Version 90.2 by Xiaoling on 2022/08/18 11:36

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16 = 1.Introduction =
17
18 == 1.1 What is LT Series I/O Controller ==
19
20 (((
21
22
23 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
24 )))
25
26 (((
27 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
28 )))
29
30 (((
31 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
32 )))
33
34 (((
35 The use environment includes:
36 )))
37
38 (((
39 1) If user’s area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
40 )))
41
42 (((
43 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
44
45
46 )))
47
48 (((
49 [[image:1653295757274-912.png]]
50
51
52 )))
53
54
55 == 1.2  Specifications ==
56
57 (((
58
59
60 **Hardware System:**
61 )))
62
63 * (((
64 STM32L072CZT6 MCU
65 )))
66 * (((
67 SX1276/78 Wireless Chip 
68 )))
69 * (((
70 (((
71 Power Consumption:
72 )))
73
74 * (((
75 Idle: 4mA@12v
76 )))
77 * (((
78 20dB Transmit: 34mA@12v
79 )))
80 )))
81
82 (((
83
84
85 **Interface for Model: LT22222-L:**
86 )))
87
88 * (((
89 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
90 )))
91 * (((
92 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
93 )))
94 * (((
95 2 x Relay Output (5A@250VAC / 30VDC)
96 )))
97 * (((
98 2 x 0~~20mA Analog Input (res:0.01mA)
99 )))
100 * (((
101 2 x 0~~30V Analog Input (res:0.01v)
102 )))
103 * (((
104 Power Input 7~~ 24V DC. 
105 )))
106
107 (((
108
109
110 **LoRa Spec:**
111 )))
112
113 * (((
114 (((
115 Frequency Range:
116 )))
117
118 * (((
119 Band 1 (HF): 862 ~~ 1020 Mhz
120 )))
121 * (((
122 Band 2 (LF): 410 ~~ 528 Mhz
123 )))
124 )))
125 * (((
126 168 dB maximum link budget.
127 )))
128 * (((
129 +20 dBm - 100 mW constant RF output vs.
130 )))
131 * (((
132 +14 dBm high efficiency PA.
133 )))
134 * (((
135 Programmable bit rate up to 300 kbps.
136 )))
137 * (((
138 High sensitivity: down to -148 dBm.
139 )))
140 * (((
141 Bullet-proof front end: IIP3 = -12.5 dBm.
142 )))
143 * (((
144 Excellent blocking immunity.
145 )))
146 * (((
147 Low RX current of 10.3 mA, 200 nA register retention.
148 )))
149 * (((
150 Fully integrated synthesizer with a resolution of 61 Hz.
151 )))
152 * (((
153 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
154 )))
155 * (((
156 Built-in bit synchronizer for clock recovery.
157 )))
158 * (((
159 Preamble detection.
160 )))
161 * (((
162 127 dB Dynamic Range RSSI.
163 )))
164 * (((
165 Automatic RF Sense and CAD with ultra-fast AFC.
166 )))
167 * (((
168 Packet engine up to 256 bytes with CRC.
169
170
171
172
173 )))
174
175 == 1.3 Features ==
176
177
178 * LoRaWAN Class A & Class C protocol
179 * Optional Customized LoRa Protocol
180 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865
181 * AT Commands to change parameters
182 * Remote configure parameters via LoRa Downlink
183 * Firmware upgradable via program port
184 * Counting
185
186
187
188
189
190 == 1.4  Applications ==
191
192
193 * Smart Buildings & Home Automation
194 * Logistics and Supply Chain Management
195 * Smart Metering
196 * Smart Agriculture
197 * Smart Cities
198 * Smart Factory
199
200
201
202
203
204 == 1.5 Hardware Variants ==
205
206
207 (% border="1" style="background-color:#f7faff; width:500px" %)
208 |(% style="width:103px" %)**Model**|(% style="width:131px" %)**Photo**|(% style="width:334px" %)**Description**
209 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)[[image:1653296302983-697.png]]|(% style="width:334px" %)(((
210 * 2 x Digital Input (Bi-direction)
211 * 2 x Digital Output
212 * 2 x Relay Output (5A@250VAC / 30VDC)
213 * 2 x 0~~20mA Analog Input (res:0.01mA)
214 * 2 x 0~~30V Analog Input (res:0.01v)
215 * 1 x Counting Port
216 )))
217
218
219
220
221 = 2. Power ON Device =
222
223
224 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
225
226 (((
227 PWR will on when device is properly powered.
228 )))
229
230 [[image:1653297104069-180.png]]
231
232
233
234 = 3. Operation Mode =
235
236 == 3.1 How it works? ==
237
238
239 (((
240 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
241 )))
242
243 (((
244 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
245 )))
246
247
248
249 == 3.2 Example to join LoRaWAN network ==
250
251
252 (((
253 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
254
255
256 )))
257
258 [[image:image-20220523172350-1.png||height="266" width="864"]]
259
260
261 (((
262 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
263
264
265 )))
266
267 (((
268 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
269 )))
270
271 (((
272 Each LT is shipped with a sticker with the default device EUI as below:
273 )))
274
275 [[image:1653297924498-393.png]]
276
277
278 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
279
280 Add APP EUI in the application.
281
282 [[image:1653297955910-247.png||height="321" width="716"]]
283
284
285 Add APP KEY and DEV EUI
286
287 [[image:1653298023685-319.png]]
288
289
290 (((
291 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
292 )))
293
294 [[image:1653298044601-602.png||height="405" width="709"]]
295
296
297
298 == 3.3 Uplink Payload ==
299
300 There are five working modes + one interrupt mode on LT for different type application:
301
302 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
303 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
304 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
305 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
306 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
307 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
308
309 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
310
311 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default.
312
313 [[image:image-20220523174024-3.png]]
314
315 (((
316
317
318 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
319 )))
320
321 [[image:image-20220523174254-4.png]]
322
323 * RO is for relay. ROx=1 : close,ROx=0 always open.
324 * DI is for digital input. DIx=1: high or float, DIx=0: low.
325 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
326
327 (% style="color:red" %)Note: DI3 and DO3 bit are not valid for LT-22222-L
328
329 For example if payload is: [[image:image-20220523175847-2.png]]
330
331
332 **The value for the interface is:  **
333
334 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
335
336 AVI2 channel voltage is 0x04AC/1000=1.196V
337
338 ACI1 channel current is 0x1310/1000=4.880mA
339
340 ACI2 channel current is 0x1300/1000=4.864mA
341
342 The last byte 0xAA= 10101010(B) means
343
344 * [1] RO1 relay channel is close and the RO1 LED is ON.
345 * [0] RO2 relay channel is open and RO2 LED is OFF;
346
347 **LT22222-L:**
348
349 * [1] DI2 channel is high input and DI2 LED is ON;
350 * [0] DI1 channel is low input;
351
352 * [0] DO3 channel output state
353 ** DO3 is float in case no load between DO3 and V+.;
354 ** DO3 is high in case there is load between DO3 and V+.
355 ** DO3 LED is off in both case
356 * [1] DO2 channel output is low and DO2 LED is ON.
357 * [0] DO1 channel output state
358 ** DO1 is float in case no load between DO1 and V+.;
359 ** DO1 is high in case there is load between DO1 and V+.
360 ** DO1 LED is off in both case
361
362 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
363
364
365 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
366
367 (((
368 Total : 11 bytes payload
369 )))
370
371 [[image:image-20220523180452-3.png]]
372
373
374 (((
375 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
376 )))
377
378 [[image:image-20220523180506-4.png]]
379
380 * RO is for relay. ROx=1 : close,ROx=0 always open.
381 * FIRST: Indicate this is the first packet after join network.
382 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
383
384 (((
385 (% style="color:red" %)Note: DO3 bit is not valid for LT-22222-L.
386 )))
387
388 (((
389
390
391 **To use counting mode, please run:**
392 )))
393
394 (% class="box infomessage" %)
395 (((
396 (((
397 **AT+MOD=2**
398
399 **ATZ**
400 )))
401 )))
402
403 (((
404
405
406 (% style="color:#4f81bd" %)**AT Commands for counting:**
407 )))
408
409 (((
410 **For LT22222-L:**
411
412
413 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
414
415 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
416
417 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
418
419 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
420
421 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
422
423 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
424 )))
425
426
427
428 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
429
430 **LT22222-L**: This mode the DI1 is used as a counting pin.
431
432 [[image:image-20220523181246-5.png]]
433
434 (((
435
436
437 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
438 )))
439
440 [[image:image-20220523181301-6.png]]
441
442 * RO is for relay. ROx=1 : close,ROx=0 always open.
443 * FIRST: Indicate this is the first packet after join network.
444 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
445
446 (((
447 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
448 )))
449
450
451 (((
452 **To use counting mode, please run:**
453 )))
454
455 (% class="box infomessage" %)
456 (((
457 (((
458 **AT+MOD=3**
459
460 **ATZ**
461 )))
462 )))
463
464 (((
465 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
466 )))
467
468
469
470 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
471
472
473 **LT22222-L**: This mode the DI1 is used as a counting pin.
474
475 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
476
477 [[image:image-20220523181903-8.png]]
478
479
480 (((
481 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
482 )))
483
484 [[image:image-20220523181727-7.png]]
485
486 * RO is for relay. ROx=1 : close,ROx=0 always open.
487 * FIRST: Indicate this is the first packet after join network.
488 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
489
490 (((
491 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
492 )))
493
494 (((
495
496
497 **To use this mode, please run:**
498 )))
499
500 (% class="box infomessage" %)
501 (((
502 (((
503 **AT+MOD=4**
504
505 **ATZ**
506 )))
507 )))
508
509
510
511 (((
512 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
513 )))
514
515 (((
516
517
518 **Plus below command for AVI1 Counting:**
519
520
521 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
522
523 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
524
525 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
526
527 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
528 )))
529
530
531
532 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
533
534
535 **LT22222-L**: This mode the DI1 is used as a counting pin.
536
537 [[image:image-20220523182334-9.png]]
538
539 (((
540
541
542 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
543 )))
544
545 * RO is for relay. ROx=1 : close,ROx=0 always open.
546 * FIRST: Indicate this is the first packet after join network.
547 * (((
548 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
549 )))
550
551 (((
552 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
553 )))
554
555 (((
556
557
558 **To use this mode, please run:**
559 )))
560
561 (% class="box infomessage" %)
562 (((
563 (((
564 **AT+MOD=5**
565
566 **ATZ**
567 )))
568 )))
569
570 (((
571 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
572 )))
573
574
575
576 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
577
578
579 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
580
581 For example, if user has configured below commands:
582
583 * **AT+MOD=1 ** **~-~->**  The normal working mode
584 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
585
586 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
587
588 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
589 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
590
591 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
592
593
594 (% style="color:#4f81bd" %)**Trigger base on voltage**:
595
596 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
597
598 **Example:**
599
600 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
601
602 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
603
604
605
606 (% style="color:#4f81bd" %)**Trigger base on current**:
607
608 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
609
610 **Example:**
611
612 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
613
614
615
616 (% style="color:#4f81bd" %)**Trigger base on DI status**:
617
618 DI status trigger Flag.
619
620 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
621
622
623 **Example:**
624
625 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
626
627
628 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
629
630 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
631
632 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
633
634 AA: Code for this downlink Command:
635
636 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
637
638 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
639
640 yy2 yy2: AC1 or AV1 high limit.
641
642 yy3 yy3: AC2 or AV2 low limit.
643
644 Yy4 yy4: AC2 or AV2 high limit.
645
646
647 **Example1**: AA 00 13 88 00 00 00 00 00 00
648
649 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
650
651
652 **Example2**: AA 02 01 00
653
654 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
655
656
657
658 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
659
660 MOD6 Payload : total 11 bytes payload
661
662 [[image:image-20220524085923-1.png]]
663
664
665 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
666
667 [[image:image-20220524090106-2.png]]
668
669 * Each bits shows if the corresponding trigger has been configured.
670
671 **Example:**
672
673 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
674
675
676 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
677
678 [[image:image-20220524090249-3.png]]
679
680 * Each bits shows which status has been trigger on this uplink.
681
682 **Example:**
683
684 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
685
686
687 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
688
689 [[image:image-20220524090456-4.png]]
690
691 * Each bits shows which status has been trigger on this uplink.
692
693 **Example:**
694
695 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
696
697 00000101: Means both DI1 and DI2 trigger are enabled.
698
699
700 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
701
702 Downlink command to poll MOD6 status:
703
704 **AB 06**
705
706 When device got this command, it will send the MOD6 payload.
707
708
709
710 === 3.3.7 Payload Decoder ===
711
712 (((
713
714
715 **Decoder for TTN/loraserver/ChirpStack**: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/Payload_decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/Payload_decoder/]]
716
717
718 )))
719
720
721 == 3.4 ​Configure LT via AT or Downlink ==
722
723 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
724
725 (((
726 There are two kinds of Commands:
727 )))
728
729 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
730
731 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
732
733 === 3.4.1 Common Commands ===
734
735 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
736
737
738
739 === 3.4.2 Sensor related commands ===
740
741
742 ==== 3.4.2.1 Set Transmit Interval ====
743
744 Set device uplink interval.
745
746 * (% style="color:#037691" %)**AT Command:**
747
748 **AT+TDC=N **
749
750
751 **Example: **AT+TDC=30000. Means set interval to 30 seconds
752
753
754 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
755
756 **0x01 aa bb cc     ~/~/ Same as AT+TDC=0x(aa bb cc)**
757
758
759
760
761 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
762
763 Set work mode.
764
765 * (% style="color:#037691" %)**AT Command:**
766
767 **AT+MOD=N  **
768
769
770 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
771
772
773 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
774
775 **0x0A aa    ** ~/~/ Same as AT+MOD=aa
776
777
778
779
780 ==== 3.4.2.3 Poll an uplink ====
781
782 * (% style="color:#037691" %)**AT Command:**
783
784 There is no AT Command to poll uplink
785
786
787 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
788
789 **0x08 FF     **~/~/ Poll an uplink
790
791 **Example**: 0x08FF, ask device to send an Uplink
792
793
794
795
796 ==== 3.4.2.4 Enable Trigger Mode ====
797
798 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
799
800 * (% style="color:#037691" %)**AT Command:**
801
802 **AT+ADDMOD6=1 or 0**
803
804 1: Enable Trigger Mode
805
806 0: Disable Trigger Mode
807
808
809 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
810
811 **0x0A 06 aa    ** ~/~/ Same as AT+ADDMOD6=aa
812
813
814
815
816 ==== 3.4.2.5 Poll trigger settings ====
817
818 Poll trigger settings,
819
820 * (% style="color:#037691" %)**AT Command:**
821
822 There is no AT Command for this feature.
823
824
825 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
826
827 **0xAB 06         **~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
828
829
830
831
832 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
833
834 Enable Disable DI1/DI2/DI2 as trigger,
835
836 * (% style="color:#037691" %)**AT Command:**
837
838 **Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
839
840
841 **Example:**
842
843 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
844
845 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
846
847 **0xAA 02 aa bb        **~/~/ Same as AT+DTRI=aa,bb
848
849
850
851
852 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
853
854 Set DI1 or DI3(for LT-33222-L) trigger.
855
856 * (% style="color:#037691" %)**AT Command:**
857
858 **AT+TRIG1=a,b**
859
860 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
861
862 b : delay timing.
863
864
865 **Example:**
866
867 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
868
869
870 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
871 * **0x09 01 aa bb cc    ** ~/~/ same as AT+TRIG1=aa,0x(bb cc)
872
873 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
874
875 Set DI2 trigger.
876
877 * (% style="color:#037691" %)**AT Command:**
878
879 **AT+TRIG2=a,b**
880
881
882 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
883
884 b : delay timing.
885
886
887 **Example:**
888
889 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
890
891
892 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
893
894 **0x09 02 aa bb cc           **~/~/ same as AT+TRIG1=aa,0x(bb cc)
895
896
897
898
899 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
900
901 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
902
903 * (% style="color:#037691" %)**AT Command**
904
905 **AT+ACLIM**
906
907
908 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
909
910 **0x AA 01 aa bb cc dd ee ff gg hh        ** ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
911
912
913
914
915 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
916
917 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
918
919 * (% style="color:#037691" %)**AT Command**
920
921 **AT+AVLIM  See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
922
923
924 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
925
926 **0x AA 00 aa bb cc dd ee ff gg hh    ** ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
927
928
929
930
931 ==== 3.4.2.11 Trigger – Set minimum interval ====
932
933 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
934
935 * (% style="color:#037691" %)**AT Command**
936
937 **AT+ATDC=5        ** Device won't response the second trigger within 5 minute after the first trigger.
938
939
940 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
941
942 **0x AC aa bb   ** ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
943
944 (((
945
946
947 (% style="color:red" %)Note: ATDC setting must be more than 5min
948 )))
949
950
951
952
953 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
954
955 * (% style="color:#037691" %)**AT Command**
956
957 There is no AT Command to control Digital Output
958
959
960 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
961 * **0x02 aa bb cc     **~/~/ Set DO1/DO2/DO3 output
962
963 (((
964 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
965 )))
966
967 (((
968 01: Low,  00: High ,  11: No action
969 )))
970
971 [[image:image-20220524092754-5.png]]
972
973 (((
974 (% style="color:red" %)Note: For LT-22222-L, there is no DO3, the last byte can use any value.
975 )))
976
977 (((
978 (% style="color:red" %)Device will upload a packet if downlink code executes successfully.
979 )))
980
981
982
983
984 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
985
986 * (% style="color:#037691" %)**AT Command**
987
988 There is no AT Command to control Digital Output
989
990
991 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
992
993 **0xA9 aa bb cc     **~/~/ Set DO1/DO2/DO3 output with time control
994
995
996 This is to control the digital output time of DO pin. Include four bytes:
997
998 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
999
1000 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1001
1002 01: DO pins will change back to original state after timeout.
1003
1004 00: DO pins will change to an inverter state after timeout 
1005
1006
1007 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1008
1009 [[image:image-20220524093238-6.png]]
1010
1011
1012 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1013
1014 [[image:image-20220524093328-7.png]]
1015
1016
1017 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1018
1019 [[image:image-20220524093351-8.png]]
1020
1021
1022 (% style="color:#4f81bd" %)**Sixth and Seventh Byte**:
1023
1024 Latching time. Unit: ms
1025
1026 Device will upload a packet if downlink code executes successfully.
1027
1028
1029 **Example payload:**
1030
1031 **~1. A9 01 01 01 01 07 D0**
1032
1033 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1034
1035 **2. A9 01 00 01 11 07 D0**
1036
1037 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1038
1039 **3. A9 00 00 00 00 07 D0**
1040
1041 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1042
1043 **4. A9 00 11 01 00 07 D0**
1044
1045 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1046
1047
1048
1049
1050 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1051
1052 * (% style="color:#037691" %)**AT Command:**
1053
1054 There is no AT Command to control Relay Output
1055
1056
1057 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1058
1059 **0x03 aa bb     **~/~/ Set RO1/RO2 output
1060
1061
1062 (((
1063 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1064 )))
1065
1066 (((
1067 01: Close ,  00: Open , 11: No action
1068 )))
1069
1070 (((
1071 [[image:image-20220524093724-9.png]]
1072 )))
1073
1074 Device will upload a packet if downlink code executes successfully.
1075
1076
1077
1078
1079 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1080
1081 * (% style="color:#037691" %)**AT Command:**
1082
1083 There is no AT Command to control Relay Output
1084
1085
1086 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1087
1088 **0x05 aa bb cc dd     **~/~/ Set RO1/RO2 relay with time control
1089
1090
1091 This is to control the relay output time of relay. Include four bytes:
1092
1093 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1094
1095 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1096
1097 01: Relays will change back to original state after timeout.
1098
1099 00: Relays will change to an inverter state after timeout
1100
1101
1102 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1103
1104 [[image:image-20220714135731-1.png||height="406" width="627"]]
1105
1106
1107 (% style="color:#4f81bd" %)**Fourth/Fifth Bytes(cc)**(%%): Latching time. Unit: ms
1108
1109 Device will upload a packet if downlink code executes successfully.
1110
1111
1112 **Example payload:**
1113
1114 **~1. 05 01 11 07 D**
1115
1116 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1117
1118 **2. 05 01 10 07 D0**
1119
1120 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1121
1122 **3. 05 00 01 07 D0**
1123
1124 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1125
1126 **4. 05 00 00 07 D0**
1127
1128 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1129
1130
1131
1132
1133 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1134
1135 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1136
1137 * (% style="color:#037691" %)**AT Command:**
1138
1139 **AT+VOLMAX   ** ~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1140
1141
1142 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1143
1144 **0xA5 aa bb cc   **~/~/ Same as AT+VOLMAX=(aa bb),cc
1145
1146
1147
1148
1149 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1150
1151 * (% style="color:#037691" %)**AT Command:**
1152
1153 **AT+SETCNT=aa,(bb cc dd ee) **
1154
1155 aa: 1: Set count1,
1156
1157 2: Set count2,
1158
1159 3: Set AV1 count
1160
1161 Bb cc dd ee: number to be set
1162
1163
1164 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1165
1166 **0x A8 aa bb cc dd ee     **~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1167
1168
1169
1170
1171 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1172
1173 Clear counting for counting mode
1174
1175 * (% style="color:#037691" %)**AT Command:**
1176
1177 **AT+CLRCOUNT ** ~/~/ clear all counting
1178
1179
1180 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1181
1182 **0x A6 01    ** ~/~/ clear all counting
1183
1184
1185
1186
1187 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1188
1189 * (% style="color:#037691" %)**AT Command:**
1190
1191 **AT+COUTIME=60  **~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1192
1193
1194 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1195
1196 **0x A7 aa bb cc     **~/~/ same as AT+COUTIME =aa bb cc,
1197
1198 (((
1199 range: aa bb cc:0 to 16777215,  (unit:second)
1200
1201
1202 )))
1203
1204
1205
1206 == 3.5 Integrate with Mydevice ==
1207
1208 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1209
1210 (((
1211 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1212 )))
1213
1214 (((
1215 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1216 )))
1217
1218 [[image:image-20220719105525-1.png||height="377" width="677"]]
1219
1220
1221
1222 [[image:image-20220719110247-2.png||height="388" width="683"]]
1223
1224
1225 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1226
1227 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1228
1229 Search under The things network
1230
1231 [[image:1653356838789-523.png||height="337" width="740"]]
1232
1233
1234
1235 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1236
1237 [[image:image-20220524094909-1.png||height="335" width="729"]]
1238
1239
1240 [[image:image-20220524094909-2.png||height="337" width="729"]]
1241
1242
1243 [[image:image-20220524094909-3.png||height="338" width="727"]]
1244
1245
1246 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1247
1248
1249 [[image:image-20220524094909-5.png||height="341" width="734"]]
1250
1251
1252
1253 == 3.6 Interface Detail ==
1254
1255 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1256
1257 Support NPN Type sensor
1258
1259 [[image:1653356991268-289.png]]
1260
1261
1262
1263 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1264
1265 (((
1266 The DI port of LT-22222-L can support NPN or PNP output sensor.
1267 )))
1268
1269 (((
1270 (((
1271 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high
1272 )))
1273 )))
1274
1275 [[image:1653357170703-587.png]]
1276
1277 (((
1278 (((
1279 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1280 )))
1281 )))
1282
1283 (((
1284
1285 )))
1286
1287 (((
1288 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1289 )))
1290
1291 (((
1292 This type of sensor will output a low signal GND when active.
1293 )))
1294
1295 * (((
1296 Connect sensor’s output to DI1-
1297 )))
1298 * (((
1299 Connect sensor’s VCC to DI1+.
1300 )))
1301
1302 (((
1303 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1304 )))
1305
1306 (((
1307 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1308 )))
1309
1310 (((
1311 If DI1+ = 12v, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1312 )))
1313
1314 (((
1315
1316 )))
1317
1318 (((
1319 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1320 )))
1321
1322 (((
1323 This type of sensor will output a high signal (example 24v) when active.
1324 )))
1325
1326 * (((
1327 Connect sensor’s output to DI1+
1328 )))
1329 * (((
1330 Connect sensor’s GND DI1-.
1331 )))
1332
1333 (((
1334 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1335 )))
1336
1337 (((
1338 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1339 )))
1340
1341 (((
1342 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1343 )))
1344
1345 (((
1346
1347 )))
1348
1349 (((
1350 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1351 )))
1352
1353 (((
1354 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1355 )))
1356
1357 * (((
1358 Connect sensor’s output to DI1+ with a serial 50K resistor
1359 )))
1360 * (((
1361 Connect sensor’s GND DI1-.
1362 )))
1363
1364 (((
1365 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1366 )))
1367
1368 (((
1369 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1370 )))
1371
1372 (((
1373 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1374 )))
1375
1376
1377
1378 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1379
1380 NPN output: GND or Float. Max voltage can apply to output pin is 36v.
1381
1382 [[image:1653357531600-905.png]]
1383
1384
1385
1386 === 3.6.4 Analog Input Interface ===
1387
1388 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1389
1390
1391 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1392
1393 [[image:1653357592296-182.png]]
1394
1395 Example to connect a 4~~20mA sensor
1396
1397 We take the wind speed sensor as an example for reference only.
1398
1399
1400 **Specifications of the wind speed sensor:**
1401
1402 Red:  12~~24v
1403
1404 Yellow:  4~~20mA
1405
1406 Black:  GND
1407
1408
1409 **Connection diagram:**
1410
1411 [[image:1653357640609-758.png]]
1412
1413 [[image:1653357648330-671.png||height="155" width="733"]]
1414
1415
1416
1417 === 3.6.5 Relay Output ===
1418
1419 (((
1420 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device’s Power Line to in serial of RO1_1 and RO_2. Such as below:
1421 )))
1422
1423 [[image:image-20220524100215-9.png]]
1424
1425 [[image:image-20220524100215-10.png||height="382" width="723"]]
1426
1427
1428
1429 == 3.7 LEDs Indicators ==
1430
1431 [[image:image-20220524100748-11.png]]
1432
1433
1434
1435 = 4. Use AT Command =
1436
1437 == 4.1 Access AT Command ==
1438
1439 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1440
1441 [[image:1653358238933-385.png]]
1442
1443
1444 (((
1445 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1446 )))
1447
1448 [[image:1653358355238-883.png]]
1449
1450
1451 (((
1452 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1453 )))
1454
1455 (((
1456 AT+<CMD>?        : Help on <CMD>
1457 )))
1458
1459 (((
1460 AT+<CMD>         : Run <CMD>
1461 )))
1462
1463 (((
1464 AT+<CMD>=<value> : Set the value
1465 )))
1466
1467 (((
1468 AT+<CMD>=?       : Get the value
1469 )))
1470
1471 (((
1472 ATZ: Trig a reset of the MCU
1473 )))
1474
1475 (((
1476 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1477 )))
1478
1479 (((
1480 AT+DEUI: Get or Set the Device EUI
1481 )))
1482
1483 (((
1484 AT+DADDR: Get or Set the Device Address
1485 )))
1486
1487 (((
1488 AT+APPKEY: Get or Set the Application Key
1489 )))
1490
1491 (((
1492 AT+NWKSKEY: Get or Set the Network Session Key
1493 )))
1494
1495 (((
1496 AT+APPSKEY: Get or Set the Application Session Key
1497 )))
1498
1499 (((
1500 AT+APPEUI: Get or Set the Application EUI
1501 )))
1502
1503 (((
1504 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1505 )))
1506
1507 (((
1508 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1509 )))
1510
1511 (((
1512 AT+DR: Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1513 )))
1514
1515 (((
1516 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1517 )))
1518
1519 (((
1520 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1521 )))
1522
1523 (((
1524 AT+RX2FQ: Get or Set the Rx2 window frequency
1525 )))
1526
1527 (((
1528 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1529 )))
1530
1531 (((
1532 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1533 )))
1534
1535 (((
1536 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1537 )))
1538
1539 (((
1540 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1541 )))
1542
1543 (((
1544 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1545 )))
1546
1547 (((
1548 AT+NJM: Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1549 )))
1550
1551 (((
1552 AT+NWKID: Get or Set the Network ID
1553 )))
1554
1555 (((
1556 AT+FCU: Get or Set the Frame Counter Uplink
1557 )))
1558
1559 (((
1560 AT+FCD: Get or Set the Frame Counter Downlink
1561 )))
1562
1563 (((
1564 AT+CLASS: Get or Set the Device Class
1565 )))
1566
1567 (((
1568 AT+JOIN: Join network
1569 )))
1570
1571 (((
1572 AT+NJS: Get OTAA Join Status
1573 )))
1574
1575 (((
1576 AT+SENDB: Send hexadecimal data along with the application port
1577 )))
1578
1579 (((
1580 AT+SEND: Send text data along with the application port
1581 )))
1582
1583 (((
1584 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1585 )))
1586
1587 (((
1588 AT+RECV: Print last received data in raw format
1589 )))
1590
1591 (((
1592 AT+VER: Get current image version and Frequency Band
1593 )))
1594
1595 (((
1596 AT+CFM: Get or Set the confirmation mode (0-1)
1597 )))
1598
1599 (((
1600 AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1601 )))
1602
1603 (((
1604 AT+SNR: Get the SNR of the last received packet
1605 )))
1606
1607 (((
1608 AT+RSSI: Get the RSSI of the last received packet
1609 )))
1610
1611 (((
1612 AT+TDC: Get or set the application data transmission interval in ms
1613 )))
1614
1615 (((
1616 AT+PORT: Get or set the application port
1617 )))
1618
1619 (((
1620 AT+DISAT: Disable AT commands
1621 )))
1622
1623 (((
1624 AT+PWORD: Set password, max 9 digits
1625 )))
1626
1627 (((
1628 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1629 )))
1630
1631 (((
1632 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1633 )))
1634
1635 (((
1636 AT+CFG: Print all settings
1637 )))
1638
1639
1640
1641 == 4.2 Common AT Command Sequence ==
1642
1643 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1644
1645 (((
1646
1647
1648 **If device has not joined network yet:**
1649 )))
1650
1651 (((
1652 (% style="background-color:#dcdcdc" %)123456
1653 )))
1654
1655 (((
1656 (% style="background-color:#dcdcdc" %)AT+FDR
1657 )))
1658
1659 (((
1660 (% style="background-color:#dcdcdc" %)123456
1661 )))
1662
1663 (((
1664 (% style="background-color:#dcdcdc" %)AT+NJM=0
1665 )))
1666
1667 (((
1668 (% style="background-color:#dcdcdc" %)ATZ
1669 )))
1670
1671
1672 (((
1673 **If device already joined network:**
1674 )))
1675
1676 (((
1677 (% style="background-color:#dcdcdc" %)AT+NJM=0
1678 )))
1679
1680 (((
1681 (% style="background-color:#dcdcdc" %)ATZ
1682 )))
1683
1684
1685
1686 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1687
1688 (((
1689
1690
1691 (% style="background-color:#dcdcdc" %)123456(%%)  Enter Password to have AT access.
1692 )))
1693
1694 (((
1695 (% style="background-color:#dcdcdc" %) AT+FDR(%%)   Reset Parameters to Factory Default, Keys Reserve
1696 )))
1697
1698 (((
1699 (% style="background-color:#dcdcdc" %) 123456(%%)  Enter Password to have AT access.
1700 )))
1701
1702 (((
1703 (% style="background-color:#dcdcdc" %) AT+CLASS=C(%%) Set to work in CLASS C
1704 )))
1705
1706 (((
1707 (% style="background-color:#dcdcdc" %) AT+NJM=0(%%)  Set to ABP mode
1708 )))
1709
1710 (((
1711 (% style="background-color:#dcdcdc" %) AT+ADR=0(%%)  Set the Adaptive Data Rate Off
1712 )))
1713
1714 (((
1715 (% style="background-color:#dcdcdc" %) AT+DR=5(%%)  Set Data Rate
1716 )))
1717
1718 (((
1719 (% style="background-color:#dcdcdc" %) AT+TDC=60000(%%)  Set transmit interval to 60 seconds
1720 )))
1721
1722 (((
1723 (% style="background-color:#dcdcdc" %) AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1724 )))
1725
1726 (((
1727 (% style="background-color:#dcdcdc" %) AT+RX2FQ=868400000(%%)  Set RX2Frequency to 868.4Mhz (according to the result from server)
1728 )))
1729
1730 (((
1731 (% style="background-color:#dcdcdc" %) AT+RX2DR=5(%%)  Set RX2DR to match the downlink DR from server. see below
1732 )))
1733
1734 (((
1735 (% style="background-color:#dcdcdc" %) AT+DADDR=26 01 1A F1 (%%) Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1736 )))
1737
1738 (((
1739 (% style="background-color:#dcdcdc" %) ATZ         (%%) Reset MCU
1740
1741
1742 )))
1743
1744 (((
1745 (% style="color:red" %)**Note:**
1746 )))
1747
1748 (((
1749 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1750 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1751 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1752 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1753 )))
1754
1755 (((
1756 [[image:1653359097980-169.png||height="188" width="729"]]
1757 )))
1758
1759 (((
1760
1761 )))
1762
1763
1764 === 4.2.3 Change to Class A ===
1765
1766 If sensor JOINED
1767 (% style="background-color:#dcdcdc" %)AT+CLASS=A
1768 ATZ
1769
1770
1771 = 5. FAQ =
1772
1773 == 5.1 How to upgrade the image? ==
1774
1775
1776 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1777
1778 * Support new features
1779 * For bug fix
1780 * Change LoRaWAN bands.
1781
1782 Below shows the hardware connection for how to upload an image to the LT:
1783
1784 [[image:1653359603330-121.png]]
1785
1786
1787 (((
1788 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1789 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1790 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
1791
1792
1793 (% style="color:blue" %)**For LT-22222-L**(%%):
1794 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
1795 )))
1796
1797 [[image:image-20220524103407-12.png]]
1798
1799 [[image:image-20220524103429-13.png]]
1800
1801 [[image:image-20220524104033-15.png]]
1802
1803
1804 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1805
1806 [[image:1653360054704-518.png||height="186" width="745"]]
1807
1808
1809 (((
1810 (((
1811
1812
1813 == 5.2 How to change the LoRa Frequency Bands/Region? ==
1814 )))
1815 )))
1816
1817 (((
1818 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1819 )))
1820
1821 (((
1822
1823
1824 == 5.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
1825 )))
1826
1827 (((
1828 (((
1829 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
1830 )))
1831 )))
1832
1833 (((
1834 (((
1835 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
1836
1837
1838 )))
1839 )))
1840
1841 (((
1842 (% style="color:#4f81bd" %)**Step1**(%%): Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
1843 )))
1844
1845 (((
1846 [[image:1653360231087-571.png||height="401" width="727"]]
1847 )))
1848
1849 (((
1850 (% style="color:red" %)Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.
1851 )))
1852
1853
1854 (((
1855 (% style="color:#4f81bd" %)**Step2**(%%)**: **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
1856 )))
1857
1858 (((
1859 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
1860 (% style="background-color:#dcdcdc" %)AT+FDR(%%)  Reset Parameters to Factory Default, Keys Reserve
1861 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
1862 (% style="background-color:#dcdcdc" %)AT+NJM=0 (%%) Set to ABP mode
1863 (% style="background-color:#dcdcdc" %)AT+ADR=0 (%%) Set the Adaptive Data Rate Off
1864 (% style="background-color:#dcdcdc" %)AT+DR=5 (%%) Set Data Rate (Set AT+DR=3 for 915 band)
1865 (% style="background-color:#dcdcdc" %)AT+TDC=60000 (%%) Set transmit interval to 60 seconds
1866 (% style="background-color:#dcdcdc" %)AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1867 (% style="background-color:#dcdcdc" %)AT+DADDR=26 01 1A F1(%%)  Set Device Address to 26 01 1A F1
1868 (% style="background-color:#dcdcdc" %)ATZ        (%%) Reset MCU
1869 )))
1870
1871
1872 (((
1873 As shown in below:
1874 )))
1875
1876 [[image:1653360498588-932.png||height="485" width="726"]]
1877
1878
1879 == 5.4 Can I see counting event in Serial? ==
1880
1881 (((
1882 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn’t support AT+DEBUG. User can update to latest firmware first.
1883
1884
1885 == 5.5 Can i use point to point communication for LT-22222-L? ==
1886
1887 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]
1888
1889
1890 )))
1891
1892 (((
1893 == 5.6 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
1894
1895 If the device is not shut down, but directly powered off.
1896
1897 It will default that this is a power-off state.
1898
1899 In modes 2 to 5, DO RO status and pulse count are saved in flash.
1900
1901 After restart, the status before power failure will be read from flash.
1902
1903
1904 = 6. Trouble Shooting =
1905 )))
1906
1907 (((
1908 (((
1909 == 6.1 Downlink doesn't work, how to solve it? ==
1910 )))
1911 )))
1912
1913 (((
1914 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
1915 )))
1916
1917 (((
1918
1919
1920 == 6.2 Have trouble to upload image. ==
1921 )))
1922
1923 (((
1924 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
1925 )))
1926
1927 (((
1928
1929
1930 == 6.3 Why I can't join TTN in US915 /AU915 bands? ==
1931 )))
1932
1933 (((
1934 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1935 )))
1936
1937
1938 = 7. Order Info =
1939
1940
1941 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
1942
1943 (% style="color:#4f81bd" %)**XXX:**
1944
1945 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
1946 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
1947 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
1948 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
1949 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
1950 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
1951 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
1952 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
1953 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
1954
1955 = 8. Packing Info =
1956
1957
1958 **Package Includes**:
1959
1960 * LT-22222-L I/O Controller x 1
1961 * Stick Antenna for LoRa RF part x 1
1962 * Bracket for controller x1
1963 * Program cable x 1
1964
1965 **Dimension and weight**:
1966
1967 * Device Size: 13.5 x 7 x 3 cm
1968 * Device Weight: 105g
1969 * Package Size / pcs : 14.5 x 8 x 5 cm
1970 * Weight / pcs : 170g
1971
1972 = 9. Support =
1973
1974 * (((
1975 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1976 )))
1977 * (((
1978 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1979 )))
1980
1981 = 10. Reference​​​​​ =
1982
1983 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
1984 * [[Image Download>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]]
1985 * [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1986 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]