Version 99.1 by Edwin Chen on 2022/10/06 17:06

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16 = 1.Introduction =
17
18
19 == 1.1 What is LT Series I/O Controller ==
20
21 (((
22
23
24 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 )))
26
27 (((
28 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
29 )))
30
31 (((
32 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
33 )))
34
35 (((
36 The use environment includes:
37 )))
38
39 (((
40 1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
41 )))
42
43 (((
44 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
45
46
47 )))
48
49 (((
50 [[image:1653295757274-912.png]]
51
52
53 )))
54
55
56 == 1.2  Specifications ==
57
58 (((
59
60
61 (% style="color:#037691" %)**Hardware System:**
62 )))
63
64 * (((
65 STM32L072CZT6 MCU
66 )))
67 * (((
68 SX1276/78 Wireless Chip 
69 )))
70 * (((
71 (((
72 Power Consumption:
73 )))
74
75 * (((
76 Idle: 4mA@12v
77 )))
78 * (((
79 20dB Transmit: 34mA@12v
80 )))
81 )))
82
83 (((
84
85
86 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
87 )))
88
89 * (((
90 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
91 )))
92 * (((
93 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
94 )))
95 * (((
96 2 x Relay Output (5A@250VAC / 30VDC)
97 )))
98 * (((
99 2 x 0~~20mA Analog Input (res:0.01mA)
100 )))
101 * (((
102 2 x 0~~30V Analog Input (res:0.01v)
103 )))
104 * (((
105 Power Input 7~~ 24V DC. 
106 )))
107
108 (((
109
110
111 (% style="color:#037691" %)**LoRa Spec:**
112 )))
113
114 * (((
115 (((
116 Frequency Range:
117 )))
118
119 * (((
120 Band 1 (HF): 862 ~~ 1020 Mhz
121 )))
122 * (((
123 Band 2 (LF): 410 ~~ 528 Mhz
124 )))
125 )))
126 * (((
127 168 dB maximum link budget.
128 )))
129 * (((
130 +20 dBm - 100 mW constant RF output vs.
131 )))
132 * (((
133 +14 dBm high efficiency PA.
134 )))
135 * (((
136 Programmable bit rate up to 300 kbps.
137 )))
138 * (((
139 High sensitivity: down to -148 dBm.
140 )))
141 * (((
142 Bullet-proof front end: IIP3 = -12.5 dBm.
143 )))
144 * (((
145 Excellent blocking immunity.
146 )))
147 * (((
148 Low RX current of 10.3 mA, 200 nA register retention.
149 )))
150 * (((
151 Fully integrated synthesizer with a resolution of 61 Hz.
152 )))
153 * (((
154 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
155 )))
156 * (((
157 Built-in bit synchronizer for clock recovery.
158 )))
159 * (((
160 Preamble detection.
161 )))
162 * (((
163 127 dB Dynamic Range RSSI.
164 )))
165 * (((
166 Automatic RF Sense and CAD with ultra-fast AFC.
167 )))
168 * (((
169 Packet engine up to 256 bytes with CRC.
170
171
172
173
174 )))
175
176 == 1.3 Features ==
177
178
179 * LoRaWAN Class A & Class C protocol
180 * Optional Customized LoRa Protocol
181 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
182 * AT Commands to change parameters
183 * Remote configure parameters via LoRa Downlink
184 * Firmware upgradable via program port
185 * Counting
186
187
188
189 == 1.4  Applications ==
190
191
192 * Smart Buildings & Home Automation
193 * Logistics and Supply Chain Management
194 * Smart Metering
195 * Smart Agriculture
196 * Smart Cities
197 * Smart Factory
198
199
200
201 == 1.5 Hardware Variants ==
202
203
204 (% border="1" style="background-color:#f7faff; width:500px" %)
205 |(% style="width:103px" %)**Model**|(% style="width:131px" %)**Photo**|(% style="width:334px" %)**Description**
206 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)[[image:1653296302983-697.png]]|(% style="width:334px" %)(((
207 * 2 x Digital Input (Bi-direction)
208 * 2 x Digital Output
209 * 2 x Relay Output (5A@250VAC / 30VDC)
210 * 2 x 0~~20mA Analog Input (res:0.01mA)
211 * 2 x 0~~30V Analog Input (res:0.01v)
212 * 1 x Counting Port
213 )))
214
215
216
217 = 2. Power ON Device =
218
219
220 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
221
222 (((
223 PWR will on when device is properly powered.
224
225
226 )))
227
228 [[image:1653297104069-180.png]]
229
230
231
232 = 3. Operation Mode =
233
234
235 == 3.1 How it works? ==
236
237
238 (((
239 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
240 )))
241
242 (((
243 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
244 )))
245
246
247
248 == 3.2 Example to join LoRaWAN network ==
249
250
251 (((
252 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
253
254
255 )))
256
257 [[image:image-20220523172350-1.png||height="266" width="864"]]
258
259
260 (((
261 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
262
263
264 )))
265
266 (((
267 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
268 )))
269
270 (((
271 Each LT is shipped with a sticker with the default device EUI as below:
272 )))
273
274 [[image:1653297924498-393.png]]
275
276
277 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
278
279 Add APP EUI in the application.
280
281 [[image:1653297955910-247.png||height="321" width="716"]]
282
283
284 Add APP KEY and DEV EUI
285
286 [[image:1653298023685-319.png]]
287
288
289
290 (((
291 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
292 )))
293
294 [[image:1653298044601-602.png||height="405" width="709"]]
295
296
297
298 == 3.3 Uplink Payload ==
299
300
301 There are five working modes + one interrupt mode on LT for different type application:
302
303 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
304 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
305 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
306 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
307 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
308 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
309
310
311
312 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
313
314
315 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default.
316
317 [[image:image-20220523174024-3.png]]
318
319 (((
320
321
322 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
323 )))
324
325 [[image:image-20220523174254-4.png]]
326
327 * RO is for relay. ROx=1 : close,ROx=0 always open.
328 * DI is for digital input. DIx=1: high or float, DIx=0: low.
329 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
330
331
332 (% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
333
334 For example if payload is: [[image:image-20220523175847-2.png]]
335
336
337 **The value for the interface is:  **
338
339 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
340
341 AVI2 channel voltage is 0x04AC/1000=1.196V
342
343 ACI1 channel current is 0x1310/1000=4.880mA
344
345 ACI2 channel current is 0x1300/1000=4.864mA
346
347 The last byte 0xAA= 10101010(B) means
348
349 * [1] RO1 relay channel is close and the RO1 LED is ON.
350 * [0] RO2 relay channel is open and RO2 LED is OFF;
351
352
353 **LT22222-L:**
354
355 * [1] DI2 channel is high input and DI2 LED is ON;
356 * [0] DI1 channel is low input;
357
358 * [0] DO3 channel output state
359 ** DO3 is float in case no load between DO3 and V+.;
360 ** DO3 is high in case there is load between DO3 and V+.
361 ** DO3 LED is off in both case
362 * [1] DO2 channel output is low and DO2 LED is ON.
363 * [0] DO1 channel output state
364 ** DO1 is float in case no load between DO1 and V+.;
365 ** DO1 is high in case there is load between DO1 and V+.
366 ** DO1 LED is off in both case
367
368
369
370
371 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
372
373
374 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
375
376 (((
377 Total : 11 bytes payload
378 )))
379
380 [[image:image-20220523180452-3.png]]
381
382
383 (((
384 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
385 )))
386
387 [[image:image-20220523180506-4.png]]
388
389 * RO is for relay. ROx=1 : close,ROx=0 always open.
390 * FIRST: Indicate this is the first packet after join network.
391 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
392
393 (((
394 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
395 )))
396
397 (((
398
399
400 **To use counting mode, please run:**
401 )))
402
403 (% class="box infomessage" %)
404 (((
405 (((
406 **AT+MOD=2**
407
408 **ATZ**
409 )))
410 )))
411
412 (((
413
414
415 (% style="color:#4f81bd" %)**AT Commands for counting:**
416
417
418 )))
419
420 (((
421 **For LT22222-L:**
422
423
424 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
425
426 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
427
428 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
429
430 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
431
432 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
433
434 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
435 )))
436
437
438
439 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
440
441
442 **LT22222-L**: This mode the DI1 is used as a counting pin.
443
444 [[image:image-20220523181246-5.png]]
445
446 (((
447
448
449 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
450 )))
451
452 [[image:image-20220523181301-6.png]]
453
454 * RO is for relay. ROx=1 : close,ROx=0 always open.
455 * FIRST: Indicate this is the first packet after join network.
456 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
457
458 (((
459 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
460 )))
461
462
463 (((
464 **To use counting mode, please run:**
465 )))
466
467 (% class="box infomessage" %)
468 (((
469 (((
470 **AT+MOD=3**
471
472 **ATZ**
473 )))
474 )))
475
476 (((
477 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
478 )))
479
480
481
482 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
483
484
485 **LT22222-L**: This mode the DI1 is used as a counting pin.
486
487 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
488
489 [[image:image-20220523181903-8.png]]
490
491
492 (((
493 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
494 )))
495
496 [[image:image-20220523181727-7.png]]
497
498 * RO is for relay. ROx=1 : close,ROx=0 always open.
499 * FIRST: Indicate this is the first packet after join network.
500 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
501
502 (((
503 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
504 )))
505
506 (((
507
508
509 **To use this mode, please run:**
510 )))
511
512 (% class="box infomessage" %)
513 (((
514 (((
515 **AT+MOD=4**
516
517 **ATZ**
518 )))
519 )))
520
521
522
523 (((
524 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
525 )))
526
527 (((
528
529
530 **Plus below command for AVI1 Counting:**
531
532
533 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
534
535 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
536
537 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
538
539 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
540 )))
541
542
543
544 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
545
546
547 **LT22222-L**: This mode the DI1 is used as a counting pin.
548
549 [[image:image-20220523182334-9.png]]
550
551 (((
552
553
554 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
555 )))
556
557 * RO is for relay. ROx=1 : close,ROx=0 always open.
558 * FIRST: Indicate this is the first packet after join network.
559 * (((
560 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
561 )))
562
563 (((
564 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
565 )))
566
567 (((
568
569
570 **To use this mode, please run:**
571 )))
572
573 (% class="box infomessage" %)
574 (((
575 (((
576 **AT+MOD=5**
577
578 **ATZ**
579 )))
580 )))
581
582 (((
583 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
584 )))
585
586
587
588 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
589
590
591 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
592
593 For example, if user has configured below commands:
594
595 * **AT+MOD=1 ** **~-~->**  The normal working mode
596 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
597
598
599 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
600
601 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
602 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
603
604
605
606 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
607
608
609 (% style="color:#4f81bd" %)**Trigger base on voltage**:
610
611 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
612
613
614 **Example:**
615
616 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
617
618 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
619
620
621
622 (% style="color:#4f81bd" %)**Trigger base on current**:
623
624 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
625
626
627 **Example:**
628
629 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
630
631
632
633 (% style="color:#4f81bd" %)**Trigger base on DI status**:
634
635 DI status trigger Flag.
636
637 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
638
639
640 **Example:**
641
642 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
643
644
645
646 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
647
648 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
649
650 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
651
652 AA: Code for this downlink Command:
653
654 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
655
656 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
657
658 yy2 yy2: AC1 or AV1 high limit.
659
660 yy3 yy3: AC2 or AV2 low limit.
661
662 Yy4 yy4: AC2 or AV2 high limit.
663
664
665 **Example1**: AA 00 13 88 00 00 00 00 00 00
666
667 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
668
669
670 **Example2**: AA 02 01 00
671
672 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
673
674
675
676 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
677
678 MOD6 Payload : total 11 bytes payload
679
680 [[image:image-20220524085923-1.png]]
681
682
683 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
684
685 [[image:image-20220524090106-2.png]]
686
687 * Each bits shows if the corresponding trigger has been configured.
688
689
690 **Example:**
691
692 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
693
694
695
696 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
697
698 [[image:image-20220524090249-3.png]]
699
700 * Each bits shows which status has been trigger on this uplink.
701
702
703 **Example:**
704
705 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
706
707
708
709 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
710
711 [[image:image-20220524090456-4.png]]
712
713 * Each bits shows which status has been trigger on this uplink.
714
715
716 **Example:**
717
718 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
719
720 00000101: Means both DI1 and DI2 trigger are enabled.
721
722
723
724 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
725
726 Downlink command to poll MOD6 status:
727
728 **AB 06**
729
730 When device got this command, it will send the MOD6 payload.
731
732
733
734
735 === 3.3.7 Payload Decoder ===
736
737 (((
738
739
740 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/www.dropbox.com/sh/wtrzu7avdtkmn3z/AACK5NwOMkU9jnvf1uCMuqrVa?dl=0>>https://www.dropbox.com/sh/wtrzu7avdtkmn3z/AACK5NwOMkU9jnvf1uCMuqrVa?dl=0]]
741 )))
742
743
744
745 == 3.4 ​Configure LT via AT or Downlink ==
746
747
748 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
749
750 (((
751 There are two kinds of Commands:
752 )))
753
754 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
755
756 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
757
758
759
760 === 3.4.1 Common Commands ===
761
762
763 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
764
765
766
767 === 3.4.2 Sensor related commands ===
768
769
770 ==== 3.4.2.1 Set Transmit Interval ====
771
772
773 Set device uplink interval.
774
775 * (% style="color:#037691" %)**AT Command:**
776
777 **AT+TDC=N **
778
779
780 **Example: **AT+TDC=30000. Means set interval to 30 seconds
781
782
783 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
784
785 **0x01 aa bb cc     ~/~/ Same as AT+TDC=0x(aa bb cc)**
786
787
788
789
790 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
791
792
793 Set work mode.
794
795 * (% style="color:#037691" %)**AT Command:**
796
797 **AT+MOD=N  **
798
799
800 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
801
802
803 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
804
805 **0x0A aa    ** ~/~/ Same as AT+MOD=aa
806
807
808
809
810 ==== 3.4.2.3 Poll an uplink ====
811
812
813 * (% style="color:#037691" %)**AT Command:**
814
815 There is no AT Command to poll uplink
816
817
818 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
819
820 **0x08 FF     **~/~/ Poll an uplink
821
822
823 **Example**: 0x08FF, ask device to send an Uplink
824
825
826
827
828 ==== 3.4.2.4 Enable Trigger Mode ====
829
830
831 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
832
833 * (% style="color:#037691" %)**AT Command:**
834
835 **AT+ADDMOD6=1 or 0**
836
837 1: Enable Trigger Mode
838
839 0: Disable Trigger Mode
840
841
842 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
843
844 **0x0A 06 aa    ** ~/~/ Same as AT+ADDMOD6=aa
845
846
847
848
849 ==== 3.4.2.5 Poll trigger settings ====
850
851
852 Poll trigger settings,
853
854 * (% style="color:#037691" %)**AT Command:**
855
856 There is no AT Command for this feature.
857
858
859 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
860
861 **0xAB 06         **~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
862
863
864
865
866 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
867
868
869 Enable Disable DI1/DI2/DI2 as trigger,
870
871 * (% style="color:#037691" %)**AT Command:**
872
873 **Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
874
875
876 **Example:**
877
878 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
879
880 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
881
882 **0xAA 02 aa bb        **~/~/ Same as AT+DTRI=aa,bb
883
884
885
886
887 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
888
889
890 Set DI1 or DI3(for LT-33222-L) trigger.
891
892 * (% style="color:#037691" %)**AT Command:**
893
894 **AT+TRIG1=a,b**
895
896 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
897
898 b : delay timing.
899
900
901 **Example:**
902
903 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
904
905
906 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
907 * **0x09 01 aa bb cc    ** ~/~/ same as AT+TRIG1=aa,0x(bb cc)
908
909
910
911 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
912
913
914 Set DI2 trigger.
915
916 * (% style="color:#037691" %)**AT Command:**
917
918 **AT+TRIG2=a,b**
919
920
921 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
922
923 b : delay timing.
924
925
926 **Example:**
927
928 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
929
930
931 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
932
933 **0x09 02 aa bb cc           **~/~/ same as AT+TRIG1=aa,0x(bb cc)
934
935
936
937
938 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
939
940
941 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
942
943 * (% style="color:#037691" %)**AT Command**
944
945 **AT+ACLIM**
946
947
948 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
949
950 **0x AA 01 aa bb cc dd ee ff gg hh        ** ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
951
952
953
954
955 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
956
957
958 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
959
960 * (% style="color:#037691" %)**AT Command**
961
962 **AT+AVLIM  See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
963
964
965 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
966
967 **0x AA 00 aa bb cc dd ee ff gg hh    ** ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
968
969
970
971
972 ==== 3.4.2.11 Trigger – Set minimum interval ====
973
974
975 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
976
977 * (% style="color:#037691" %)**AT Command**
978
979 **AT+ATDC=5        ** Device won't response the second trigger within 5 minute after the first trigger.
980
981
982 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
983
984 **0x AC aa bb   ** ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
985
986 (((
987
988
989 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
990 )))
991
992
993
994
995 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
996
997
998 * (% style="color:#037691" %)**AT Command**
999
1000 There is no AT Command to control Digital Output
1001
1002
1003 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1004 * **0x02 aa bb cc     **~/~/ Set DO1/DO2/DO3 output
1005
1006 (((
1007 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1008 )))
1009
1010 (((
1011 01: Low,  00: High ,  11: No action
1012 )))
1013
1014 [[image:image-20220524092754-5.png]]
1015
1016 (((
1017 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1018 )))
1019
1020 (((
1021 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1022 )))
1023
1024
1025
1026
1027 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1028
1029
1030 * (% style="color:#037691" %)**AT Command**
1031
1032 There is no AT Command to control Digital Output
1033
1034
1035 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1036
1037 **0xA9 aa bb cc     **~/~/ Set DO1/DO2/DO3 output with time control
1038
1039
1040 This is to control the digital output time of DO pin. Include four bytes:
1041
1042 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1043
1044 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1045
1046 01: DO pins will change back to original state after timeout.
1047
1048 00: DO pins will change to an inverter state after timeout 
1049
1050
1051 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1052
1053 [[image:image-20220524093238-6.png]]
1054
1055
1056 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1057
1058 [[image:image-20220524093328-7.png]]
1059
1060
1061 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1062
1063 [[image:image-20220524093351-8.png]]
1064
1065
1066 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:
1067
1068 Latching time. Unit: ms
1069
1070 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1071
1072
1073 **Example payload:**
1074
1075 **~1. A9 01 01 01 01 07 D0**
1076
1077 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1078
1079 **2. A9 01 00 01 11 07 D0**
1080
1081 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1082
1083 **3. A9 00 00 00 00 07 D0**
1084
1085 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1086
1087 **4. A9 00 11 01 00 07 D0**
1088
1089 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1090
1091
1092
1093
1094 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1095
1096
1097 * (% style="color:#037691" %)**AT Command:**
1098
1099 There is no AT Command to control Relay Output
1100
1101
1102 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1103
1104 **0x03 aa bb     **~/~/ Set RO1/RO2 output
1105
1106
1107 (((
1108 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1109 )))
1110
1111 (((
1112 01: Close ,  00: Open , 11: No action
1113 )))
1114
1115 (((
1116 [[image:image-20220524093724-9.png]]
1117 )))
1118
1119 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1120
1121
1122
1123
1124 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1125
1126
1127 * (% style="color:#037691" %)**AT Command:**
1128
1129 There is no AT Command to control Relay Output
1130
1131
1132 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1133
1134 **0x05 aa bb cc dd     **~/~/ Set RO1/RO2 relay with time control
1135
1136
1137 This is to control the relay output time of relay. Include four bytes:
1138
1139 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1140
1141 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1142
1143 01: Relays will change back to original state after timeout.
1144
1145 00: Relays will change to an inverter state after timeout
1146
1147
1148 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1149
1150 [[image:image-20220714135731-1.png||height="406" width="627"]]
1151
1152
1153 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1154
1155 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1156
1157
1158 **Example payload:**
1159
1160 **~1. 05 01 11 07 D**
1161
1162 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1163
1164 **2. 05 01 10 07 D0**
1165
1166 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1167
1168 **3. 05 00 01 07 D0**
1169
1170 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1171
1172 **4. 05 00 00 07 D0**
1173
1174 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1175
1176
1177
1178 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1179
1180
1181 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1182
1183 * (% style="color:#037691" %)**AT Command:**
1184
1185 **AT+VOLMAX   ** ~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1186
1187
1188 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1189
1190 **0xA5 aa bb cc   **~/~/ Same as AT+VOLMAX=(aa bb),cc
1191
1192
1193
1194
1195 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1196
1197
1198 * (% style="color:#037691" %)**AT Command:**
1199
1200 **AT+SETCNT=aa,(bb cc dd ee) **
1201
1202 aa: 1: Set count1,
1203
1204 2: Set count2,
1205
1206 3: Set AV1 count
1207
1208 Bb cc dd ee: number to be set
1209
1210
1211 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1212
1213 **0x A8 aa bb cc dd ee     **~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1214
1215
1216
1217
1218 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1219
1220
1221 Clear counting for counting mode
1222
1223 * (% style="color:#037691" %)**AT Command:**
1224
1225 **AT+CLRCOUNT ** ~/~/ clear all counting
1226
1227
1228 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1229
1230 **0x A6 01    ** ~/~/ clear all counting
1231
1232
1233
1234
1235 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1236
1237
1238 * (% style="color:#037691" %)**AT Command:**
1239
1240 **AT+COUTIME=60  **~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1241
1242
1243 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1244
1245 **0x A7 aa bb cc     **~/~/ same as AT+COUTIME =aa bb cc,
1246
1247 (((
1248 range: aa bb cc:0 to 16777215,  (unit:second)
1249
1250
1251
1252
1253 )))
1254
1255 ==== 3.4.2.20 Reset save DR DO state ====
1256
1257
1258 * (% style="color:#037691" %)**AT Command:**
1259
1260 **AT+RODORET=1  **~/~/ RODO will close when the device joining the network. (default)
1261
1262 **AT+RODORET=0  **~/~/After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1263
1264
1265 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1266
1267 **0x AD aa      **~/~/ same as AT+RODORET =aa
1268
1269 (((
1270
1271
1272
1273
1274 ==== 3.4.2.21 Encrypted payload ====
1275
1276
1277 * (% style="color:#037691" %)**AT Command:**
1278
1279 **AT+DECRYPT=1  **~/~/ The payload is uploaded without encryption
1280
1281 **AT+DECRYPT=0  **~/~/Encrypt when uploading payload (default)
1282
1283
1284
1285
1286 ==== 3.4.2.22 Get sensor value ====
1287
1288
1289 * (% style="color:#037691" %)**AT Command:**
1290
1291 **AT+GETSENSORVALUE=0  **~/~/ The serial port gets the reading of the current sensor
1292
1293 **AT+GETSENSORVALUE=1  **~/~/The serial port gets the current sensor reading and uploads it.
1294
1295
1296
1297
1298 ==== 3.4.2.23 Resets the downlink packet count ====
1299
1300
1301 * (% style="color:#037691" %)**AT Command:**
1302
1303 **AT+DISFCNTCHECK=0  **~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1304
1305 **AT+DISFCNTCHECK=1  **~/~/When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1306
1307
1308
1309
1310 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1311
1312
1313 * (% style="color:#037691" %)**AT Command:**
1314
1315 **AT+DISMACANS=0**  ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1316
1317 **AT+DISMACANS=1**      ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1318
1319
1320 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1321
1322 **0x21 00 01 ** ~/~/ Set  the DISMACANS=1
1323
1324
1325
1326
1327 ==== 3.4.2.25 Copy downlink to uplink ====
1328
1329
1330 * (% style="color:#037691" %)**AT Command**(%%)**:**
1331
1332 **AT+RPL=5**  ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1333
1334 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1335
1336 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1337
1338 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1339
1340 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1341
1342 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1343
1344
1345
1346 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1347
1348
1349 * (((
1350 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1351
1352 **26 01  ** ~/~/ Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1353
1354
1355 )))
1356
1357 **Example:**
1358
1359 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1360
1361
1362
1363 )))
1364
1365 == 3.5 Integrate with Mydevice ==
1366
1367
1368 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1369
1370 (((
1371 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1372 )))
1373
1374 (((
1375 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1376
1377
1378 )))
1379
1380 [[image:image-20220719105525-1.png||height="377" width="677"]]
1381
1382
1383
1384 [[image:image-20220719110247-2.png||height="388" width="683"]]
1385
1386
1387 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1388
1389 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1390
1391 Search under The things network
1392
1393 [[image:1653356838789-523.png||height="337" width="740"]]
1394
1395
1396
1397 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1398
1399 [[image:image-20220524094909-1.png||height="335" width="729"]]
1400
1401
1402 [[image:image-20220524094909-2.png||height="337" width="729"]]
1403
1404
1405 [[image:image-20220524094909-3.png||height="338" width="727"]]
1406
1407
1408 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1409
1410
1411 [[image:image-20220524094909-5.png||height="341" width="734"]]
1412
1413
1414
1415 == 3.6 Interface Detail ==
1416
1417
1418 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1419
1420
1421 Support NPN Type sensor
1422
1423 [[image:1653356991268-289.png]]
1424
1425
1426
1427 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1428
1429
1430 (((
1431 The DI port of LT-22222-L can support NPN or PNP output sensor.
1432 )))
1433
1434 (((
1435 (((
1436 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high.
1437
1438
1439 )))
1440 )))
1441
1442 [[image:1653357170703-587.png]]
1443
1444 (((
1445 (((
1446 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1447 )))
1448 )))
1449
1450 (((
1451
1452 )))
1453
1454 (((
1455 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1456 )))
1457
1458 (((
1459 This type of sensor will output a low signal GND when active.
1460 )))
1461
1462 * (((
1463 Connect sensor's output to DI1-
1464 )))
1465 * (((
1466 Connect sensor's VCC to DI1+.
1467 )))
1468
1469 (((
1470 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1471 )))
1472
1473 (((
1474 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1475 )))
1476
1477 (((
1478 If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1479 )))
1480
1481 (((
1482
1483
1484
1485 )))
1486
1487 (((
1488 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1489 )))
1490
1491 (((
1492 This type of sensor will output a high signal (example 24v) when active.
1493 )))
1494
1495 * (((
1496 Connect sensor's output to DI1+
1497 )))
1498 * (((
1499 Connect sensor's GND DI1-.
1500 )))
1501
1502 (((
1503 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1504 )))
1505
1506 (((
1507 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1508 )))
1509
1510 (((
1511 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1512 )))
1513
1514 (((
1515
1516
1517
1518 )))
1519
1520 (((
1521 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1522 )))
1523
1524 (((
1525 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1526 )))
1527
1528 * (((
1529 Connect sensor's output to DI1+ with a serial 50K resistor
1530 )))
1531 * (((
1532 Connect sensor's GND DI1-.
1533 )))
1534
1535 (((
1536 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1537 )))
1538
1539 (((
1540 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1541 )))
1542
1543 (((
1544 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1545 )))
1546
1547
1548
1549 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1550
1551
1552 NPN output: GND or Float. Max voltage can apply to output pin is 36v.
1553
1554 [[image:1653357531600-905.png]]
1555
1556
1557
1558 === 3.6.4 Analog Input Interface ===
1559
1560
1561 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1562
1563
1564 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1565
1566 [[image:1653357592296-182.png]]
1567
1568 Example to connect a 4~~20mA sensor
1569
1570 We take the wind speed sensor as an example for reference only.
1571
1572
1573 **Specifications of the wind speed sensor:**
1574
1575 Red:  12~~24v
1576
1577 Yellow:  4~~20mA
1578
1579 Black:  GND
1580
1581
1582 **Connection diagram:**
1583
1584 [[image:1653357640609-758.png]]
1585
1586 [[image:1653357648330-671.png||height="155" width="733"]]
1587
1588
1589
1590 === 3.6.5 Relay Output ===
1591
1592
1593 (((
1594 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device’s Power Line to in serial of RO1_1 and RO_2. Such as below:
1595 )))
1596
1597 [[image:image-20220524100215-9.png]]
1598
1599
1600 [[image:image-20220524100215-10.png||height="382" width="723"]]
1601
1602
1603
1604 == 3.7 LEDs Indicators ==
1605
1606
1607 [[image:image-20220524100748-11.png]]
1608
1609
1610
1611 = 4. Use AT Command =
1612
1613
1614 == 4.1 Access AT Command ==
1615
1616
1617 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1618
1619 [[image:1653358238933-385.png]]
1620
1621
1622 (((
1623 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1624 )))
1625
1626 [[image:1653358355238-883.png]]
1627
1628
1629 (((
1630 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1631 )))
1632
1633 (((
1634 AT+<CMD>?        : Help on <CMD>
1635 )))
1636
1637 (((
1638 AT+<CMD>         : Run <CMD>
1639 )))
1640
1641 (((
1642 AT+<CMD>=<value> : Set the value
1643 )))
1644
1645 (((
1646 AT+<CMD>=?       : Get the value
1647 )))
1648
1649 (((
1650 ATZ: Trig a reset of the MCU
1651 )))
1652
1653 (((
1654 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1655 )))
1656
1657 (((
1658 AT+DEUI: Get or Set the Device EUI
1659 )))
1660
1661 (((
1662 AT+DADDR: Get or Set the Device Address
1663 )))
1664
1665 (((
1666 AT+APPKEY: Get or Set the Application Key
1667 )))
1668
1669 (((
1670 AT+NWKSKEY: Get or Set the Network Session Key
1671 )))
1672
1673 (((
1674 AT+APPSKEY: Get or Set the Application Session Key
1675 )))
1676
1677 (((
1678 AT+APPEUI: Get or Set the Application EUI
1679 )))
1680
1681 (((
1682 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1683 )))
1684
1685 (((
1686 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1687 )))
1688
1689 (((
1690 AT+DR: Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1691 )))
1692
1693 (((
1694 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1695 )))
1696
1697 (((
1698 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1699 )))
1700
1701 (((
1702 AT+RX2FQ: Get or Set the Rx2 window frequency
1703 )))
1704
1705 (((
1706 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1707 )))
1708
1709 (((
1710 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1711 )))
1712
1713 (((
1714 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1715 )))
1716
1717 (((
1718 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1719 )))
1720
1721 (((
1722 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1723 )))
1724
1725 (((
1726 AT+NJM: Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1727 )))
1728
1729 (((
1730 AT+NWKID: Get or Set the Network ID
1731 )))
1732
1733 (((
1734 AT+FCU: Get or Set the Frame Counter Uplink
1735 )))
1736
1737 (((
1738 AT+FCD: Get or Set the Frame Counter Downlink
1739 )))
1740
1741 (((
1742 AT+CLASS: Get or Set the Device Class
1743 )))
1744
1745 (((
1746 AT+JOIN: Join network
1747 )))
1748
1749 (((
1750 AT+NJS: Get OTAA Join Status
1751 )))
1752
1753 (((
1754 AT+SENDB: Send hexadecimal data along with the application port
1755 )))
1756
1757 (((
1758 AT+SEND: Send text data along with the application port
1759 )))
1760
1761 (((
1762 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1763 )))
1764
1765 (((
1766 AT+RECV: Print last received data in raw format
1767 )))
1768
1769 (((
1770 AT+VER: Get current image version and Frequency Band
1771 )))
1772
1773 (((
1774 AT+CFM: Get or Set the confirmation mode (0-1)
1775 )))
1776
1777 (((
1778 AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1779 )))
1780
1781 (((
1782 AT+SNR: Get the SNR of the last received packet
1783 )))
1784
1785 (((
1786 AT+RSSI: Get the RSSI of the last received packet
1787 )))
1788
1789 (((
1790 AT+TDC: Get or set the application data transmission interval in ms
1791 )))
1792
1793 (((
1794 AT+PORT: Get or set the application port
1795 )))
1796
1797 (((
1798 AT+DISAT: Disable AT commands
1799 )))
1800
1801 (((
1802 AT+PWORD: Set password, max 9 digits
1803 )))
1804
1805 (((
1806 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1807 )))
1808
1809 (((
1810 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1811 )))
1812
1813 (((
1814 AT+CFG: Print all settings
1815 )))
1816
1817
1818
1819 == 4.2 Common AT Command Sequence ==
1820
1821
1822 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1823
1824 (((
1825
1826
1827 **If device has not joined network yet:**
1828 )))
1829
1830 (((
1831 (% style="background-color:#dcdcdc" %)123456
1832 )))
1833
1834 (((
1835 (% style="background-color:#dcdcdc" %)AT+FDR
1836 )))
1837
1838 (((
1839 (% style="background-color:#dcdcdc" %)123456
1840 )))
1841
1842 (((
1843 (% style="background-color:#dcdcdc" %)AT+NJM=0
1844 )))
1845
1846 (((
1847 (% style="background-color:#dcdcdc" %)ATZ
1848 )))
1849
1850
1851 (((
1852 **If device already joined network:**
1853 )))
1854
1855 (((
1856 (% style="background-color:#dcdcdc" %)AT+NJM=0
1857 )))
1858
1859 (((
1860 (% style="background-color:#dcdcdc" %)ATZ
1861 )))
1862
1863
1864
1865 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1866
1867 (((
1868
1869
1870 (% style="background-color:#dcdcdc" %)123456(%%)  Enter Password to have AT access.
1871 )))
1872
1873 (((
1874 (% style="background-color:#dcdcdc" %) AT+FDR(%%)   Reset Parameters to Factory Default, Keys Reserve
1875 )))
1876
1877 (((
1878 (% style="background-color:#dcdcdc" %) 123456(%%)  Enter Password to have AT access.
1879 )))
1880
1881 (((
1882 (% style="background-color:#dcdcdc" %) AT+CLASS=C(%%) Set to work in CLASS C
1883 )))
1884
1885 (((
1886 (% style="background-color:#dcdcdc" %) AT+NJM=0(%%)  Set to ABP mode
1887 )))
1888
1889 (((
1890 (% style="background-color:#dcdcdc" %) AT+ADR=0(%%)  Set the Adaptive Data Rate Off
1891 )))
1892
1893 (((
1894 (% style="background-color:#dcdcdc" %) AT+DR=5(%%)  Set Data Rate
1895 )))
1896
1897 (((
1898 (% style="background-color:#dcdcdc" %) AT+TDC=60000(%%)  Set transmit interval to 60 seconds
1899 )))
1900
1901 (((
1902 (% style="background-color:#dcdcdc" %) AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1903 )))
1904
1905 (((
1906 (% style="background-color:#dcdcdc" %) AT+RX2FQ=868400000(%%)  Set RX2Frequency to 868.4Mhz (according to the result from server)
1907 )))
1908
1909 (((
1910 (% style="background-color:#dcdcdc" %) AT+RX2DR=5(%%)  Set RX2DR to match the downlink DR from server. see below
1911 )))
1912
1913 (((
1914 (% style="background-color:#dcdcdc" %) AT+DADDR=26 01 1A F1 (%%) Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1915 )))
1916
1917 (((
1918 (% style="background-color:#dcdcdc" %) ATZ         (%%) Reset MCU
1919
1920
1921 )))
1922
1923 (((
1924 (% style="color:red" %)**Note:**
1925 )))
1926
1927 (((
1928 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1929 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1930 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1931 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1932
1933
1934 )))
1935
1936 (((
1937 [[image:1653359097980-169.png||height="188" width="729"]]
1938 )))
1939
1940 (((
1941
1942 )))
1943
1944
1945 === 4.2.3 Change to Class A ===
1946
1947
1948 If sensor JOINED
1949 (% style="background-color:#dcdcdc" %)AT+CLASS=A
1950 ATZ
1951
1952
1953
1954 = 5. FAQ =
1955
1956
1957 == 5.1 How to upgrade the image? ==
1958
1959
1960 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1961
1962 * Support new features
1963 * For bug fix
1964 * Change LoRaWAN bands.
1965
1966 Below shows the hardware connection for how to upload an image to the LT:
1967
1968 [[image:1653359603330-121.png]]
1969
1970
1971 (((
1972 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1973 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:https://www.dropbox.com/sh/g99v0fxcltn9r1y/AADKXQ2v5ZT-S3sxdmbvE7UAa/LT-22222-L/image?dl=0&subfolder_nav_tracking=1]].
1974 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
1975
1976
1977 (% style="color:blue" %)**For LT-22222-L**(%%):
1978 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
1979
1980
1981 )))
1982
1983 [[image:image-20220524103407-12.png]]
1984
1985 [[image:image-20220524103429-13.png]]
1986
1987 [[image:image-20220524104033-15.png]]
1988
1989
1990 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1991
1992
1993 [[image:1653360054704-518.png||height="186" width="745"]]
1994
1995
1996 (((
1997 (((
1998
1999
2000 == 5.2 How to change the LoRa Frequency Bands/Region? ==
2001
2002
2003 )))
2004 )))
2005
2006 (((
2007 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2008 )))
2009
2010 (((
2011
2012
2013
2014 == 5.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2015
2016
2017 )))
2018
2019 (((
2020 (((
2021 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2022 )))
2023 )))
2024
2025 (((
2026 (((
2027 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2028
2029
2030
2031 )))
2032 )))
2033
2034 (((
2035 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2036
2037
2038 )))
2039
2040 (((
2041 [[image:1653360231087-571.png||height="401" width="727"]]
2042
2043
2044 )))
2045
2046 (((
2047 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2048 )))
2049
2050
2051
2052 (((
2053 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2054
2055
2056 )))
2057
2058 (((
2059 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
2060 (% style="background-color:#dcdcdc" %)AT+FDR(%%)  Reset Parameters to Factory Default, Keys Reserve
2061 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
2062 (% style="background-color:#dcdcdc" %)AT+NJM=0 (%%) Set to ABP mode
2063 (% style="background-color:#dcdcdc" %)AT+ADR=0 (%%) Set the Adaptive Data Rate Off
2064 (% style="background-color:#dcdcdc" %)AT+DR=5 (%%) Set Data Rate (Set AT+DR=3 for 915 band)
2065 (% style="background-color:#dcdcdc" %)AT+TDC=60000 (%%) Set transmit interval to 60 seconds
2066 (% style="background-color:#dcdcdc" %)AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
2067 (% style="background-color:#dcdcdc" %)AT+DADDR=26 01 1A F1(%%)  Set Device Address to 26 01 1A F1
2068 (% style="background-color:#dcdcdc" %)ATZ        (%%) Reset MCU
2069 )))
2070
2071
2072 (((
2073 As shown in below:
2074 )))
2075
2076 [[image:1653360498588-932.png||height="485" width="726"]]
2077
2078
2079
2080 == 5.4 Can I see counting event in Serial? ==
2081
2082
2083 (((
2084 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2085
2086
2087
2088 == 5.5 Can i use point to point communication for LT-22222-L? ==
2089
2090
2091 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]
2092
2093
2094
2095 )))
2096
2097 (((
2098 == 5.6 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2099
2100
2101 If the device is not shut down, but directly powered off.
2102
2103 It will default that this is a power-off state.
2104
2105 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2106
2107 After restart, the status before power failure will be read from flash.
2108
2109
2110 == 5.7 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2111
2112 LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2113
2114 [[image:image-20221006170630-1.png||height="610" width="945"]]
2115
2116
2117
2118
2119 = 6. Trouble Shooting =
2120
2121
2122 )))
2123
2124 (((
2125 (((
2126 == 6.1 Downlink doesn't work, how to solve it? ==
2127
2128
2129 )))
2130 )))
2131
2132 (((
2133 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2134 )))
2135
2136 (((
2137
2138
2139
2140 == 6.2 Have trouble to upload image. ==
2141
2142
2143 )))
2144
2145 (((
2146 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2147 )))
2148
2149 (((
2150
2151
2152
2153 == 6.3 Why I can't join TTN in US915 /AU915 bands? ==
2154
2155
2156 )))
2157
2158 (((
2159 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2160 )))
2161
2162
2163
2164 = 7. Order Info =
2165
2166
2167 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2168
2169 (% style="color:#4f81bd" %)**XXX:**
2170
2171 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2172 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2173 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2174 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2175 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2176 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2177 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2178 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2179 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2180
2181
2182
2183 = 8. Packing Info =
2184
2185
2186 **Package Includes**:
2187
2188 * LT-22222-L I/O Controller x 1
2189 * Stick Antenna for LoRa RF part x 1
2190 * Bracket for controller x1
2191 * Program cable x 1
2192
2193 **Dimension and weight**:
2194
2195 * Device Size: 13.5 x 7 x 3 cm
2196 * Device Weight: 105g
2197 * Package Size / pcs : 14.5 x 8 x 5 cm
2198 * Weight / pcs : 170g
2199
2200
2201
2202 = 9. Support =
2203
2204
2205 * (((
2206 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2207 )))
2208 * (((
2209 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2210
2211
2212
2213
2214 )))
2215
2216 = 10. Reference​​​​​ =
2217
2218
2219 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2220 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2221 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0