Version 95.1 by Bei Jinggeng on 2022/08/24 15:58

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16 = 1.Introduction =
17
18 == 1.1 What is LT Series I/O Controller ==
19
20 (((
21
22
23 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
24 )))
25
26 (((
27 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
28 )))
29
30 (((
31 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
32 )))
33
34 (((
35 The use environment includes:
36 )))
37
38 (((
39 1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
40 )))
41
42 (((
43 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
44
45
46 )))
47
48 (((
49 [[image:1653295757274-912.png]]
50
51
52 )))
53
54
55 == 1.2  Specifications ==
56
57 (((
58
59
60 **Hardware System:**
61 )))
62
63 * (((
64 STM32L072CZT6 MCU
65 )))
66 * (((
67 SX1276/78 Wireless Chip 
68 )))
69 * (((
70 (((
71 Power Consumption:
72 )))
73
74 * (((
75 Idle: 4mA@12v
76 )))
77 * (((
78 20dB Transmit: 34mA@12v
79 )))
80 )))
81
82 (((
83
84
85 **Interface for Model: LT22222-L:**
86 )))
87
88 * (((
89 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
90 )))
91 * (((
92 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
93 )))
94 * (((
95 2 x Relay Output (5A@250VAC / 30VDC)
96 )))
97 * (((
98 2 x 0~~20mA Analog Input (res:0.01mA)
99 )))
100 * (((
101 2 x 0~~30V Analog Input (res:0.01v)
102 )))
103 * (((
104 Power Input 7~~ 24V DC. 
105 )))
106
107 (((
108
109
110 **LoRa Spec:**
111 )))
112
113 * (((
114 (((
115 Frequency Range:
116 )))
117
118 * (((
119 Band 1 (HF): 862 ~~ 1020 Mhz
120 )))
121 * (((
122 Band 2 (LF): 410 ~~ 528 Mhz
123 )))
124 )))
125 * (((
126 168 dB maximum link budget.
127 )))
128 * (((
129 +20 dBm - 100 mW constant RF output vs.
130 )))
131 * (((
132 +14 dBm high efficiency PA.
133 )))
134 * (((
135 Programmable bit rate up to 300 kbps.
136 )))
137 * (((
138 High sensitivity: down to -148 dBm.
139 )))
140 * (((
141 Bullet-proof front end: IIP3 = -12.5 dBm.
142 )))
143 * (((
144 Excellent blocking immunity.
145 )))
146 * (((
147 Low RX current of 10.3 mA, 200 nA register retention.
148 )))
149 * (((
150 Fully integrated synthesizer with a resolution of 61 Hz.
151 )))
152 * (((
153 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
154 )))
155 * (((
156 Built-in bit synchronizer for clock recovery.
157 )))
158 * (((
159 Preamble detection.
160 )))
161 * (((
162 127 dB Dynamic Range RSSI.
163 )))
164 * (((
165 Automatic RF Sense and CAD with ultra-fast AFC.
166 )))
167 * (((
168 Packet engine up to 256 bytes with CRC.
169
170
171
172
173 )))
174
175 == 1.3 Features ==
176
177
178 * LoRaWAN Class A & Class C protocol
179 * Optional Customized LoRa Protocol
180 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
181 * AT Commands to change parameters
182 * Remote configure parameters via LoRa Downlink
183 * Firmware upgradable via program port
184 * Counting
185
186 == 1.4  Applications ==
187
188
189 * Smart Buildings & Home Automation
190 * Logistics and Supply Chain Management
191 * Smart Metering
192 * Smart Agriculture
193 * Smart Cities
194 * Smart Factory
195
196 == 1.5 Hardware Variants ==
197
198
199 (% border="1" style="background-color:#f7faff; width:500px" %)
200 |(% style="width:103px" %)**Model**|(% style="width:131px" %)**Photo**|(% style="width:334px" %)**Description**
201 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)[[image:1653296302983-697.png]]|(% style="width:334px" %)(((
202 * 2 x Digital Input (Bi-direction)
203 * 2 x Digital Output
204 * 2 x Relay Output (5A@250VAC / 30VDC)
205 * 2 x 0~~20mA Analog Input (res:0.01mA)
206 * 2 x 0~~30V Analog Input (res:0.01v)
207 * 1 x Counting Port
208 )))
209
210 = 2. Power ON Device =
211
212
213 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
214
215 (((
216 PWR will on when device is properly powered.
217 )))
218
219 [[image:1653297104069-180.png]]
220
221
222
223 = 3. Operation Mode =
224
225 == 3.1 How it works? ==
226
227
228 (((
229 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
230 )))
231
232 (((
233 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
234 )))
235
236
237
238 == 3.2 Example to join LoRaWAN network ==
239
240
241 (((
242 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
243
244
245 )))
246
247 [[image:image-20220523172350-1.png||height="266" width="864"]]
248
249
250 (((
251 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
252
253
254 )))
255
256 (((
257 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
258 )))
259
260 (((
261 Each LT is shipped with a sticker with the default device EUI as below:
262 )))
263
264 [[image:1653297924498-393.png]]
265
266
267 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
268
269 Add APP EUI in the application.
270
271 [[image:1653297955910-247.png||height="321" width="716"]]
272
273
274 Add APP KEY and DEV EUI
275
276 [[image:1653298023685-319.png]]
277
278
279
280 (((
281 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
282 )))
283
284 [[image:1653298044601-602.png||height="405" width="709"]]
285
286
287
288 == 3.3 Uplink Payload ==
289
290
291 There are five working modes + one interrupt mode on LT for different type application:
292
293 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
294 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
295 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
296 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
297 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
298 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
299
300 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
301
302
303 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default.
304
305 [[image:image-20220523174024-3.png]]
306
307 (((
308
309
310 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
311 )))
312
313 [[image:image-20220523174254-4.png]]
314
315 * RO is for relay. ROx=1 : close,ROx=0 always open.
316 * DI is for digital input. DIx=1: high or float, DIx=0: low.
317 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
318
319 (% style="color:red" %)Note: DI3 and DO3 bit are not valid for LT-22222-L
320
321 For example if payload is: [[image:image-20220523175847-2.png]]
322
323
324 **The value for the interface is:  **
325
326 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
327
328 AVI2 channel voltage is 0x04AC/1000=1.196V
329
330 ACI1 channel current is 0x1310/1000=4.880mA
331
332 ACI2 channel current is 0x1300/1000=4.864mA
333
334 The last byte 0xAA= 10101010(B) means
335
336 * [1] RO1 relay channel is close and the RO1 LED is ON.
337 * [0] RO2 relay channel is open and RO2 LED is OFF;
338
339 **LT22222-L:**
340
341 * [1] DI2 channel is high input and DI2 LED is ON;
342 * [0] DI1 channel is low input;
343
344 * [0] DO3 channel output state
345 ** DO3 is float in case no load between DO3 and V+.;
346 ** DO3 is high in case there is load between DO3 and V+.
347 ** DO3 LED is off in both case
348 * [1] DO2 channel output is low and DO2 LED is ON.
349 * [0] DO1 channel output state
350 ** DO1 is float in case no load between DO1 and V+.;
351 ** DO1 is high in case there is load between DO1 and V+.
352 ** DO1 LED is off in both case
353
354 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
355
356
357 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
358
359 (((
360 Total : 11 bytes payload
361 )))
362
363 [[image:image-20220523180452-3.png]]
364
365
366 (((
367 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
368 )))
369
370 [[image:image-20220523180506-4.png]]
371
372 * RO is for relay. ROx=1 : close,ROx=0 always open.
373 * FIRST: Indicate this is the first packet after join network.
374 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
375
376 (((
377 (% style="color:red" %)Note: DO3 bit is not valid for LT-22222-L.
378 )))
379
380 (((
381
382
383 **To use counting mode, please run:**
384 )))
385
386 (% class="box infomessage" %)
387 (((
388 (((
389 **AT+MOD=2**
390
391 **ATZ**
392 )))
393 )))
394
395 (((
396
397
398 (% style="color:#4f81bd" %)**AT Commands for counting:**
399 )))
400
401 (((
402 **For LT22222-L:**
403
404
405 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
406
407 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
408
409 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
410
411 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
412
413 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
414
415 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
416 )))
417
418
419
420 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
421
422
423 **LT22222-L**: This mode the DI1 is used as a counting pin.
424
425 [[image:image-20220523181246-5.png]]
426
427 (((
428
429
430 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
431 )))
432
433 [[image:image-20220523181301-6.png]]
434
435 * RO is for relay. ROx=1 : close,ROx=0 always open.
436 * FIRST: Indicate this is the first packet after join network.
437 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
438
439 (((
440 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
441 )))
442
443
444 (((
445 **To use counting mode, please run:**
446 )))
447
448 (% class="box infomessage" %)
449 (((
450 (((
451 **AT+MOD=3**
452
453 **ATZ**
454 )))
455 )))
456
457 (((
458 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
459 )))
460
461
462
463 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
464
465
466 **LT22222-L**: This mode the DI1 is used as a counting pin.
467
468 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
469
470 [[image:image-20220523181903-8.png]]
471
472
473 (((
474 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
475 )))
476
477 [[image:image-20220523181727-7.png]]
478
479 * RO is for relay. ROx=1 : close,ROx=0 always open.
480 * FIRST: Indicate this is the first packet after join network.
481 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
482
483 (((
484 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
485 )))
486
487 (((
488
489
490 **To use this mode, please run:**
491 )))
492
493 (% class="box infomessage" %)
494 (((
495 (((
496 **AT+MOD=4**
497
498 **ATZ**
499 )))
500 )))
501
502
503
504 (((
505 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
506 )))
507
508 (((
509
510
511 **Plus below command for AVI1 Counting:**
512
513
514 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
515
516 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
517
518 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
519
520 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
521 )))
522
523
524
525 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
526
527
528 **LT22222-L**: This mode the DI1 is used as a counting pin.
529
530 [[image:image-20220523182334-9.png]]
531
532 (((
533
534
535 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
536 )))
537
538 * RO is for relay. ROx=1 : close,ROx=0 always open.
539 * FIRST: Indicate this is the first packet after join network.
540 * (((
541 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
542 )))
543
544 (((
545 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
546 )))
547
548 (((
549
550
551 **To use this mode, please run:**
552 )))
553
554 (% class="box infomessage" %)
555 (((
556 (((
557 **AT+MOD=5**
558
559 **ATZ**
560 )))
561 )))
562
563 (((
564 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
565 )))
566
567
568
569 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
570
571
572 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
573
574 For example, if user has configured below commands:
575
576 * **AT+MOD=1 ** **~-~->**  The normal working mode
577 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
578
579 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
580
581 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
582 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
583
584 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
585
586
587 (% style="color:#4f81bd" %)**Trigger base on voltage**:
588
589 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
590
591 **Example:**
592
593 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
594
595 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
596
597
598
599 (% style="color:#4f81bd" %)**Trigger base on current**:
600
601 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
602
603 **Example:**
604
605 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
606
607
608
609 (% style="color:#4f81bd" %)**Trigger base on DI status**:
610
611 DI status trigger Flag.
612
613 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
614
615
616 **Example:**
617
618 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
619
620
621 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
622
623 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
624
625 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
626
627 AA: Code for this downlink Command:
628
629 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
630
631 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
632
633 yy2 yy2: AC1 or AV1 high limit.
634
635 yy3 yy3: AC2 or AV2 low limit.
636
637 Yy4 yy4: AC2 or AV2 high limit.
638
639
640 **Example1**: AA 00 13 88 00 00 00 00 00 00
641
642 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
643
644
645 **Example2**: AA 02 01 00
646
647 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
648
649
650
651 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
652
653 MOD6 Payload : total 11 bytes payload
654
655 [[image:image-20220524085923-1.png]]
656
657
658 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
659
660 [[image:image-20220524090106-2.png]]
661
662 * Each bits shows if the corresponding trigger has been configured.
663
664 **Example:**
665
666 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
667
668
669 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
670
671 [[image:image-20220524090249-3.png]]
672
673 * Each bits shows which status has been trigger on this uplink.
674
675 **Example:**
676
677 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
678
679
680 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
681
682 [[image:image-20220524090456-4.png]]
683
684 * Each bits shows which status has been trigger on this uplink.
685
686 **Example:**
687
688 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
689
690 00000101: Means both DI1 and DI2 trigger are enabled.
691
692
693 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
694
695 Downlink command to poll MOD6 status:
696
697 **AB 06**
698
699 When device got this command, it will send the MOD6 payload.
700
701
702
703 === 3.3.7 Payload Decoder ===
704
705 (((
706
707
708 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/www.dropbox.com/sh/wtrzu7avdtkmn3z/AACK5NwOMkU9jnvf1uCMuqrVa?dl=0>>https://www.dropbox.com/sh/wtrzu7avdtkmn3z/AACK5NwOMkU9jnvf1uCMuqrVa?dl=0]]
709 )))
710
711
712
713 == 3.4 ​Configure LT via AT or Downlink ==
714
715
716 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
717
718 (((
719 There are two kinds of Commands:
720 )))
721
722 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
723
724 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
725
726 === 3.4.1 Common Commands ===
727
728
729 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
730
731
732
733 === 3.4.2 Sensor related commands ===
734
735
736 ==== 3.4.2.1 Set Transmit Interval ====
737
738
739 Set device uplink interval.
740
741 * (% style="color:#037691" %)**AT Command:**
742
743 **AT+TDC=N **
744
745
746 **Example: **AT+TDC=30000. Means set interval to 30 seconds
747
748
749 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
750
751 **0x01 aa bb cc     ~/~/ Same as AT+TDC=0x(aa bb cc)**
752
753
754
755
756 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
757
758
759 Set work mode.
760
761 * (% style="color:#037691" %)**AT Command:**
762
763 **AT+MOD=N  **
764
765
766 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
767
768
769 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
770
771 **0x0A aa    ** ~/~/ Same as AT+MOD=aa
772
773
774
775
776 ==== 3.4.2.3 Poll an uplink ====
777
778
779 * (% style="color:#037691" %)**AT Command:**
780
781 There is no AT Command to poll uplink
782
783
784 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
785
786 **0x08 FF     **~/~/ Poll an uplink
787
788 **Example**: 0x08FF, ask device to send an Uplink
789
790
791
792
793 ==== 3.4.2.4 Enable Trigger Mode ====
794
795
796 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
797
798 * (% style="color:#037691" %)**AT Command:**
799
800 **AT+ADDMOD6=1 or 0**
801
802 1: Enable Trigger Mode
803
804 0: Disable Trigger Mode
805
806
807 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
808
809 **0x0A 06 aa    ** ~/~/ Same as AT+ADDMOD6=aa
810
811
812
813
814 ==== 3.4.2.5 Poll trigger settings ====
815
816
817 Poll trigger settings,
818
819 * (% style="color:#037691" %)**AT Command:**
820
821 There is no AT Command for this feature.
822
823
824 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
825
826 **0xAB 06         **~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
827
828
829
830
831 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
832
833
834 Enable Disable DI1/DI2/DI2 as trigger,
835
836 * (% style="color:#037691" %)**AT Command:**
837
838 **Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
839
840
841 **Example:**
842
843 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
844
845 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
846
847 **0xAA 02 aa bb        **~/~/ Same as AT+DTRI=aa,bb
848
849
850
851
852 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
853
854
855 Set DI1 or DI3(for LT-33222-L) trigger.
856
857 * (% style="color:#037691" %)**AT Command:**
858
859 **AT+TRIG1=a,b**
860
861 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
862
863 b : delay timing.
864
865
866 **Example:**
867
868 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
869
870
871 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
872 * **0x09 01 aa bb cc    ** ~/~/ same as AT+TRIG1=aa,0x(bb cc)
873
874 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
875
876
877 Set DI2 trigger.
878
879 * (% style="color:#037691" %)**AT Command:**
880
881 **AT+TRIG2=a,b**
882
883
884 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
885
886 b : delay timing.
887
888
889 **Example:**
890
891 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
892
893
894 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
895
896 **0x09 02 aa bb cc           **~/~/ same as AT+TRIG1=aa,0x(bb cc)
897
898
899
900
901 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
902
903
904 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
905
906 * (% style="color:#037691" %)**AT Command**
907
908 **AT+ACLIM**
909
910
911 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
912
913 **0x AA 01 aa bb cc dd ee ff gg hh        ** ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
914
915
916
917
918 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
919
920
921 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
922
923 * (% style="color:#037691" %)**AT Command**
924
925 **AT+AVLIM  See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
926
927
928 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
929
930 **0x AA 00 aa bb cc dd ee ff gg hh    ** ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
931
932
933
934
935 ==== 3.4.2.11 Trigger – Set minimum interval ====
936
937
938 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
939
940 * (% style="color:#037691" %)**AT Command**
941
942 **AT+ATDC=5        ** Device won't response the second trigger within 5 minute after the first trigger.
943
944
945 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
946
947 **0x AC aa bb   ** ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
948
949 (((
950
951
952 (% style="color:red" %)Note: ATDC setting must be more than 5min
953 )))
954
955
956
957
958 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
959
960
961 * (% style="color:#037691" %)**AT Command**
962
963 There is no AT Command to control Digital Output
964
965
966 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
967 * **0x02 aa bb cc     **~/~/ Set DO1/DO2/DO3 output
968
969 (((
970 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
971 )))
972
973 (((
974 01: Low,  00: High ,  11: No action
975 )))
976
977 [[image:image-20220524092754-5.png]]
978
979 (((
980 (% style="color:red" %)Note: For LT-22222-L, there is no DO3, the last byte can use any value.
981 )))
982
983 (((
984 (% style="color:red" %)Device will upload a packet if downlink code executes successfully.
985 )))
986
987
988
989
990 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
991
992
993 * (% style="color:#037691" %)**AT Command**
994
995 There is no AT Command to control Digital Output
996
997
998 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
999
1000 **0xA9 aa bb cc     **~/~/ Set DO1/DO2/DO3 output with time control
1001
1002
1003 This is to control the digital output time of DO pin. Include four bytes:
1004
1005 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1006
1007 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1008
1009 01: DO pins will change back to original state after timeout.
1010
1011 00: DO pins will change to an inverter state after timeout 
1012
1013
1014 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1015
1016 [[image:image-20220524093238-6.png]]
1017
1018
1019 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1020
1021 [[image:image-20220524093328-7.png]]
1022
1023
1024 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1025
1026 [[image:image-20220524093351-8.png]]
1027
1028
1029 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:
1030
1031 Latching time. Unit: ms
1032
1033 (% style="color:red" %)Device will upload a packet if downlink code executes successfully.
1034
1035
1036 **Example payload:**
1037
1038 **~1. A9 01 01 01 01 07 D0**
1039
1040 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1041
1042 **2. A9 01 00 01 11 07 D0**
1043
1044 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1045
1046 **3. A9 00 00 00 00 07 D0**
1047
1048 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1049
1050 **4. A9 00 11 01 00 07 D0**
1051
1052 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1053
1054
1055
1056
1057 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1058
1059
1060 * (% style="color:#037691" %)**AT Command:**
1061
1062 There is no AT Command to control Relay Output
1063
1064
1065 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1066
1067 **0x03 aa bb     **~/~/ Set RO1/RO2 output
1068
1069
1070 (((
1071 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1072 )))
1073
1074 (((
1075 01: Close ,  00: Open , 11: No action
1076 )))
1077
1078 (((
1079 [[image:image-20220524093724-9.png]]
1080 )))
1081
1082 (% style="color:red" %)Device will upload a packet if downlink code executes successfully.
1083
1084
1085
1086
1087 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1088
1089
1090 * (% style="color:#037691" %)**AT Command:**
1091
1092 There is no AT Command to control Relay Output
1093
1094
1095 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1096
1097 **0x05 aa bb cc dd     **~/~/ Set RO1/RO2 relay with time control
1098
1099
1100 This is to control the relay output time of relay. Include four bytes:
1101
1102 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1103
1104 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1105
1106 01: Relays will change back to original state after timeout.
1107
1108 00: Relays will change to an inverter state after timeout
1109
1110
1111 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1112
1113 [[image:image-20220714135731-1.png||height="406" width="627"]]
1114
1115
1116 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1117
1118 (% style="color:red" %)Device will upload a packet if downlink code executes successfully.
1119
1120
1121 **Example payload:**
1122
1123 **~1. 05 01 11 07 D**
1124
1125 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1126
1127 **2. 05 01 10 07 D0**
1128
1129 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1130
1131 **3. 05 00 01 07 D0**
1132
1133 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1134
1135 **4. 05 00 00 07 D0**
1136
1137 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1138
1139
1140
1141 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1142
1143
1144 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1145
1146 * (% style="color:#037691" %)**AT Command:**
1147
1148 **AT+VOLMAX   ** ~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1149
1150
1151 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1152
1153 **0xA5 aa bb cc   **~/~/ Same as AT+VOLMAX=(aa bb),cc
1154
1155
1156
1157
1158 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1159
1160
1161 * (% style="color:#037691" %)**AT Command:**
1162
1163 **AT+SETCNT=aa,(bb cc dd ee) **
1164
1165 aa: 1: Set count1,
1166
1167 2: Set count2,
1168
1169 3: Set AV1 count
1170
1171 Bb cc dd ee: number to be set
1172
1173
1174 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1175
1176 **0x A8 aa bb cc dd ee     **~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1177
1178
1179
1180
1181 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1182
1183
1184 Clear counting for counting mode
1185
1186 * (% style="color:#037691" %)**AT Command:**
1187
1188 **AT+CLRCOUNT ** ~/~/ clear all counting
1189
1190
1191 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1192
1193 **0x A6 01    ** ~/~/ clear all counting
1194
1195
1196
1197
1198 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1199
1200
1201 * (% style="color:#037691" %)**AT Command:**
1202
1203 **AT+COUTIME=60  **~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1204
1205
1206 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1207
1208 **0x A7 aa bb cc     **~/~/ same as AT+COUTIME =aa bb cc,
1209
1210 (((
1211 range: aa bb cc:0 to 16777215,  (unit:second)
1212
1213
1214 )))
1215
1216 ==== 3.4.2.20 Reset save DR DO state ====
1217
1218
1219 * (% style="color:#037691" %)**AT Command:**
1220
1221 **AT+RODORET=1  **~/~/ RODO will close when the device joining the network. (default)
1222
1223 **AT+RODORET=0  **~/~/After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1224
1225
1226 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1227
1228 **0x AD aa      **~/~/ same as AT+RODORET =aa
1229
1230 (((
1231
1232
1233 ==== 3.4.2.21 Encrypted payload ====
1234
1235
1236 * (% style="color:#037691" %)**AT Command:**
1237
1238 **AT+DECRYPT=1  **~/~/ The payload is uploaded without encryption
1239
1240 **AT+DECRYPT=0  **~/~/Encrypt when uploading payload (default)
1241
1242
1243 ==== 3.4.2.22 Get sensor value ====
1244
1245
1246 * (% style="color:#037691" %)**AT Command:**
1247
1248 **AT+GETSENSORVALUE=0  **~/~/ The serial port gets the reading of the current sensor
1249
1250 **AT+GETSENSORVALUE=1  **~/~/The serial port gets the current sensor reading and uploads it.
1251
1252
1253 ==== 3.4.2.23 Resets the downlink packet count ====
1254
1255
1256 * (% style="color:#037691" %)**AT Command:**
1257
1258 **AT+DISFCNTCHECK=0  **~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1259
1260 **AT+DISFCNTCHECK=1  **~/~/When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1261
1262
1263 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1264
1265
1266 * (% style="color:#037691" %)**AT Command:**
1267
1268 **AT+DISMACANS=0**  ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1269
1270 **AT+DISMACANS=1**      ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1271
1272
1273 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1274
1275 **0x21 00 01 ** ~/~/ Set  the DISMACANS=1
1276
1277
1278 ==== 3.4.2.25 Copy downlink to uplink ====
1279
1280
1281 * (% style="color:#037691" %)**AT Command**(%%)**:**
1282
1283 **AT+RPL=5**  ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1284
1285 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1286
1287 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1288
1289 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1290
1291 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1292
1293 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1294
1295
1296
1297 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1298
1299
1300 * (((
1301 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1302
1303 **26 01  ** ~/~/ Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1304 )))
1305
1306 Example:
1307
1308 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1309
1310
1311
1312 )))
1313
1314 == 3.5 Integrate with Mydevice ==
1315
1316
1317 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1318
1319 (((
1320 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1321 )))
1322
1323 (((
1324 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1325
1326
1327 )))
1328
1329 [[image:image-20220719105525-1.png||height="377" width="677"]]
1330
1331
1332
1333 [[image:image-20220719110247-2.png||height="388" width="683"]]
1334
1335
1336 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1337
1338 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1339
1340 Search under The things network
1341
1342 [[image:1653356838789-523.png||height="337" width="740"]]
1343
1344
1345
1346 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1347
1348 [[image:image-20220524094909-1.png||height="335" width="729"]]
1349
1350
1351 [[image:image-20220524094909-2.png||height="337" width="729"]]
1352
1353
1354 [[image:image-20220524094909-3.png||height="338" width="727"]]
1355
1356
1357 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1358
1359
1360 [[image:image-20220524094909-5.png||height="341" width="734"]]
1361
1362
1363
1364 == 3.6 Interface Detail ==
1365
1366
1367 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1368
1369
1370 Support NPN Type sensor
1371
1372 [[image:1653356991268-289.png]]
1373
1374
1375
1376 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1377
1378
1379 (((
1380 The DI port of LT-22222-L can support NPN or PNP output sensor.
1381 )))
1382
1383 (((
1384 (((
1385 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high.
1386
1387
1388 )))
1389 )))
1390
1391 [[image:1653357170703-587.png]]
1392
1393 (((
1394 (((
1395 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1396 )))
1397 )))
1398
1399 (((
1400
1401 )))
1402
1403 (((
1404 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1405 )))
1406
1407 (((
1408 This type of sensor will output a low signal GND when active.
1409 )))
1410
1411 * (((
1412 Connect sensor’s output to DI1-
1413 )))
1414 * (((
1415 Connect sensor’s VCC to DI1+.
1416 )))
1417
1418 (((
1419 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1420 )))
1421
1422 (((
1423 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1424 )))
1425
1426 (((
1427 If DI1+ = 12v, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1428 )))
1429
1430 (((
1431
1432
1433
1434 )))
1435
1436 (((
1437 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1438 )))
1439
1440 (((
1441 This type of sensor will output a high signal (example 24v) when active.
1442 )))
1443
1444 * (((
1445 Connect sensor’s output to DI1+
1446 )))
1447 * (((
1448 Connect sensor’s GND DI1-.
1449 )))
1450
1451 (((
1452 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1453 )))
1454
1455 (((
1456 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1457 )))
1458
1459 (((
1460 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1461 )))
1462
1463 (((
1464
1465
1466
1467 )))
1468
1469 (((
1470 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1471 )))
1472
1473 (((
1474 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1475 )))
1476
1477 * (((
1478 Connect sensor’s output to DI1+ with a serial 50K resistor
1479 )))
1480 * (((
1481 Connect sensor’s GND DI1-.
1482 )))
1483
1484 (((
1485 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1486 )))
1487
1488 (((
1489 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1490 )))
1491
1492 (((
1493 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1494 )))
1495
1496
1497
1498 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1499
1500
1501 NPN output: GND or Float. Max voltage can apply to output pin is 36v.
1502
1503 [[image:1653357531600-905.png]]
1504
1505
1506
1507 === 3.6.4 Analog Input Interface ===
1508
1509
1510 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1511
1512
1513 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1514
1515 [[image:1653357592296-182.png]]
1516
1517 Example to connect a 4~~20mA sensor
1518
1519 We take the wind speed sensor as an example for reference only.
1520
1521
1522 **Specifications of the wind speed sensor:**
1523
1524 Red:  12~~24v
1525
1526 Yellow:  4~~20mA
1527
1528 Black:  GND
1529
1530
1531 **Connection diagram:**
1532
1533 [[image:1653357640609-758.png]]
1534
1535 [[image:1653357648330-671.png||height="155" width="733"]]
1536
1537
1538
1539 === 3.6.5 Relay Output ===
1540
1541
1542 (((
1543 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device’s Power Line to in serial of RO1_1 and RO_2. Such as below:
1544 )))
1545
1546 [[image:image-20220524100215-9.png]]
1547
1548 [[image:image-20220524100215-10.png||height="382" width="723"]]
1549
1550
1551
1552 == 3.7 LEDs Indicators ==
1553
1554
1555 [[image:image-20220524100748-11.png]]
1556
1557
1558
1559 = 4. Use AT Command =
1560
1561
1562 == 4.1 Access AT Command ==
1563
1564
1565 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1566
1567 [[image:1653358238933-385.png]]
1568
1569
1570 (((
1571 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1572 )))
1573
1574 [[image:1653358355238-883.png]]
1575
1576
1577 (((
1578 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1579 )))
1580
1581 (((
1582 AT+<CMD>?        : Help on <CMD>
1583 )))
1584
1585 (((
1586 AT+<CMD>         : Run <CMD>
1587 )))
1588
1589 (((
1590 AT+<CMD>=<value> : Set the value
1591 )))
1592
1593 (((
1594 AT+<CMD>=?       : Get the value
1595 )))
1596
1597 (((
1598 ATZ: Trig a reset of the MCU
1599 )))
1600
1601 (((
1602 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1603 )))
1604
1605 (((
1606 AT+DEUI: Get or Set the Device EUI
1607 )))
1608
1609 (((
1610 AT+DADDR: Get or Set the Device Address
1611 )))
1612
1613 (((
1614 AT+APPKEY: Get or Set the Application Key
1615 )))
1616
1617 (((
1618 AT+NWKSKEY: Get or Set the Network Session Key
1619 )))
1620
1621 (((
1622 AT+APPSKEY: Get or Set the Application Session Key
1623 )))
1624
1625 (((
1626 AT+APPEUI: Get or Set the Application EUI
1627 )))
1628
1629 (((
1630 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1631 )))
1632
1633 (((
1634 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1635 )))
1636
1637 (((
1638 AT+DR: Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1639 )))
1640
1641 (((
1642 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1643 )))
1644
1645 (((
1646 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1647 )))
1648
1649 (((
1650 AT+RX2FQ: Get or Set the Rx2 window frequency
1651 )))
1652
1653 (((
1654 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1655 )))
1656
1657 (((
1658 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1659 )))
1660
1661 (((
1662 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1663 )))
1664
1665 (((
1666 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1667 )))
1668
1669 (((
1670 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1671 )))
1672
1673 (((
1674 AT+NJM: Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1675 )))
1676
1677 (((
1678 AT+NWKID: Get or Set the Network ID
1679 )))
1680
1681 (((
1682 AT+FCU: Get or Set the Frame Counter Uplink
1683 )))
1684
1685 (((
1686 AT+FCD: Get or Set the Frame Counter Downlink
1687 )))
1688
1689 (((
1690 AT+CLASS: Get or Set the Device Class
1691 )))
1692
1693 (((
1694 AT+JOIN: Join network
1695 )))
1696
1697 (((
1698 AT+NJS: Get OTAA Join Status
1699 )))
1700
1701 (((
1702 AT+SENDB: Send hexadecimal data along with the application port
1703 )))
1704
1705 (((
1706 AT+SEND: Send text data along with the application port
1707 )))
1708
1709 (((
1710 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1711 )))
1712
1713 (((
1714 AT+RECV: Print last received data in raw format
1715 )))
1716
1717 (((
1718 AT+VER: Get current image version and Frequency Band
1719 )))
1720
1721 (((
1722 AT+CFM: Get or Set the confirmation mode (0-1)
1723 )))
1724
1725 (((
1726 AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1727 )))
1728
1729 (((
1730 AT+SNR: Get the SNR of the last received packet
1731 )))
1732
1733 (((
1734 AT+RSSI: Get the RSSI of the last received packet
1735 )))
1736
1737 (((
1738 AT+TDC: Get or set the application data transmission interval in ms
1739 )))
1740
1741 (((
1742 AT+PORT: Get or set the application port
1743 )))
1744
1745 (((
1746 AT+DISAT: Disable AT commands
1747 )))
1748
1749 (((
1750 AT+PWORD: Set password, max 9 digits
1751 )))
1752
1753 (((
1754 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1755 )))
1756
1757 (((
1758 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1759 )))
1760
1761 (((
1762 AT+CFG: Print all settings
1763 )))
1764
1765
1766
1767 == 4.2 Common AT Command Sequence ==
1768
1769
1770 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1771
1772 (((
1773
1774
1775 **If device has not joined network yet:**
1776 )))
1777
1778 (((
1779 (% style="background-color:#dcdcdc" %)123456
1780 )))
1781
1782 (((
1783 (% style="background-color:#dcdcdc" %)AT+FDR
1784 )))
1785
1786 (((
1787 (% style="background-color:#dcdcdc" %)123456
1788 )))
1789
1790 (((
1791 (% style="background-color:#dcdcdc" %)AT+NJM=0
1792 )))
1793
1794 (((
1795 (% style="background-color:#dcdcdc" %)ATZ
1796 )))
1797
1798
1799 (((
1800 **If device already joined network:**
1801 )))
1802
1803 (((
1804 (% style="background-color:#dcdcdc" %)AT+NJM=0
1805 )))
1806
1807 (((
1808 (% style="background-color:#dcdcdc" %)ATZ
1809 )))
1810
1811
1812
1813 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1814
1815 (((
1816
1817
1818 (% style="background-color:#dcdcdc" %)123456(%%)  Enter Password to have AT access.
1819 )))
1820
1821 (((
1822 (% style="background-color:#dcdcdc" %) AT+FDR(%%)   Reset Parameters to Factory Default, Keys Reserve
1823 )))
1824
1825 (((
1826 (% style="background-color:#dcdcdc" %) 123456(%%)  Enter Password to have AT access.
1827 )))
1828
1829 (((
1830 (% style="background-color:#dcdcdc" %) AT+CLASS=C(%%) Set to work in CLASS C
1831 )))
1832
1833 (((
1834 (% style="background-color:#dcdcdc" %) AT+NJM=0(%%)  Set to ABP mode
1835 )))
1836
1837 (((
1838 (% style="background-color:#dcdcdc" %) AT+ADR=0(%%)  Set the Adaptive Data Rate Off
1839 )))
1840
1841 (((
1842 (% style="background-color:#dcdcdc" %) AT+DR=5(%%)  Set Data Rate
1843 )))
1844
1845 (((
1846 (% style="background-color:#dcdcdc" %) AT+TDC=60000(%%)  Set transmit interval to 60 seconds
1847 )))
1848
1849 (((
1850 (% style="background-color:#dcdcdc" %) AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1851 )))
1852
1853 (((
1854 (% style="background-color:#dcdcdc" %) AT+RX2FQ=868400000(%%)  Set RX2Frequency to 868.4Mhz (according to the result from server)
1855 )))
1856
1857 (((
1858 (% style="background-color:#dcdcdc" %) AT+RX2DR=5(%%)  Set RX2DR to match the downlink DR from server. see below
1859 )))
1860
1861 (((
1862 (% style="background-color:#dcdcdc" %) AT+DADDR=26 01 1A F1 (%%) Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1863 )))
1864
1865 (((
1866 (% style="background-color:#dcdcdc" %) ATZ         (%%) Reset MCU
1867
1868
1869 )))
1870
1871 (((
1872 (% style="color:red" %)**Note:**
1873 )))
1874
1875 (((
1876 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1877 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1878 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1879 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1880
1881
1882 )))
1883
1884 (((
1885 [[image:1653359097980-169.png||height="188" width="729"]]
1886 )))
1887
1888 (((
1889
1890 )))
1891
1892
1893 === 4.2.3 Change to Class A ===
1894
1895
1896 If sensor JOINED
1897 (% style="background-color:#dcdcdc" %)AT+CLASS=A
1898 ATZ
1899
1900
1901
1902 = 5. FAQ =
1903
1904
1905 == 5.1 How to upgrade the image? ==
1906
1907
1908 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1909
1910 * Support new features
1911 * For bug fix
1912 * Change LoRaWAN bands.
1913
1914 Below shows the hardware connection for how to upload an image to the LT:
1915
1916 [[image:1653359603330-121.png]]
1917
1918
1919 (((
1920 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1921 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1922 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
1923
1924
1925 (% style="color:blue" %)**For LT-22222-L**(%%):
1926 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
1927
1928
1929 )))
1930
1931 [[image:image-20220524103407-12.png]]
1932
1933 [[image:image-20220524103429-13.png]]
1934
1935 [[image:image-20220524104033-15.png]]
1936
1937
1938 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1939
1940
1941 [[image:1653360054704-518.png||height="186" width="745"]]
1942
1943
1944 (((
1945 (((
1946
1947
1948 == 5.2 How to change the LoRa Frequency Bands/Region? ==
1949
1950
1951 )))
1952 )))
1953
1954 (((
1955 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1956 )))
1957
1958 (((
1959
1960
1961
1962 == 5.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
1963
1964
1965 )))
1966
1967 (((
1968 (((
1969 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
1970 )))
1971 )))
1972
1973 (((
1974 (((
1975 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
1976
1977
1978 )))
1979 )))
1980
1981 (((
1982 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
1983 )))
1984
1985 (((
1986 [[image:1653360231087-571.png||height="401" width="727"]]
1987 )))
1988
1989 (((
1990 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
1991 )))
1992
1993
1994 (((
1995 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
1996 )))
1997
1998 (((
1999 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
2000 (% style="background-color:#dcdcdc" %)AT+FDR(%%)  Reset Parameters to Factory Default, Keys Reserve
2001 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
2002 (% style="background-color:#dcdcdc" %)AT+NJM=0 (%%) Set to ABP mode
2003 (% style="background-color:#dcdcdc" %)AT+ADR=0 (%%) Set the Adaptive Data Rate Off
2004 (% style="background-color:#dcdcdc" %)AT+DR=5 (%%) Set Data Rate (Set AT+DR=3 for 915 band)
2005 (% style="background-color:#dcdcdc" %)AT+TDC=60000 (%%) Set transmit interval to 60 seconds
2006 (% style="background-color:#dcdcdc" %)AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
2007 (% style="background-color:#dcdcdc" %)AT+DADDR=26 01 1A F1(%%)  Set Device Address to 26 01 1A F1
2008 (% style="background-color:#dcdcdc" %)ATZ        (%%) Reset MCU
2009 )))
2010
2011
2012 (((
2013 As shown in below:
2014 )))
2015
2016 [[image:1653360498588-932.png||height="485" width="726"]]
2017
2018
2019
2020 == 5.4 Can I see counting event in Serial? ==
2021
2022
2023 (((
2024 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2025
2026
2027
2028 == 5.5 Can i use point to point communication for LT-22222-L? ==
2029
2030
2031 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]
2032
2033
2034
2035 )))
2036
2037 (((
2038 == 5.6 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2039
2040
2041 If the device is not shut down, but directly powered off.
2042
2043 It will default that this is a power-off state.
2044
2045 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2046
2047 After restart, the status before power failure will be read from flash.
2048
2049
2050
2051 = 6. Trouble Shooting =
2052 )))
2053
2054 (((
2055 (((
2056 == 6.1 Downlink doesn't work, how to solve it? ==
2057
2058
2059 )))
2060 )))
2061
2062 (((
2063 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2064 )))
2065
2066 (((
2067
2068
2069
2070 == 6.2 Have trouble to upload image. ==
2071
2072
2073 )))
2074
2075 (((
2076 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2077 )))
2078
2079 (((
2080
2081
2082
2083 == 6.3 Why I can't join TTN in US915 /AU915 bands? ==
2084
2085
2086 )))
2087
2088 (((
2089 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2090 )))
2091
2092
2093
2094 = 7. Order Info =
2095
2096
2097 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2098
2099 (% style="color:#4f81bd" %)**XXX:**
2100
2101 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2102 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2103 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2104 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2105 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2106 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2107 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2108 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2109 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2110
2111 = 8. Packing Info =
2112
2113
2114 **Package Includes**:
2115
2116 * LT-22222-L I/O Controller x 1
2117 * Stick Antenna for LoRa RF part x 1
2118 * Bracket for controller x1
2119 * Program cable x 1
2120
2121 **Dimension and weight**:
2122
2123 * Device Size: 13.5 x 7 x 3 cm
2124 * Device Weight: 105g
2125 * Package Size / pcs : 14.5 x 8 x 5 cm
2126 * Weight / pcs : 170g
2127
2128 = 9. Support =
2129
2130
2131 * (((
2132 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2133 )))
2134 * (((
2135 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2136
2137
2138
2139
2140 )))
2141
2142 = 10. Reference​​​​​ =
2143
2144
2145 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2146 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2147 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
2148
2149