Version 94.1 by Bei Jinggeng on 2022/08/24 15:57

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16 = 1.Introduction =
17
18 == 1.1 What is LT Series I/O Controller ==
19
20 (((
21
22
23 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
24 )))
25
26 (((
27 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
28 )))
29
30 (((
31 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
32 )))
33
34 (((
35 The use environment includes:
36 )))
37
38 (((
39 1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
40 )))
41
42 (((
43 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
44
45
46 )))
47
48 (((
49 [[image:1653295757274-912.png]]
50
51
52 )))
53
54
55 == 1.2  Specifications ==
56
57 (((
58
59
60 **Hardware System:**
61 )))
62
63 * (((
64 STM32L072CZT6 MCU
65 )))
66 * (((
67 SX1276/78 Wireless Chip 
68 )))
69 * (((
70 (((
71 Power Consumption:
72 )))
73
74 * (((
75 Idle: 4mA@12v
76 )))
77 * (((
78 20dB Transmit: 34mA@12v
79 )))
80 )))
81
82 (((
83
84
85 **Interface for Model: LT22222-L:**
86 )))
87
88 * (((
89 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
90 )))
91 * (((
92 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
93 )))
94 * (((
95 2 x Relay Output (5A@250VAC / 30VDC)
96 )))
97 * (((
98 2 x 0~~20mA Analog Input (res:0.01mA)
99 )))
100 * (((
101 2 x 0~~30V Analog Input (res:0.01v)
102 )))
103 * (((
104 Power Input 7~~ 24V DC. 
105 )))
106
107 (((
108
109
110 **LoRa Spec:**
111 )))
112
113 * (((
114 (((
115 Frequency Range:
116 )))
117
118 * (((
119 Band 1 (HF): 862 ~~ 1020 Mhz
120 )))
121 * (((
122 Band 2 (LF): 410 ~~ 528 Mhz
123 )))
124 )))
125 * (((
126 168 dB maximum link budget.
127 )))
128 * (((
129 +20 dBm - 100 mW constant RF output vs.
130 )))
131 * (((
132 +14 dBm high efficiency PA.
133 )))
134 * (((
135 Programmable bit rate up to 300 kbps.
136 )))
137 * (((
138 High sensitivity: down to -148 dBm.
139 )))
140 * (((
141 Bullet-proof front end: IIP3 = -12.5 dBm.
142 )))
143 * (((
144 Excellent blocking immunity.
145 )))
146 * (((
147 Low RX current of 10.3 mA, 200 nA register retention.
148 )))
149 * (((
150 Fully integrated synthesizer with a resolution of 61 Hz.
151 )))
152 * (((
153 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
154 )))
155 * (((
156 Built-in bit synchronizer for clock recovery.
157 )))
158 * (((
159 Preamble detection.
160 )))
161 * (((
162 127 dB Dynamic Range RSSI.
163 )))
164 * (((
165 Automatic RF Sense and CAD with ultra-fast AFC.
166 )))
167 * (((
168 Packet engine up to 256 bytes with CRC.
169
170
171
172
173 )))
174
175 == 1.3 Features ==
176
177
178 * LoRaWAN Class A & Class C protocol
179 * Optional Customized LoRa Protocol
180 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
181 * AT Commands to change parameters
182 * Remote configure parameters via LoRa Downlink
183 * Firmware upgradable via program port
184 * Counting
185
186 == 1.4  Applications ==
187
188
189 * Smart Buildings & Home Automation
190 * Logistics and Supply Chain Management
191 * Smart Metering
192 * Smart Agriculture
193 * Smart Cities
194 * Smart Factory
195
196 == 1.5 Hardware Variants ==
197
198
199 (% border="1" style="background-color:#f7faff; width:500px" %)
200 |(% style="width:103px" %)**Model**|(% style="width:131px" %)**Photo**|(% style="width:334px" %)**Description**
201 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)[[image:1653296302983-697.png]]|(% style="width:334px" %)(((
202 * 2 x Digital Input (Bi-direction)
203 * 2 x Digital Output
204 * 2 x Relay Output (5A@250VAC / 30VDC)
205 * 2 x 0~~20mA Analog Input (res:0.01mA)
206 * 2 x 0~~30V Analog Input (res:0.01v)
207 * 1 x Counting Port
208 )))
209
210 = 2. Power ON Device =
211
212
213 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
214
215 (((
216 PWR will on when device is properly powered.
217 )))
218
219 [[image:1653297104069-180.png]]
220
221
222
223 = 3. Operation Mode =
224
225 == 3.1 How it works? ==
226
227
228 (((
229 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
230 )))
231
232 (((
233 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
234 )))
235
236
237
238 == 3.2 Example to join LoRaWAN network ==
239
240
241 (((
242 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
243
244
245 )))
246
247 [[image:image-20220523172350-1.png||height="266" width="864"]]
248
249
250 (((
251 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
252
253
254 )))
255
256 (((
257 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
258 )))
259
260 (((
261 Each LT is shipped with a sticker with the default device EUI as below:
262 )))
263
264 [[image:1653297924498-393.png]]
265
266
267 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
268
269 Add APP EUI in the application.
270
271 [[image:1653297955910-247.png||height="321" width="716"]]
272
273
274 Add APP KEY and DEV EUI
275
276 [[image:1653298023685-319.png]]
277
278
279
280 (((
281 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
282 )))
283
284 [[image:1653298044601-602.png||height="405" width="709"]]
285
286
287
288 == 3.3 Uplink Payload ==
289
290
291 There are five working modes + one interrupt mode on LT for different type application:
292
293 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
294 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
295 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
296 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
297 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
298 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
299
300 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
301
302
303 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default.
304
305 [[image:image-20220523174024-3.png]]
306
307 (((
308
309
310 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
311 )))
312
313 [[image:image-20220523174254-4.png]]
314
315 * RO is for relay. ROx=1 : close,ROx=0 always open.
316 * DI is for digital input. DIx=1: high or float, DIx=0: low.
317 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
318
319 (% style="color:red" %)Note: DI3 and DO3 bit are not valid for LT-22222-L
320
321 For example if payload is: [[image:image-20220523175847-2.png]]
322
323
324 **The value for the interface is:  **
325
326 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
327
328 AVI2 channel voltage is 0x04AC/1000=1.196V
329
330 ACI1 channel current is 0x1310/1000=4.880mA
331
332 ACI2 channel current is 0x1300/1000=4.864mA
333
334 The last byte 0xAA= 10101010(B) means
335
336 * [1] RO1 relay channel is close and the RO1 LED is ON.
337 * [0] RO2 relay channel is open and RO2 LED is OFF;
338
339 **LT22222-L:**
340
341 * [1] DI2 channel is high input and DI2 LED is ON;
342 * [0] DI1 channel is low input;
343
344 * [0] DO3 channel output state
345 ** DO3 is float in case no load between DO3 and V+.;
346 ** DO3 is high in case there is load between DO3 and V+.
347 ** DO3 LED is off in both case
348 * [1] DO2 channel output is low and DO2 LED is ON.
349 * [0] DO1 channel output state
350 ** DO1 is float in case no load between DO1 and V+.;
351 ** DO1 is high in case there is load between DO1 and V+.
352 ** DO1 LED is off in both case
353
354 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
355
356
357 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
358
359 (((
360 Total : 11 bytes payload
361 )))
362
363 [[image:image-20220523180452-3.png]]
364
365
366 (((
367 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
368 )))
369
370 [[image:image-20220523180506-4.png]]
371
372 * RO is for relay. ROx=1 : close,ROx=0 always open.
373 * FIRST: Indicate this is the first packet after join network.
374 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
375
376 (((
377 (% style="color:red" %)Note: DO3 bit is not valid for LT-22222-L.
378 )))
379
380 (((
381
382
383 **To use counting mode, please run:**
384 )))
385
386 (% class="box infomessage" %)
387 (((
388 (((
389 **AT+MOD=2**
390
391 **ATZ**
392 )))
393 )))
394
395 (((
396
397
398 (% style="color:#4f81bd" %)**AT Commands for counting:**
399 )))
400
401 (((
402 **For LT22222-L:**
403
404
405 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
406
407 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
408
409 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
410
411 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
412
413 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
414
415 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
416 )))
417
418
419
420 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
421
422
423 **LT22222-L**: This mode the DI1 is used as a counting pin.
424
425 [[image:image-20220523181246-5.png]]
426
427 (((
428
429
430 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
431 )))
432
433 [[image:image-20220523181301-6.png]]
434
435 * RO is for relay. ROx=1 : close,ROx=0 always open.
436 * FIRST: Indicate this is the first packet after join network.
437 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
438
439 (((
440 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
441 )))
442
443
444 (((
445 **To use counting mode, please run:**
446 )))
447
448 (% class="box infomessage" %)
449 (((
450 (((
451 **AT+MOD=3**
452
453 **ATZ**
454 )))
455 )))
456
457 (((
458 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
459 )))
460
461
462
463 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
464
465
466 **LT22222-L**: This mode the DI1 is used as a counting pin.
467
468 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
469
470 [[image:image-20220523181903-8.png]]
471
472
473 (((
474 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
475 )))
476
477 [[image:image-20220523181727-7.png]]
478
479 * RO is for relay. ROx=1 : close,ROx=0 always open.
480 * FIRST: Indicate this is the first packet after join network.
481 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
482
483 (((
484 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
485 )))
486
487 (((
488
489
490 **To use this mode, please run:**
491 )))
492
493 (% class="box infomessage" %)
494 (((
495 (((
496 **AT+MOD=4**
497
498 **ATZ**
499 )))
500 )))
501
502
503
504 (((
505 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
506 )))
507
508 (((
509
510
511 **Plus below command for AVI1 Counting:**
512
513
514 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
515
516 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
517
518 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
519
520 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
521 )))
522
523
524
525 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
526
527
528 **LT22222-L**: This mode the DI1 is used as a counting pin.
529
530 [[image:image-20220523182334-9.png]]
531
532 (((
533
534
535 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
536 )))
537
538 * RO is for relay. ROx=1 : close,ROx=0 always open.
539 * FIRST: Indicate this is the first packet after join network.
540 * (((
541 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
542 )))
543
544 (((
545 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
546 )))
547
548 (((
549
550
551 **To use this mode, please run:**
552 )))
553
554 (% class="box infomessage" %)
555 (((
556 (((
557 **AT+MOD=5**
558
559 **ATZ**
560 )))
561 )))
562
563 (((
564 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
565 )))
566
567
568
569 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
570
571
572 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
573
574 For example, if user has configured below commands:
575
576 * **AT+MOD=1 ** **~-~->**  The normal working mode
577 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
578
579 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
580
581 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
582 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
583
584 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
585
586
587 (% style="color:#4f81bd" %)**Trigger base on voltage**:
588
589 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
590
591 **Example:**
592
593 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
594
595 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
596
597
598
599 (% style="color:#4f81bd" %)**Trigger base on current**:
600
601 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
602
603 **Example:**
604
605 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
606
607
608
609 (% style="color:#4f81bd" %)**Trigger base on DI status**:
610
611 DI status trigger Flag.
612
613 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
614
615
616 **Example:**
617
618 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
619
620
621 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
622
623 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
624
625 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
626
627 AA: Code for this downlink Command:
628
629 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
630
631 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
632
633 yy2 yy2: AC1 or AV1 high limit.
634
635 yy3 yy3: AC2 or AV2 low limit.
636
637 Yy4 yy4: AC2 or AV2 high limit.
638
639
640 **Example1**: AA 00 13 88 00 00 00 00 00 00
641
642 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
643
644
645 **Example2**: AA 02 01 00
646
647 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
648
649
650
651 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
652
653 MOD6 Payload : total 11 bytes payload
654
655 [[image:image-20220524085923-1.png]]
656
657
658 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
659
660 [[image:image-20220524090106-2.png]]
661
662 * Each bits shows if the corresponding trigger has been configured.
663
664 **Example:**
665
666 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
667
668
669 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
670
671 [[image:image-20220524090249-3.png]]
672
673 * Each bits shows which status has been trigger on this uplink.
674
675 **Example:**
676
677 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
678
679
680 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
681
682 [[image:image-20220524090456-4.png]]
683
684 * Each bits shows which status has been trigger on this uplink.
685
686 **Example:**
687
688 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
689
690 00000101: Means both DI1 and DI2 trigger are enabled.
691
692
693 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
694
695 Downlink command to poll MOD6 status:
696
697 **AB 06**
698
699 When device got this command, it will send the MOD6 payload.
700
701
702
703 === 3.3.7 Payload Decoder ===
704
705 (((
706
707
708 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/www.dropbox.com/sh/wtrzu7avdtkmn3z/AACK5NwOMkU9jnvf1uCMuqrVa?dl=0>>https://www.dropbox.com/sh/wtrzu7avdtkmn3z/AACK5NwOMkU9jnvf1uCMuqrVa?dl=0]]
709 )))
710
711
712
713 == 3.4 ​Configure LT via AT or Downlink ==
714
715
716 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
717
718 (((
719 There are two kinds of Commands:
720 )))
721
722 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
723
724 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
725
726 === 3.4.1 Common Commands ===
727
728
729 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
730
731
732
733 === 3.4.2 Sensor related commands ===
734
735
736 ==== 3.4.2.1 Set Transmit Interval ====
737
738
739 Set device uplink interval.
740
741 * (% style="color:#037691" %)**AT Command:**
742
743 **AT+TDC=N **
744
745
746 **Example: **AT+TDC=30000. Means set interval to 30 seconds
747
748
749 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
750
751 **0x01 aa bb cc     ~/~/ Same as AT+TDC=0x(aa bb cc)**
752
753
754
755
756 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
757
758
759 Set work mode.
760
761 * (% style="color:#037691" %)**AT Command:**
762
763 **AT+MOD=N  **
764
765
766 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
767
768
769 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
770
771 **0x0A aa    ** ~/~/ Same as AT+MOD=aa
772
773
774
775
776 ==== 3.4.2.3 Poll an uplink ====
777
778
779 * (% style="color:#037691" %)**AT Command:**
780
781 There is no AT Command to poll uplink
782
783
784 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
785
786 **0x08 FF     **~/~/ Poll an uplink
787
788 **Example**: 0x08FF, ask device to send an Uplink
789
790
791
792
793 ==== 3.4.2.4 Enable Trigger Mode ====
794
795
796 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
797
798 * (% style="color:#037691" %)**AT Command:**
799
800 **AT+ADDMOD6=1 or 0**
801
802 1: Enable Trigger Mode
803
804 0: Disable Trigger Mode
805
806
807 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
808
809 **0x0A 06 aa    ** ~/~/ Same as AT+ADDMOD6=aa
810
811
812
813
814 ==== 3.4.2.5 Poll trigger settings ====
815
816
817 Poll trigger settings,
818
819 * (% style="color:#037691" %)**AT Command:**
820
821 There is no AT Command for this feature.
822
823
824 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
825
826 **0xAB 06         **~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
827
828
829
830
831 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
832
833
834 Enable Disable DI1/DI2/DI2 as trigger,
835
836 * (% style="color:#037691" %)**AT Command:**
837
838 **Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
839
840
841 **Example:**
842
843 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
844
845 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
846
847 **0xAA 02 aa bb        **~/~/ Same as AT+DTRI=aa,bb
848
849
850
851
852 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
853
854
855 Set DI1 or DI3(for LT-33222-L) trigger.
856
857 * (% style="color:#037691" %)**AT Command:**
858
859 **AT+TRIG1=a,b**
860
861 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
862
863 b : delay timing.
864
865
866 **Example:**
867
868 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
869
870
871 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
872 * **0x09 01 aa bb cc    ** ~/~/ same as AT+TRIG1=aa,0x(bb cc)
873
874 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
875
876
877 Set DI2 trigger.
878
879 * (% style="color:#037691" %)**AT Command:**
880
881 **AT+TRIG2=a,b**
882
883
884 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
885
886 b : delay timing.
887
888
889 **Example:**
890
891 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
892
893
894 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
895
896 **0x09 02 aa bb cc           **~/~/ same as AT+TRIG1=aa,0x(bb cc)
897
898
899
900
901 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
902
903
904 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
905
906 * (% style="color:#037691" %)**AT Command**
907
908 **AT+ACLIM**
909
910
911 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
912
913 **0x AA 01 aa bb cc dd ee ff gg hh        ** ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
914
915
916
917
918 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
919
920
921 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
922
923 * (% style="color:#037691" %)**AT Command**
924
925 **AT+AVLIM  See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
926
927
928 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
929
930 **0x AA 00 aa bb cc dd ee ff gg hh    ** ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
931
932
933
934
935 ==== 3.4.2.11 Trigger – Set minimum interval ====
936
937
938 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
939
940 * (% style="color:#037691" %)**AT Command**
941
942 **AT+ATDC=5        ** Device won't response the second trigger within 5 minute after the first trigger.
943
944
945 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
946
947 **0x AC aa bb   ** ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
948
949 (((
950
951
952 (% style="color:red" %)Note: ATDC setting must be more than 5min
953 )))
954
955
956
957
958 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
959
960
961 * (% style="color:#037691" %)**AT Command**
962
963 There is no AT Command to control Digital Output
964
965
966 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
967 * **0x02 aa bb cc     **~/~/ Set DO1/DO2/DO3 output
968
969 (((
970 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
971 )))
972
973 (((
974 01: Low,  00: High ,  11: No action
975 )))
976
977 [[image:image-20220524092754-5.png]]
978
979 (((
980 (% style="color:red" %)Note: For LT-22222-L, there is no DO3, the last byte can use any value.
981 )))
982
983 (((
984 (% style="color:red" %)Device will upload a packet if downlink code executes successfully.
985 )))
986
987
988
989
990 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
991
992
993 * (% style="color:#037691" %)**AT Command**
994
995 There is no AT Command to control Digital Output
996
997
998 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
999
1000 **0xA9 aa bb cc     **~/~/ Set DO1/DO2/DO3 output with time control
1001
1002
1003 This is to control the digital output time of DO pin. Include four bytes:
1004
1005 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1006
1007 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1008
1009 01: DO pins will change back to original state after timeout.
1010
1011 00: DO pins will change to an inverter state after timeout 
1012
1013
1014 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1015
1016 [[image:image-20220524093238-6.png]]
1017
1018
1019 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1020
1021 [[image:image-20220524093328-7.png]]
1022
1023
1024 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1025
1026 [[image:image-20220524093351-8.png]]
1027
1028
1029 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:
1030
1031 Latching time. Unit: ms
1032
1033 (% style="color:red" %)Device will upload a packet if downlink code executes successfully.
1034
1035
1036 **Example payload:**
1037
1038 **~1. A9 01 01 01 01 07 D0**
1039
1040 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1041
1042 **2. A9 01 00 01 11 07 D0**
1043
1044 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1045
1046 **3. A9 00 00 00 00 07 D0**
1047
1048 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1049
1050 **4. A9 00 11 01 00 07 D0**
1051
1052 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1053
1054
1055
1056
1057 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1058
1059
1060 * (% style="color:#037691" %)**AT Command:**
1061
1062 There is no AT Command to control Relay Output
1063
1064
1065 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1066
1067 **0x03 aa bb     **~/~/ Set RO1/RO2 output
1068
1069
1070 (((
1071 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1072 )))
1073
1074 (((
1075 01: Close ,  00: Open , 11: No action
1076 )))
1077
1078 (((
1079 [[image:image-20220524093724-9.png]]
1080 )))
1081
1082 (% style="color:red" %)Device will upload a packet if downlink code executes successfully.
1083
1084
1085
1086
1087 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1088
1089
1090 * (% style="color:#037691" %)**AT Command:**
1091
1092 There is no AT Command to control Relay Output
1093
1094
1095 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1096
1097 **0x05 aa bb cc dd     **~/~/ Set RO1/RO2 relay with time control
1098
1099
1100 This is to control the relay output time of relay. Include four bytes:
1101
1102 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1103
1104 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1105
1106 01: Relays will change back to original state after timeout.
1107
1108 00: Relays will change to an inverter state after timeout
1109
1110
1111 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1112
1113 [[image:image-20220714135731-1.png||height="406" width="627"]]
1114
1115
1116 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1117
1118 (% style="color:red" %)Device will upload a packet if downlink code executes successfully.
1119
1120
1121 **Example payload:**
1122
1123 **~1. 05 01 11 07 D**
1124
1125 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1126
1127 **2. 05 01 10 07 D0**
1128
1129 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1130
1131 **3. 05 00 01 07 D0**
1132
1133 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1134
1135 **4. 05 00 00 07 D0**
1136
1137 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1138
1139
1140
1141
1142 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1143
1144
1145 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1146
1147 * (% style="color:#037691" %)**AT Command:**
1148
1149 **AT+VOLMAX   ** ~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1150
1151
1152 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1153
1154 **0xA5 aa bb cc   **~/~/ Same as AT+VOLMAX=(aa bb),cc
1155
1156
1157
1158
1159 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1160
1161
1162 * (% style="color:#037691" %)**AT Command:**
1163
1164 **AT+SETCNT=aa,(bb cc dd ee) **
1165
1166 aa: 1: Set count1,
1167
1168 2: Set count2,
1169
1170 3: Set AV1 count
1171
1172 Bb cc dd ee: number to be set
1173
1174
1175 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1176
1177 **0x A8 aa bb cc dd ee     **~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1178
1179
1180
1181
1182 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1183
1184
1185 Clear counting for counting mode
1186
1187 * (% style="color:#037691" %)**AT Command:**
1188
1189 **AT+CLRCOUNT ** ~/~/ clear all counting
1190
1191
1192 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1193
1194 **0x A6 01    ** ~/~/ clear all counting
1195
1196
1197
1198
1199 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1200
1201
1202 * (% style="color:#037691" %)**AT Command:**
1203
1204 **AT+COUTIME=60  **~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1205
1206
1207 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1208
1209 **0x A7 aa bb cc     **~/~/ same as AT+COUTIME =aa bb cc,
1210
1211 (((
1212 range: aa bb cc:0 to 16777215,  (unit:second)
1213
1214
1215 )))
1216
1217 ==== 3.4.2.20 Reset save DR DO state ====
1218
1219 * (% style="color:#037691" %)**AT Command:**
1220
1221 **AT+RODORET=1  **~/~/ RODO will close when the device joining the network. (default)
1222
1223 **AT+RODORET=0  **~/~/After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1224
1225
1226 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1227
1228 **0x AD aa      **~/~/ same as AT+RODORET =aa
1229
1230 (((
1231
1232
1233 ==== 3.4.2.21 Encrypted payload ====
1234
1235 * (% style="color:#037691" %)**AT Command:**
1236
1237 **AT+DECRYPT=1  **~/~/ The payload is uploaded without encryption
1238
1239 **AT+DECRYPT=0  **~/~/Encrypt when uploading payload (default)
1240
1241
1242 ==== 3.4.2.22 Get sensor value ====
1243
1244 * (% style="color:#037691" %)**AT Command:**
1245
1246 **AT+GETSENSORVALUE=0  **~/~/ The serial port gets the reading of the current sensor
1247
1248 **AT+GETSENSORVALUE=1  **~/~/The serial port gets the current sensor reading and uploads it.
1249
1250
1251 ==== 3.4.2.23 Resets the downlink packet count ====
1252
1253 * (% style="color:#037691" %)**AT Command:**
1254
1255 **AT+DISFCNTCHECK=0  **~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1256
1257 **AT+DISFCNTCHECK=1  **~/~/When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1258
1259
1260 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1261
1262 * (% style="color:#037691" %)**AT Command:**
1263
1264 **AT+DISMACANS=0**  ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1265
1266 **AT+DISMACANS=1**      ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1267
1268
1269 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1270
1271 **0x21 00 01 ** ~/~/ Set  the DISMACANS=1
1272
1273 ==== 3.4.2.25 Copy downlink to uplink ====
1274
1275 * (% style="color:#037691" %)**AT Command**(%%)**:**
1276
1277 **AT+RPL=5**  ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1278
1279 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1280
1281 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1282
1283 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1284
1285 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1286
1287 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1288
1289
1290
1291 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1292
1293 * (((
1294 (% style="color:#037691" %)**Downlink Payload**(%%)**: 26 01  ** ~/~/ Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1295 )))
1296
1297 Example:
1298
1299 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1300
1301
1302
1303 )))
1304
1305 == 3.5 Integrate with Mydevice ==
1306
1307
1308 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1309
1310 (((
1311 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1312 )))
1313
1314 (((
1315 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1316
1317
1318 )))
1319
1320 [[image:image-20220719105525-1.png||height="377" width="677"]]
1321
1322
1323
1324 [[image:image-20220719110247-2.png||height="388" width="683"]]
1325
1326
1327 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1328
1329 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1330
1331 Search under The things network
1332
1333 [[image:1653356838789-523.png||height="337" width="740"]]
1334
1335
1336
1337 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1338
1339 [[image:image-20220524094909-1.png||height="335" width="729"]]
1340
1341
1342 [[image:image-20220524094909-2.png||height="337" width="729"]]
1343
1344
1345 [[image:image-20220524094909-3.png||height="338" width="727"]]
1346
1347
1348 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1349
1350
1351 [[image:image-20220524094909-5.png||height="341" width="734"]]
1352
1353
1354
1355 == 3.6 Interface Detail ==
1356
1357
1358 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1359
1360
1361 Support NPN Type sensor
1362
1363 [[image:1653356991268-289.png]]
1364
1365
1366
1367 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1368
1369
1370 (((
1371 The DI port of LT-22222-L can support NPN or PNP output sensor.
1372 )))
1373
1374 (((
1375 (((
1376 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high.
1377
1378
1379 )))
1380 )))
1381
1382 [[image:1653357170703-587.png]]
1383
1384 (((
1385 (((
1386 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1387 )))
1388 )))
1389
1390 (((
1391
1392 )))
1393
1394 (((
1395 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1396 )))
1397
1398 (((
1399 This type of sensor will output a low signal GND when active.
1400 )))
1401
1402 * (((
1403 Connect sensor’s output to DI1-
1404 )))
1405 * (((
1406 Connect sensor’s VCC to DI1+.
1407 )))
1408
1409 (((
1410 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1411 )))
1412
1413 (((
1414 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1415 )))
1416
1417 (((
1418 If DI1+ = 12v, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1419 )))
1420
1421 (((
1422
1423
1424
1425 )))
1426
1427 (((
1428 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1429 )))
1430
1431 (((
1432 This type of sensor will output a high signal (example 24v) when active.
1433 )))
1434
1435 * (((
1436 Connect sensor’s output to DI1+
1437 )))
1438 * (((
1439 Connect sensor’s GND DI1-.
1440 )))
1441
1442 (((
1443 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1444 )))
1445
1446 (((
1447 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1448 )))
1449
1450 (((
1451 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1452 )))
1453
1454 (((
1455
1456
1457
1458 )))
1459
1460 (((
1461 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1462 )))
1463
1464 (((
1465 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1466 )))
1467
1468 * (((
1469 Connect sensor’s output to DI1+ with a serial 50K resistor
1470 )))
1471 * (((
1472 Connect sensor’s GND DI1-.
1473 )))
1474
1475 (((
1476 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1477 )))
1478
1479 (((
1480 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1481 )))
1482
1483 (((
1484 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1485 )))
1486
1487
1488
1489 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1490
1491
1492 NPN output: GND or Float. Max voltage can apply to output pin is 36v.
1493
1494 [[image:1653357531600-905.png]]
1495
1496
1497
1498 === 3.6.4 Analog Input Interface ===
1499
1500
1501 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1502
1503
1504 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1505
1506 [[image:1653357592296-182.png]]
1507
1508 Example to connect a 4~~20mA sensor
1509
1510 We take the wind speed sensor as an example for reference only.
1511
1512
1513 **Specifications of the wind speed sensor:**
1514
1515 Red:  12~~24v
1516
1517 Yellow:  4~~20mA
1518
1519 Black:  GND
1520
1521
1522 **Connection diagram:**
1523
1524 [[image:1653357640609-758.png]]
1525
1526 [[image:1653357648330-671.png||height="155" width="733"]]
1527
1528
1529
1530 === 3.6.5 Relay Output ===
1531
1532
1533 (((
1534 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device’s Power Line to in serial of RO1_1 and RO_2. Such as below:
1535 )))
1536
1537 [[image:image-20220524100215-9.png]]
1538
1539 [[image:image-20220524100215-10.png||height="382" width="723"]]
1540
1541
1542
1543 == 3.7 LEDs Indicators ==
1544
1545
1546 [[image:image-20220524100748-11.png]]
1547
1548
1549
1550 = 4. Use AT Command =
1551
1552
1553 == 4.1 Access AT Command ==
1554
1555
1556 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1557
1558 [[image:1653358238933-385.png]]
1559
1560
1561 (((
1562 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1563 )))
1564
1565 [[image:1653358355238-883.png]]
1566
1567
1568 (((
1569 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1570 )))
1571
1572 (((
1573 AT+<CMD>?        : Help on <CMD>
1574 )))
1575
1576 (((
1577 AT+<CMD>         : Run <CMD>
1578 )))
1579
1580 (((
1581 AT+<CMD>=<value> : Set the value
1582 )))
1583
1584 (((
1585 AT+<CMD>=?       : Get the value
1586 )))
1587
1588 (((
1589 ATZ: Trig a reset of the MCU
1590 )))
1591
1592 (((
1593 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1594 )))
1595
1596 (((
1597 AT+DEUI: Get or Set the Device EUI
1598 )))
1599
1600 (((
1601 AT+DADDR: Get or Set the Device Address
1602 )))
1603
1604 (((
1605 AT+APPKEY: Get or Set the Application Key
1606 )))
1607
1608 (((
1609 AT+NWKSKEY: Get or Set the Network Session Key
1610 )))
1611
1612 (((
1613 AT+APPSKEY: Get or Set the Application Session Key
1614 )))
1615
1616 (((
1617 AT+APPEUI: Get or Set the Application EUI
1618 )))
1619
1620 (((
1621 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1622 )))
1623
1624 (((
1625 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1626 )))
1627
1628 (((
1629 AT+DR: Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1630 )))
1631
1632 (((
1633 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1634 )))
1635
1636 (((
1637 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1638 )))
1639
1640 (((
1641 AT+RX2FQ: Get or Set the Rx2 window frequency
1642 )))
1643
1644 (((
1645 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1646 )))
1647
1648 (((
1649 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1650 )))
1651
1652 (((
1653 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1654 )))
1655
1656 (((
1657 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1658 )))
1659
1660 (((
1661 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1662 )))
1663
1664 (((
1665 AT+NJM: Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1666 )))
1667
1668 (((
1669 AT+NWKID: Get or Set the Network ID
1670 )))
1671
1672 (((
1673 AT+FCU: Get or Set the Frame Counter Uplink
1674 )))
1675
1676 (((
1677 AT+FCD: Get or Set the Frame Counter Downlink
1678 )))
1679
1680 (((
1681 AT+CLASS: Get or Set the Device Class
1682 )))
1683
1684 (((
1685 AT+JOIN: Join network
1686 )))
1687
1688 (((
1689 AT+NJS: Get OTAA Join Status
1690 )))
1691
1692 (((
1693 AT+SENDB: Send hexadecimal data along with the application port
1694 )))
1695
1696 (((
1697 AT+SEND: Send text data along with the application port
1698 )))
1699
1700 (((
1701 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1702 )))
1703
1704 (((
1705 AT+RECV: Print last received data in raw format
1706 )))
1707
1708 (((
1709 AT+VER: Get current image version and Frequency Band
1710 )))
1711
1712 (((
1713 AT+CFM: Get or Set the confirmation mode (0-1)
1714 )))
1715
1716 (((
1717 AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1718 )))
1719
1720 (((
1721 AT+SNR: Get the SNR of the last received packet
1722 )))
1723
1724 (((
1725 AT+RSSI: Get the RSSI of the last received packet
1726 )))
1727
1728 (((
1729 AT+TDC: Get or set the application data transmission interval in ms
1730 )))
1731
1732 (((
1733 AT+PORT: Get or set the application port
1734 )))
1735
1736 (((
1737 AT+DISAT: Disable AT commands
1738 )))
1739
1740 (((
1741 AT+PWORD: Set password, max 9 digits
1742 )))
1743
1744 (((
1745 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1746 )))
1747
1748 (((
1749 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1750 )))
1751
1752 (((
1753 AT+CFG: Print all settings
1754 )))
1755
1756
1757
1758 == 4.2 Common AT Command Sequence ==
1759
1760
1761 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1762
1763 (((
1764
1765
1766 **If device has not joined network yet:**
1767 )))
1768
1769 (((
1770 (% style="background-color:#dcdcdc" %)123456
1771 )))
1772
1773 (((
1774 (% style="background-color:#dcdcdc" %)AT+FDR
1775 )))
1776
1777 (((
1778 (% style="background-color:#dcdcdc" %)123456
1779 )))
1780
1781 (((
1782 (% style="background-color:#dcdcdc" %)AT+NJM=0
1783 )))
1784
1785 (((
1786 (% style="background-color:#dcdcdc" %)ATZ
1787 )))
1788
1789
1790 (((
1791 **If device already joined network:**
1792 )))
1793
1794 (((
1795 (% style="background-color:#dcdcdc" %)AT+NJM=0
1796 )))
1797
1798 (((
1799 (% style="background-color:#dcdcdc" %)ATZ
1800 )))
1801
1802
1803
1804 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1805
1806 (((
1807
1808
1809 (% style="background-color:#dcdcdc" %)123456(%%)  Enter Password to have AT access.
1810 )))
1811
1812 (((
1813 (% style="background-color:#dcdcdc" %) AT+FDR(%%)   Reset Parameters to Factory Default, Keys Reserve
1814 )))
1815
1816 (((
1817 (% style="background-color:#dcdcdc" %) 123456(%%)  Enter Password to have AT access.
1818 )))
1819
1820 (((
1821 (% style="background-color:#dcdcdc" %) AT+CLASS=C(%%) Set to work in CLASS C
1822 )))
1823
1824 (((
1825 (% style="background-color:#dcdcdc" %) AT+NJM=0(%%)  Set to ABP mode
1826 )))
1827
1828 (((
1829 (% style="background-color:#dcdcdc" %) AT+ADR=0(%%)  Set the Adaptive Data Rate Off
1830 )))
1831
1832 (((
1833 (% style="background-color:#dcdcdc" %) AT+DR=5(%%)  Set Data Rate
1834 )))
1835
1836 (((
1837 (% style="background-color:#dcdcdc" %) AT+TDC=60000(%%)  Set transmit interval to 60 seconds
1838 )))
1839
1840 (((
1841 (% style="background-color:#dcdcdc" %) AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1842 )))
1843
1844 (((
1845 (% style="background-color:#dcdcdc" %) AT+RX2FQ=868400000(%%)  Set RX2Frequency to 868.4Mhz (according to the result from server)
1846 )))
1847
1848 (((
1849 (% style="background-color:#dcdcdc" %) AT+RX2DR=5(%%)  Set RX2DR to match the downlink DR from server. see below
1850 )))
1851
1852 (((
1853 (% style="background-color:#dcdcdc" %) AT+DADDR=26 01 1A F1 (%%) Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1854 )))
1855
1856 (((
1857 (% style="background-color:#dcdcdc" %) ATZ         (%%) Reset MCU
1858
1859
1860 )))
1861
1862 (((
1863 (% style="color:red" %)**Note:**
1864 )))
1865
1866 (((
1867 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1868 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1869 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1870 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1871
1872
1873 )))
1874
1875 (((
1876 [[image:1653359097980-169.png||height="188" width="729"]]
1877 )))
1878
1879 (((
1880
1881 )))
1882
1883
1884 === 4.2.3 Change to Class A ===
1885
1886
1887 If sensor JOINED
1888 (% style="background-color:#dcdcdc" %)AT+CLASS=A
1889 ATZ
1890
1891
1892
1893 = 5. FAQ =
1894
1895
1896 == 5.1 How to upgrade the image? ==
1897
1898
1899 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1900
1901 * Support new features
1902 * For bug fix
1903 * Change LoRaWAN bands.
1904
1905 Below shows the hardware connection for how to upload an image to the LT:
1906
1907 [[image:1653359603330-121.png]]
1908
1909
1910 (((
1911 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1912 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1913 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
1914
1915
1916 (% style="color:blue" %)**For LT-22222-L**(%%):
1917 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
1918
1919
1920 )))
1921
1922 [[image:image-20220524103407-12.png]]
1923
1924 [[image:image-20220524103429-13.png]]
1925
1926 [[image:image-20220524104033-15.png]]
1927
1928
1929 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1930
1931
1932 [[image:1653360054704-518.png||height="186" width="745"]]
1933
1934
1935 (((
1936 (((
1937
1938
1939 == 5.2 How to change the LoRa Frequency Bands/Region? ==
1940
1941
1942 )))
1943 )))
1944
1945 (((
1946 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1947 )))
1948
1949 (((
1950
1951
1952
1953 == 5.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
1954
1955
1956 )))
1957
1958 (((
1959 (((
1960 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
1961 )))
1962 )))
1963
1964 (((
1965 (((
1966 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
1967
1968
1969 )))
1970 )))
1971
1972 (((
1973 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
1974 )))
1975
1976 (((
1977 [[image:1653360231087-571.png||height="401" width="727"]]
1978 )))
1979
1980 (((
1981 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
1982 )))
1983
1984
1985 (((
1986 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
1987 )))
1988
1989 (((
1990 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
1991 (% style="background-color:#dcdcdc" %)AT+FDR(%%)  Reset Parameters to Factory Default, Keys Reserve
1992 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
1993 (% style="background-color:#dcdcdc" %)AT+NJM=0 (%%) Set to ABP mode
1994 (% style="background-color:#dcdcdc" %)AT+ADR=0 (%%) Set the Adaptive Data Rate Off
1995 (% style="background-color:#dcdcdc" %)AT+DR=5 (%%) Set Data Rate (Set AT+DR=3 for 915 band)
1996 (% style="background-color:#dcdcdc" %)AT+TDC=60000 (%%) Set transmit interval to 60 seconds
1997 (% style="background-color:#dcdcdc" %)AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1998 (% style="background-color:#dcdcdc" %)AT+DADDR=26 01 1A F1(%%)  Set Device Address to 26 01 1A F1
1999 (% style="background-color:#dcdcdc" %)ATZ        (%%) Reset MCU
2000 )))
2001
2002
2003 (((
2004 As shown in below:
2005 )))
2006
2007 [[image:1653360498588-932.png||height="485" width="726"]]
2008
2009
2010
2011 == 5.4 Can I see counting event in Serial? ==
2012
2013
2014 (((
2015 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2016
2017
2018
2019 == 5.5 Can i use point to point communication for LT-22222-L? ==
2020
2021
2022 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]
2023
2024
2025
2026 )))
2027
2028 (((
2029 == 5.6 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2030
2031
2032 If the device is not shut down, but directly powered off.
2033
2034 It will default that this is a power-off state.
2035
2036 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2037
2038 After restart, the status before power failure will be read from flash.
2039
2040
2041
2042 = 6. Trouble Shooting =
2043 )))
2044
2045 (((
2046 (((
2047 == 6.1 Downlink doesn't work, how to solve it? ==
2048
2049
2050 )))
2051 )))
2052
2053 (((
2054 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2055 )))
2056
2057 (((
2058
2059
2060
2061 == 6.2 Have trouble to upload image. ==
2062
2063
2064 )))
2065
2066 (((
2067 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2068 )))
2069
2070 (((
2071
2072
2073
2074 == 6.3 Why I can't join TTN in US915 /AU915 bands? ==
2075
2076
2077 )))
2078
2079 (((
2080 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2081 )))
2082
2083
2084
2085 = 7. Order Info =
2086
2087
2088 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2089
2090 (% style="color:#4f81bd" %)**XXX:**
2091
2092 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2093 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2094 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2095 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2096 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2097 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2098 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2099 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2100 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2101
2102 = 8. Packing Info =
2103
2104
2105 **Package Includes**:
2106
2107 * LT-22222-L I/O Controller x 1
2108 * Stick Antenna for LoRa RF part x 1
2109 * Bracket for controller x1
2110 * Program cable x 1
2111
2112 **Dimension and weight**:
2113
2114 * Device Size: 13.5 x 7 x 3 cm
2115 * Device Weight: 105g
2116 * Package Size / pcs : 14.5 x 8 x 5 cm
2117 * Weight / pcs : 170g
2118
2119 = 9. Support =
2120
2121
2122 * (((
2123 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2124 )))
2125 * (((
2126 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2127
2128
2129
2130
2131 )))
2132
2133 = 10. Reference​​​​​ =
2134
2135
2136 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2137 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2138 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
2139
2140