory
73 +
74 +
75 += 2.  Operation Mode =
76 +
77 +== 2.1  How it work? ==
78 +
79 +
80 +Each PB01 is shipped with a worldwide unique set of LoRaWAN OTAA keys. To use PB01 in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After this, if PB01 is under this LoRaWAN network coverage, PB01 can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is** 20 minutes**.
81 +
82 +
83 +== 2.2  How to Activate PB01? ==
84 +
85 +
86 +(% style="color:red" %)** 1.  Open enclosure from below position.**
87 +
88 +[[image:image-20220621093835-1.png]]
89 +
90 +
91 +(% style="color:red" %)** 2.  Insert 2 x AAA LR03 batteries and the node is activated.**
92 +
93 +[[image:image-20220621093835-2.png]]
94 +
95 +
96 +(% style="color:red" %)** 3. Under the above conditions, users can also reactivate the node by long pressing the ACT button.**
97 +
98 +[[image:image-20220621093835-3.png]]
99 +
100 +
101 +User can check [[LED Status>>||anchor="H2.8LEDIndicator"]] to know the working state of PB01.
102 +
103 +
104 +== 2.3  Example to join LoRaWAN network ==
105 +
106 +
107 +This section shows an example for how to join the [[TheThingsNetwork>>url:https://www.thethingsnetwork.org/]] LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
108 +
109 +(% _mstvisible="1" class="wikigeneratedid" %)
110 +Assume the LPS8v2 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the PB01 device in TTN V3 portal. 
111 +
112 +[[image:image-20240705094824-4.png]]
113 +
114 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN V3 with the OTAA keys from PB01.
115 +
116 +Each PB01 is shipped with a sticker with the default DEV EUI as below:
117 +
118 +[[image:image-20230426083617-1.png||height="294" width="633"]]
119 +
120 +
121 +Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
122 +
123 +Create application.
124 +
125 +choose to create the device manually.
126 +
127 +Add JoinEUI(AppEUI), DevEUI, AppKey.(% style="display:none" %)
128 +
129 +[[image:image-20240507142116-1.png||height="410" width="1138"]](% style="display:none" %) (%%)
130 +
131 +
132 +[[image:image-20240507142157-2.png||height="559" width="1147"]]
133 +
134 +[[image:image-20240507142401-3.png||height="693" width="1202"]]
135 +
136 +[[image:image-20240507142651-4.png||height="760" width="1190"]]
137 +
138 +**Default mode OTAA**(% style="display:none" %)
139 +
140 +
141 +(% style="color:blue" %)**Step 2**(%%):  Use ACT button to activate PB01 and it will auto join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
142 +
143 +[[image:image-20240507143104-5.png||height="434" width="1398"]]
144 +
145 +
146 +== 2.4  Uplink Payload ==
147 +
148 +
149 +Uplink payloads include two types: Valid Sensor Value and other status / control command.
150 +
151 +* Valid Sensor Value: Use FPORT=2
152 +* Other control command: Use FPORT other than 2.
153 +
154 +=== 2.4.1  Uplink FPORT~=5, Device Status ===
155 +
156 +
157 +Users can  get the Device Status uplink through the downlink command:
158 +
159 +(% style="color:#4472c4" %)**Downlink:  **(%%)**0x2601**
160 +
161 +Uplink the device configures with FPORT=5.
162 +
163 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:370px" %)
164 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)(% style="display:none" %) (%%)**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**
165 +|(% style="width:99px" %)Value|(% style="width:62px" %)Sensor Model|(% style="width:80px" %)Firmware Version|(% style="width:82px" %)Frequency Band|(% style="width:85px" %)Sub-band|(% style="width:46px" %)BAT
166 +
167 +[[image:image-20240507152130-12.png||height="469" width="1366"]](% style="display:none" %)
168 +
169 +Example Payload (FPort=5):  [[image:image-20240507152254-13.png||height="26" width="130"]]
170 +
171 +
172 +(% style="color:#4472c4" %)**Sensor Model**(%%): For PB01, this value is 0x35.
173 +
174 +(% style="color:#4472c4" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version.
175 +
176 +(% style="color:#4472c4" %)**Frequency Band**:
177 +
178 +*0x01: EU868
179 +
180 +*0x02: US915
181 +
182 +*0x03: IN865
183 +
184 +*0x04: AU915
185 +
186 +*0x05: KZ865
187 +
188 +*0x06: RU864
189 +
190 +*0x07: AS923
191 +
192 +*0x08: AS923-1
193 +
194 +*0x09: AS923-2
195 +
196 +*0x0a: AS923-3
197 +
198 +
199 +(% style="color:#4472c4" %)**Sub-Band**(%%): value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
200 +
201 +(% style="color:#4472c4" %)**BAT**(%%): shows the battery voltage for PB01.
202 +
203 +(% style="color:#4472c4" %)**Ex1**(%%): 0x0C DE = 3294mV
204 +
205 +
206 +=== 2.4.2  Uplink FPORT~=2, Real time sensor value ===
207 +
208 +
209 +PB01 will send this uplink after Device Status uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1A0DownlinkCommandSet"]].
210 +
211 +Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
212 +
213 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:460px" %)
214 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
215 +**Size(bytes)**
216 +)))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)2|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
217 +**1**
218 +)))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
219 +**1**
220 +)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)(((
221 +**2**
222 +)))|=(% style="width: 40px;background-color:#4F81BD;color:white" %)(((
223 +**2**
224 +)))
225 +|(% style="width:97px" %)(((
226 +Value
227 +)))|(% style="width:39px" %)Battery|(% style="width:39px" %)(((
228 +Sound_ACK
229 +
230 +&Sound_key
231 +)))|(% style="width:100px" %)(((
232 +(((
233 +Alarm
234 +)))
235 +)))|(% style="width:77px" %)(((
236 +(((
237 +Temperature
238 +)))
239 +)))|(% style="width:47px" %)(((
240 +Humidity
241 +)))
242 +
243 +Example in TTN.
244 +
245 +[[image:image-20240507150155-11.png||height="549" width="1261"]]
246 +
247 +Example Payload (FPort=2):  (% style="background-color:yellow" %)**0C EA 03 01 01 11 02 A8**
248 +
249 +==== (% style="color:blue" %)**Battery:**(%%) ====
250 +
251 +Check the battery voltage.
252 +
253 +* Ex1: 0x0CEA = 3306mV
254 +* Ex2: 0x0D08 = 3336mV
255 +
256 +==== (% style="color:blue" %)**Sound_ACK & Sound_key:**(%%) ====
257 +
258 +Key sound and ACK sound are enabled by default.
259 +
260 +* Example1: 0x03
261 +
262 + Sound_ACK: (03>>1) & 0x01=1, OPEN.
263 +
264 +**~ ** Sound_key:  03 & 0x01=1, OPEN.
265 +
266 +* Example2: 0x01
267 +
268 + Sound_ACK: (01>>1) & 0x01=0, CLOSE.
269 +
270 +**~ ** Sound_key:  01 & 0x01=1, OPEN.
271 +
272 +
273 +==== (% style="color:blue" %)**Alarm:**(%%) ====
274 +
275 +Key alarm.
276 +
277 +* Ex1: 0x01 & 0x01=1, TRUE.
278 +* Ex2: 0x00 & 0x01=0, FALSE.
279 +
280 +==== (% style="color:blue" %)**Temperature:**(%%) ====
281 +
282 +* Example1:  0x0111/10=27.3℃
283 +* Example2:  (0xFF0D-65536)/10=-24.3℃
284 +
285 +If payload is: FF0D :  (FF0D & 8000 == 1) , temp = (FF0D - 65536)/100 =-24.3℃
286 +
287 +(FF0D & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
288 +
289 +
290 +==== (% style="color:blue" %)**Humidity:**(%%) ====
291 +
292 +* Humidity:    0x02A8/10=68.0%
293 +
294 +=== 2.4.3  Uplink FPORT~=3, Datalog sensor value ===
295 +
296 +
297 +PB01 stores sensor value and user can retrieve these history value via downlink command. The Datalog sensor value are sent via FPORT=3.
298 +
299 +[[image:image-20240510144912-1.png||height="471" width="1178"]](% style="display:none" %)
300 +
301 +
302 +* Each data entry is 11 bytes, to save airtime and battery, PB01 will send max bytes according to the current DR and Frequency bands.(% style="display:none" %)
303 +
304 +For example, in US915 band, the max payload for different DR is:
305 +
306 +1. **DR0**: max is 11 bytes so one entry of data
307 +1. **DR1**: max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
308 +1. **DR2**: total payload includes 11 entries of data
309 +1. **DR3**: total payload includes 22 entries of data.
310 +
311 +(% style="color:red" %)**Notice: PB01 will save 178 set of history data, If device doesn't have any data in the polling time. Device will uplink 11 bytes of 0.**
312 +
313 +See more info about the [[Datalog feature>>||anchor="H2.6A0DatalogFeature"]].
314 +
315 +(% style="display:none" %) (%%)
316 +
317 +=== 2.4.4  Decoder in TTN V3 ===
318 +
319 +
320 +In LoRaWAN protocol, the uplink payload is HEX format, user need to add a payload formatter/decoder in LoRaWAN Server to get human friendly string.
321 +
322 +In TTN , add formatter as below:
323 +
324 +[[image:image-20240507162814-16.png||height="778" width="1135"]]
325 +
326 +(((
327 +Please check the decoder from this link:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
328 +)))
329 +
330 +(((
331 +
332 +)))
333 +
334 +== 2.5 Show data on Datacake ==
335 +
336 +
337 +(((
338 +Datacake IoT platform provides a human friendly interface to show the sensor data in charts, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
339 +)))
340 +
341 +(((
342 +
343 +)))
344 +
345 +(((
346 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the LoRaWAN network.
347 +)))
348 +
349 +(((
350 +(% style="color:blue" %)**Step 2**(%%):  Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
351 +)))
352 +
353 +(((
354 +~1. Add Datacake:
355 +)))
356 +
357 +(((
358 +2. Select default key as Access Key:
359 +)))
360 +
361 +(((
362 +3. In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add PB01:
363 +)))
364 +
365 +(((
366 + Please refer to the figure below.
367 +)))
368 +
369 +[[image:image-20240510150924-2.png||height="612" width="1186"]]
370 +
371 +
372 +Log in to DATACAKE, copy the API under the account.
373 +
374 +[[image:image-20240510151944-3.png||height="581" width="1191"]]
375 +
376 +
377 +
378 +[[image:image-20240510152150-4.png||height="697" width="1188"]]
379 +
380 +
381 +[[image:image-20240510152300-5.png||height="298" width="1191"]]
382 +
383 +
384 +[[image:image-20240510152355-6.png||height="782" width="1193"]]
385 +
386 +[[image:image-20240510152542-8.png||height="545" width="739"]]
387 +
388 +[[image:image-20240510152634-9.png||height="748" width="740"]]
389 +
390 +
391 +[[image:image-20240510152809-10.png||height="607" width="732"]]
392 +
393 +[[image:image-20240510153934-14.png||height="460" width="1199"]]
394 +
395 +
396 +[[image:image-20240510153435-12.png||height="428" width="1197"]]
397 +
398 +
399 +Copy and paste the [[TTN decoder>>https://github.com/dragino/dragino-end-node-decoder]] here and save.
400 +
401 +[[image:image-20240510153624-13.png||height="468" width="1195"]]
402 +
403 +
404 +Visual widgets please read the DATACAKE documentation.
405 +
406 +(% style="display:none" %) (%%)
407 +
408 +== 2.6  Datalog Feature ==
409 +
410 +
411 +(% _msthash="315262" _msttexthash="32283004" _mstvisible="1" %)
412 +When user want to retrieve sensor value, he can send a poll command from the IoT platform to ask sensor to send value in the required time slot.
413 +
414 +
415 +=== 2.6.1  Unix TimeStamp ===
416 +
417 +
418 +Unix TimeStamp shows the sampling time of uplink payload. format base on
419 +
420 +[[image:image-20220523001219-11.png||_mstalt="450450" _mstvisible="3" height="97" width="627"]]
421 +
422 +User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/||_mstvisible="3"]] :
423 +
424 +For example: if the Unix Timestamp we got is hex 0x60137afd, we can convert it to Decimal: 1611889405. and then convert to the time: 2021 – Jan ~-~- 29 Friday 03:03:25 (GMT)
425 +
426 +
427 +[[image:1655782409139-256.png]]
428 +
429 +
430 +=== 2.6.2  Poll sensor value ===
431 +
432 +
433 +(((
434 +User can poll sensor value based on timestamps from the server. Below is the downlink command.
435 +)))
436 +
437 +(((
438 +Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval.
439 +)))
440 +
441 +(((
442 +For example, downlink command [[image:image-20220621113526-13.png]] (% _mstvisible="3" style="display:none" %)
443 +)))
444 +
445 +(((
446 +Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00's data
447 +)))
448 +
449 +(((
450 +Uplink Internal =5s,means PB01 will send one packet every 5s. range 5~~255s.
451 +)))
452 +
453 +
454 +=== 2.6.3  Datalog Uplink payload ===
455 +
456 +
457 +See [[Uplink FPORT=3, Datalog sensor value>>||anchor="H2.4.3A0UplinkFPORT3D32CDatalogsensorvalue"]]
458 +
459 +(% style="display:none" %) (%%) (% style="display:none" %)
460 +
461 +== 2.7 Button ==
462 +
463 +
464 +* ACT button
465 +
466 +Long press this button PB01 will reset and join network again.
467 +
468 +[[image:image-20240510161626-17.png||height="192" width="224"]]
469 +
470 +* Alarm button
471 +
472 +Press the button PB01 will immediately uplink data, and alarm is "TRUE".
473 +
474 +[[image:image-20240705095149-5.png||height="164" width="162"]](% style="display:none" %)
475 +
476 +
477 +== 2.8 LED Indicator ==
478 +
479 +
480 +(((
481 +The PB01 has a triple color LED which for easy showing different stage.
482 +)))
483 +
484 +Hold the ACT green light to rest, then the green flashing node restarts, the blue flashing once upon request for network access, and the green constant light for 5 seconds after successful network access
485 +
486 +(((
487 +(% style="color:#037691" %)**In a normal working state**:
488 +)))
489 +
490 +* When the node is restarted, hold the ACT (% style="color:green" %)**GREEN**(%%) lights up , then the (% style="color:green" %)**GREEN**(%%) flashing node restarts.The (% style="color:blue" %)**BLUE**(%%) flashing once upon request for network access, and the (% style="color:green" %)**GREEN**(%%) constant light for 5 seconds after successful network access(% style="color:#0000ff" %)**.**
491 +* During OTAA Join:
492 +** **For each Join Request uplink:** the (% style="color:green" %)**GREEN LED** (%%)will blink once.
493 +** **Once Join Successful:** the (% style="color:green" %)**GREEN LED**(%%) will be solid on for 5 seconds.
494 +* After joined, for each uplink, the (% style="color:blue" %)**BLUE LED**(%%) or (% style="color:green" %)**GREEN LED** (%%)will blink once.
495 +* Press the alarm button,The (% style="color:red" %)**RED**(%%) flashes until the node receives the ACK from the platform and the (% style="color:blue" %)**BLUE**(%%) light stays 5s.
496 +
497 +(((
498 +
499 +)))
500 +
501 +== 2.9 Buzzer ==
502 +
503 +
504 +The PB01 has** button sound** and** ACK sound** and users can turn on or off both sounds by using [[AT+SOUND>>||anchor="H3.3A0Setbuttonsoundandbuttonalarm"]].
505 +
506 +* (% style="color:#4f81bd" %)**Button sound**(%%)** **is the music produced by the node after the alarm button is pressed.
507 +
508 + Users can use[[ AT+OPTION>>||anchor="H3.4A0Setbuzzermusic2807E429"]] to set different button sounds.
509 +
510 +* (% style="color:#4f81bd" %)**ACK sound **(%%)is the notification tone that the node receives ACK.
511 +
512 += 3.  Configure PB01 via AT command or LoRaWAN downlink =
513 +
514 +
515 +Users can configure PB01 via AT Command or LoRaWAN Downlink.
516 +
517 +* AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
518 +
519 +* LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
520 +
521 +There are two kinds of commands to configure PB01, they are:
522 +
523 +* (% style="color:#4f81bd" %)**General Commands:**
524 +
525 +These commands are to configure:
526 +
527 +* General system settings like: uplink interval.
528 +
529 +* LoRaWAN protocol & radio-related commands.
530 +
531 +They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
532 +
533 +
534 +* (% style="color:#4f81bd" %)**Commands special design for PB01**
535 +
536 +These commands are only valid for PB01, as below:
537 +
538 +(% style="display:none" %) (%%)
539 +
540 +== 3.1  Downlink Command Set ==
541 +
542 +
543 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
544 +|=(% style="width: 130px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 151px; background-color: rgb(79, 129, 189); color: white;" %)**Function**|=(% style="width: 92px; background-color: rgb(79, 129, 189); color: white;" %)**Response**|=(% style="width: 206px; background-color: rgb(79, 129, 189); color: white;" %)**Downlink**
545 +|(% style="width:130px" %)AT+TDC=?|(% style="width:151px" %)(((
546 +
547 +
548 +View current TDC time
549 +)))|(% style="width:92px" %)(((
550 +1200000
551 +OK
552 +)))|(% style="width:206px" %)Default 1200000(ms)
553 +|(% style="width:130px" %)AT+TDC=300000|(% style="width:151px" %)Set TDC time|(% style="width:92px" %)OK|(% style="width:206px" %)(((
554 +(((
555 +0X0100012C:
556 +01: fixed command
557 +00012C: 0X00012C=
558 +
559 +300(seconds)
560 +)))
561 +
562 +(((
563 +
564 +)))
565 +)))
566 +|(% style="width:130px" %)ATZ|(% style="width:151px" %)Reset node|(% style="width:92px" %) |(% style="width:206px" %)0x04FF
567 +|(% style="width:130px" %)AT+FDR|(% style="width:151px" %)Restore factory settings|(% style="width:92px" %) |(% style="width:206px" %)0X04FE
568 +|(% style="width:130px" %)AT+CFM=?|(% style="width:151px" %)View the current confirmation mode status|(% style="width:92px" %)(((
569 +0,7,0
570 +
571 +OK
572 +)))|(% style="width:206px" %)Default 0,7,0
573 +|(% style="width:130px" %)AT+CFM=1,7,1|(% style="width:151px" %)(((
574 +Confirmed uplink mode, the maximum number of retries is seven, and uplink fcnt increase by 1 for each retry
575 +)))|(% style="width:92px" %)(((
576 +OK
577 +)))|(% style="width:206px" %)(((
578 +05010701
579 +
580 +05: fixed command
581 +
582 +01:confirmed uplink
583 +
584 +07: retry 7 times
585 +
586 +01: fcnt count plus 1
587 +)))
588 +|(% style="width:130px" %)AT+NJM=?|(% style="width:151px" %)(((
589 +Check the current network connection method
590 +)))|(% style="width:92px" %)(((
591 +1
592 +OK
593 +)))|(% style="width:206px" %)Default 1
594 +|(% style="width:130px" %)AT+NJM=0|(% style="width:151px" %)Change the network connection method to ABP|(% style="width:92px" %)(((
595 +Attention:Take effect after ATZ
596 +OK
597 +)))|(% style="width:206px" %)(((
598 +0X2000: ABP
599 +0x2001: OTAA
600 +20: fixed command
601 +)))
602 +|(% style="width:130px" %)AT+RPL=?|(% style="width:151px" %)View current RPL settings|(% style="width:92px" %)(((
603 +0
604 +OK
605 +)))|(% style="width:206px" %)Default 0
606 +|(% style="width:130px" %)AT+RPL=1|(% style="width:151px" %)set RPL=1    |(% style="width:92px" %)OK|(% style="width:206px" %)(((
607 +0x2101:
608 +21: fixed command
609 +01: for details, check wiki
610 +)))
611 +|(% style="width:130px" %)AT+ADR=?|(% style="width:151px" %)View current ADR status|(% style="width:92px" %)(((
612 +1
613 +OK
614 +)))|(% style="width:206px" %)Default 0
615 +|(% style="width:130px" %)AT+ADR=0|(% style="width:151px" %)Set the ADR state to off|(% style="width:92px" %)OK|(% style="width:206px" %)(((
616 +0x2200: close
617 +0x2201: open
618 +22: fixed command
619 +)))
620 +|(% style="width:130px" %)AT+DR=?|(% style="width:151px" %)View the current DR settings|(% style="width:92px" %)OK|(% style="width:206px" %)
621 +|(% style="width:130px" %)AT+DR=1|(% style="width:151px" %)(((
622 +set DR to 1
623 +It takes effect only when ADR=0
624 +)))|(% style="width:92px" %)OK|(% style="width:206px" %)(((
625 +0X22000101:
626 +00: ADR=0
627 +01: DR=1
628 +01: TXP=1
629 +22: fixed command
630 +)))
631 +|(% style="width:130px" %)AT+TXP=?|(% style="width:151px" %)View the current TXP|(% style="width:92px" %)OK|(% style="width:206px" %)
632 +|(% style="width:130px" %)AT+TXP=1|(% style="width:151px" %)(((
633 +set TXP to 1
634 +It takes effect only when ADR=0
635 +)))|(% style="width:92px" %)OK|(% style="width:206px" %)(((
636 +0X22000101:
637 +00: ADR=0
638 +01: DR=1
639 +01: TXP=1
640 +22: fixed command
641 +)))
642 +|(% style="width:130px" %)AT+RJTDC=10|(% style="width:151px" %)Set RJTDC time interval|(% style="width:92px" %)OK|(% style="width:206px" %)(((
643 +0X26000A:
644 +26: fixed command
645 +000A: 0X000A=10(min)
646 +for details, check wiki
647 +)))
648 +|(% style="width:130px" %) |(% style="width:151px" %)(((
649 +(((
650 +~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_
651 +
652 +Retrieve stored data for a specified period of time
653 +)))
654 +
655 +(((
656 +
657 +)))
658 +)))|(% style="width:92px" %) |(% style="width:206px" %)(((
659 +0X3161DE7C7061DE8A800A:
660 +31: fixed command
661 +61DE7C70:0X61DE7C70=2022/1/12 15:00:00
662 +61DE8A80:0X61DE8A80=2022/1/12 16:00:00
663 +0A: 0X0A=10(second)
664 +View details 2.6.2
665 +)))
666 +|(% style="width:130px" %)AT+DDETECT=?|(% style="width:151px" %)View the current DDETECT setting status and time|(% style="width:92px" %)(((
667 +1,1440,2880
668 +OK
669 +)))|(% style="width:206px" %)Default 1,1440,2880(min)
670 +|(% style="width:130px" %)AT+DDETECT=(((
671 +1,1440,2880
672 +)))|(% style="width:151px" %)(((
673 +Set DDETECT setting status and time
674 +((% style="color:red" %)When the node does not receive the downlink packet within the set time, it will re-enter the network(%%))
675 +)))|(% style="width:92px" %)OK|(% style="width:206px" %)(((
676 +0X320005A0: close
677 +0X320105A0: open
678 +32: fixed command
679 +05A0: 0X05A0=1440(min)
680 +)))
681 +
682 +== 3.2  Set Password ==
683 +
684 +
685 +Feature: Set device password, max 9 digits.
686 +
687 +(% style="color:#4f81bd" %)**AT Command: AT+PWORD**
688 +
689 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:372px" %)
690 +|(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:128px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:89px" %)**Response**
691 +|(% style="width:155px" %)AT+PWORD=?|(% style="width:124px" %)Show password|(% style="width:86px" %)(((
692 +123456
693 +OK
694 +)))
695 +|(% style="width:155px" %)AT+PWORD=999999|(% style="width:124px" %)Set password|(% style="width:86px" %)OK
696 +
697 +(% style="color:#4f81bd" %)**Downlink Command:**
698 +
699 +No downlink command for this feature.
700 +
701 +
702 +== 3.3  Set button sound and ACK sound ==
703 +
704 +
705 +Feature: Turn on/off button sound and ACK alarm.
706 +
707 +(% style="color:#4f81bd" %)**AT Command: AT+SOUND**
708 +
709 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:372px" %)
710 +|(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:128px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:89px" %)**Response**
711 +|(% style="width:155px" %)(((
712 +AT+SOUND=?
713 +)))|(% style="width:124px" %)Get the current status of button sound and ACK sound|(% style="width:86px" %)(((
714 +1,1
715 +OK
716 +)))
717 +|(% style="width:155px" %)(((
718 +AT+SOUND=0,1
719 +)))|(% style="width:124px" %)Turn off the button sound and turn on ACK sound|(% style="width:86px" %)OK
720 +
721 +(% style="color:#4f81bd" %)**Downlink Command: 0xA1 **
722 +
723 +Format: Command Code (0xA1) followed by 2 bytes mode value.
724 +
725 +The first byte after 0XA1 sets the button sound, and the second byte after 0XA1 sets the ACK sound.** (0: off, 1: on)**
726 +
727 +* **Example: **Downlink Payload: A10001  ~/~/ Set AT+SOUND=0,1  Turn off the button sound and turn on ACK sound.
728 +
729 +== 3.4  Set buzzer music type(0~~4) ==
730 +
731 +
732 +Feature: Set different alarm key response sounds.There are five different types of button music.
733 +
734 +(% style="color:#4f81bd" %)**AT Command: AT+OPTION**
735 +
736 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:372px" %)
737 +|(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:128px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:89px" %)**Response**
738 +|(% style="width:155px" %)(((
739 +AT+OPTION=?
740 +)))|(% style="width:124px" %)(((
741 +Get the buzzer music type
742 +)))|(% style="width:86px" %)(((
743 +3
744 +
745 +OK
746 +)))
747 +|(% style="width:155px" %)AT+OPTION=1|(% style="width:124px" %)Set the buzzer music to type 1|(% style="width:86px" %)OK
748 +
749 +(% style="color:#4f81bd" %)**Downlink Command: 0xA3**
750 +
751 +Format: Command Code (0xA3) followed by 1 byte mode value.
752 +
753 +* **Example: **Downlink Payload: A300  ~/~/ Set AT+OPTION=0  Set the buzzer music to type 0.
754 +
755 +== 3.5  Set Valid Push Time ==
756 +
757 +
758 +Feature: Set the holding time for pressing the alarm button to avoid miscontact. Values range from** 0 ~~1000ms**.
759 +
760 +(% style="color:#4f81bd" %)**AT Command: AT+STIME**
761 +
762 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:372px" %)
763 +|(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:128px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:89px" %)**Response**
764 +|(% style="width:155px" %)(((
765 +AT+STIME=?
766 +)))|(% style="width:124px" %)(((
767 +Get the button sound time
768 +)))|(% style="width:86px" %)(((
769 +0
770 +OK
771 +)))
772 +|(% style="width:155px" %)(((
773 +AT+STIME=1000
774 +)))|(% style="width:124px" %)Set the button sound time to 1000**ms**|(% style="width:86px" %)OK
775 +
776 +(% style="color:#4f81bd" %)**Downlink Command: 0xA2**
777 +
778 +Format: Command Code (0xA2) followed by 2 bytes mode value.
779 +
780 +* **Example: **Downlink Payload: A203E8  ~/~/ Set AT+STIME=1000  
781 +
782 +**~ Explain: **Hold the alarm button for 10 seconds before the node will send the alarm packet.
783 +
784 +
785 +
786 += 4.  Battery & How to replace =
787 +
788 +== 4.1  Battery Type and replace ==
789 +
790 +
791 +PB01 uses 2 x AAA LR03(1.5v) batteries. If the batteries running low (shows 2.1v in the platform). Users can buy generic AAA battery and replace it.
792 +
793 +(% style="color:red" %)**Note: **
794 +
795 +1.  The PB01 doesn't have any screw, users can use nail to open it by the middle.
796 +
797 +[[image:image-20220621143535-5.png]]
798 +
799 +
800 +2.  Make sure the direction is correct when install the AAA batteries.
801 +
802 +[[image:image-20220621143535-6.png]]
803 +
804 +
805 +== 4.2  Power Consumption Analyze ==
806 +
807 +
808 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
809 +
810 +Instruction to use as below:
811 +
812 +(% style="color:blue" %)**Step 1**(%%):  Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
813 +
814 +[[battery calculator>>https://www.dropbox.com/sh/sxrgszkac4ips0q/AAA4XjBI3HAHNpdbU3ALN1j0a/Battery%20Document/Battery_Analyze?dl=0&subfolder_nav_tracking=1]]
815 +
816 +
817 +(% style="color:blue" %)**Step 2**(%%):  (% style="display:none" %) (%%)Open it and choose
818 +
819 +* Product Model
820 +* Uplink Interval
821 +* Working Mode
822 +
823 +And the Life expectation in difference case will be shown on the right.
824 +
825 +[[image:image-20220621143643-7.png||height="429" width="1326"]]
826 +
827 +
828 += 5.  Accessories =
829 +
830 +
831 +* (((
832 +(% class="wikigeneratedid" id="H5.2A0ProgramConverter28AS-0229" %)
833 +**Program Converter (AS-02)**
834 +)))
835 +
836 +AS-02 is an optional accessory, it is USB Type-C converter. AS-02 provide below feature:
837 +
838 +1. Access AT console of PB01 when used with USB-TTL adapter. [[See this link>>||anchor="H6.1HowtouseATCommandtoconfigurePB01"]].
839 +
840 +[[image:image-20220621141724-3.png]]
841 +
842 +
843 += 6. FAQ =
844 +
845 +== 6.1 How to use AT Command to configure PB01 ==
846 +
847 +
848 +PB01 supports AT Command set. Users can use a USB to TTL adapter plus the Program Cable to connect to PB01 for using AT command, as below.
849 +
850 +[[image:image-20240511085914-1.png||height="570" width="602"]]
851 +
852 +
853 +**Connection:**
854 +
855 +* (% style="background-color:yellow" %)USB to TTL GND <~-~-> Program Converter GND pin
856 +* (% style="background-color:yellow" %)USB to TTL RXD  <~-~-> Program Converter D+ pin
857 +* (% style="background-color:yellow" %)USB to TTL TXD  <~-~-> Program Converter A11 pin
858 +
859 +(((
860 +In PC, User needs to set **serial tool**(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for PB01. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**(%%)) to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again.
861 +)))
862 +
863 +(((
864 +Input password and ATZ to activate PB01, as shown below:
865 +)))
866 +
867 +[[image:image-20240510174509-18.png||height="572" width="791"]]
868 +
869 +
870 +== 6.2  AT Command and Downlink ==
871 +
872 +
873 +(((
874 +Sending ATZ will reboot the node
875 +)))
876 +
877 +(((
878 +Sending AT+FDR will restore the node to factory settings
879 +)))
880 +
881 +(((
882 +Get the node's AT command setting by sending AT+CFG
883 +)))
884 +
885 +(((
886 +
887 +)))
888 +
889 +(((
890 +**Example:**                                           
891 +)))
892 +
893 +(((
894 +AT+DEUI=FA 23 45 55 55 55 55 51
895 +
896 +AT+APPEUI=FF AA 23 45 42 42 41 11
897 +
898 +AT+APPKEY=AC D7 35 81 63 3C B6 05 F5 69 44 99 C1 12 BA 95
899 +
900 +AT+DADDR=FFFFFFFF
901 +
902 +AT+APPSKEY=FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
903 +
904 +AT+NWKSKEY=FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
905 +
906 +AT+ADR=1
907 +
908 +AT+TXP=7
909 +
910 +AT+DR=5
911 +
912 +AT+DCS=0
913 +
914 +AT+PNM=1
915 +
916 +AT+RX2FQ=869525000
917 +
918 +AT+RX2DR=0
919 +
920 +AT+RX1DL=5000
921 +
922 +AT+RX2DL=6000
923 +
924 +AT+JN1DL=5000
925 +
926 +AT+JN2DL=6000
927 +
928 +AT+NJM=1
929 +
930 +AT+NWKID=00 00 00 13
931 +
932 +AT+FCU=61
933 +
934 +AT+FCD=11
935 +
936 +AT+CLASS=A
937 +
938 +AT+NJS=1
939 +
940 +AT+RECVB=0:
941 +
942 +AT+RECV=
943 +
944 +AT+VER=EU868 v1.0.0
945 +
946 +AT+CFM=0,7,0
947 +
948 +AT+SNR=0
949 +
950 +AT+RSSI=0
951 +
952 +AT+TDC=1200000
953 +
954 +AT+PORT=2
955 +
956 +AT+PWORD=123456
957 +
958 +AT+CHS=0
959 +
960 +AT+RX1WTO=24
961 +
962 +AT+RX2WTO=6
963 +
964 +AT+DECRYPT=0
965 +
966 +AT+RJTDC=20
967 +
968 +AT+RPL=0
969 +
970 +AT+TIMESTAMP=systime= 2024/5/11 01:10:58 (1715389858)
971 +
972 +AT+LEAPSEC=18
973 +
974 +AT+SYNCMOD=1
975 +
976 +AT+SYNCTDC=10
977 +
978 +AT+SLEEP=0
979 +
980 +AT+ATDC=1
981 +
982 +AT+UUID=003C0C53013259E0
983 +
984 +AT+DDETECT=1,1440,2880
985 +
986 +AT+SETMAXNBTRANS=1,0
987 +
988 +AT+DISFCNTCHECK=0
989 +
990 +AT+DISMACANS=0
991 +
992 +AT+PNACKMD=0
993 +
994 +AT+SOUND=0,0
995 +
996 +AT+STIME=0
997 +
998 +AT+OPTION=3
999 +)))
1000 +
1001 +(((
1002 +**Example:**
1003 +)))
1004 +
1005 +[[image:image-20240511091518-2.png||height="601" width="836"]]
1006 +
1007 +
1008 +== 6.3  How to upgrade the firmware? ==
1009 +
1010 +
1011 +PB01 requires a program converter to upload images to PB01, which is used to upload image to PB01 for:
1012 +
1013 +* Support new features
1014 +* For bug fix
1015 +* Change LoRaWAN bands.
1016 +
1017 + PB01 internal program is divided into bootloader and work program, shipping is included bootloader, the user can choose to directly update the work program.
1018 +
1019 +If the bootloader is erased for some reason, users will need to download the boot program and the work program.
1020 +
1021 +
1022 +=== 6.3.1 Update firmware (Assume device have bootloader) ===
1023 +
1024 +
1025 +(% style="color:blue" %)**Step 1**(%%):** Connect UART as per FAQ 6.1**
1026 +
1027 +(% style="color:blue" %)**Step 2**(%%):** Update follow [[Instruction for update via DraginoSensorManagerUtility.exe>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H3.2.1UpdateafirmwareviaDraginoSensorManagerUtility.exe]]. **
1028 +
1029 +
1030 +=== 6.3.2 Update firmware (Assume device doesn't have bootloader) ===
1031 +
1032 +
1033 +Download both the boot program and the worker program** . **After update , device will have bootloader so can use above 6.3.1 method to update woke program.
1034 +
1035 +(% style="color:blue" %)**Step 1**(%%):** **Install [[TremoProgrammer>>url:https://www.dropbox.com/scl/fo/gk1rb5pnnjw4kv5m5cs0z/h?rlkey=906ouvgbvif721f9bj795vfrh&dl=0]]  first.
1036 +
1037 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220615170542-5.png?rev=1.1||alt="image-20220615170542-5.png"]]
1038 +
1039 +(% style="color:blue" %)**Step 2**(%%): Hardware Connection
1040 +
1041 +Connect PC and PB01 via USB-TTL adapter .
1042 +
1043 +(% style="color:red" %)**Note: To download firmware in this way, you need to pull the boot pin(Program Converter D- pin) high to enter the burn mode. After burning, disconnect the boot pin of the node and the 3V3 pin of the USB-TTL adapter, and reset the node to exit the burning mode.**
1044 +
1045 +**Connection:**
1046 +
1047 +* (% style="background-color:yellow" %)USB-TTL GND <~-~-> Program Converter GND pin
1048 +* (% style="background-color:yellow" %)USB-TTL RXD  <~-~-> Program Converter D+ pin
1049 +* (% style="background-color:yellow" %)USB-TTL TXD  <~-~-> Program Converter A11 pin
1050 +* (% style="background-color:yellow" %)USB-TTL 3V3 <~-~-> Program Converter D- pin
1051 +
1052 +(% style="color:blue" %)**Step 3**(%%):** **Select the device port to be connected, baud rate and bin file to be downloaded.
1053 +
1054 +[[image:image-20240701160913-1.png]]
1055 +
1056 +Users need to reset the node to start downloading the program.
1057 +~1. Reinstall the battery to reset the node
1058 +2. Hold down the ACT button to reset the node (see [[2.7>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/PB01--LoRaWAN_Button_User_Manual/#H2.7Button]] ).
1059 +
1060 +When this interface appears, it indicates that the download has been completed.
1061 +
1062 +[[image:image-20240701160924-2.png]]
1063 +
1064 +Finally, Disconnect Program Converter D- pin, reset the node again , and the node exits burning mode.
1065 +
1066 +
1067 +== 6.4  How to change the LoRa Frequency Bands/Region? ==
1068 +
1069 +
1070 +User can follow the introduction for [[how to upgrade image>>||anchor="H6.3A0Howtoupgradethefirmware3F"]]. When download the images, choose the required image file for download.
1071 +
1072 +
1073 +== 6.5 Why i see different working temperature for the device? ==
1074 +
1075 +
1076 +The working temperature range of device depends on the battery user choose.
1077 +
1078 +* Normal AAA Battery can support -10 ~~ 50°C working range.
1079 +* Special AAA battery can support -40 ~~ 60 °C working range. For example: [[Energizer L92>>https://data.energizer.com/pdfs/l92.pdf]]
1080 +
1081 += 7. Order Info =
1082 +
1083 +== 7.1  Main Device ==
1084 +
1085 +
1086 +Part Number: (% style="color:#4472c4" %)PB01-LW-XX(%%) (white button) / (% style="color:#4472c4" %)PB01-LR-XX(%%)(Red Button)
1087 +
1088 +(% style="color:#4472c4" %)**XX **(%%): The default frequency band
1089 +
1090 +* (% style="color:red" %)**AS923**(%%)**: **LoRaWAN AS923 band
1091 +* (% style="color:red" %)**AU915**(%%)**: **LoRaWAN AU915 band
1092 +* (% style="color:red" %)**EU433**(%%)**: **LoRaWAN EU433 band
1093 +* (% style="color:red" %)**EU868**(%%)**:** LoRaWAN EU868 band
1094 +* (% style="color:red" %)**KR920**(%%)**: **LoRaWAN KR920 band
1095 +* (% style="color:red" %)**US915**(%%)**: **LoRaWAN US915 band
1096 +* (% style="color:red" %)**IN865**(%%)**:  **LoRaWAN IN865 band
1097 +* (% style="color:red" %)**CN470**(%%)**: **LoRaWAN CN470 band
1098 +
1099 += 7. Packing Info =
1100 +
1101 +
1102 +**Package Includes**:
1103 +
1104 +* PB01 LoRaWAN Push Button x 1
1105 +
1106 += 8. Support =
1107 +
1108 +* Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1109 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1110 +
1111 +
1112 += 9.  Reference material =
1113 +
1114 +* Datasheet
1115 +* Source Code
1116 +
1117 +
1118 += 10. FCC Warning =
1119 +
1120 +
1121 +This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
1122 +
1123 +(1) This device may not cause harmful interference;
1124 +
1125 +(2) this device must accept any interference received,including interference that may cause undesired operation.
1126 +
image-20240915231842-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +157.4 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0