Version 90.5 by Xiaoling on 2022/08/18 11:57

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16 = 1.Introduction =
17
18 == 1.1 What is LT Series I/O Controller ==
19
20 (((
21
22
23 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
24 )))
25
26 (((
27 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
28 )))
29
30 (((
31 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
32 )))
33
34 (((
35 The use environment includes:
36 )))
37
38 (((
39 1) If user’s area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
40 )))
41
42 (((
43 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
44
45
46 )))
47
48 (((
49 [[image:1653295757274-912.png]]
50
51
52 )))
53
54
55 == 1.2  Specifications ==
56
57 (((
58
59
60 **Hardware System:**
61 )))
62
63 * (((
64 STM32L072CZT6 MCU
65 )))
66 * (((
67 SX1276/78 Wireless Chip 
68 )))
69 * (((
70 (((
71 Power Consumption:
72 )))
73
74 * (((
75 Idle: 4mA@12v
76 )))
77 * (((
78 20dB Transmit: 34mA@12v
79 )))
80 )))
81
82 (((
83
84
85 **Interface for Model: LT22222-L:**
86 )))
87
88 * (((
89 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
90 )))
91 * (((
92 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
93 )))
94 * (((
95 2 x Relay Output (5A@250VAC / 30VDC)
96 )))
97 * (((
98 2 x 0~~20mA Analog Input (res:0.01mA)
99 )))
100 * (((
101 2 x 0~~30V Analog Input (res:0.01v)
102 )))
103 * (((
104 Power Input 7~~ 24V DC. 
105 )))
106
107 (((
108
109
110 **LoRa Spec:**
111 )))
112
113 * (((
114 (((
115 Frequency Range:
116 )))
117
118 * (((
119 Band 1 (HF): 862 ~~ 1020 Mhz
120 )))
121 * (((
122 Band 2 (LF): 410 ~~ 528 Mhz
123 )))
124 )))
125 * (((
126 168 dB maximum link budget.
127 )))
128 * (((
129 +20 dBm - 100 mW constant RF output vs.
130 )))
131 * (((
132 +14 dBm high efficiency PA.
133 )))
134 * (((
135 Programmable bit rate up to 300 kbps.
136 )))
137 * (((
138 High sensitivity: down to -148 dBm.
139 )))
140 * (((
141 Bullet-proof front end: IIP3 = -12.5 dBm.
142 )))
143 * (((
144 Excellent blocking immunity.
145 )))
146 * (((
147 Low RX current of 10.3 mA, 200 nA register retention.
148 )))
149 * (((
150 Fully integrated synthesizer with a resolution of 61 Hz.
151 )))
152 * (((
153 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
154 )))
155 * (((
156 Built-in bit synchronizer for clock recovery.
157 )))
158 * (((
159 Preamble detection.
160 )))
161 * (((
162 127 dB Dynamic Range RSSI.
163 )))
164 * (((
165 Automatic RF Sense and CAD with ultra-fast AFC.
166 )))
167 * (((
168 Packet engine up to 256 bytes with CRC.
169
170
171
172
173 )))
174
175 == 1.3 Features ==
176
177
178 * LoRaWAN Class A & Class C protocol
179 * Optional Customized LoRa Protocol
180 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865
181 * AT Commands to change parameters
182 * Remote configure parameters via LoRa Downlink
183 * Firmware upgradable via program port
184 * Counting
185
186
187
188 == 1.4  Applications ==
189
190
191 * Smart Buildings & Home Automation
192 * Logistics and Supply Chain Management
193 * Smart Metering
194 * Smart Agriculture
195 * Smart Cities
196 * Smart Factory
197
198
199
200 == 1.5 Hardware Variants ==
201
202
203 (% border="1" style="background-color:#f7faff; width:500px" %)
204 |(% style="width:103px" %)**Model**|(% style="width:131px" %)**Photo**|(% style="width:334px" %)**Description**
205 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)[[image:1653296302983-697.png]]|(% style="width:334px" %)(((
206 * 2 x Digital Input (Bi-direction)
207 * 2 x Digital Output
208 * 2 x Relay Output (5A@250VAC / 30VDC)
209 * 2 x 0~~20mA Analog Input (res:0.01mA)
210 * 2 x 0~~30V Analog Input (res:0.01v)
211 * 1 x Counting Port
212 )))
213
214
215 = 2. Power ON Device =
216
217
218 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
219
220 (((
221 PWR will on when device is properly powered.
222 )))
223
224 [[image:1653297104069-180.png]]
225
226
227
228 = 3. Operation Mode =
229
230 == 3.1 How it works? ==
231
232
233 (((
234 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
235 )))
236
237 (((
238 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
239 )))
240
241
242
243 == 3.2 Example to join LoRaWAN network ==
244
245
246 (((
247 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
248
249
250 )))
251
252 [[image:image-20220523172350-1.png||height="266" width="864"]]
253
254
255 (((
256 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
257
258
259 )))
260
261 (((
262 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
263 )))
264
265 (((
266 Each LT is shipped with a sticker with the default device EUI as below:
267 )))
268
269 [[image:1653297924498-393.png]]
270
271
272 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
273
274 Add APP EUI in the application.
275
276 [[image:1653297955910-247.png||height="321" width="716"]]
277
278
279 Add APP KEY and DEV EUI
280
281 [[image:1653298023685-319.png]]
282
283
284
285 (((
286 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
287 )))
288
289 [[image:1653298044601-602.png||height="405" width="709"]]
290
291
292
293 == 3.3 Uplink Payload ==
294
295
296 There are five working modes + one interrupt mode on LT for different type application:
297
298 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
299 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
300 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
301 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
302 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
303 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
304
305
306
307 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
308
309
310 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default.
311
312 [[image:image-20220523174024-3.png]]
313
314 (((
315
316
317 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
318 )))
319
320 [[image:image-20220523174254-4.png]]
321
322 * RO is for relay. ROx=1 : close,ROx=0 always open.
323 * DI is for digital input. DIx=1: high or float, DIx=0: low.
324 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
325
326 (% style="color:red" %)Note: DI3 and DO3 bit are not valid for LT-22222-L
327
328 For example if payload is: [[image:image-20220523175847-2.png]]
329
330
331 **The value for the interface is:  **
332
333 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
334
335 AVI2 channel voltage is 0x04AC/1000=1.196V
336
337 ACI1 channel current is 0x1310/1000=4.880mA
338
339 ACI2 channel current is 0x1300/1000=4.864mA
340
341 The last byte 0xAA= 10101010(B) means
342
343 * [1] RO1 relay channel is close and the RO1 LED is ON.
344 * [0] RO2 relay channel is open and RO2 LED is OFF;
345
346 **LT22222-L:**
347
348 * [1] DI2 channel is high input and DI2 LED is ON;
349 * [0] DI1 channel is low input;
350
351 * [0] DO3 channel output state
352 ** DO3 is float in case no load between DO3 and V+.;
353 ** DO3 is high in case there is load between DO3 and V+.
354 ** DO3 LED is off in both case
355 * [1] DO2 channel output is low and DO2 LED is ON.
356 * [0] DO1 channel output state
357 ** DO1 is float in case no load between DO1 and V+.;
358 ** DO1 is high in case there is load between DO1 and V+.
359 ** DO1 LED is off in both case
360
361
362
363 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
364
365
366 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
367
368 (((
369 Total : 11 bytes payload
370 )))
371
372 [[image:image-20220523180452-3.png]]
373
374
375 (((
376 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
377 )))
378
379 [[image:image-20220523180506-4.png]]
380
381 * RO is for relay. ROx=1 : close,ROx=0 always open.
382 * FIRST: Indicate this is the first packet after join network.
383 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
384
385 (((
386 (% style="color:red" %)Note: DO3 bit is not valid for LT-22222-L.
387 )))
388
389 (((
390
391
392 **To use counting mode, please run:**
393 )))
394
395 (% class="box infomessage" %)
396 (((
397 (((
398 **AT+MOD=2**
399
400 **ATZ**
401 )))
402 )))
403
404 (((
405
406
407 (% style="color:#4f81bd" %)**AT Commands for counting:**
408 )))
409
410 (((
411 **For LT22222-L:**
412
413
414 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
415
416 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
417
418 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
419
420 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
421
422 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
423
424 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
425 )))
426
427
428
429 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
430
431
432 **LT22222-L**: This mode the DI1 is used as a counting pin.
433
434 [[image:image-20220523181246-5.png]]
435
436 (((
437
438
439 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
440 )))
441
442 [[image:image-20220523181301-6.png]]
443
444 * RO is for relay. ROx=1 : close,ROx=0 always open.
445 * FIRST: Indicate this is the first packet after join network.
446 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
447
448 (((
449 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
450 )))
451
452
453 (((
454 **To use counting mode, please run:**
455 )))
456
457 (% class="box infomessage" %)
458 (((
459 (((
460 **AT+MOD=3**
461
462 **ATZ**
463 )))
464 )))
465
466 (((
467 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
468 )))
469
470
471
472 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
473
474
475 **LT22222-L**: This mode the DI1 is used as a counting pin.
476
477 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
478
479 [[image:image-20220523181903-8.png]]
480
481
482 (((
483 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
484 )))
485
486 [[image:image-20220523181727-7.png]]
487
488 * RO is for relay. ROx=1 : close,ROx=0 always open.
489 * FIRST: Indicate this is the first packet after join network.
490 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
491
492 (((
493 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
494 )))
495
496 (((
497
498
499 **To use this mode, please run:**
500 )))
501
502 (% class="box infomessage" %)
503 (((
504 (((
505 **AT+MOD=4**
506
507 **ATZ**
508 )))
509 )))
510
511
512
513 (((
514 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
515 )))
516
517 (((
518
519
520 **Plus below command for AVI1 Counting:**
521
522
523 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
524
525 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
526
527 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
528
529 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
530 )))
531
532
533
534 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
535
536
537 **LT22222-L**: This mode the DI1 is used as a counting pin.
538
539 [[image:image-20220523182334-9.png]]
540
541 (((
542
543
544 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
545 )))
546
547 * RO is for relay. ROx=1 : close,ROx=0 always open.
548 * FIRST: Indicate this is the first packet after join network.
549 * (((
550 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
551 )))
552
553 (((
554 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
555 )))
556
557 (((
558
559
560 **To use this mode, please run:**
561 )))
562
563 (% class="box infomessage" %)
564 (((
565 (((
566 **AT+MOD=5**
567
568 **ATZ**
569 )))
570 )))
571
572 (((
573 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
574 )))
575
576
577
578 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
579
580
581 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
582
583 For example, if user has configured below commands:
584
585 * **AT+MOD=1 ** **~-~->**  The normal working mode
586 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
587
588 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
589
590 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
591 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
592
593 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
594
595
596 (% style="color:#4f81bd" %)**Trigger base on voltage**:
597
598 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
599
600 **Example:**
601
602 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
603
604 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
605
606
607
608 (% style="color:#4f81bd" %)**Trigger base on current**:
609
610 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
611
612 **Example:**
613
614 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
615
616
617
618 (% style="color:#4f81bd" %)**Trigger base on DI status**:
619
620 DI status trigger Flag.
621
622 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
623
624
625 **Example:**
626
627 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
628
629
630 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
631
632 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
633
634 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
635
636 AA: Code for this downlink Command:
637
638 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
639
640 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
641
642 yy2 yy2: AC1 or AV1 high limit.
643
644 yy3 yy3: AC2 or AV2 low limit.
645
646 Yy4 yy4: AC2 or AV2 high limit.
647
648
649 **Example1**: AA 00 13 88 00 00 00 00 00 00
650
651 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
652
653
654 **Example2**: AA 02 01 00
655
656 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
657
658
659
660 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
661
662 MOD6 Payload : total 11 bytes payload
663
664 [[image:image-20220524085923-1.png]]
665
666
667 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
668
669 [[image:image-20220524090106-2.png]]
670
671 * Each bits shows if the corresponding trigger has been configured.
672
673 **Example:**
674
675 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
676
677
678 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
679
680 [[image:image-20220524090249-3.png]]
681
682 * Each bits shows which status has been trigger on this uplink.
683
684 **Example:**
685
686 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
687
688
689 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
690
691 [[image:image-20220524090456-4.png]]
692
693 * Each bits shows which status has been trigger on this uplink.
694
695 **Example:**
696
697 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
698
699 00000101: Means both DI1 and DI2 trigger are enabled.
700
701
702 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
703
704 Downlink command to poll MOD6 status:
705
706 **AB 06**
707
708 When device got this command, it will send the MOD6 payload.
709
710
711
712 === 3.3.7 Payload Decoder ===
713
714 (((
715
716
717 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/www.dropbox.com/sh/wtrzu7avdtkmn3z/AACK5NwOMkU9jnvf1uCMuqrVa?dl=0>>https://www.dropbox.com/sh/wtrzu7avdtkmn3z/AACK5NwOMkU9jnvf1uCMuqrVa?dl=0]]
718 )))
719
720
721
722 == 3.4 ​Configure LT via AT or Downlink ==
723
724
725 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
726
727 (((
728 There are two kinds of Commands:
729 )))
730
731 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
732
733 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
734
735
736
737 === 3.4.1 Common Commands ===
738
739
740 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
741
742
743
744 === 3.4.2 Sensor related commands ===
745
746
747 ==== 3.4.2.1 Set Transmit Interval ====
748
749
750 Set device uplink interval.
751
752 * (% style="color:#037691" %)**AT Command:**
753
754 **AT+TDC=N **
755
756
757 **Example: **AT+TDC=30000. Means set interval to 30 seconds
758
759
760 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
761
762 **0x01 aa bb cc     ~/~/ Same as AT+TDC=0x(aa bb cc)**
763
764
765
766
767 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
768
769
770 Set work mode.
771
772 * (% style="color:#037691" %)**AT Command:**
773
774 **AT+MOD=N  **
775
776
777 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
778
779
780 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
781
782 **0x0A aa    ** ~/~/ Same as AT+MOD=aa
783
784
785
786
787 ==== 3.4.2.3 Poll an uplink ====
788
789
790 * (% style="color:#037691" %)**AT Command:**
791
792 There is no AT Command to poll uplink
793
794
795 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
796
797 **0x08 FF     **~/~/ Poll an uplink
798
799 **Example**: 0x08FF, ask device to send an Uplink
800
801
802
803
804 ==== 3.4.2.4 Enable Trigger Mode ====
805
806
807 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
808
809 * (% style="color:#037691" %)**AT Command:**
810
811 **AT+ADDMOD6=1 or 0**
812
813 1: Enable Trigger Mode
814
815 0: Disable Trigger Mode
816
817
818 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
819
820 **0x0A 06 aa    ** ~/~/ Same as AT+ADDMOD6=aa
821
822
823
824
825 ==== 3.4.2.5 Poll trigger settings ====
826
827
828 Poll trigger settings,
829
830 * (% style="color:#037691" %)**AT Command:**
831
832 There is no AT Command for this feature.
833
834
835 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
836
837 **0xAB 06         **~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
838
839
840
841
842 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
843
844
845 Enable Disable DI1/DI2/DI2 as trigger,
846
847 * (% style="color:#037691" %)**AT Command:**
848
849 **Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
850
851
852 **Example:**
853
854 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
855
856 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
857
858 **0xAA 02 aa bb        **~/~/ Same as AT+DTRI=aa,bb
859
860
861
862
863 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
864
865
866 Set DI1 or DI3(for LT-33222-L) trigger.
867
868 * (% style="color:#037691" %)**AT Command:**
869
870 **AT+TRIG1=a,b**
871
872 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
873
874 b : delay timing.
875
876
877 **Example:**
878
879 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
880
881
882 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
883 * **0x09 01 aa bb cc    ** ~/~/ same as AT+TRIG1=aa,0x(bb cc)
884
885
886
887 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
888
889
890 Set DI2 trigger.
891
892 * (% style="color:#037691" %)**AT Command:**
893
894 **AT+TRIG2=a,b**
895
896
897 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
898
899 b : delay timing.
900
901
902 **Example:**
903
904 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
905
906
907 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
908
909 **0x09 02 aa bb cc           **~/~/ same as AT+TRIG1=aa,0x(bb cc)
910
911
912
913
914 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
915
916
917 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
918
919 * (% style="color:#037691" %)**AT Command**
920
921 **AT+ACLIM**
922
923
924 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
925
926 **0x AA 01 aa bb cc dd ee ff gg hh        ** ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
927
928
929
930
931 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
932
933
934 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
935
936 * (% style="color:#037691" %)**AT Command**
937
938 **AT+AVLIM  See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
939
940
941 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
942
943 **0x AA 00 aa bb cc dd ee ff gg hh    ** ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
944
945
946
947
948 ==== 3.4.2.11 Trigger – Set minimum interval ====
949
950
951 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
952
953 * (% style="color:#037691" %)**AT Command**
954
955 **AT+ATDC=5        ** Device won't response the second trigger within 5 minute after the first trigger.
956
957
958 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
959
960 **0x AC aa bb   ** ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
961
962 (((
963
964
965 (% style="color:red" %)Note: ATDC setting must be more than 5min
966 )))
967
968
969
970
971 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
972
973
974 * (% style="color:#037691" %)**AT Command**
975
976 There is no AT Command to control Digital Output
977
978
979 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
980 * **0x02 aa bb cc     **~/~/ Set DO1/DO2/DO3 output
981
982 (((
983 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
984 )))
985
986 (((
987 01: Low,  00: High ,  11: No action
988 )))
989
990 [[image:image-20220524092754-5.png]]
991
992 (((
993 (% style="color:red" %)Note: For LT-22222-L, there is no DO3, the last byte can use any value.
994 )))
995
996 (((
997 (% style="color:red" %)Device will upload a packet if downlink code executes successfully.
998 )))
999
1000
1001
1002
1003 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1004
1005
1006 * (% style="color:#037691" %)**AT Command**
1007
1008 There is no AT Command to control Digital Output
1009
1010
1011 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1012
1013 **0xA9 aa bb cc     **~/~/ Set DO1/DO2/DO3 output with time control
1014
1015
1016 This is to control the digital output time of DO pin. Include four bytes:
1017
1018 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1019
1020 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1021
1022 01: DO pins will change back to original state after timeout.
1023
1024 00: DO pins will change to an inverter state after timeout 
1025
1026
1027 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1028
1029 [[image:image-20220524093238-6.png]]
1030
1031
1032 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1033
1034 [[image:image-20220524093328-7.png]]
1035
1036
1037 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1038
1039 [[image:image-20220524093351-8.png]]
1040
1041
1042 (% style="color:#4f81bd" %)**Sixth and Seventh Byte**:
1043
1044 Latching time. Unit: ms
1045
1046 Device will upload a packet if downlink code executes successfully.
1047
1048
1049 **Example payload:**
1050
1051 **~1. A9 01 01 01 01 07 D0**
1052
1053 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1054
1055 **2. A9 01 00 01 11 07 D0**
1056
1057 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1058
1059 **3. A9 00 00 00 00 07 D0**
1060
1061 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1062
1063 **4. A9 00 11 01 00 07 D0**
1064
1065 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1066
1067
1068
1069
1070 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1071
1072
1073 * (% style="color:#037691" %)**AT Command:**
1074
1075 There is no AT Command to control Relay Output
1076
1077
1078 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1079
1080 **0x03 aa bb     **~/~/ Set RO1/RO2 output
1081
1082
1083 (((
1084 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1085 )))
1086
1087 (((
1088 01: Close ,  00: Open , 11: No action
1089 )))
1090
1091 (((
1092 [[image:image-20220524093724-9.png]]
1093 )))
1094
1095 Device will upload a packet if downlink code executes successfully.
1096
1097
1098
1099
1100 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1101
1102
1103 * (% style="color:#037691" %)**AT Command:**
1104
1105 There is no AT Command to control Relay Output
1106
1107
1108 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1109
1110 **0x05 aa bb cc dd     **~/~/ Set RO1/RO2 relay with time control
1111
1112
1113 This is to control the relay output time of relay. Include four bytes:
1114
1115 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1116
1117 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1118
1119 01: Relays will change back to original state after timeout.
1120
1121 00: Relays will change to an inverter state after timeout
1122
1123
1124 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1125
1126 [[image:image-20220714135731-1.png||height="406" width="627"]]
1127
1128
1129 (% style="color:#4f81bd" %)**Fourth/Fifth Bytes(cc)**(%%): Latching time. Unit: ms
1130
1131 Device will upload a packet if downlink code executes successfully.
1132
1133
1134 **Example payload:**
1135
1136 **~1. 05 01 11 07 D**
1137
1138 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1139
1140 **2. 05 01 10 07 D0**
1141
1142 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1143
1144 **3. 05 00 01 07 D0**
1145
1146 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1147
1148 **4. 05 00 00 07 D0**
1149
1150 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1151
1152
1153
1154
1155 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1156
1157
1158 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1159
1160 * (% style="color:#037691" %)**AT Command:**
1161
1162 **AT+VOLMAX   ** ~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1163
1164
1165 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1166
1167 **0xA5 aa bb cc   **~/~/ Same as AT+VOLMAX=(aa bb),cc
1168
1169
1170
1171
1172 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1173
1174
1175 * (% style="color:#037691" %)**AT Command:**
1176
1177 **AT+SETCNT=aa,(bb cc dd ee) **
1178
1179 aa: 1: Set count1,
1180
1181 2: Set count2,
1182
1183 3: Set AV1 count
1184
1185 Bb cc dd ee: number to be set
1186
1187
1188 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1189
1190 **0x A8 aa bb cc dd ee     **~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1191
1192
1193
1194
1195 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1196
1197
1198 Clear counting for counting mode
1199
1200 * (% style="color:#037691" %)**AT Command:**
1201
1202 **AT+CLRCOUNT ** ~/~/ clear all counting
1203
1204
1205 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1206
1207 **0x A6 01    ** ~/~/ clear all counting
1208
1209
1210
1211
1212 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1213
1214
1215 * (% style="color:#037691" %)**AT Command:**
1216
1217 **AT+COUTIME=60  **~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1218
1219
1220 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1221
1222 **0x A7 aa bb cc     **~/~/ same as AT+COUTIME =aa bb cc,
1223
1224 (((
1225 range: aa bb cc:0 to 16777215,  (unit:second)
1226
1227
1228 )))
1229
1230
1231
1232 == 3.5 Integrate with Mydevice ==
1233
1234
1235 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1236
1237 (((
1238 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1239 )))
1240
1241 (((
1242 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1243
1244
1245 )))
1246
1247 [[image:image-20220719105525-1.png||height="377" width="677"]]
1248
1249
1250
1251 [[image:image-20220719110247-2.png||height="388" width="683"]]
1252
1253
1254 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1255
1256 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1257
1258 Search under The things network
1259
1260 [[image:1653356838789-523.png||height="337" width="740"]]
1261
1262
1263
1264 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1265
1266 [[image:image-20220524094909-1.png||height="335" width="729"]]
1267
1268
1269 [[image:image-20220524094909-2.png||height="337" width="729"]]
1270
1271
1272 [[image:image-20220524094909-3.png||height="338" width="727"]]
1273
1274
1275 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1276
1277
1278 [[image:image-20220524094909-5.png||height="341" width="734"]]
1279
1280
1281
1282 == 3.6 Interface Detail ==
1283
1284
1285 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1286
1287
1288 Support NPN Type sensor
1289
1290 [[image:1653356991268-289.png]]
1291
1292
1293
1294 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1295
1296
1297 (((
1298 The DI port of LT-22222-L can support NPN or PNP output sensor.
1299 )))
1300
1301 (((
1302 (((
1303 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high.
1304
1305
1306 )))
1307 )))
1308
1309 [[image:1653357170703-587.png]]
1310
1311 (((
1312 (((
1313 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1314 )))
1315 )))
1316
1317 (((
1318
1319 )))
1320
1321 (((
1322 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1323 )))
1324
1325 (((
1326 This type of sensor will output a low signal GND when active.
1327 )))
1328
1329 * (((
1330 Connect sensor’s output to DI1-
1331 )))
1332 * (((
1333 Connect sensor’s VCC to DI1+.
1334 )))
1335
1336 (((
1337 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1338 )))
1339
1340 (((
1341 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1342 )))
1343
1344 (((
1345 If DI1+ = 12v, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1346 )))
1347
1348 (((
1349
1350
1351
1352 )))
1353
1354 (((
1355 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1356 )))
1357
1358 (((
1359 This type of sensor will output a high signal (example 24v) when active.
1360 )))
1361
1362 * (((
1363 Connect sensor’s output to DI1+
1364 )))
1365 * (((
1366 Connect sensor’s GND DI1-.
1367 )))
1368
1369 (((
1370 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1371 )))
1372
1373 (((
1374 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1375 )))
1376
1377 (((
1378 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1379 )))
1380
1381 (((
1382
1383
1384
1385 )))
1386
1387 (((
1388 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1389 )))
1390
1391 (((
1392 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1393 )))
1394
1395 * (((
1396 Connect sensor’s output to DI1+ with a serial 50K resistor
1397 )))
1398 * (((
1399 Connect sensor’s GND DI1-.
1400 )))
1401
1402 (((
1403 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1404 )))
1405
1406 (((
1407 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1408 )))
1409
1410 (((
1411 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1412 )))
1413
1414
1415
1416 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1417
1418
1419 NPN output: GND or Float. Max voltage can apply to output pin is 36v.
1420
1421 [[image:1653357531600-905.png]]
1422
1423
1424
1425 === 3.6.4 Analog Input Interface ===
1426
1427
1428 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1429
1430
1431 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1432
1433 [[image:1653357592296-182.png]]
1434
1435 Example to connect a 4~~20mA sensor
1436
1437 We take the wind speed sensor as an example for reference only.
1438
1439
1440 **Specifications of the wind speed sensor:**
1441
1442 Red:  12~~24v
1443
1444 Yellow:  4~~20mA
1445
1446 Black:  GND
1447
1448
1449 **Connection diagram:**
1450
1451 [[image:1653357640609-758.png]]
1452
1453 [[image:1653357648330-671.png||height="155" width="733"]]
1454
1455
1456
1457 === 3.6.5 Relay Output ===
1458
1459
1460 (((
1461 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device’s Power Line to in serial of RO1_1 and RO_2. Such as below:
1462 )))
1463
1464 [[image:image-20220524100215-9.png]]
1465
1466 [[image:image-20220524100215-10.png||height="382" width="723"]]
1467
1468
1469
1470 == 3.7 LEDs Indicators ==
1471
1472
1473 [[image:image-20220524100748-11.png]]
1474
1475
1476
1477 = 4. Use AT Command =
1478
1479
1480 == 4.1 Access AT Command ==
1481
1482
1483 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1484
1485 [[image:1653358238933-385.png]]
1486
1487
1488 (((
1489 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1490 )))
1491
1492 [[image:1653358355238-883.png]]
1493
1494
1495 (((
1496 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1497 )))
1498
1499 (((
1500 AT+<CMD>?        : Help on <CMD>
1501 )))
1502
1503 (((
1504 AT+<CMD>         : Run <CMD>
1505 )))
1506
1507 (((
1508 AT+<CMD>=<value> : Set the value
1509 )))
1510
1511 (((
1512 AT+<CMD>=?       : Get the value
1513 )))
1514
1515 (((
1516 ATZ: Trig a reset of the MCU
1517 )))
1518
1519 (((
1520 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1521 )))
1522
1523 (((
1524 AT+DEUI: Get or Set the Device EUI
1525 )))
1526
1527 (((
1528 AT+DADDR: Get or Set the Device Address
1529 )))
1530
1531 (((
1532 AT+APPKEY: Get or Set the Application Key
1533 )))
1534
1535 (((
1536 AT+NWKSKEY: Get or Set the Network Session Key
1537 )))
1538
1539 (((
1540 AT+APPSKEY: Get or Set the Application Session Key
1541 )))
1542
1543 (((
1544 AT+APPEUI: Get or Set the Application EUI
1545 )))
1546
1547 (((
1548 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1549 )))
1550
1551 (((
1552 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1553 )))
1554
1555 (((
1556 AT+DR: Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1557 )))
1558
1559 (((
1560 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1561 )))
1562
1563 (((
1564 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1565 )))
1566
1567 (((
1568 AT+RX2FQ: Get or Set the Rx2 window frequency
1569 )))
1570
1571 (((
1572 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1573 )))
1574
1575 (((
1576 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1577 )))
1578
1579 (((
1580 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1581 )))
1582
1583 (((
1584 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1585 )))
1586
1587 (((
1588 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1589 )))
1590
1591 (((
1592 AT+NJM: Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1593 )))
1594
1595 (((
1596 AT+NWKID: Get or Set the Network ID
1597 )))
1598
1599 (((
1600 AT+FCU: Get or Set the Frame Counter Uplink
1601 )))
1602
1603 (((
1604 AT+FCD: Get or Set the Frame Counter Downlink
1605 )))
1606
1607 (((
1608 AT+CLASS: Get or Set the Device Class
1609 )))
1610
1611 (((
1612 AT+JOIN: Join network
1613 )))
1614
1615 (((
1616 AT+NJS: Get OTAA Join Status
1617 )))
1618
1619 (((
1620 AT+SENDB: Send hexadecimal data along with the application port
1621 )))
1622
1623 (((
1624 AT+SEND: Send text data along with the application port
1625 )))
1626
1627 (((
1628 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1629 )))
1630
1631 (((
1632 AT+RECV: Print last received data in raw format
1633 )))
1634
1635 (((
1636 AT+VER: Get current image version and Frequency Band
1637 )))
1638
1639 (((
1640 AT+CFM: Get or Set the confirmation mode (0-1)
1641 )))
1642
1643 (((
1644 AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1645 )))
1646
1647 (((
1648 AT+SNR: Get the SNR of the last received packet
1649 )))
1650
1651 (((
1652 AT+RSSI: Get the RSSI of the last received packet
1653 )))
1654
1655 (((
1656 AT+TDC: Get or set the application data transmission interval in ms
1657 )))
1658
1659 (((
1660 AT+PORT: Get or set the application port
1661 )))
1662
1663 (((
1664 AT+DISAT: Disable AT commands
1665 )))
1666
1667 (((
1668 AT+PWORD: Set password, max 9 digits
1669 )))
1670
1671 (((
1672 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1673 )))
1674
1675 (((
1676 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1677 )))
1678
1679 (((
1680 AT+CFG: Print all settings
1681 )))
1682
1683
1684
1685 == 4.2 Common AT Command Sequence ==
1686
1687
1688 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1689
1690 (((
1691
1692
1693 **If device has not joined network yet:**
1694 )))
1695
1696 (((
1697 (% style="background-color:#dcdcdc" %)123456
1698 )))
1699
1700 (((
1701 (% style="background-color:#dcdcdc" %)AT+FDR
1702 )))
1703
1704 (((
1705 (% style="background-color:#dcdcdc" %)123456
1706 )))
1707
1708 (((
1709 (% style="background-color:#dcdcdc" %)AT+NJM=0
1710 )))
1711
1712 (((
1713 (% style="background-color:#dcdcdc" %)ATZ
1714 )))
1715
1716
1717 (((
1718 **If device already joined network:**
1719 )))
1720
1721 (((
1722 (% style="background-color:#dcdcdc" %)AT+NJM=0
1723 )))
1724
1725 (((
1726 (% style="background-color:#dcdcdc" %)ATZ
1727 )))
1728
1729
1730
1731 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1732
1733 (((
1734
1735
1736 (% style="background-color:#dcdcdc" %)123456(%%)  Enter Password to have AT access.
1737 )))
1738
1739 (((
1740 (% style="background-color:#dcdcdc" %) AT+FDR(%%)   Reset Parameters to Factory Default, Keys Reserve
1741 )))
1742
1743 (((
1744 (% style="background-color:#dcdcdc" %) 123456(%%)  Enter Password to have AT access.
1745 )))
1746
1747 (((
1748 (% style="background-color:#dcdcdc" %) AT+CLASS=C(%%) Set to work in CLASS C
1749 )))
1750
1751 (((
1752 (% style="background-color:#dcdcdc" %) AT+NJM=0(%%)  Set to ABP mode
1753 )))
1754
1755 (((
1756 (% style="background-color:#dcdcdc" %) AT+ADR=0(%%)  Set the Adaptive Data Rate Off
1757 )))
1758
1759 (((
1760 (% style="background-color:#dcdcdc" %) AT+DR=5(%%)  Set Data Rate
1761 )))
1762
1763 (((
1764 (% style="background-color:#dcdcdc" %) AT+TDC=60000(%%)  Set transmit interval to 60 seconds
1765 )))
1766
1767 (((
1768 (% style="background-color:#dcdcdc" %) AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1769 )))
1770
1771 (((
1772 (% style="background-color:#dcdcdc" %) AT+RX2FQ=868400000(%%)  Set RX2Frequency to 868.4Mhz (according to the result from server)
1773 )))
1774
1775 (((
1776 (% style="background-color:#dcdcdc" %) AT+RX2DR=5(%%)  Set RX2DR to match the downlink DR from server. see below
1777 )))
1778
1779 (((
1780 (% style="background-color:#dcdcdc" %) AT+DADDR=26 01 1A F1 (%%) Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1781 )))
1782
1783 (((
1784 (% style="background-color:#dcdcdc" %) ATZ         (%%) Reset MCU
1785
1786
1787 )))
1788
1789 (((
1790 (% style="color:red" %)**Note:**
1791 )))
1792
1793 (((
1794 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1795 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1796 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1797 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1798 )))
1799
1800 (((
1801 [[image:1653359097980-169.png||height="188" width="729"]]
1802 )))
1803
1804 (((
1805
1806 )))
1807
1808
1809 === 4.2.3 Change to Class A ===
1810
1811
1812 If sensor JOINED
1813 (% style="background-color:#dcdcdc" %)AT+CLASS=A
1814 ATZ
1815
1816
1817
1818 = 5. FAQ =
1819
1820
1821 == 5.1 How to upgrade the image? ==
1822
1823
1824 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1825
1826 * Support new features
1827 * For bug fix
1828 * Change LoRaWAN bands.
1829
1830 Below shows the hardware connection for how to upload an image to the LT:
1831
1832 [[image:1653359603330-121.png]]
1833
1834
1835 (((
1836 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1837 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1838 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
1839
1840
1841 (% style="color:blue" %)**For LT-22222-L**(%%):
1842 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
1843
1844
1845 )))
1846
1847 [[image:image-20220524103407-12.png]]
1848
1849 [[image:image-20220524103429-13.png]]
1850
1851 [[image:image-20220524104033-15.png]]
1852
1853
1854 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1855
1856
1857 [[image:1653360054704-518.png||height="186" width="745"]]
1858
1859
1860 (((
1861 (((
1862
1863
1864 == 5.2 How to change the LoRa Frequency Bands/Region? ==
1865
1866
1867 )))
1868 )))
1869
1870 (((
1871 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1872 )))
1873
1874 (((
1875
1876
1877
1878 == 5.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
1879
1880
1881 )))
1882
1883 (((
1884 (((
1885 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
1886 )))
1887 )))
1888
1889 (((
1890 (((
1891 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
1892
1893
1894 )))
1895 )))
1896
1897 (((
1898 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
1899 )))
1900
1901 (((
1902 [[image:1653360231087-571.png||height="401" width="727"]]
1903 )))
1904
1905 (((
1906 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
1907 )))
1908
1909
1910 (((
1911 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
1912 )))
1913
1914 (((
1915 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
1916 (% style="background-color:#dcdcdc" %)AT+FDR(%%)  Reset Parameters to Factory Default, Keys Reserve
1917 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
1918 (% style="background-color:#dcdcdc" %)AT+NJM=0 (%%) Set to ABP mode
1919 (% style="background-color:#dcdcdc" %)AT+ADR=0 (%%) Set the Adaptive Data Rate Off
1920 (% style="background-color:#dcdcdc" %)AT+DR=5 (%%) Set Data Rate (Set AT+DR=3 for 915 band)
1921 (% style="background-color:#dcdcdc" %)AT+TDC=60000 (%%) Set transmit interval to 60 seconds
1922 (% style="background-color:#dcdcdc" %)AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1923 (% style="background-color:#dcdcdc" %)AT+DADDR=26 01 1A F1(%%)  Set Device Address to 26 01 1A F1
1924 (% style="background-color:#dcdcdc" %)ATZ        (%%) Reset MCU
1925 )))
1926
1927
1928 (((
1929 As shown in below:
1930 )))
1931
1932 [[image:1653360498588-932.png||height="485" width="726"]]
1933
1934
1935
1936 == 5.4 Can I see counting event in Serial? ==
1937
1938
1939 (((
1940 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
1941
1942
1943
1944 == 5.5 Can i use point to point communication for LT-22222-L? ==
1945
1946
1947 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]
1948
1949
1950
1951 )))
1952
1953 (((
1954 == 5.6 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
1955
1956
1957 If the device is not shut down, but directly powered off.
1958
1959 It will default that this is a power-off state.
1960
1961 In modes 2 to 5, DO RO status and pulse count are saved in flash.
1962
1963 After restart, the status before power failure will be read from flash.
1964
1965
1966
1967 = 6. Trouble Shooting =
1968 )))
1969
1970 (((
1971 (((
1972 == 6.1 Downlink doesn't work, how to solve it? ==
1973
1974
1975 )))
1976 )))
1977
1978 (((
1979 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
1980 )))
1981
1982 (((
1983
1984
1985
1986 == 6.2 Have trouble to upload image. ==
1987
1988
1989 )))
1990
1991 (((
1992 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
1993 )))
1994
1995 (((
1996
1997
1998
1999 == 6.3 Why I can't join TTN in US915 /AU915 bands? ==
2000
2001
2002 )))
2003
2004 (((
2005 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2006 )))
2007
2008
2009
2010 = 7. Order Info =
2011
2012
2013 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2014
2015 (% style="color:#4f81bd" %)**XXX:**
2016
2017 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2018 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2019 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2020 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2021 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2022 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2023 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2024 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2025 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2026
2027
2028
2029
2030 = 8. Packing Info =
2031
2032
2033 **Package Includes**:
2034
2035 * LT-22222-L I/O Controller x 1
2036 * Stick Antenna for LoRa RF part x 1
2037 * Bracket for controller x1
2038 * Program cable x 1
2039
2040 **Dimension and weight**:
2041
2042 * Device Size: 13.5 x 7 x 3 cm
2043 * Device Weight: 105g
2044 * Package Size / pcs : 14.5 x 8 x 5 cm
2045 * Weight / pcs : 170g
2046
2047
2048
2049
2050 = 9. Support =
2051
2052
2053 * (((
2054 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2055 )))
2056 * (((
2057 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2058
2059
2060
2061
2062
2063 )))
2064
2065 = 10. Reference​​​​​ =
2066
2067
2068 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2069 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2070 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
2071
2072