Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16 = 1.Introduction =
17
18 == 1.1 What is LT Series I/O Controller ==
19
20 (((
21
22
23 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
24 )))
25
26 (((
27 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
28 )))
29
30 (((
31 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
32 )))
33
34 (((
35 The use environment includes:
36 )))
37
38 (((
39 1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
40 )))
41
42 (((
43 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
44
45
46 )))
47
48 (((
49 [[image:1653295757274-912.png]]
50
51
52 )))
53
54
55 == 1.2  Specifications ==
56
57 (((
58
59
60 **Hardware System:**
61 )))
62
63 * (((
64 STM32L072CZT6 MCU
65 )))
66 * (((
67 SX1276/78 Wireless Chip 
68 )))
69 * (((
70 (((
71 Power Consumption:
72 )))
73
74 * (((
75 Idle: 4mA@12v
76 )))
77 * (((
78 20dB Transmit: 34mA@12v
79 )))
80 )))
81
82 (((
83
84
85 **Interface for Model: LT22222-L:**
86 )))
87
88 * (((
89 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
90 )))
91 * (((
92 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
93 )))
94 * (((
95 2 x Relay Output (5A@250VAC / 30VDC)
96 )))
97 * (((
98 2 x 0~~20mA Analog Input (res:0.01mA)
99 )))
100 * (((
101 2 x 0~~30V Analog Input (res:0.01v)
102 )))
103 * (((
104 Power Input 7~~ 24V DC. 
105 )))
106
107 (((
108
109
110 **LoRa Spec:**
111 )))
112
113 * (((
114 (((
115 Frequency Range:
116 )))
117
118 * (((
119 Band 1 (HF): 862 ~~ 1020 Mhz
120 )))
121 * (((
122 Band 2 (LF): 410 ~~ 528 Mhz
123 )))
124 )))
125 * (((
126 168 dB maximum link budget.
127 )))
128 * (((
129 +20 dBm - 100 mW constant RF output vs.
130 )))
131 * (((
132 +14 dBm high efficiency PA.
133 )))
134 * (((
135 Programmable bit rate up to 300 kbps.
136 )))
137 * (((
138 High sensitivity: down to -148 dBm.
139 )))
140 * (((
141 Bullet-proof front end: IIP3 = -12.5 dBm.
142 )))
143 * (((
144 Excellent blocking immunity.
145 )))
146 * (((
147 Low RX current of 10.3 mA, 200 nA register retention.
148 )))
149 * (((
150 Fully integrated synthesizer with a resolution of 61 Hz.
151 )))
152 * (((
153 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
154 )))
155 * (((
156 Built-in bit synchronizer for clock recovery.
157 )))
158 * (((
159 Preamble detection.
160 )))
161 * (((
162 127 dB Dynamic Range RSSI.
163 )))
164 * (((
165 Automatic RF Sense and CAD with ultra-fast AFC.
166 )))
167 * (((
168 Packet engine up to 256 bytes with CRC.
169
170
171
172
173 )))
174
175 == 1.3 Features ==
176
177
178 * LoRaWAN Class A & Class C protocol
179 * Optional Customized LoRa Protocol
180 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865
181 * AT Commands to change parameters
182 * Remote configure parameters via LoRa Downlink
183 * Firmware upgradable via program port
184 * Counting
185
186
187 == 1.4  Applications ==
188
189
190 * Smart Buildings & Home Automation
191 * Logistics and Supply Chain Management
192 * Smart Metering
193 * Smart Agriculture
194 * Smart Cities
195 * Smart Factory
196
197
198 == 1.5 Hardware Variants ==
199
200
201 (% border="1" style="background-color:#f7faff; width:500px" %)
202 |(% style="width:103px" %)**Model**|(% style="width:131px" %)**Photo**|(% style="width:334px" %)**Description**
203 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)[[image:1653296302983-697.png]]|(% style="width:334px" %)(((
204 * 2 x Digital Input (Bi-direction)
205 * 2 x Digital Output
206 * 2 x Relay Output (5A@250VAC / 30VDC)
207 * 2 x 0~~20mA Analog Input (res:0.01mA)
208 * 2 x 0~~30V Analog Input (res:0.01v)
209 * 1 x Counting Port
210 )))
211
212 = 2. Power ON Device =
213
214
215 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
216
217 (((
218 PWR will on when device is properly powered.
219 )))
220
221 [[image:1653297104069-180.png]]
222
223
224
225 = 3. Operation Mode =
226
227 == 3.1 How it works? ==
228
229
230 (((
231 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
232 )))
233
234 (((
235 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
236 )))
237
238
239
240 == 3.2 Example to join LoRaWAN network ==
241
242
243 (((
244 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
245
246
247 )))
248
249 [[image:image-20220523172350-1.png||height="266" width="864"]]
250
251
252 (((
253 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
254
255
256 )))
257
258 (((
259 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
260 )))
261
262 (((
263 Each LT is shipped with a sticker with the default device EUI as below:
264 )))
265
266 [[image:1653297924498-393.png]]
267
268
269 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
270
271 Add APP EUI in the application.
272
273 [[image:1653297955910-247.png||height="321" width="716"]]
274
275
276 Add APP KEY and DEV EUI
277
278 [[image:1653298023685-319.png]]
279
280
281
282 (((
283 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
284 )))
285
286 [[image:1653298044601-602.png||height="405" width="709"]]
287
288
289
290 == 3.3 Uplink Payload ==
291
292
293 There are five working modes + one interrupt mode on LT for different type application:
294
295 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
296 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
297 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
298 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
299 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
300 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
301
302
303 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
304
305
306 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default.
307
308 [[image:image-20220523174024-3.png]]
309
310 (((
311
312
313 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
314 )))
315
316 [[image:image-20220523174254-4.png]]
317
318 * RO is for relay. ROx=1 : close,ROx=0 always open.
319 * DI is for digital input. DIx=1: high or float, DIx=0: low.
320 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
321
322 (% style="color:red" %)Note: DI3 and DO3 bit are not valid for LT-22222-L
323
324 For example if payload is: [[image:image-20220523175847-2.png]]
325
326
327 **The value for the interface is:  **
328
329 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
330
331 AVI2 channel voltage is 0x04AC/1000=1.196V
332
333 ACI1 channel current is 0x1310/1000=4.880mA
334
335 ACI2 channel current is 0x1300/1000=4.864mA
336
337 The last byte 0xAA= 10101010(B) means
338
339 * [1] RO1 relay channel is close and the RO1 LED is ON.
340 * [0] RO2 relay channel is open and RO2 LED is OFF;
341
342 **LT22222-L:**
343
344 * [1] DI2 channel is high input and DI2 LED is ON;
345 * [0] DI1 channel is low input;
346
347 * [0] DO3 channel output state
348 ** DO3 is float in case no load between DO3 and V+.;
349 ** DO3 is high in case there is load between DO3 and V+.
350 ** DO3 LED is off in both case
351 * [1] DO2 channel output is low and DO2 LED is ON.
352 * [0] DO1 channel output state
353 ** DO1 is float in case no load between DO1 and V+.;
354 ** DO1 is high in case there is load between DO1 and V+.
355 ** DO1 LED is off in both case
356
357
358 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
359
360
361 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
362
363 (((
364 Total : 11 bytes payload
365 )))
366
367 [[image:image-20220523180452-3.png]]
368
369
370 (((
371 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
372 )))
373
374 [[image:image-20220523180506-4.png]]
375
376 * RO is for relay. ROx=1 : close,ROx=0 always open.
377 * FIRST: Indicate this is the first packet after join network.
378 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
379
380 (((
381 (% style="color:red" %)Note: DO3 bit is not valid for LT-22222-L.
382 )))
383
384 (((
385
386
387 **To use counting mode, please run:**
388 )))
389
390 (% class="box infomessage" %)
391 (((
392 (((
393 **AT+MOD=2**
394
395 **ATZ**
396 )))
397 )))
398
399 (((
400
401
402 (% style="color:#4f81bd" %)**AT Commands for counting:**
403 )))
404
405 (((
406 **For LT22222-L:**
407
408
409 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
410
411 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
412
413 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
414
415 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
416
417 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
418
419 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
420 )))
421
422
423
424 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
425
426
427 **LT22222-L**: This mode the DI1 is used as a counting pin.
428
429 [[image:image-20220523181246-5.png]]
430
431 (((
432
433
434 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
435 )))
436
437 [[image:image-20220523181301-6.png]]
438
439 * RO is for relay. ROx=1 : close,ROx=0 always open.
440 * FIRST: Indicate this is the first packet after join network.
441 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
442
443 (((
444 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
445 )))
446
447
448 (((
449 **To use counting mode, please run:**
450 )))
451
452 (% class="box infomessage" %)
453 (((
454 (((
455 **AT+MOD=3**
456
457 **ATZ**
458 )))
459 )))
460
461 (((
462 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
463 )))
464
465
466
467 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
468
469
470 **LT22222-L**: This mode the DI1 is used as a counting pin.
471
472 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
473
474 [[image:image-20220523181903-8.png]]
475
476
477 (((
478 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
479 )))
480
481 [[image:image-20220523181727-7.png]]
482
483 * RO is for relay. ROx=1 : close,ROx=0 always open.
484 * FIRST: Indicate this is the first packet after join network.
485 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
486
487 (((
488 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
489 )))
490
491 (((
492
493
494 **To use this mode, please run:**
495 )))
496
497 (% class="box infomessage" %)
498 (((
499 (((
500 **AT+MOD=4**
501
502 **ATZ**
503 )))
504 )))
505
506
507
508 (((
509 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
510 )))
511
512 (((
513
514
515 **Plus below command for AVI1 Counting:**
516
517
518 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
519
520 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
521
522 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
523
524 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
525 )))
526
527
528
529 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
530
531
532 **LT22222-L**: This mode the DI1 is used as a counting pin.
533
534 [[image:image-20220523182334-9.png]]
535
536 (((
537
538
539 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
540 )))
541
542 * RO is for relay. ROx=1 : close,ROx=0 always open.
543 * FIRST: Indicate this is the first packet after join network.
544 * (((
545 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
546 )))
547
548 (((
549 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
550 )))
551
552 (((
553
554
555 **To use this mode, please run:**
556 )))
557
558 (% class="box infomessage" %)
559 (((
560 (((
561 **AT+MOD=5**
562
563 **ATZ**
564 )))
565 )))
566
567 (((
568 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
569 )))
570
571
572
573 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
574
575
576 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
577
578 For example, if user has configured below commands:
579
580 * **AT+MOD=1 ** **~-~->**  The normal working mode
581 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
582
583 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
584
585 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
586 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
587
588 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
589
590
591 (% style="color:#4f81bd" %)**Trigger base on voltage**:
592
593 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
594
595 **Example:**
596
597 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
598
599 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
600
601
602
603 (% style="color:#4f81bd" %)**Trigger base on current**:
604
605 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
606
607 **Example:**
608
609 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
610
611
612
613 (% style="color:#4f81bd" %)**Trigger base on DI status**:
614
615 DI status trigger Flag.
616
617 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
618
619
620 **Example:**
621
622 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
623
624
625 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
626
627 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
628
629 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
630
631 AA: Code for this downlink Command:
632
633 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
634
635 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
636
637 yy2 yy2: AC1 or AV1 high limit.
638
639 yy3 yy3: AC2 or AV2 low limit.
640
641 Yy4 yy4: AC2 or AV2 high limit.
642
643
644 **Example1**: AA 00 13 88 00 00 00 00 00 00
645
646 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
647
648
649 **Example2**: AA 02 01 00
650
651 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
652
653
654
655 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
656
657 MOD6 Payload : total 11 bytes payload
658
659 [[image:image-20220524085923-1.png]]
660
661
662 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
663
664 [[image:image-20220524090106-2.png]]
665
666 * Each bits shows if the corresponding trigger has been configured.
667
668 **Example:**
669
670 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
671
672
673 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
674
675 [[image:image-20220524090249-3.png]]
676
677 * Each bits shows which status has been trigger on this uplink.
678
679 **Example:**
680
681 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
682
683
684 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
685
686 [[image:image-20220524090456-4.png]]
687
688 * Each bits shows which status has been trigger on this uplink.
689
690 **Example:**
691
692 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
693
694 00000101: Means both DI1 and DI2 trigger are enabled.
695
696
697 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
698
699 Downlink command to poll MOD6 status:
700
701 **AB 06**
702
703 When device got this command, it will send the MOD6 payload.
704
705
706
707 === 3.3.7 Payload Decoder ===
708
709 (((
710
711
712 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/www.dropbox.com/sh/wtrzu7avdtkmn3z/AACK5NwOMkU9jnvf1uCMuqrVa?dl=0>>https://www.dropbox.com/sh/wtrzu7avdtkmn3z/AACK5NwOMkU9jnvf1uCMuqrVa?dl=0]]
713 )))
714
715
716
717 == 3.4 ​Configure LT via AT or Downlink ==
718
719
720 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
721
722 (((
723 There are two kinds of Commands:
724 )))
725
726 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
727
728 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
729
730
731
732 === 3.4.1 Common Commands ===
733
734
735 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
736
737
738
739 === 3.4.2 Sensor related commands ===
740
741
742 ==== 3.4.2.1 Set Transmit Interval ====
743
744
745 Set device uplink interval.
746
747 * (% style="color:#037691" %)**AT Command:**
748
749 **AT+TDC=N **
750
751
752 **Example: **AT+TDC=30000. Means set interval to 30 seconds
753
754
755 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
756
757 **0x01 aa bb cc     ~/~/ Same as AT+TDC=0x(aa bb cc)**
758
759
760
761
762 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
763
764
765 Set work mode.
766
767 * (% style="color:#037691" %)**AT Command:**
768
769 **AT+MOD=N  **
770
771
772 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
773
774
775 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
776
777 **0x0A aa    ** ~/~/ Same as AT+MOD=aa
778
779
780
781
782 ==== 3.4.2.3 Poll an uplink ====
783
784
785 * (% style="color:#037691" %)**AT Command:**
786
787 There is no AT Command to poll uplink
788
789
790 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
791
792 **0x08 FF     **~/~/ Poll an uplink
793
794 **Example**: 0x08FF, ask device to send an Uplink
795
796
797
798
799 ==== 3.4.2.4 Enable Trigger Mode ====
800
801
802 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
803
804 * (% style="color:#037691" %)**AT Command:**
805
806 **AT+ADDMOD6=1 or 0**
807
808 1: Enable Trigger Mode
809
810 0: Disable Trigger Mode
811
812
813 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
814
815 **0x0A 06 aa    ** ~/~/ Same as AT+ADDMOD6=aa
816
817
818
819
820 ==== 3.4.2.5 Poll trigger settings ====
821
822
823 Poll trigger settings,
824
825 * (% style="color:#037691" %)**AT Command:**
826
827 There is no AT Command for this feature.
828
829
830 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
831
832 **0xAB 06         **~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
833
834
835
836
837 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
838
839
840 Enable Disable DI1/DI2/DI2 as trigger,
841
842 * (% style="color:#037691" %)**AT Command:**
843
844 **Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
845
846
847 **Example:**
848
849 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
850
851 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
852
853 **0xAA 02 aa bb        **~/~/ Same as AT+DTRI=aa,bb
854
855
856
857
858 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
859
860
861 Set DI1 or DI3(for LT-33222-L) trigger.
862
863 * (% style="color:#037691" %)**AT Command:**
864
865 **AT+TRIG1=a,b**
866
867 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
868
869 b : delay timing.
870
871
872 **Example:**
873
874 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
875
876
877 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
878 * **0x09 01 aa bb cc    ** ~/~/ same as AT+TRIG1=aa,0x(bb cc)
879
880
881 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
882
883
884 Set DI2 trigger.
885
886 * (% style="color:#037691" %)**AT Command:**
887
888 **AT+TRIG2=a,b**
889
890
891 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
892
893 b : delay timing.
894
895
896 **Example:**
897
898 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
899
900
901 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
902
903 **0x09 02 aa bb cc           **~/~/ same as AT+TRIG1=aa,0x(bb cc)
904
905
906
907
908 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
909
910
911 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
912
913 * (% style="color:#037691" %)**AT Command**
914
915 **AT+ACLIM**
916
917
918 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
919
920 **0x AA 01 aa bb cc dd ee ff gg hh        ** ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
921
922
923
924
925 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
926
927
928 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
929
930 * (% style="color:#037691" %)**AT Command**
931
932 **AT+AVLIM  See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
933
934
935 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
936
937 **0x AA 00 aa bb cc dd ee ff gg hh    ** ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
938
939
940
941
942 ==== 3.4.2.11 Trigger – Set minimum interval ====
943
944
945 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
946
947 * (% style="color:#037691" %)**AT Command**
948
949 **AT+ATDC=5        ** Device won't response the second trigger within 5 minute after the first trigger.
950
951
952 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
953
954 **0x AC aa bb   ** ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
955
956 (((
957
958
959 (% style="color:red" %)Note: ATDC setting must be more than 5min
960 )))
961
962
963
964
965 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
966
967
968 * (% style="color:#037691" %)**AT Command**
969
970 There is no AT Command to control Digital Output
971
972
973 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
974 * **0x02 aa bb cc     **~/~/ Set DO1/DO2/DO3 output
975
976 (((
977 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
978 )))
979
980 (((
981 01: Low,  00: High ,  11: No action
982 )))
983
984 [[image:image-20220524092754-5.png]]
985
986 (((
987 (% style="color:red" %)Note: For LT-22222-L, there is no DO3, the last byte can use any value.
988 )))
989
990 (((
991 (% style="color:red" %)Device will upload a packet if downlink code executes successfully.
992 )))
993
994
995
996
997 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
998
999
1000 * (% style="color:#037691" %)**AT Command**
1001
1002 There is no AT Command to control Digital Output
1003
1004
1005 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1006
1007 **0xA9 aa bb cc     **~/~/ Set DO1/DO2/DO3 output with time control
1008
1009
1010 This is to control the digital output time of DO pin. Include four bytes:
1011
1012 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1013
1014 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1015
1016 01: DO pins will change back to original state after timeout.
1017
1018 00: DO pins will change to an inverter state after timeout 
1019
1020
1021 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1022
1023 [[image:image-20220524093238-6.png]]
1024
1025
1026 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1027
1028 [[image:image-20220524093328-7.png]]
1029
1030
1031 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1032
1033 [[image:image-20220524093351-8.png]]
1034
1035
1036 (% style="color:#4f81bd" %)**Sixth and Seventh Byte**:
1037
1038 Latching time. Unit: ms
1039
1040 Device will upload a packet if downlink code executes successfully.
1041
1042
1043 **Example payload:**
1044
1045 **~1. A9 01 01 01 01 07 D0**
1046
1047 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1048
1049 **2. A9 01 00 01 11 07 D0**
1050
1051 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1052
1053 **3. A9 00 00 00 00 07 D0**
1054
1055 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1056
1057 **4. A9 00 11 01 00 07 D0**
1058
1059 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1060
1061
1062
1063
1064 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1065
1066
1067 * (% style="color:#037691" %)**AT Command:**
1068
1069 There is no AT Command to control Relay Output
1070
1071
1072 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1073
1074 **0x03 aa bb     **~/~/ Set RO1/RO2 output
1075
1076
1077 (((
1078 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1079 )))
1080
1081 (((
1082 01: Close ,  00: Open , 11: No action
1083 )))
1084
1085 (((
1086 [[image:image-20220524093724-9.png]]
1087 )))
1088
1089 Device will upload a packet if downlink code executes successfully.
1090
1091
1092
1093
1094 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1095
1096
1097 * (% style="color:#037691" %)**AT Command:**
1098
1099 There is no AT Command to control Relay Output
1100
1101
1102 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1103
1104 **0x05 aa bb cc dd     **~/~/ Set RO1/RO2 relay with time control
1105
1106
1107 This is to control the relay output time of relay. Include four bytes:
1108
1109 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1110
1111 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1112
1113 01: Relays will change back to original state after timeout.
1114
1115 00: Relays will change to an inverter state after timeout
1116
1117
1118 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1119
1120 [[image:image-20220714135731-1.png||height="406" width="627"]]
1121
1122
1123 (% style="color:#4f81bd" %)**Fourth/Fifth Bytes(cc)**(%%): Latching time. Unit: ms
1124
1125 Device will upload a packet if downlink code executes successfully.
1126
1127
1128 **Example payload:**
1129
1130 **~1. 05 01 11 07 D**
1131
1132 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1133
1134 **2. 05 01 10 07 D0**
1135
1136 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1137
1138 **3. 05 00 01 07 D0**
1139
1140 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1141
1142 **4. 05 00 00 07 D0**
1143
1144 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1145
1146
1147
1148
1149 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1150
1151
1152 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1153
1154 * (% style="color:#037691" %)**AT Command:**
1155
1156 **AT+VOLMAX   ** ~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1157
1158
1159 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1160
1161 **0xA5 aa bb cc   **~/~/ Same as AT+VOLMAX=(aa bb),cc
1162
1163
1164
1165
1166 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1167
1168
1169 * (% style="color:#037691" %)**AT Command:**
1170
1171 **AT+SETCNT=aa,(bb cc dd ee) **
1172
1173 aa: 1: Set count1,
1174
1175 2: Set count2,
1176
1177 3: Set AV1 count
1178
1179 Bb cc dd ee: number to be set
1180
1181
1182 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1183
1184 **0x A8 aa bb cc dd ee     **~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1185
1186
1187
1188
1189 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1190
1191
1192 Clear counting for counting mode
1193
1194 * (% style="color:#037691" %)**AT Command:**
1195
1196 **AT+CLRCOUNT ** ~/~/ clear all counting
1197
1198
1199 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1200
1201 **0x A6 01    ** ~/~/ clear all counting
1202
1203
1204
1205
1206 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1207
1208
1209 * (% style="color:#037691" %)**AT Command:**
1210
1211 **AT+COUTIME=60  **~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1212
1213
1214 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1215
1216 **0x A7 aa bb cc     **~/~/ same as AT+COUTIME =aa bb cc,
1217
1218 (((
1219 range: aa bb cc:0 to 16777215,  (unit:second)
1220
1221
1222 )))
1223
1224
1225
1226 == 3.5 Integrate with Mydevice ==
1227
1228
1229 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1230
1231 (((
1232 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1233 )))
1234
1235 (((
1236 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1237
1238
1239 )))
1240
1241 [[image:image-20220719105525-1.png||height="377" width="677"]]
1242
1243
1244
1245 [[image:image-20220719110247-2.png||height="388" width="683"]]
1246
1247
1248 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1249
1250 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1251
1252 Search under The things network
1253
1254 [[image:1653356838789-523.png||height="337" width="740"]]
1255
1256
1257
1258 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1259
1260 [[image:image-20220524094909-1.png||height="335" width="729"]]
1261
1262
1263 [[image:image-20220524094909-2.png||height="337" width="729"]]
1264
1265
1266 [[image:image-20220524094909-3.png||height="338" width="727"]]
1267
1268
1269 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1270
1271
1272 [[image:image-20220524094909-5.png||height="341" width="734"]]
1273
1274
1275
1276 == 3.6 Interface Detail ==
1277
1278
1279 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1280
1281
1282 Support NPN Type sensor
1283
1284 [[image:1653356991268-289.png]]
1285
1286
1287
1288 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1289
1290
1291 (((
1292 The DI port of LT-22222-L can support NPN or PNP output sensor.
1293 )))
1294
1295 (((
1296 (((
1297 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high.
1298
1299
1300 )))
1301 )))
1302
1303 [[image:1653357170703-587.png]]
1304
1305 (((
1306 (((
1307 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1308 )))
1309 )))
1310
1311 (((
1312
1313 )))
1314
1315 (((
1316 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1317 )))
1318
1319 (((
1320 This type of sensor will output a low signal GND when active.
1321 )))
1322
1323 * (((
1324 Connect sensor’s output to DI1-
1325 )))
1326 * (((
1327 Connect sensor’s VCC to DI1+.
1328 )))
1329
1330 (((
1331 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1332 )))
1333
1334 (((
1335 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1336 )))
1337
1338 (((
1339 If DI1+ = 12v, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1340 )))
1341
1342 (((
1343
1344
1345
1346 )))
1347
1348 (((
1349 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1350 )))
1351
1352 (((
1353 This type of sensor will output a high signal (example 24v) when active.
1354 )))
1355
1356 * (((
1357 Connect sensor’s output to DI1+
1358 )))
1359 * (((
1360 Connect sensor’s GND DI1-.
1361 )))
1362
1363 (((
1364 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1365 )))
1366
1367 (((
1368 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1369 )))
1370
1371 (((
1372 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1373 )))
1374
1375 (((
1376
1377
1378
1379 )))
1380
1381 (((
1382 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1383 )))
1384
1385 (((
1386 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1387 )))
1388
1389 * (((
1390 Connect sensor’s output to DI1+ with a serial 50K resistor
1391 )))
1392 * (((
1393 Connect sensor’s GND DI1-.
1394 )))
1395
1396 (((
1397 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1398 )))
1399
1400 (((
1401 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1402 )))
1403
1404 (((
1405 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1406 )))
1407
1408
1409
1410 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1411
1412
1413 NPN output: GND or Float. Max voltage can apply to output pin is 36v.
1414
1415 [[image:1653357531600-905.png]]
1416
1417
1418
1419 === 3.6.4 Analog Input Interface ===
1420
1421
1422 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1423
1424
1425 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1426
1427 [[image:1653357592296-182.png]]
1428
1429 Example to connect a 4~~20mA sensor
1430
1431 We take the wind speed sensor as an example for reference only.
1432
1433
1434 **Specifications of the wind speed sensor:**
1435
1436 Red:  12~~24v
1437
1438 Yellow:  4~~20mA
1439
1440 Black:  GND
1441
1442
1443 **Connection diagram:**
1444
1445 [[image:1653357640609-758.png]]
1446
1447 [[image:1653357648330-671.png||height="155" width="733"]]
1448
1449
1450
1451 === 3.6.5 Relay Output ===
1452
1453
1454 (((
1455 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device’s Power Line to in serial of RO1_1 and RO_2. Such as below:
1456 )))
1457
1458 [[image:image-20220524100215-9.png]]
1459
1460 [[image:image-20220524100215-10.png||height="382" width="723"]]
1461
1462
1463
1464 == 3.7 LEDs Indicators ==
1465
1466
1467 [[image:image-20220524100748-11.png]]
1468
1469
1470
1471 = 4. Use AT Command =
1472
1473
1474 == 4.1 Access AT Command ==
1475
1476
1477 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1478
1479 [[image:1653358238933-385.png]]
1480
1481
1482 (((
1483 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1484 )))
1485
1486 [[image:1653358355238-883.png]]
1487
1488
1489 (((
1490 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1491 )))
1492
1493 (((
1494 AT+<CMD>?        : Help on <CMD>
1495 )))
1496
1497 (((
1498 AT+<CMD>         : Run <CMD>
1499 )))
1500
1501 (((
1502 AT+<CMD>=<value> : Set the value
1503 )))
1504
1505 (((
1506 AT+<CMD>=?       : Get the value
1507 )))
1508
1509 (((
1510 ATZ: Trig a reset of the MCU
1511 )))
1512
1513 (((
1514 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1515 )))
1516
1517 (((
1518 AT+DEUI: Get or Set the Device EUI
1519 )))
1520
1521 (((
1522 AT+DADDR: Get or Set the Device Address
1523 )))
1524
1525 (((
1526 AT+APPKEY: Get or Set the Application Key
1527 )))
1528
1529 (((
1530 AT+NWKSKEY: Get or Set the Network Session Key
1531 )))
1532
1533 (((
1534 AT+APPSKEY: Get or Set the Application Session Key
1535 )))
1536
1537 (((
1538 AT+APPEUI: Get or Set the Application EUI
1539 )))
1540
1541 (((
1542 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1543 )))
1544
1545 (((
1546 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1547 )))
1548
1549 (((
1550 AT+DR: Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1551 )))
1552
1553 (((
1554 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1555 )))
1556
1557 (((
1558 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1559 )))
1560
1561 (((
1562 AT+RX2FQ: Get or Set the Rx2 window frequency
1563 )))
1564
1565 (((
1566 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1567 )))
1568
1569 (((
1570 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1571 )))
1572
1573 (((
1574 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1575 )))
1576
1577 (((
1578 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1579 )))
1580
1581 (((
1582 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1583 )))
1584
1585 (((
1586 AT+NJM: Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1587 )))
1588
1589 (((
1590 AT+NWKID: Get or Set the Network ID
1591 )))
1592
1593 (((
1594 AT+FCU: Get or Set the Frame Counter Uplink
1595 )))
1596
1597 (((
1598 AT+FCD: Get or Set the Frame Counter Downlink
1599 )))
1600
1601 (((
1602 AT+CLASS: Get or Set the Device Class
1603 )))
1604
1605 (((
1606 AT+JOIN: Join network
1607 )))
1608
1609 (((
1610 AT+NJS: Get OTAA Join Status
1611 )))
1612
1613 (((
1614 AT+SENDB: Send hexadecimal data along with the application port
1615 )))
1616
1617 (((
1618 AT+SEND: Send text data along with the application port
1619 )))
1620
1621 (((
1622 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1623 )))
1624
1625 (((
1626 AT+RECV: Print last received data in raw format
1627 )))
1628
1629 (((
1630 AT+VER: Get current image version and Frequency Band
1631 )))
1632
1633 (((
1634 AT+CFM: Get or Set the confirmation mode (0-1)
1635 )))
1636
1637 (((
1638 AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1639 )))
1640
1641 (((
1642 AT+SNR: Get the SNR of the last received packet
1643 )))
1644
1645 (((
1646 AT+RSSI: Get the RSSI of the last received packet
1647 )))
1648
1649 (((
1650 AT+TDC: Get or set the application data transmission interval in ms
1651 )))
1652
1653 (((
1654 AT+PORT: Get or set the application port
1655 )))
1656
1657 (((
1658 AT+DISAT: Disable AT commands
1659 )))
1660
1661 (((
1662 AT+PWORD: Set password, max 9 digits
1663 )))
1664
1665 (((
1666 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1667 )))
1668
1669 (((
1670 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1671 )))
1672
1673 (((
1674 AT+CFG: Print all settings
1675 )))
1676
1677
1678
1679 == 4.2 Common AT Command Sequence ==
1680
1681
1682 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1683
1684 (((
1685
1686
1687 **If device has not joined network yet:**
1688 )))
1689
1690 (((
1691 (% style="background-color:#dcdcdc" %)123456
1692 )))
1693
1694 (((
1695 (% style="background-color:#dcdcdc" %)AT+FDR
1696 )))
1697
1698 (((
1699 (% style="background-color:#dcdcdc" %)123456
1700 )))
1701
1702 (((
1703 (% style="background-color:#dcdcdc" %)AT+NJM=0
1704 )))
1705
1706 (((
1707 (% style="background-color:#dcdcdc" %)ATZ
1708 )))
1709
1710
1711 (((
1712 **If device already joined network:**
1713 )))
1714
1715 (((
1716 (% style="background-color:#dcdcdc" %)AT+NJM=0
1717 )))
1718
1719 (((
1720 (% style="background-color:#dcdcdc" %)ATZ
1721 )))
1722
1723
1724
1725 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1726
1727 (((
1728
1729
1730 (% style="background-color:#dcdcdc" %)123456(%%)  Enter Password to have AT access.
1731 )))
1732
1733 (((
1734 (% style="background-color:#dcdcdc" %) AT+FDR(%%)   Reset Parameters to Factory Default, Keys Reserve
1735 )))
1736
1737 (((
1738 (% style="background-color:#dcdcdc" %) 123456(%%)  Enter Password to have AT access.
1739 )))
1740
1741 (((
1742 (% style="background-color:#dcdcdc" %) AT+CLASS=C(%%) Set to work in CLASS C
1743 )))
1744
1745 (((
1746 (% style="background-color:#dcdcdc" %) AT+NJM=0(%%)  Set to ABP mode
1747 )))
1748
1749 (((
1750 (% style="background-color:#dcdcdc" %) AT+ADR=0(%%)  Set the Adaptive Data Rate Off
1751 )))
1752
1753 (((
1754 (% style="background-color:#dcdcdc" %) AT+DR=5(%%)  Set Data Rate
1755 )))
1756
1757 (((
1758 (% style="background-color:#dcdcdc" %) AT+TDC=60000(%%)  Set transmit interval to 60 seconds
1759 )))
1760
1761 (((
1762 (% style="background-color:#dcdcdc" %) AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1763 )))
1764
1765 (((
1766 (% style="background-color:#dcdcdc" %) AT+RX2FQ=868400000(%%)  Set RX2Frequency to 868.4Mhz (according to the result from server)
1767 )))
1768
1769 (((
1770 (% style="background-color:#dcdcdc" %) AT+RX2DR=5(%%)  Set RX2DR to match the downlink DR from server. see below
1771 )))
1772
1773 (((
1774 (% style="background-color:#dcdcdc" %) AT+DADDR=26 01 1A F1 (%%) Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1775 )))
1776
1777 (((
1778 (% style="background-color:#dcdcdc" %) ATZ         (%%) Reset MCU
1779
1780
1781 )))
1782
1783 (((
1784 (% style="color:red" %)**Note:**
1785 )))
1786
1787 (((
1788 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1789 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1790 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1791 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1792 )))
1793
1794 (((
1795 [[image:1653359097980-169.png||height="188" width="729"]]
1796 )))
1797
1798 (((
1799
1800 )))
1801
1802
1803 === 4.2.3 Change to Class A ===
1804
1805
1806 If sensor JOINED
1807 (% style="background-color:#dcdcdc" %)AT+CLASS=A
1808 ATZ
1809
1810
1811
1812 = 5. FAQ =
1813
1814
1815 == 5.1 How to upgrade the image? ==
1816
1817
1818 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1819
1820 * Support new features
1821 * For bug fix
1822 * Change LoRaWAN bands.
1823
1824 Below shows the hardware connection for how to upload an image to the LT:
1825
1826 [[image:1653359603330-121.png]]
1827
1828
1829 (((
1830 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1831 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1832 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
1833
1834
1835 (% style="color:blue" %)**For LT-22222-L**(%%):
1836 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
1837
1838
1839 )))
1840
1841 [[image:image-20220524103407-12.png]]
1842
1843 [[image:image-20220524103429-13.png]]
1844
1845 [[image:image-20220524104033-15.png]]
1846
1847
1848 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1849
1850
1851 [[image:1653360054704-518.png||height="186" width="745"]]
1852
1853
1854 (((
1855 (((
1856
1857
1858 == 5.2 How to change the LoRa Frequency Bands/Region? ==
1859
1860
1861 )))
1862 )))
1863
1864 (((
1865 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1866 )))
1867
1868 (((
1869
1870
1871
1872 == 5.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
1873
1874
1875 )))
1876
1877 (((
1878 (((
1879 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
1880 )))
1881 )))
1882
1883 (((
1884 (((
1885 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
1886
1887
1888 )))
1889 )))
1890
1891 (((
1892 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
1893 )))
1894
1895 (((
1896 [[image:1653360231087-571.png||height="401" width="727"]]
1897 )))
1898
1899 (((
1900 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
1901 )))
1902
1903
1904 (((
1905 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
1906 )))
1907
1908 (((
1909 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
1910 (% style="background-color:#dcdcdc" %)AT+FDR(%%)  Reset Parameters to Factory Default, Keys Reserve
1911 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
1912 (% style="background-color:#dcdcdc" %)AT+NJM=0 (%%) Set to ABP mode
1913 (% style="background-color:#dcdcdc" %)AT+ADR=0 (%%) Set the Adaptive Data Rate Off
1914 (% style="background-color:#dcdcdc" %)AT+DR=5 (%%) Set Data Rate (Set AT+DR=3 for 915 band)
1915 (% style="background-color:#dcdcdc" %)AT+TDC=60000 (%%) Set transmit interval to 60 seconds
1916 (% style="background-color:#dcdcdc" %)AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1917 (% style="background-color:#dcdcdc" %)AT+DADDR=26 01 1A F1(%%)  Set Device Address to 26 01 1A F1
1918 (% style="background-color:#dcdcdc" %)ATZ        (%%) Reset MCU
1919 )))
1920
1921
1922 (((
1923 As shown in below:
1924 )))
1925
1926 [[image:1653360498588-932.png||height="485" width="726"]]
1927
1928
1929
1930 == 5.4 Can I see counting event in Serial? ==
1931
1932
1933 (((
1934 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
1935
1936
1937
1938 == 5.5 Can i use point to point communication for LT-22222-L? ==
1939
1940
1941 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]
1942
1943
1944
1945 )))
1946
1947 (((
1948 == 5.6 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
1949
1950
1951 If the device is not shut down, but directly powered off.
1952
1953 It will default that this is a power-off state.
1954
1955 In modes 2 to 5, DO RO status and pulse count are saved in flash.
1956
1957 After restart, the status before power failure will be read from flash.
1958
1959
1960
1961 = 6. Trouble Shooting =
1962 )))
1963
1964 (((
1965 (((
1966 == 6.1 Downlink doesn't work, how to solve it? ==
1967
1968
1969 )))
1970 )))
1971
1972 (((
1973 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
1974 )))
1975
1976 (((
1977
1978
1979
1980 == 6.2 Have trouble to upload image. ==
1981
1982
1983 )))
1984
1985 (((
1986 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
1987 )))
1988
1989 (((
1990
1991
1992
1993 == 6.3 Why I can't join TTN in US915 /AU915 bands? ==
1994
1995
1996 )))
1997
1998 (((
1999 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2000 )))
2001
2002
2003
2004 = 7. Order Info =
2005
2006
2007 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2008
2009 (% style="color:#4f81bd" %)**XXX:**
2010
2011 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2012 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2013 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2014 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2015 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2016 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2017 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2018 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2019 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2020
2021
2022
2023 = 8. Packing Info =
2024
2025
2026 **Package Includes**:
2027
2028 * LT-22222-L I/O Controller x 1
2029 * Stick Antenna for LoRa RF part x 1
2030 * Bracket for controller x1
2031 * Program cable x 1
2032
2033 **Dimension and weight**:
2034
2035 * Device Size: 13.5 x 7 x 3 cm
2036 * Device Weight: 105g
2037 * Package Size / pcs : 14.5 x 8 x 5 cm
2038 * Weight / pcs : 170g
2039
2040
2041
2042 = 9. Support =
2043
2044
2045 * (((
2046 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2047 )))
2048 * (((
2049 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2050
2051
2052
2053
2054
2055 )))
2056
2057 = 10. Reference​​​​​ =
2058
2059
2060 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2061 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2062 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
2063
2064
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0