Version 90.4 by Xiaoling on 2022/08/18 11:52

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16 = 1.Introduction =
17
18 == 1.1 What is LT Series I/O Controller ==
19
20 (((
21
22
23 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
24 )))
25
26 (((
27 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
28 )))
29
30 (((
31 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
32 )))
33
34 (((
35 The use environment includes:
36 )))
37
38 (((
39 1) If user’s area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
40 )))
41
42 (((
43 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
44
45
46 )))
47
48 (((
49 [[image:1653295757274-912.png]]
50
51
52 )))
53
54
55 == 1.2  Specifications ==
56
57 (((
58
59
60 **Hardware System:**
61 )))
62
63 * (((
64 STM32L072CZT6 MCU
65 )))
66 * (((
67 SX1276/78 Wireless Chip 
68 )))
69 * (((
70 (((
71 Power Consumption:
72 )))
73
74 * (((
75 Idle: 4mA@12v
76 )))
77 * (((
78 20dB Transmit: 34mA@12v
79 )))
80 )))
81
82 (((
83
84
85 **Interface for Model: LT22222-L:**
86 )))
87
88 * (((
89 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
90 )))
91 * (((
92 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
93 )))
94 * (((
95 2 x Relay Output (5A@250VAC / 30VDC)
96 )))
97 * (((
98 2 x 0~~20mA Analog Input (res:0.01mA)
99 )))
100 * (((
101 2 x 0~~30V Analog Input (res:0.01v)
102 )))
103 * (((
104 Power Input 7~~ 24V DC. 
105 )))
106
107 (((
108
109
110 **LoRa Spec:**
111 )))
112
113 * (((
114 (((
115 Frequency Range:
116 )))
117
118 * (((
119 Band 1 (HF): 862 ~~ 1020 Mhz
120 )))
121 * (((
122 Band 2 (LF): 410 ~~ 528 Mhz
123 )))
124 )))
125 * (((
126 168 dB maximum link budget.
127 )))
128 * (((
129 +20 dBm - 100 mW constant RF output vs.
130 )))
131 * (((
132 +14 dBm high efficiency PA.
133 )))
134 * (((
135 Programmable bit rate up to 300 kbps.
136 )))
137 * (((
138 High sensitivity: down to -148 dBm.
139 )))
140 * (((
141 Bullet-proof front end: IIP3 = -12.5 dBm.
142 )))
143 * (((
144 Excellent blocking immunity.
145 )))
146 * (((
147 Low RX current of 10.3 mA, 200 nA register retention.
148 )))
149 * (((
150 Fully integrated synthesizer with a resolution of 61 Hz.
151 )))
152 * (((
153 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
154 )))
155 * (((
156 Built-in bit synchronizer for clock recovery.
157 )))
158 * (((
159 Preamble detection.
160 )))
161 * (((
162 127 dB Dynamic Range RSSI.
163 )))
164 * (((
165 Automatic RF Sense and CAD with ultra-fast AFC.
166 )))
167 * (((
168 Packet engine up to 256 bytes with CRC.
169
170
171
172
173 )))
174
175 == 1.3 Features ==
176
177
178 * LoRaWAN Class A & Class C protocol
179 * Optional Customized LoRa Protocol
180 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865
181 * AT Commands to change parameters
182 * Remote configure parameters via LoRa Downlink
183 * Firmware upgradable via program port
184 * Counting
185
186
187
188
189 == 1.4  Applications ==
190
191
192 * Smart Buildings & Home Automation
193 * Logistics and Supply Chain Management
194 * Smart Metering
195 * Smart Agriculture
196 * Smart Cities
197 * Smart Factory
198
199
200
201
202 == 1.5 Hardware Variants ==
203
204
205 (% border="1" style="background-color:#f7faff; width:500px" %)
206 |(% style="width:103px" %)**Model**|(% style="width:131px" %)**Photo**|(% style="width:334px" %)**Description**
207 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)[[image:1653296302983-697.png]]|(% style="width:334px" %)(((
208 * 2 x Digital Input (Bi-direction)
209 * 2 x Digital Output
210 * 2 x Relay Output (5A@250VAC / 30VDC)
211 * 2 x 0~~20mA Analog Input (res:0.01mA)
212 * 2 x 0~~30V Analog Input (res:0.01v)
213 * 1 x Counting Port
214 )))
215
216
217
218 = 2. Power ON Device =
219
220
221 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
222
223 (((
224 PWR will on when device is properly powered.
225 )))
226
227 [[image:1653297104069-180.png]]
228
229
230
231 = 3. Operation Mode =
232
233 == 3.1 How it works? ==
234
235
236 (((
237 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
238 )))
239
240 (((
241 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
242 )))
243
244
245
246 == 3.2 Example to join LoRaWAN network ==
247
248
249 (((
250 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
251
252
253 )))
254
255 [[image:image-20220523172350-1.png||height="266" width="864"]]
256
257
258 (((
259 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
260
261
262 )))
263
264 (((
265 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
266 )))
267
268 (((
269 Each LT is shipped with a sticker with the default device EUI as below:
270 )))
271
272 [[image:1653297924498-393.png]]
273
274
275 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
276
277 Add APP EUI in the application.
278
279 [[image:1653297955910-247.png||height="321" width="716"]]
280
281
282 Add APP KEY and DEV EUI
283
284 [[image:1653298023685-319.png]]
285
286
287
288 (((
289 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
290 )))
291
292 [[image:1653298044601-602.png||height="405" width="709"]]
293
294
295
296 == 3.3 Uplink Payload ==
297
298
299 There are five working modes + one interrupt mode on LT for different type application:
300
301 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
302 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
303 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
304 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
305 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
306 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
307
308
309
310
311 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
312
313
314 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default.
315
316 [[image:image-20220523174024-3.png]]
317
318 (((
319
320
321 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
322 )))
323
324 [[image:image-20220523174254-4.png]]
325
326 * RO is for relay. ROx=1 : close,ROx=0 always open.
327 * DI is for digital input. DIx=1: high or float, DIx=0: low.
328 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
329
330 (% style="color:red" %)Note: DI3 and DO3 bit are not valid for LT-22222-L
331
332 For example if payload is: [[image:image-20220523175847-2.png]]
333
334
335 **The value for the interface is:  **
336
337 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
338
339 AVI2 channel voltage is 0x04AC/1000=1.196V
340
341 ACI1 channel current is 0x1310/1000=4.880mA
342
343 ACI2 channel current is 0x1300/1000=4.864mA
344
345 The last byte 0xAA= 10101010(B) means
346
347 * [1] RO1 relay channel is close and the RO1 LED is ON.
348 * [0] RO2 relay channel is open and RO2 LED is OFF;
349
350
351 **LT22222-L:**
352
353 * [1] DI2 channel is high input and DI2 LED is ON;
354 * [0] DI1 channel is low input;
355
356 * [0] DO3 channel output state
357 ** DO3 is float in case no load between DO3 and V+.;
358 ** DO3 is high in case there is load between DO3 and V+.
359 ** DO3 LED is off in both case
360 * [1] DO2 channel output is low and DO2 LED is ON.
361 * [0] DO1 channel output state
362 ** DO1 is float in case no load between DO1 and V+.;
363 ** DO1 is high in case there is load between DO1 and V+.
364 ** DO1 LED is off in both case
365
366
367
368
369 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
370
371
372 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
373
374 (((
375 Total : 11 bytes payload
376 )))
377
378 [[image:image-20220523180452-3.png]]
379
380
381 (((
382 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
383 )))
384
385 [[image:image-20220523180506-4.png]]
386
387 * RO is for relay. ROx=1 : close,ROx=0 always open.
388 * FIRST: Indicate this is the first packet after join network.
389 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
390
391 (((
392 (% style="color:red" %)Note: DO3 bit is not valid for LT-22222-L.
393 )))
394
395 (((
396
397
398 **To use counting mode, please run:**
399 )))
400
401 (% class="box infomessage" %)
402 (((
403 (((
404 **AT+MOD=2**
405
406 **ATZ**
407 )))
408 )))
409
410 (((
411
412
413 (% style="color:#4f81bd" %)**AT Commands for counting:**
414 )))
415
416 (((
417 **For LT22222-L:**
418
419
420 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
421
422 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
423
424 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
425
426 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
427
428 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
429
430 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
431 )))
432
433
434
435 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
436
437
438 **LT22222-L**: This mode the DI1 is used as a counting pin.
439
440 [[image:image-20220523181246-5.png]]
441
442 (((
443
444
445 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
446 )))
447
448 [[image:image-20220523181301-6.png]]
449
450 * RO is for relay. ROx=1 : close,ROx=0 always open.
451 * FIRST: Indicate this is the first packet after join network.
452 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
453
454 (((
455 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
456 )))
457
458
459 (((
460 **To use counting mode, please run:**
461 )))
462
463 (% class="box infomessage" %)
464 (((
465 (((
466 **AT+MOD=3**
467
468 **ATZ**
469 )))
470 )))
471
472 (((
473 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
474 )))
475
476
477
478 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
479
480
481 **LT22222-L**: This mode the DI1 is used as a counting pin.
482
483 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
484
485 [[image:image-20220523181903-8.png]]
486
487
488 (((
489 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
490 )))
491
492 [[image:image-20220523181727-7.png]]
493
494 * RO is for relay. ROx=1 : close,ROx=0 always open.
495 * FIRST: Indicate this is the first packet after join network.
496 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
497
498 (((
499 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
500 )))
501
502 (((
503
504
505 **To use this mode, please run:**
506 )))
507
508 (% class="box infomessage" %)
509 (((
510 (((
511 **AT+MOD=4**
512
513 **ATZ**
514 )))
515 )))
516
517
518
519 (((
520 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
521 )))
522
523 (((
524
525
526 **Plus below command for AVI1 Counting:**
527
528
529 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
530
531 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
532
533 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
534
535 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
536 )))
537
538
539
540 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
541
542
543 **LT22222-L**: This mode the DI1 is used as a counting pin.
544
545 [[image:image-20220523182334-9.png]]
546
547 (((
548
549
550 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
551 )))
552
553 * RO is for relay. ROx=1 : close,ROx=0 always open.
554 * FIRST: Indicate this is the first packet after join network.
555 * (((
556 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
557 )))
558
559 (((
560 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
561 )))
562
563 (((
564
565
566 **To use this mode, please run:**
567 )))
568
569 (% class="box infomessage" %)
570 (((
571 (((
572 **AT+MOD=5**
573
574 **ATZ**
575 )))
576 )))
577
578 (((
579 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
580 )))
581
582
583
584 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
585
586
587 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
588
589 For example, if user has configured below commands:
590
591 * **AT+MOD=1 ** **~-~->**  The normal working mode
592 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
593
594 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
595
596 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
597 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
598
599 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
600
601
602 (% style="color:#4f81bd" %)**Trigger base on voltage**:
603
604 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
605
606 **Example:**
607
608 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
609
610 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
611
612
613
614 (% style="color:#4f81bd" %)**Trigger base on current**:
615
616 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
617
618 **Example:**
619
620 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
621
622
623
624 (% style="color:#4f81bd" %)**Trigger base on DI status**:
625
626 DI status trigger Flag.
627
628 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
629
630
631 **Example:**
632
633 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
634
635
636 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
637
638 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
639
640 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
641
642 AA: Code for this downlink Command:
643
644 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
645
646 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
647
648 yy2 yy2: AC1 or AV1 high limit.
649
650 yy3 yy3: AC2 or AV2 low limit.
651
652 Yy4 yy4: AC2 or AV2 high limit.
653
654
655 **Example1**: AA 00 13 88 00 00 00 00 00 00
656
657 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
658
659
660 **Example2**: AA 02 01 00
661
662 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
663
664
665
666 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
667
668 MOD6 Payload : total 11 bytes payload
669
670 [[image:image-20220524085923-1.png]]
671
672
673 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
674
675 [[image:image-20220524090106-2.png]]
676
677 * Each bits shows if the corresponding trigger has been configured.
678
679 **Example:**
680
681 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
682
683
684 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
685
686 [[image:image-20220524090249-3.png]]
687
688 * Each bits shows which status has been trigger on this uplink.
689
690 **Example:**
691
692 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
693
694
695 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
696
697 [[image:image-20220524090456-4.png]]
698
699 * Each bits shows which status has been trigger on this uplink.
700
701 **Example:**
702
703 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
704
705 00000101: Means both DI1 and DI2 trigger are enabled.
706
707
708 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
709
710 Downlink command to poll MOD6 status:
711
712 **AB 06**
713
714 When device got this command, it will send the MOD6 payload.
715
716
717
718 === 3.3.7 Payload Decoder ===
719
720 (((
721
722
723 **Decoder for TTN/loraserver/ChirpStack**: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/Payload_decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/Payload_decoder/]]
724
725
726 )))
727
728
729 == 3.4 ​Configure LT via AT or Downlink ==
730
731
732 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
733
734 (((
735 There are two kinds of Commands:
736 )))
737
738 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
739
740 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
741
742
743
744
745 === 3.4.1 Common Commands ===
746
747
748 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
749
750
751
752 === 3.4.2 Sensor related commands ===
753
754
755 ==== 3.4.2.1 Set Transmit Interval ====
756
757
758 Set device uplink interval.
759
760 * (% style="color:#037691" %)**AT Command:**
761
762 **AT+TDC=N **
763
764
765 **Example: **AT+TDC=30000. Means set interval to 30 seconds
766
767
768 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
769
770 **0x01 aa bb cc     ~/~/ Same as AT+TDC=0x(aa bb cc)**
771
772
773
774
775 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
776
777
778 Set work mode.
779
780 * (% style="color:#037691" %)**AT Command:**
781
782 **AT+MOD=N  **
783
784
785 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
786
787
788 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
789
790 **0x0A aa    ** ~/~/ Same as AT+MOD=aa
791
792
793
794
795 ==== 3.4.2.3 Poll an uplink ====
796
797
798 * (% style="color:#037691" %)**AT Command:**
799
800 There is no AT Command to poll uplink
801
802
803 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
804
805 **0x08 FF     **~/~/ Poll an uplink
806
807 **Example**: 0x08FF, ask device to send an Uplink
808
809
810
811
812 ==== 3.4.2.4 Enable Trigger Mode ====
813
814
815 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
816
817 * (% style="color:#037691" %)**AT Command:**
818
819 **AT+ADDMOD6=1 or 0**
820
821 1: Enable Trigger Mode
822
823 0: Disable Trigger Mode
824
825
826 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
827
828 **0x0A 06 aa    ** ~/~/ Same as AT+ADDMOD6=aa
829
830
831
832
833 ==== 3.4.2.5 Poll trigger settings ====
834
835
836 Poll trigger settings,
837
838 * (% style="color:#037691" %)**AT Command:**
839
840 There is no AT Command for this feature.
841
842
843 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
844
845 **0xAB 06         **~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
846
847
848
849
850 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
851
852
853 Enable Disable DI1/DI2/DI2 as trigger,
854
855 * (% style="color:#037691" %)**AT Command:**
856
857 **Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
858
859
860 **Example:**
861
862 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
863
864 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
865
866 **0xAA 02 aa bb        **~/~/ Same as AT+DTRI=aa,bb
867
868
869
870
871 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
872
873
874 Set DI1 or DI3(for LT-33222-L) trigger.
875
876 * (% style="color:#037691" %)**AT Command:**
877
878 **AT+TRIG1=a,b**
879
880 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
881
882 b : delay timing.
883
884
885 **Example:**
886
887 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
888
889
890 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
891 * **0x09 01 aa bb cc    ** ~/~/ same as AT+TRIG1=aa,0x(bb cc)
892
893
894
895
896 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
897
898
899 Set DI2 trigger.
900
901 * (% style="color:#037691" %)**AT Command:**
902
903 **AT+TRIG2=a,b**
904
905
906 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
907
908 b : delay timing.
909
910
911 **Example:**
912
913 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
914
915
916 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
917
918 **0x09 02 aa bb cc           **~/~/ same as AT+TRIG1=aa,0x(bb cc)
919
920
921
922
923 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
924
925
926 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
927
928 * (% style="color:#037691" %)**AT Command**
929
930 **AT+ACLIM**
931
932
933 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
934
935 **0x AA 01 aa bb cc dd ee ff gg hh        ** ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
936
937
938
939
940 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
941
942
943 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
944
945 * (% style="color:#037691" %)**AT Command**
946
947 **AT+AVLIM  See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
948
949
950 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
951
952 **0x AA 00 aa bb cc dd ee ff gg hh    ** ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
953
954
955
956
957 ==== 3.4.2.11 Trigger – Set minimum interval ====
958
959
960 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
961
962 * (% style="color:#037691" %)**AT Command**
963
964 **AT+ATDC=5        ** Device won't response the second trigger within 5 minute after the first trigger.
965
966
967 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
968
969 **0x AC aa bb   ** ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
970
971 (((
972
973
974 (% style="color:red" %)Note: ATDC setting must be more than 5min
975 )))
976
977
978
979
980 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
981
982
983 * (% style="color:#037691" %)**AT Command**
984
985 There is no AT Command to control Digital Output
986
987
988 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
989 * **0x02 aa bb cc     **~/~/ Set DO1/DO2/DO3 output
990
991 (((
992 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
993 )))
994
995 (((
996 01: Low,  00: High ,  11: No action
997 )))
998
999 [[image:image-20220524092754-5.png]]
1000
1001 (((
1002 (% style="color:red" %)Note: For LT-22222-L, there is no DO3, the last byte can use any value.
1003 )))
1004
1005 (((
1006 (% style="color:red" %)Device will upload a packet if downlink code executes successfully.
1007 )))
1008
1009
1010
1011
1012 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1013
1014
1015 * (% style="color:#037691" %)**AT Command**
1016
1017 There is no AT Command to control Digital Output
1018
1019
1020 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1021
1022 **0xA9 aa bb cc     **~/~/ Set DO1/DO2/DO3 output with time control
1023
1024
1025 This is to control the digital output time of DO pin. Include four bytes:
1026
1027 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1028
1029 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1030
1031 01: DO pins will change back to original state after timeout.
1032
1033 00: DO pins will change to an inverter state after timeout 
1034
1035
1036 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1037
1038 [[image:image-20220524093238-6.png]]
1039
1040
1041 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1042
1043 [[image:image-20220524093328-7.png]]
1044
1045
1046 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1047
1048 [[image:image-20220524093351-8.png]]
1049
1050
1051 (% style="color:#4f81bd" %)**Sixth and Seventh Byte**:
1052
1053 Latching time. Unit: ms
1054
1055 Device will upload a packet if downlink code executes successfully.
1056
1057
1058 **Example payload:**
1059
1060 **~1. A9 01 01 01 01 07 D0**
1061
1062 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1063
1064 **2. A9 01 00 01 11 07 D0**
1065
1066 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1067
1068 **3. A9 00 00 00 00 07 D0**
1069
1070 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1071
1072 **4. A9 00 11 01 00 07 D0**
1073
1074 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1075
1076
1077
1078
1079 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1080
1081
1082 * (% style="color:#037691" %)**AT Command:**
1083
1084 There is no AT Command to control Relay Output
1085
1086
1087 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1088
1089 **0x03 aa bb     **~/~/ Set RO1/RO2 output
1090
1091
1092 (((
1093 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1094 )))
1095
1096 (((
1097 01: Close ,  00: Open , 11: No action
1098 )))
1099
1100 (((
1101 [[image:image-20220524093724-9.png]]
1102 )))
1103
1104 Device will upload a packet if downlink code executes successfully.
1105
1106
1107
1108
1109 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1110
1111
1112 * (% style="color:#037691" %)**AT Command:**
1113
1114 There is no AT Command to control Relay Output
1115
1116
1117 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1118
1119 **0x05 aa bb cc dd     **~/~/ Set RO1/RO2 relay with time control
1120
1121
1122 This is to control the relay output time of relay. Include four bytes:
1123
1124 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1125
1126 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1127
1128 01: Relays will change back to original state after timeout.
1129
1130 00: Relays will change to an inverter state after timeout
1131
1132
1133 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1134
1135 [[image:image-20220714135731-1.png||height="406" width="627"]]
1136
1137
1138 (% style="color:#4f81bd" %)**Fourth/Fifth Bytes(cc)**(%%): Latching time. Unit: ms
1139
1140 Device will upload a packet if downlink code executes successfully.
1141
1142
1143 **Example payload:**
1144
1145 **~1. 05 01 11 07 D**
1146
1147 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1148
1149 **2. 05 01 10 07 D0**
1150
1151 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1152
1153 **3. 05 00 01 07 D0**
1154
1155 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1156
1157 **4. 05 00 00 07 D0**
1158
1159 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1160
1161
1162
1163
1164 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1165
1166
1167 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1168
1169 * (% style="color:#037691" %)**AT Command:**
1170
1171 **AT+VOLMAX   ** ~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1172
1173
1174 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1175
1176 **0xA5 aa bb cc   **~/~/ Same as AT+VOLMAX=(aa bb),cc
1177
1178
1179
1180
1181 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1182
1183
1184 * (% style="color:#037691" %)**AT Command:**
1185
1186 **AT+SETCNT=aa,(bb cc dd ee) **
1187
1188 aa: 1: Set count1,
1189
1190 2: Set count2,
1191
1192 3: Set AV1 count
1193
1194 Bb cc dd ee: number to be set
1195
1196
1197 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1198
1199 **0x A8 aa bb cc dd ee     **~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1200
1201
1202
1203
1204 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1205
1206
1207 Clear counting for counting mode
1208
1209 * (% style="color:#037691" %)**AT Command:**
1210
1211 **AT+CLRCOUNT ** ~/~/ clear all counting
1212
1213
1214 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1215
1216 **0x A6 01    ** ~/~/ clear all counting
1217
1218
1219
1220
1221 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1222
1223
1224 * (% style="color:#037691" %)**AT Command:**
1225
1226 **AT+COUTIME=60  **~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1227
1228
1229 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1230
1231 **0x A7 aa bb cc     **~/~/ same as AT+COUTIME =aa bb cc,
1232
1233 (((
1234 range: aa bb cc:0 to 16777215,  (unit:second)
1235
1236
1237 )))
1238
1239
1240
1241 == 3.5 Integrate with Mydevice ==
1242
1243
1244 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1245
1246 (((
1247 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1248 )))
1249
1250 (((
1251 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1252
1253
1254 )))
1255
1256 [[image:image-20220719105525-1.png||height="377" width="677"]]
1257
1258
1259
1260 [[image:image-20220719110247-2.png||height="388" width="683"]]
1261
1262
1263 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1264
1265 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1266
1267 Search under The things network
1268
1269 [[image:1653356838789-523.png||height="337" width="740"]]
1270
1271
1272
1273 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1274
1275 [[image:image-20220524094909-1.png||height="335" width="729"]]
1276
1277
1278 [[image:image-20220524094909-2.png||height="337" width="729"]]
1279
1280
1281 [[image:image-20220524094909-3.png||height="338" width="727"]]
1282
1283
1284 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1285
1286
1287 [[image:image-20220524094909-5.png||height="341" width="734"]]
1288
1289
1290
1291 == 3.6 Interface Detail ==
1292
1293
1294 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1295
1296
1297 Support NPN Type sensor
1298
1299 [[image:1653356991268-289.png]]
1300
1301
1302
1303 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1304
1305
1306 (((
1307 The DI port of LT-22222-L can support NPN or PNP output sensor.
1308 )))
1309
1310 (((
1311 (((
1312 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high.
1313
1314
1315 )))
1316 )))
1317
1318 [[image:1653357170703-587.png]]
1319
1320 (((
1321 (((
1322 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1323 )))
1324 )))
1325
1326 (((
1327
1328 )))
1329
1330 (((
1331 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1332 )))
1333
1334 (((
1335 This type of sensor will output a low signal GND when active.
1336 )))
1337
1338 * (((
1339 Connect sensor’s output to DI1-
1340 )))
1341 * (((
1342 Connect sensor’s VCC to DI1+.
1343 )))
1344
1345 (((
1346 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1347 )))
1348
1349 (((
1350 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1351 )))
1352
1353 (((
1354 If DI1+ = 12v, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1355 )))
1356
1357 (((
1358
1359
1360
1361 )))
1362
1363 (((
1364 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1365 )))
1366
1367 (((
1368 This type of sensor will output a high signal (example 24v) when active.
1369 )))
1370
1371 * (((
1372 Connect sensor’s output to DI1+
1373 )))
1374 * (((
1375 Connect sensor’s GND DI1-.
1376 )))
1377
1378 (((
1379 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1380 )))
1381
1382 (((
1383 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1384 )))
1385
1386 (((
1387 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1388 )))
1389
1390 (((
1391
1392
1393
1394 )))
1395
1396 (((
1397 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1398 )))
1399
1400 (((
1401 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1402 )))
1403
1404 * (((
1405 Connect sensor’s output to DI1+ with a serial 50K resistor
1406 )))
1407 * (((
1408 Connect sensor’s GND DI1-.
1409 )))
1410
1411 (((
1412 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1413 )))
1414
1415 (((
1416 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1417 )))
1418
1419 (((
1420 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1421 )))
1422
1423
1424
1425 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1426
1427
1428 NPN output: GND or Float. Max voltage can apply to output pin is 36v.
1429
1430 [[image:1653357531600-905.png]]
1431
1432
1433
1434 === 3.6.4 Analog Input Interface ===
1435
1436
1437 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1438
1439
1440 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1441
1442 [[image:1653357592296-182.png]]
1443
1444 Example to connect a 4~~20mA sensor
1445
1446 We take the wind speed sensor as an example for reference only.
1447
1448
1449 **Specifications of the wind speed sensor:**
1450
1451 Red:  12~~24v
1452
1453 Yellow:  4~~20mA
1454
1455 Black:  GND
1456
1457
1458 **Connection diagram:**
1459
1460 [[image:1653357640609-758.png]]
1461
1462 [[image:1653357648330-671.png||height="155" width="733"]]
1463
1464
1465
1466 === 3.6.5 Relay Output ===
1467
1468
1469 (((
1470 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device’s Power Line to in serial of RO1_1 and RO_2. Such as below:
1471 )))
1472
1473 [[image:image-20220524100215-9.png]]
1474
1475 [[image:image-20220524100215-10.png||height="382" width="723"]]
1476
1477
1478
1479 == 3.7 LEDs Indicators ==
1480
1481
1482 [[image:image-20220524100748-11.png]]
1483
1484
1485
1486 = 4. Use AT Command =
1487
1488
1489 == 4.1 Access AT Command ==
1490
1491
1492 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1493
1494 [[image:1653358238933-385.png]]
1495
1496
1497 (((
1498 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1499 )))
1500
1501 [[image:1653358355238-883.png]]
1502
1503
1504 (((
1505 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1506 )))
1507
1508 (((
1509 AT+<CMD>?        : Help on <CMD>
1510 )))
1511
1512 (((
1513 AT+<CMD>         : Run <CMD>
1514 )))
1515
1516 (((
1517 AT+<CMD>=<value> : Set the value
1518 )))
1519
1520 (((
1521 AT+<CMD>=?       : Get the value
1522 )))
1523
1524 (((
1525 ATZ: Trig a reset of the MCU
1526 )))
1527
1528 (((
1529 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1530 )))
1531
1532 (((
1533 AT+DEUI: Get or Set the Device EUI
1534 )))
1535
1536 (((
1537 AT+DADDR: Get or Set the Device Address
1538 )))
1539
1540 (((
1541 AT+APPKEY: Get or Set the Application Key
1542 )))
1543
1544 (((
1545 AT+NWKSKEY: Get or Set the Network Session Key
1546 )))
1547
1548 (((
1549 AT+APPSKEY: Get or Set the Application Session Key
1550 )))
1551
1552 (((
1553 AT+APPEUI: Get or Set the Application EUI
1554 )))
1555
1556 (((
1557 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1558 )))
1559
1560 (((
1561 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1562 )))
1563
1564 (((
1565 AT+DR: Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1566 )))
1567
1568 (((
1569 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1570 )))
1571
1572 (((
1573 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1574 )))
1575
1576 (((
1577 AT+RX2FQ: Get or Set the Rx2 window frequency
1578 )))
1579
1580 (((
1581 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1582 )))
1583
1584 (((
1585 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1586 )))
1587
1588 (((
1589 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1590 )))
1591
1592 (((
1593 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1594 )))
1595
1596 (((
1597 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1598 )))
1599
1600 (((
1601 AT+NJM: Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1602 )))
1603
1604 (((
1605 AT+NWKID: Get or Set the Network ID
1606 )))
1607
1608 (((
1609 AT+FCU: Get or Set the Frame Counter Uplink
1610 )))
1611
1612 (((
1613 AT+FCD: Get or Set the Frame Counter Downlink
1614 )))
1615
1616 (((
1617 AT+CLASS: Get or Set the Device Class
1618 )))
1619
1620 (((
1621 AT+JOIN: Join network
1622 )))
1623
1624 (((
1625 AT+NJS: Get OTAA Join Status
1626 )))
1627
1628 (((
1629 AT+SENDB: Send hexadecimal data along with the application port
1630 )))
1631
1632 (((
1633 AT+SEND: Send text data along with the application port
1634 )))
1635
1636 (((
1637 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1638 )))
1639
1640 (((
1641 AT+RECV: Print last received data in raw format
1642 )))
1643
1644 (((
1645 AT+VER: Get current image version and Frequency Band
1646 )))
1647
1648 (((
1649 AT+CFM: Get or Set the confirmation mode (0-1)
1650 )))
1651
1652 (((
1653 AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1654 )))
1655
1656 (((
1657 AT+SNR: Get the SNR of the last received packet
1658 )))
1659
1660 (((
1661 AT+RSSI: Get the RSSI of the last received packet
1662 )))
1663
1664 (((
1665 AT+TDC: Get or set the application data transmission interval in ms
1666 )))
1667
1668 (((
1669 AT+PORT: Get or set the application port
1670 )))
1671
1672 (((
1673 AT+DISAT: Disable AT commands
1674 )))
1675
1676 (((
1677 AT+PWORD: Set password, max 9 digits
1678 )))
1679
1680 (((
1681 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1682 )))
1683
1684 (((
1685 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1686 )))
1687
1688 (((
1689 AT+CFG: Print all settings
1690 )))
1691
1692
1693
1694 == 4.2 Common AT Command Sequence ==
1695
1696
1697 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1698
1699 (((
1700
1701
1702 **If device has not joined network yet:**
1703 )))
1704
1705 (((
1706 (% style="background-color:#dcdcdc" %)123456
1707 )))
1708
1709 (((
1710 (% style="background-color:#dcdcdc" %)AT+FDR
1711 )))
1712
1713 (((
1714 (% style="background-color:#dcdcdc" %)123456
1715 )))
1716
1717 (((
1718 (% style="background-color:#dcdcdc" %)AT+NJM=0
1719 )))
1720
1721 (((
1722 (% style="background-color:#dcdcdc" %)ATZ
1723 )))
1724
1725
1726 (((
1727 **If device already joined network:**
1728 )))
1729
1730 (((
1731 (% style="background-color:#dcdcdc" %)AT+NJM=0
1732 )))
1733
1734 (((
1735 (% style="background-color:#dcdcdc" %)ATZ
1736 )))
1737
1738
1739
1740 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1741
1742 (((
1743
1744
1745 (% style="background-color:#dcdcdc" %)123456(%%)  Enter Password to have AT access.
1746 )))
1747
1748 (((
1749 (% style="background-color:#dcdcdc" %) AT+FDR(%%)   Reset Parameters to Factory Default, Keys Reserve
1750 )))
1751
1752 (((
1753 (% style="background-color:#dcdcdc" %) 123456(%%)  Enter Password to have AT access.
1754 )))
1755
1756 (((
1757 (% style="background-color:#dcdcdc" %) AT+CLASS=C(%%) Set to work in CLASS C
1758 )))
1759
1760 (((
1761 (% style="background-color:#dcdcdc" %) AT+NJM=0(%%)  Set to ABP mode
1762 )))
1763
1764 (((
1765 (% style="background-color:#dcdcdc" %) AT+ADR=0(%%)  Set the Adaptive Data Rate Off
1766 )))
1767
1768 (((
1769 (% style="background-color:#dcdcdc" %) AT+DR=5(%%)  Set Data Rate
1770 )))
1771
1772 (((
1773 (% style="background-color:#dcdcdc" %) AT+TDC=60000(%%)  Set transmit interval to 60 seconds
1774 )))
1775
1776 (((
1777 (% style="background-color:#dcdcdc" %) AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1778 )))
1779
1780 (((
1781 (% style="background-color:#dcdcdc" %) AT+RX2FQ=868400000(%%)  Set RX2Frequency to 868.4Mhz (according to the result from server)
1782 )))
1783
1784 (((
1785 (% style="background-color:#dcdcdc" %) AT+RX2DR=5(%%)  Set RX2DR to match the downlink DR from server. see below
1786 )))
1787
1788 (((
1789 (% style="background-color:#dcdcdc" %) AT+DADDR=26 01 1A F1 (%%) Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1790 )))
1791
1792 (((
1793 (% style="background-color:#dcdcdc" %) ATZ         (%%) Reset MCU
1794
1795
1796 )))
1797
1798 (((
1799 (% style="color:red" %)**Note:**
1800 )))
1801
1802 (((
1803 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1804 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1805 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1806 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1807 )))
1808
1809 (((
1810 [[image:1653359097980-169.png||height="188" width="729"]]
1811 )))
1812
1813 (((
1814
1815 )))
1816
1817
1818 === 4.2.3 Change to Class A ===
1819
1820
1821 If sensor JOINED
1822 (% style="background-color:#dcdcdc" %)AT+CLASS=A
1823 ATZ
1824
1825
1826
1827 = 5. FAQ =
1828
1829
1830 == 5.1 How to upgrade the image? ==
1831
1832
1833 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1834
1835 * Support new features
1836 * For bug fix
1837 * Change LoRaWAN bands.
1838
1839 Below shows the hardware connection for how to upload an image to the LT:
1840
1841 [[image:1653359603330-121.png]]
1842
1843
1844 (((
1845 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1846 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1847 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
1848
1849
1850 (% style="color:blue" %)**For LT-22222-L**(%%):
1851 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
1852
1853
1854 )))
1855
1856 [[image:image-20220524103407-12.png]]
1857
1858 [[image:image-20220524103429-13.png]]
1859
1860 [[image:image-20220524104033-15.png]]
1861
1862
1863 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1864
1865
1866 [[image:1653360054704-518.png||height="186" width="745"]]
1867
1868
1869 (((
1870 (((
1871
1872
1873 == 5.2 How to change the LoRa Frequency Bands/Region? ==
1874
1875
1876 )))
1877 )))
1878
1879 (((
1880 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1881 )))
1882
1883 (((
1884
1885
1886
1887 == 5.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
1888
1889
1890 )))
1891
1892 (((
1893 (((
1894 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
1895 )))
1896 )))
1897
1898 (((
1899 (((
1900 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
1901
1902
1903 )))
1904 )))
1905
1906 (((
1907 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
1908 )))
1909
1910 (((
1911 [[image:1653360231087-571.png||height="401" width="727"]]
1912 )))
1913
1914 (((
1915 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
1916 )))
1917
1918
1919 (((
1920 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
1921 )))
1922
1923 (((
1924 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
1925 (% style="background-color:#dcdcdc" %)AT+FDR(%%)  Reset Parameters to Factory Default, Keys Reserve
1926 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
1927 (% style="background-color:#dcdcdc" %)AT+NJM=0 (%%) Set to ABP mode
1928 (% style="background-color:#dcdcdc" %)AT+ADR=0 (%%) Set the Adaptive Data Rate Off
1929 (% style="background-color:#dcdcdc" %)AT+DR=5 (%%) Set Data Rate (Set AT+DR=3 for 915 band)
1930 (% style="background-color:#dcdcdc" %)AT+TDC=60000 (%%) Set transmit interval to 60 seconds
1931 (% style="background-color:#dcdcdc" %)AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1932 (% style="background-color:#dcdcdc" %)AT+DADDR=26 01 1A F1(%%)  Set Device Address to 26 01 1A F1
1933 (% style="background-color:#dcdcdc" %)ATZ        (%%) Reset MCU
1934 )))
1935
1936
1937 (((
1938 As shown in below:
1939 )))
1940
1941 [[image:1653360498588-932.png||height="485" width="726"]]
1942
1943
1944
1945 == 5.4 Can I see counting event in Serial? ==
1946
1947
1948 (((
1949 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
1950
1951
1952
1953 == 5.5 Can i use point to point communication for LT-22222-L? ==
1954
1955
1956 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]
1957
1958
1959
1960 )))
1961
1962 (((
1963 == 5.6 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
1964
1965
1966 If the device is not shut down, but directly powered off.
1967
1968 It will default that this is a power-off state.
1969
1970 In modes 2 to 5, DO RO status and pulse count are saved in flash.
1971
1972 After restart, the status before power failure will be read from flash.
1973
1974
1975
1976 = 6. Trouble Shooting =
1977 )))
1978
1979 (((
1980 (((
1981 == 6.1 Downlink doesn't work, how to solve it? ==
1982
1983
1984 )))
1985 )))
1986
1987 (((
1988 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
1989 )))
1990
1991 (((
1992
1993
1994
1995 == 6.2 Have trouble to upload image. ==
1996
1997
1998 )))
1999
2000 (((
2001 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2002 )))
2003
2004 (((
2005
2006
2007
2008 == 6.3 Why I can't join TTN in US915 /AU915 bands? ==
2009
2010
2011 )))
2012
2013 (((
2014 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2015 )))
2016
2017
2018
2019 = 7. Order Info =
2020
2021
2022 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2023
2024 (% style="color:#4f81bd" %)**XXX:**
2025
2026 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2027 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2028 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2029 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2030 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2031 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2032 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2033 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2034 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2035
2036
2037
2038
2039
2040 = 8. Packing Info =
2041
2042
2043 **Package Includes**:
2044
2045 * LT-22222-L I/O Controller x 1
2046 * Stick Antenna for LoRa RF part x 1
2047 * Bracket for controller x1
2048 * Program cable x 1
2049
2050 **Dimension and weight**:
2051
2052 * Device Size: 13.5 x 7 x 3 cm
2053 * Device Weight: 105g
2054 * Package Size / pcs : 14.5 x 8 x 5 cm
2055 * Weight / pcs : 170g
2056
2057
2058
2059
2060
2061 = 9. Support =
2062
2063
2064 * (((
2065 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2066 )))
2067 * (((
2068 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2069
2070
2071
2072
2073
2074 )))
2075
2076 = 10. Reference​​​​​ =
2077
2078
2079 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2080 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2081 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
2082
2083
2084