Version 93.1 by Bei Jinggeng on 2022/08/24 15:56

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16 = 1.Introduction =
17
18 == 1.1 What is LT Series I/O Controller ==
19
20 (((
21
22
23 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
24 )))
25
26 (((
27 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
28 )))
29
30 (((
31 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
32 )))
33
34 (((
35 The use environment includes:
36 )))
37
38 (((
39 1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
40 )))
41
42 (((
43 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
44
45
46 )))
47
48 (((
49 [[image:1653295757274-912.png]]
50
51
52 )))
53
54
55 == 1.2  Specifications ==
56
57 (((
58
59
60 **Hardware System:**
61 )))
62
63 * (((
64 STM32L072CZT6 MCU
65 )))
66 * (((
67 SX1276/78 Wireless Chip 
68 )))
69 * (((
70 (((
71 Power Consumption:
72 )))
73
74 * (((
75 Idle: 4mA@12v
76 )))
77 * (((
78 20dB Transmit: 34mA@12v
79 )))
80 )))
81
82 (((
83
84
85 **Interface for Model: LT22222-L:**
86 )))
87
88 * (((
89 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
90 )))
91 * (((
92 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
93 )))
94 * (((
95 2 x Relay Output (5A@250VAC / 30VDC)
96 )))
97 * (((
98 2 x 0~~20mA Analog Input (res:0.01mA)
99 )))
100 * (((
101 2 x 0~~30V Analog Input (res:0.01v)
102 )))
103 * (((
104 Power Input 7~~ 24V DC. 
105 )))
106
107 (((
108
109
110 **LoRa Spec:**
111 )))
112
113 * (((
114 (((
115 Frequency Range:
116 )))
117
118 * (((
119 Band 1 (HF): 862 ~~ 1020 Mhz
120 )))
121 * (((
122 Band 2 (LF): 410 ~~ 528 Mhz
123 )))
124 )))
125 * (((
126 168 dB maximum link budget.
127 )))
128 * (((
129 +20 dBm - 100 mW constant RF output vs.
130 )))
131 * (((
132 +14 dBm high efficiency PA.
133 )))
134 * (((
135 Programmable bit rate up to 300 kbps.
136 )))
137 * (((
138 High sensitivity: down to -148 dBm.
139 )))
140 * (((
141 Bullet-proof front end: IIP3 = -12.5 dBm.
142 )))
143 * (((
144 Excellent blocking immunity.
145 )))
146 * (((
147 Low RX current of 10.3 mA, 200 nA register retention.
148 )))
149 * (((
150 Fully integrated synthesizer with a resolution of 61 Hz.
151 )))
152 * (((
153 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
154 )))
155 * (((
156 Built-in bit synchronizer for clock recovery.
157 )))
158 * (((
159 Preamble detection.
160 )))
161 * (((
162 127 dB Dynamic Range RSSI.
163 )))
164 * (((
165 Automatic RF Sense and CAD with ultra-fast AFC.
166 )))
167 * (((
168 Packet engine up to 256 bytes with CRC.
169
170
171
172
173 )))
174
175 == 1.3 Features ==
176
177
178 * LoRaWAN Class A & Class C protocol
179 * Optional Customized LoRa Protocol
180 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
181 * AT Commands to change parameters
182 * Remote configure parameters via LoRa Downlink
183 * Firmware upgradable via program port
184 * Counting
185
186
187 == 1.4  Applications ==
188
189
190 * Smart Buildings & Home Automation
191 * Logistics and Supply Chain Management
192 * Smart Metering
193 * Smart Agriculture
194 * Smart Cities
195 * Smart Factory
196
197
198 == 1.5 Hardware Variants ==
199
200
201 (% border="1" style="background-color:#f7faff; width:500px" %)
202 |(% style="width:103px" %)**Model**|(% style="width:131px" %)**Photo**|(% style="width:334px" %)**Description**
203 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)[[image:1653296302983-697.png]]|(% style="width:334px" %)(((
204 * 2 x Digital Input (Bi-direction)
205 * 2 x Digital Output
206 * 2 x Relay Output (5A@250VAC / 30VDC)
207 * 2 x 0~~20mA Analog Input (res:0.01mA)
208 * 2 x 0~~30V Analog Input (res:0.01v)
209 * 1 x Counting Port
210 )))
211
212 = 2. Power ON Device =
213
214
215 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
216
217 (((
218 PWR will on when device is properly powered.
219 )))
220
221 [[image:1653297104069-180.png]]
222
223
224
225 = 3. Operation Mode =
226
227 == 3.1 How it works? ==
228
229
230 (((
231 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
232 )))
233
234 (((
235 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
236 )))
237
238
239
240 == 3.2 Example to join LoRaWAN network ==
241
242
243 (((
244 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
245
246
247 )))
248
249 [[image:image-20220523172350-1.png||height="266" width="864"]]
250
251
252 (((
253 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
254
255
256 )))
257
258 (((
259 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
260 )))
261
262 (((
263 Each LT is shipped with a sticker with the default device EUI as below:
264 )))
265
266 [[image:1653297924498-393.png]]
267
268
269 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
270
271 Add APP EUI in the application.
272
273 [[image:1653297955910-247.png||height="321" width="716"]]
274
275
276 Add APP KEY and DEV EUI
277
278 [[image:1653298023685-319.png]]
279
280
281
282 (((
283 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
284 )))
285
286 [[image:1653298044601-602.png||height="405" width="709"]]
287
288
289
290 == 3.3 Uplink Payload ==
291
292
293 There are five working modes + one interrupt mode on LT for different type application:
294
295 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
296 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
297 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
298 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
299 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
300 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
301
302
303 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
304
305
306 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default.
307
308 [[image:image-20220523174024-3.png]]
309
310 (((
311
312
313 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
314 )))
315
316 [[image:image-20220523174254-4.png]]
317
318 * RO is for relay. ROx=1 : close,ROx=0 always open.
319 * DI is for digital input. DIx=1: high or float, DIx=0: low.
320 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
321
322 (% style="color:red" %)Note: DI3 and DO3 bit are not valid for LT-22222-L
323
324 For example if payload is: [[image:image-20220523175847-2.png]]
325
326
327 **The value for the interface is:  **
328
329 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
330
331 AVI2 channel voltage is 0x04AC/1000=1.196V
332
333 ACI1 channel current is 0x1310/1000=4.880mA
334
335 ACI2 channel current is 0x1300/1000=4.864mA
336
337 The last byte 0xAA= 10101010(B) means
338
339 * [1] RO1 relay channel is close and the RO1 LED is ON.
340 * [0] RO2 relay channel is open and RO2 LED is OFF;
341
342 **LT22222-L:**
343
344 * [1] DI2 channel is high input and DI2 LED is ON;
345 * [0] DI1 channel is low input;
346
347 * [0] DO3 channel output state
348 ** DO3 is float in case no load between DO3 and V+.;
349 ** DO3 is high in case there is load between DO3 and V+.
350 ** DO3 LED is off in both case
351 * [1] DO2 channel output is low and DO2 LED is ON.
352 * [0] DO1 channel output state
353 ** DO1 is float in case no load between DO1 and V+.;
354 ** DO1 is high in case there is load between DO1 and V+.
355 ** DO1 LED is off in both case
356
357
358 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
359
360
361 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
362
363 (((
364 Total : 11 bytes payload
365 )))
366
367 [[image:image-20220523180452-3.png]]
368
369
370 (((
371 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
372 )))
373
374 [[image:image-20220523180506-4.png]]
375
376 * RO is for relay. ROx=1 : close,ROx=0 always open.
377 * FIRST: Indicate this is the first packet after join network.
378 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
379
380 (((
381 (% style="color:red" %)Note: DO3 bit is not valid for LT-22222-L.
382 )))
383
384 (((
385
386
387 **To use counting mode, please run:**
388 )))
389
390 (% class="box infomessage" %)
391 (((
392 (((
393 **AT+MOD=2**
394
395 **ATZ**
396 )))
397 )))
398
399 (((
400
401
402 (% style="color:#4f81bd" %)**AT Commands for counting:**
403 )))
404
405 (((
406 **For LT22222-L:**
407
408
409 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
410
411 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
412
413 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
414
415 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
416
417 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
418
419 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
420 )))
421
422
423
424 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
425
426
427 **LT22222-L**: This mode the DI1 is used as a counting pin.
428
429 [[image:image-20220523181246-5.png]]
430
431 (((
432
433
434 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
435 )))
436
437 [[image:image-20220523181301-6.png]]
438
439 * RO is for relay. ROx=1 : close,ROx=0 always open.
440 * FIRST: Indicate this is the first packet after join network.
441 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
442
443 (((
444 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
445 )))
446
447
448 (((
449 **To use counting mode, please run:**
450 )))
451
452 (% class="box infomessage" %)
453 (((
454 (((
455 **AT+MOD=3**
456
457 **ATZ**
458 )))
459 )))
460
461 (((
462 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
463 )))
464
465
466
467 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
468
469
470 **LT22222-L**: This mode the DI1 is used as a counting pin.
471
472 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
473
474 [[image:image-20220523181903-8.png]]
475
476
477 (((
478 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
479 )))
480
481 [[image:image-20220523181727-7.png]]
482
483 * RO is for relay. ROx=1 : close,ROx=0 always open.
484 * FIRST: Indicate this is the first packet after join network.
485 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
486
487 (((
488 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
489 )))
490
491 (((
492
493
494 **To use this mode, please run:**
495 )))
496
497 (% class="box infomessage" %)
498 (((
499 (((
500 **AT+MOD=4**
501
502 **ATZ**
503 )))
504 )))
505
506
507
508 (((
509 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
510 )))
511
512 (((
513
514
515 **Plus below command for AVI1 Counting:**
516
517
518 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
519
520 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
521
522 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
523
524 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
525 )))
526
527
528
529 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
530
531
532 **LT22222-L**: This mode the DI1 is used as a counting pin.
533
534 [[image:image-20220523182334-9.png]]
535
536 (((
537
538
539 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
540 )))
541
542 * RO is for relay. ROx=1 : close,ROx=0 always open.
543 * FIRST: Indicate this is the first packet after join network.
544 * (((
545 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
546 )))
547
548 (((
549 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
550 )))
551
552 (((
553
554
555 **To use this mode, please run:**
556 )))
557
558 (% class="box infomessage" %)
559 (((
560 (((
561 **AT+MOD=5**
562
563 **ATZ**
564 )))
565 )))
566
567 (((
568 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
569 )))
570
571
572
573 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
574
575
576 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
577
578 For example, if user has configured below commands:
579
580 * **AT+MOD=1 ** **~-~->**  The normal working mode
581 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
582
583 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
584
585 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
586 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
587
588 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
589
590
591 (% style="color:#4f81bd" %)**Trigger base on voltage**:
592
593 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
594
595 **Example:**
596
597 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
598
599 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
600
601
602
603 (% style="color:#4f81bd" %)**Trigger base on current**:
604
605 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
606
607 **Example:**
608
609 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
610
611
612
613 (% style="color:#4f81bd" %)**Trigger base on DI status**:
614
615 DI status trigger Flag.
616
617 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
618
619
620 **Example:**
621
622 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
623
624
625 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
626
627 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
628
629 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
630
631 AA: Code for this downlink Command:
632
633 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
634
635 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
636
637 yy2 yy2: AC1 or AV1 high limit.
638
639 yy3 yy3: AC2 or AV2 low limit.
640
641 Yy4 yy4: AC2 or AV2 high limit.
642
643
644 **Example1**: AA 00 13 88 00 00 00 00 00 00
645
646 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
647
648
649 **Example2**: AA 02 01 00
650
651 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
652
653
654
655 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
656
657 MOD6 Payload : total 11 bytes payload
658
659 [[image:image-20220524085923-1.png]]
660
661
662 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
663
664 [[image:image-20220524090106-2.png]]
665
666 * Each bits shows if the corresponding trigger has been configured.
667
668 **Example:**
669
670 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
671
672
673 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
674
675 [[image:image-20220524090249-3.png]]
676
677 * Each bits shows which status has been trigger on this uplink.
678
679 **Example:**
680
681 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
682
683
684 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
685
686 [[image:image-20220524090456-4.png]]
687
688 * Each bits shows which status has been trigger on this uplink.
689
690 **Example:**
691
692 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
693
694 00000101: Means both DI1 and DI2 trigger are enabled.
695
696
697 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
698
699 Downlink command to poll MOD6 status:
700
701 **AB 06**
702
703 When device got this command, it will send the MOD6 payload.
704
705
706
707 === 3.3.7 Payload Decoder ===
708
709 (((
710
711
712 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/www.dropbox.com/sh/wtrzu7avdtkmn3z/AACK5NwOMkU9jnvf1uCMuqrVa?dl=0>>https://www.dropbox.com/sh/wtrzu7avdtkmn3z/AACK5NwOMkU9jnvf1uCMuqrVa?dl=0]]
713 )))
714
715
716
717 == 3.4 ​Configure LT via AT or Downlink ==
718
719
720 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
721
722 (((
723 There are two kinds of Commands:
724 )))
725
726 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
727
728 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
729
730 === 3.4.1 Common Commands ===
731
732
733 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
734
735
736
737 === 3.4.2 Sensor related commands ===
738
739
740 ==== 3.4.2.1 Set Transmit Interval ====
741
742
743 Set device uplink interval.
744
745 * (% style="color:#037691" %)**AT Command:**
746
747 **AT+TDC=N **
748
749
750 **Example: **AT+TDC=30000. Means set interval to 30 seconds
751
752
753 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
754
755 **0x01 aa bb cc     ~/~/ Same as AT+TDC=0x(aa bb cc)**
756
757
758
759
760 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
761
762
763 Set work mode.
764
765 * (% style="color:#037691" %)**AT Command:**
766
767 **AT+MOD=N  **
768
769
770 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
771
772
773 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
774
775 **0x0A aa    ** ~/~/ Same as AT+MOD=aa
776
777
778
779
780 ==== 3.4.2.3 Poll an uplink ====
781
782
783 * (% style="color:#037691" %)**AT Command:**
784
785 There is no AT Command to poll uplink
786
787
788 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
789
790 **0x08 FF     **~/~/ Poll an uplink
791
792 **Example**: 0x08FF, ask device to send an Uplink
793
794
795
796
797 ==== 3.4.2.4 Enable Trigger Mode ====
798
799
800 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
801
802 * (% style="color:#037691" %)**AT Command:**
803
804 **AT+ADDMOD6=1 or 0**
805
806 1: Enable Trigger Mode
807
808 0: Disable Trigger Mode
809
810
811 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
812
813 **0x0A 06 aa    ** ~/~/ Same as AT+ADDMOD6=aa
814
815
816
817
818 ==== 3.4.2.5 Poll trigger settings ====
819
820
821 Poll trigger settings,
822
823 * (% style="color:#037691" %)**AT Command:**
824
825 There is no AT Command for this feature.
826
827
828 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
829
830 **0xAB 06         **~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
831
832
833
834
835 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
836
837
838 Enable Disable DI1/DI2/DI2 as trigger,
839
840 * (% style="color:#037691" %)**AT Command:**
841
842 **Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
843
844
845 **Example:**
846
847 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
848
849 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
850
851 **0xAA 02 aa bb        **~/~/ Same as AT+DTRI=aa,bb
852
853
854
855
856 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
857
858
859 Set DI1 or DI3(for LT-33222-L) trigger.
860
861 * (% style="color:#037691" %)**AT Command:**
862
863 **AT+TRIG1=a,b**
864
865 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
866
867 b : delay timing.
868
869
870 **Example:**
871
872 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
873
874
875 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
876 * **0x09 01 aa bb cc    ** ~/~/ same as AT+TRIG1=aa,0x(bb cc)
877
878
879 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
880
881
882 Set DI2 trigger.
883
884 * (% style="color:#037691" %)**AT Command:**
885
886 **AT+TRIG2=a,b**
887
888
889 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
890
891 b : delay timing.
892
893
894 **Example:**
895
896 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
897
898
899 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
900
901 **0x09 02 aa bb cc           **~/~/ same as AT+TRIG1=aa,0x(bb cc)
902
903
904
905
906 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
907
908
909 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
910
911 * (% style="color:#037691" %)**AT Command**
912
913 **AT+ACLIM**
914
915
916 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
917
918 **0x AA 01 aa bb cc dd ee ff gg hh        ** ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
919
920
921
922
923 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
924
925
926 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
927
928 * (% style="color:#037691" %)**AT Command**
929
930 **AT+AVLIM  See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
931
932
933 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
934
935 **0x AA 00 aa bb cc dd ee ff gg hh    ** ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
936
937
938
939
940 ==== 3.4.2.11 Trigger – Set minimum interval ====
941
942
943 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
944
945 * (% style="color:#037691" %)**AT Command**
946
947 **AT+ATDC=5        ** Device won't response the second trigger within 5 minute after the first trigger.
948
949
950 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
951
952 **0x AC aa bb   ** ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
953
954 (((
955
956
957 (% style="color:red" %)Note: ATDC setting must be more than 5min
958 )))
959
960
961
962
963 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
964
965
966 * (% style="color:#037691" %)**AT Command**
967
968 There is no AT Command to control Digital Output
969
970
971 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
972 * **0x02 aa bb cc     **~/~/ Set DO1/DO2/DO3 output
973
974 (((
975 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
976 )))
977
978 (((
979 01: Low,  00: High ,  11: No action
980 )))
981
982 [[image:image-20220524092754-5.png]]
983
984 (((
985 (% style="color:red" %)Note: For LT-22222-L, there is no DO3, the last byte can use any value.
986 )))
987
988 (((
989 (% style="color:red" %)Device will upload a packet if downlink code executes successfully.
990 )))
991
992
993
994
995 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
996
997
998 * (% style="color:#037691" %)**AT Command**
999
1000 There is no AT Command to control Digital Output
1001
1002
1003 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1004
1005 **0xA9 aa bb cc     **~/~/ Set DO1/DO2/DO3 output with time control
1006
1007
1008 This is to control the digital output time of DO pin. Include four bytes:
1009
1010 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1011
1012 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1013
1014 01: DO pins will change back to original state after timeout.
1015
1016 00: DO pins will change to an inverter state after timeout 
1017
1018
1019 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1020
1021 [[image:image-20220524093238-6.png]]
1022
1023
1024 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1025
1026 [[image:image-20220524093328-7.png]]
1027
1028
1029 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1030
1031 [[image:image-20220524093351-8.png]]
1032
1033
1034 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:
1035
1036 Latching time. Unit: ms
1037
1038 Device will upload a packet if downlink code executes successfully.
1039
1040
1041 **Example payload:**
1042
1043 **~1. A9 01 01 01 01 07 D0**
1044
1045 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1046
1047 **2. A9 01 00 01 11 07 D0**
1048
1049 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1050
1051 **3. A9 00 00 00 00 07 D0**
1052
1053 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1054
1055 **4. A9 00 11 01 00 07 D0**
1056
1057 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1058
1059 (% style="color:red" %)Device will upload a packet if downlink code executes successfully.
1060
1061
1062
1063 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1064
1065
1066 * (% style="color:#037691" %)**AT Command:**
1067
1068 There is no AT Command to control Relay Output
1069
1070
1071 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1072
1073 **0x03 aa bb     **~/~/ Set RO1/RO2 output
1074
1075
1076 (((
1077 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1078 )))
1079
1080 (((
1081 01: Close ,  00: Open , 11: No action
1082 )))
1083
1084 (((
1085 [[image:image-20220524093724-9.png]]
1086 )))
1087
1088 (% style="color:red" %)Device will upload a packet if downlink code executes successfully.
1089
1090
1091
1092
1093 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1094
1095
1096 * (% style="color:#037691" %)**AT Command:**
1097
1098 There is no AT Command to control Relay Output
1099
1100
1101 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1102
1103 **0x05 aa bb cc dd     **~/~/ Set RO1/RO2 relay with time control
1104
1105
1106 This is to control the relay output time of relay. Include four bytes:
1107
1108 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1109
1110 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1111
1112 01: Relays will change back to original state after timeout.
1113
1114 00: Relays will change to an inverter state after timeout
1115
1116
1117 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1118
1119 [[image:image-20220714135731-1.png||height="406" width="627"]]
1120
1121
1122 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1123
1124 Device will upload a packet if downlink code executes successfully.
1125
1126
1127 **Example payload:**
1128
1129 **~1. 05 01 11 07 D**
1130
1131 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1132
1133 **2. 05 01 10 07 D0**
1134
1135 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1136
1137 **3. 05 00 01 07 D0**
1138
1139 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1140
1141 **4. 05 00 00 07 D0**
1142
1143 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1144
1145 (% style="color:red" %)Device will upload a packet if downlink code executes successfully.
1146
1147
1148
1149 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1150
1151
1152 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1153
1154 * (% style="color:#037691" %)**AT Command:**
1155
1156 **AT+VOLMAX   ** ~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1157
1158
1159 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1160
1161 **0xA5 aa bb cc   **~/~/ Same as AT+VOLMAX=(aa bb),cc
1162
1163
1164
1165
1166 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1167
1168
1169 * (% style="color:#037691" %)**AT Command:**
1170
1171 **AT+SETCNT=aa,(bb cc dd ee) **
1172
1173 aa: 1: Set count1,
1174
1175 2: Set count2,
1176
1177 3: Set AV1 count
1178
1179 Bb cc dd ee: number to be set
1180
1181
1182 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1183
1184 **0x A8 aa bb cc dd ee     **~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1185
1186
1187
1188
1189 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1190
1191
1192 Clear counting for counting mode
1193
1194 * (% style="color:#037691" %)**AT Command:**
1195
1196 **AT+CLRCOUNT ** ~/~/ clear all counting
1197
1198
1199 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1200
1201 **0x A6 01    ** ~/~/ clear all counting
1202
1203
1204
1205
1206 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1207
1208
1209 * (% style="color:#037691" %)**AT Command:**
1210
1211 **AT+COUTIME=60  **~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1212
1213
1214 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1215
1216 **0x A7 aa bb cc     **~/~/ same as AT+COUTIME =aa bb cc,
1217
1218 (((
1219 range: aa bb cc:0 to 16777215,  (unit:second)
1220
1221
1222 )))
1223
1224 ==== 3.4.2.20 Reset save DR DO state ====
1225
1226 * (% style="color:#037691" %)**AT Command:**
1227
1228 **AT+RODORET=1  **~/~/ RODO will close when the device joining the network. (default)
1229
1230 **AT+RODORET=0  **~/~/After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1231
1232
1233 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1234
1235 **0x AD aa      **~/~/ same as AT+RODORET =aa
1236
1237 (((
1238
1239
1240 ==== 3.4.2.21 Encrypted payload ====
1241
1242 * (% style="color:#037691" %)**AT Command:**
1243
1244 **AT+DECRYPT=1  **~/~/ The payload is uploaded without encryption
1245
1246 **AT+DECRYPT=0  **~/~/Encrypt when uploading payload (default)
1247
1248
1249 ==== 3.4.2.22 Get sensor value ====
1250
1251 * (% style="color:#037691" %)**AT Command:**
1252
1253 **AT+GETSENSORVALUE=0  **~/~/ The serial port gets the reading of the current sensor
1254
1255 **AT+GETSENSORVALUE=1  **~/~/The serial port gets the current sensor reading and uploads it.
1256
1257
1258 ==== 3.4.2.23 Resets the downlink packet count ====
1259
1260 * (% style="color:#037691" %)**AT Command:**
1261
1262 **AT+DISFCNTCHECK=0  **~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1263
1264 **AT+DISFCNTCHECK=1  **~/~/When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1265
1266
1267 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1268
1269 * (% style="color:#037691" %)**AT Command:**
1270
1271 **AT+DISMACANS=0**  ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1272
1273 **AT+DISMACANS=1**      ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1274
1275
1276 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1277
1278 **0x21 00 01 ** ~/~/ Set  the DISMACANS=1
1279
1280 ==== 3.4.2.25 Copy downlink to uplink ====
1281
1282 * (% style="color:#037691" %)**AT Command**(%%)**:**
1283
1284 **AT+RPL=5**  ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1285
1286 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1287
1288 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1289
1290 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1291
1292 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1293
1294 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1295
1296
1297
1298 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1299
1300 * (((
1301 (% style="color:#037691" %)**Downlink Payload**(%%)**: 26 01  ** ~/~/ Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1302 )))
1303
1304 Example:
1305
1306 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1307
1308
1309
1310 )))
1311
1312 == 3.5 Integrate with Mydevice ==
1313
1314
1315 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1316
1317 (((
1318 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1319 )))
1320
1321 (((
1322 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1323
1324
1325 )))
1326
1327 [[image:image-20220719105525-1.png||height="377" width="677"]]
1328
1329
1330
1331 [[image:image-20220719110247-2.png||height="388" width="683"]]
1332
1333
1334 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1335
1336 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1337
1338 Search under The things network
1339
1340 [[image:1653356838789-523.png||height="337" width="740"]]
1341
1342
1343
1344 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1345
1346 [[image:image-20220524094909-1.png||height="335" width="729"]]
1347
1348
1349 [[image:image-20220524094909-2.png||height="337" width="729"]]
1350
1351
1352 [[image:image-20220524094909-3.png||height="338" width="727"]]
1353
1354
1355 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1356
1357
1358 [[image:image-20220524094909-5.png||height="341" width="734"]]
1359
1360
1361
1362 == 3.6 Interface Detail ==
1363
1364
1365 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1366
1367
1368 Support NPN Type sensor
1369
1370 [[image:1653356991268-289.png]]
1371
1372
1373
1374 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1375
1376
1377 (((
1378 The DI port of LT-22222-L can support NPN or PNP output sensor.
1379 )))
1380
1381 (((
1382 (((
1383 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high.
1384
1385
1386 )))
1387 )))
1388
1389 [[image:1653357170703-587.png]]
1390
1391 (((
1392 (((
1393 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1394 )))
1395 )))
1396
1397 (((
1398
1399 )))
1400
1401 (((
1402 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1403 )))
1404
1405 (((
1406 This type of sensor will output a low signal GND when active.
1407 )))
1408
1409 * (((
1410 Connect sensor’s output to DI1-
1411 )))
1412 * (((
1413 Connect sensor’s VCC to DI1+.
1414 )))
1415
1416 (((
1417 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1418 )))
1419
1420 (((
1421 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1422 )))
1423
1424 (((
1425 If DI1+ = 12v, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1426 )))
1427
1428 (((
1429
1430
1431
1432 )))
1433
1434 (((
1435 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1436 )))
1437
1438 (((
1439 This type of sensor will output a high signal (example 24v) when active.
1440 )))
1441
1442 * (((
1443 Connect sensor’s output to DI1+
1444 )))
1445 * (((
1446 Connect sensor’s GND DI1-.
1447 )))
1448
1449 (((
1450 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1451 )))
1452
1453 (((
1454 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1455 )))
1456
1457 (((
1458 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1459 )))
1460
1461 (((
1462
1463
1464
1465 )))
1466
1467 (((
1468 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1469 )))
1470
1471 (((
1472 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1473 )))
1474
1475 * (((
1476 Connect sensor’s output to DI1+ with a serial 50K resistor
1477 )))
1478 * (((
1479 Connect sensor’s GND DI1-.
1480 )))
1481
1482 (((
1483 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1484 )))
1485
1486 (((
1487 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1488 )))
1489
1490 (((
1491 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1492 )))
1493
1494
1495
1496 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1497
1498
1499 NPN output: GND or Float. Max voltage can apply to output pin is 36v.
1500
1501 [[image:1653357531600-905.png]]
1502
1503
1504
1505 === 3.6.4 Analog Input Interface ===
1506
1507
1508 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1509
1510
1511 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1512
1513 [[image:1653357592296-182.png]]
1514
1515 Example to connect a 4~~20mA sensor
1516
1517 We take the wind speed sensor as an example for reference only.
1518
1519
1520 **Specifications of the wind speed sensor:**
1521
1522 Red:  12~~24v
1523
1524 Yellow:  4~~20mA
1525
1526 Black:  GND
1527
1528
1529 **Connection diagram:**
1530
1531 [[image:1653357640609-758.png]]
1532
1533 [[image:1653357648330-671.png||height="155" width="733"]]
1534
1535
1536
1537 === 3.6.5 Relay Output ===
1538
1539
1540 (((
1541 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device’s Power Line to in serial of RO1_1 and RO_2. Such as below:
1542 )))
1543
1544 [[image:image-20220524100215-9.png]]
1545
1546 [[image:image-20220524100215-10.png||height="382" width="723"]]
1547
1548
1549
1550 == 3.7 LEDs Indicators ==
1551
1552
1553 [[image:image-20220524100748-11.png]]
1554
1555
1556
1557 = 4. Use AT Command =
1558
1559
1560 == 4.1 Access AT Command ==
1561
1562
1563 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1564
1565 [[image:1653358238933-385.png]]
1566
1567
1568 (((
1569 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1570 )))
1571
1572 [[image:1653358355238-883.png]]
1573
1574
1575 (((
1576 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1577 )))
1578
1579 (((
1580 AT+<CMD>?        : Help on <CMD>
1581 )))
1582
1583 (((
1584 AT+<CMD>         : Run <CMD>
1585 )))
1586
1587 (((
1588 AT+<CMD>=<value> : Set the value
1589 )))
1590
1591 (((
1592 AT+<CMD>=?       : Get the value
1593 )))
1594
1595 (((
1596 ATZ: Trig a reset of the MCU
1597 )))
1598
1599 (((
1600 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1601 )))
1602
1603 (((
1604 AT+DEUI: Get or Set the Device EUI
1605 )))
1606
1607 (((
1608 AT+DADDR: Get or Set the Device Address
1609 )))
1610
1611 (((
1612 AT+APPKEY: Get or Set the Application Key
1613 )))
1614
1615 (((
1616 AT+NWKSKEY: Get or Set the Network Session Key
1617 )))
1618
1619 (((
1620 AT+APPSKEY: Get or Set the Application Session Key
1621 )))
1622
1623 (((
1624 AT+APPEUI: Get or Set the Application EUI
1625 )))
1626
1627 (((
1628 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1629 )))
1630
1631 (((
1632 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1633 )))
1634
1635 (((
1636 AT+DR: Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1637 )))
1638
1639 (((
1640 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1641 )))
1642
1643 (((
1644 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1645 )))
1646
1647 (((
1648 AT+RX2FQ: Get or Set the Rx2 window frequency
1649 )))
1650
1651 (((
1652 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1653 )))
1654
1655 (((
1656 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1657 )))
1658
1659 (((
1660 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1661 )))
1662
1663 (((
1664 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1665 )))
1666
1667 (((
1668 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1669 )))
1670
1671 (((
1672 AT+NJM: Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1673 )))
1674
1675 (((
1676 AT+NWKID: Get or Set the Network ID
1677 )))
1678
1679 (((
1680 AT+FCU: Get or Set the Frame Counter Uplink
1681 )))
1682
1683 (((
1684 AT+FCD: Get or Set the Frame Counter Downlink
1685 )))
1686
1687 (((
1688 AT+CLASS: Get or Set the Device Class
1689 )))
1690
1691 (((
1692 AT+JOIN: Join network
1693 )))
1694
1695 (((
1696 AT+NJS: Get OTAA Join Status
1697 )))
1698
1699 (((
1700 AT+SENDB: Send hexadecimal data along with the application port
1701 )))
1702
1703 (((
1704 AT+SEND: Send text data along with the application port
1705 )))
1706
1707 (((
1708 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1709 )))
1710
1711 (((
1712 AT+RECV: Print last received data in raw format
1713 )))
1714
1715 (((
1716 AT+VER: Get current image version and Frequency Band
1717 )))
1718
1719 (((
1720 AT+CFM: Get or Set the confirmation mode (0-1)
1721 )))
1722
1723 (((
1724 AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1725 )))
1726
1727 (((
1728 AT+SNR: Get the SNR of the last received packet
1729 )))
1730
1731 (((
1732 AT+RSSI: Get the RSSI of the last received packet
1733 )))
1734
1735 (((
1736 AT+TDC: Get or set the application data transmission interval in ms
1737 )))
1738
1739 (((
1740 AT+PORT: Get or set the application port
1741 )))
1742
1743 (((
1744 AT+DISAT: Disable AT commands
1745 )))
1746
1747 (((
1748 AT+PWORD: Set password, max 9 digits
1749 )))
1750
1751 (((
1752 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1753 )))
1754
1755 (((
1756 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1757 )))
1758
1759 (((
1760 AT+CFG: Print all settings
1761 )))
1762
1763
1764
1765 == 4.2 Common AT Command Sequence ==
1766
1767
1768 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1769
1770 (((
1771
1772
1773 **If device has not joined network yet:**
1774 )))
1775
1776 (((
1777 (% style="background-color:#dcdcdc" %)123456
1778 )))
1779
1780 (((
1781 (% style="background-color:#dcdcdc" %)AT+FDR
1782 )))
1783
1784 (((
1785 (% style="background-color:#dcdcdc" %)123456
1786 )))
1787
1788 (((
1789 (% style="background-color:#dcdcdc" %)AT+NJM=0
1790 )))
1791
1792 (((
1793 (% style="background-color:#dcdcdc" %)ATZ
1794 )))
1795
1796
1797 (((
1798 **If device already joined network:**
1799 )))
1800
1801 (((
1802 (% style="background-color:#dcdcdc" %)AT+NJM=0
1803 )))
1804
1805 (((
1806 (% style="background-color:#dcdcdc" %)ATZ
1807 )))
1808
1809
1810
1811 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1812
1813 (((
1814
1815
1816 (% style="background-color:#dcdcdc" %)123456(%%)  Enter Password to have AT access.
1817 )))
1818
1819 (((
1820 (% style="background-color:#dcdcdc" %) AT+FDR(%%)   Reset Parameters to Factory Default, Keys Reserve
1821 )))
1822
1823 (((
1824 (% style="background-color:#dcdcdc" %) 123456(%%)  Enter Password to have AT access.
1825 )))
1826
1827 (((
1828 (% style="background-color:#dcdcdc" %) AT+CLASS=C(%%) Set to work in CLASS C
1829 )))
1830
1831 (((
1832 (% style="background-color:#dcdcdc" %) AT+NJM=0(%%)  Set to ABP mode
1833 )))
1834
1835 (((
1836 (% style="background-color:#dcdcdc" %) AT+ADR=0(%%)  Set the Adaptive Data Rate Off
1837 )))
1838
1839 (((
1840 (% style="background-color:#dcdcdc" %) AT+DR=5(%%)  Set Data Rate
1841 )))
1842
1843 (((
1844 (% style="background-color:#dcdcdc" %) AT+TDC=60000(%%)  Set transmit interval to 60 seconds
1845 )))
1846
1847 (((
1848 (% style="background-color:#dcdcdc" %) AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1849 )))
1850
1851 (((
1852 (% style="background-color:#dcdcdc" %) AT+RX2FQ=868400000(%%)  Set RX2Frequency to 868.4Mhz (according to the result from server)
1853 )))
1854
1855 (((
1856 (% style="background-color:#dcdcdc" %) AT+RX2DR=5(%%)  Set RX2DR to match the downlink DR from server. see below
1857 )))
1858
1859 (((
1860 (% style="background-color:#dcdcdc" %) AT+DADDR=26 01 1A F1 (%%) Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1861 )))
1862
1863 (((
1864 (% style="background-color:#dcdcdc" %) ATZ         (%%) Reset MCU
1865
1866
1867 )))
1868
1869 (((
1870 (% style="color:red" %)**Note:**
1871 )))
1872
1873 (((
1874 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1875 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1876 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1877 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1878
1879
1880 )))
1881
1882 (((
1883 [[image:1653359097980-169.png||height="188" width="729"]]
1884 )))
1885
1886 (((
1887
1888 )))
1889
1890
1891 === 4.2.3 Change to Class A ===
1892
1893
1894 If sensor JOINED
1895 (% style="background-color:#dcdcdc" %)AT+CLASS=A
1896 ATZ
1897
1898
1899
1900 = 5. FAQ =
1901
1902
1903 == 5.1 How to upgrade the image? ==
1904
1905
1906 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1907
1908 * Support new features
1909 * For bug fix
1910 * Change LoRaWAN bands.
1911
1912 Below shows the hardware connection for how to upload an image to the LT:
1913
1914 [[image:1653359603330-121.png]]
1915
1916
1917 (((
1918 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1919 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1920 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
1921
1922
1923 (% style="color:blue" %)**For LT-22222-L**(%%):
1924 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
1925
1926
1927 )))
1928
1929 [[image:image-20220524103407-12.png]]
1930
1931 [[image:image-20220524103429-13.png]]
1932
1933 [[image:image-20220524104033-15.png]]
1934
1935
1936 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1937
1938
1939 [[image:1653360054704-518.png||height="186" width="745"]]
1940
1941
1942 (((
1943 (((
1944
1945
1946 == 5.2 How to change the LoRa Frequency Bands/Region? ==
1947
1948
1949 )))
1950 )))
1951
1952 (((
1953 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1954 )))
1955
1956 (((
1957
1958
1959
1960 == 5.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
1961
1962
1963 )))
1964
1965 (((
1966 (((
1967 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
1968 )))
1969 )))
1970
1971 (((
1972 (((
1973 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
1974
1975
1976 )))
1977 )))
1978
1979 (((
1980 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
1981 )))
1982
1983 (((
1984 [[image:1653360231087-571.png||height="401" width="727"]]
1985 )))
1986
1987 (((
1988 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
1989 )))
1990
1991
1992 (((
1993 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
1994 )))
1995
1996 (((
1997 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
1998 (% style="background-color:#dcdcdc" %)AT+FDR(%%)  Reset Parameters to Factory Default, Keys Reserve
1999 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
2000 (% style="background-color:#dcdcdc" %)AT+NJM=0 (%%) Set to ABP mode
2001 (% style="background-color:#dcdcdc" %)AT+ADR=0 (%%) Set the Adaptive Data Rate Off
2002 (% style="background-color:#dcdcdc" %)AT+DR=5 (%%) Set Data Rate (Set AT+DR=3 for 915 band)
2003 (% style="background-color:#dcdcdc" %)AT+TDC=60000 (%%) Set transmit interval to 60 seconds
2004 (% style="background-color:#dcdcdc" %)AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
2005 (% style="background-color:#dcdcdc" %)AT+DADDR=26 01 1A F1(%%)  Set Device Address to 26 01 1A F1
2006 (% style="background-color:#dcdcdc" %)ATZ        (%%) Reset MCU
2007 )))
2008
2009
2010 (((
2011 As shown in below:
2012 )))
2013
2014 [[image:1653360498588-932.png||height="485" width="726"]]
2015
2016
2017
2018 == 5.4 Can I see counting event in Serial? ==
2019
2020
2021 (((
2022 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2023
2024
2025
2026 == 5.5 Can i use point to point communication for LT-22222-L? ==
2027
2028
2029 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]
2030
2031
2032
2033 )))
2034
2035 (((
2036 == 5.6 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2037
2038
2039 If the device is not shut down, but directly powered off.
2040
2041 It will default that this is a power-off state.
2042
2043 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2044
2045 After restart, the status before power failure will be read from flash.
2046
2047
2048
2049 = 6. Trouble Shooting =
2050 )))
2051
2052 (((
2053 (((
2054 == 6.1 Downlink doesn't work, how to solve it? ==
2055
2056
2057 )))
2058 )))
2059
2060 (((
2061 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2062 )))
2063
2064 (((
2065
2066
2067
2068 == 6.2 Have trouble to upload image. ==
2069
2070
2071 )))
2072
2073 (((
2074 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2075 )))
2076
2077 (((
2078
2079
2080
2081 == 6.3 Why I can't join TTN in US915 /AU915 bands? ==
2082
2083
2084 )))
2085
2086 (((
2087 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2088 )))
2089
2090
2091
2092 = 7. Order Info =
2093
2094
2095 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2096
2097 (% style="color:#4f81bd" %)**XXX:**
2098
2099 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2100 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2101 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2102 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2103 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2104 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2105 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2106 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2107 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2108
2109 = 8. Packing Info =
2110
2111
2112 **Package Includes**:
2113
2114 * LT-22222-L I/O Controller x 1
2115 * Stick Antenna for LoRa RF part x 1
2116 * Bracket for controller x1
2117 * Program cable x 1
2118
2119 **Dimension and weight**:
2120
2121 * Device Size: 13.5 x 7 x 3 cm
2122 * Device Weight: 105g
2123 * Package Size / pcs : 14.5 x 8 x 5 cm
2124 * Weight / pcs : 170g
2125
2126 = 9. Support =
2127
2128
2129 * (((
2130 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2131 )))
2132 * (((
2133 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2134
2135
2136
2137
2138 )))
2139
2140 = 10. Reference​​​​​ =
2141
2142
2143 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2144 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2145 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
2146
2147