Version 89.1 by Bei Jinggeng on 2022/07/19 11:06

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16 = 1.Introduction =
17
18 == 1.1 What is LT Series I/O Controller ==
19
20 (((
21
22
23 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
24 )))
25
26 (((
27 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
28 )))
29
30 (((
31 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
32 )))
33
34 (((
35 The use environment includes:
36 )))
37
38 (((
39 1) If user’s area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
40 )))
41
42 (((
43 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
44 )))
45
46 (((
47 [[image:1653295757274-912.png]]
48
49
50 )))
51
52
53 == 1.2  Specifications ==
54
55 (((
56
57
58 **Hardware System:**
59 )))
60
61 * (((
62 STM32L072CZT6 MCU
63 )))
64 * (((
65 SX1276/78 Wireless Chip 
66 )))
67 * (((
68 (((
69 Power Consumption:
70 )))
71
72 * (((
73 Idle: 4mA@12v
74 )))
75 * (((
76 20dB Transmit: 34mA@12v
77 )))
78 )))
79
80 (((
81
82
83 **Interface for Model: LT22222-L:**
84 )))
85
86 * (((
87 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
88 )))
89 * (((
90 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
91 )))
92 * (((
93 2 x Relay Output (5A@250VAC / 30VDC)
94 )))
95 * (((
96 2 x 0~~20mA Analog Input (res:0.01mA)
97 )))
98 * (((
99 2 x 0~~30V Analog Input (res:0.01v)
100 )))
101 * (((
102 Power Input 7~~ 24V DC. 
103 )))
104
105 (((
106
107
108 **LoRa Spec:**
109 )))
110
111 * (((
112 (((
113 Frequency Range:
114 )))
115
116 * (((
117 Band 1 (HF): 862 ~~ 1020 Mhz
118 )))
119 * (((
120 Band 2 (LF): 410 ~~ 528 Mhz
121 )))
122 )))
123 * (((
124 168 dB maximum link budget.
125 )))
126 * (((
127 +20 dBm - 100 mW constant RF output vs.
128 )))
129 * (((
130 +14 dBm high efficiency PA.
131 )))
132 * (((
133 Programmable bit rate up to 300 kbps.
134 )))
135 * (((
136 High sensitivity: down to -148 dBm.
137 )))
138 * (((
139 Bullet-proof front end: IIP3 = -12.5 dBm.
140 )))
141 * (((
142 Excellent blocking immunity.
143 )))
144 * (((
145 Low RX current of 10.3 mA, 200 nA register retention.
146 )))
147 * (((
148 Fully integrated synthesizer with a resolution of 61 Hz.
149 )))
150 * (((
151 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
152 )))
153 * (((
154 Built-in bit synchronizer for clock recovery.
155 )))
156 * (((
157 Preamble detection.
158 )))
159 * (((
160 127 dB Dynamic Range RSSI.
161 )))
162 * (((
163 Automatic RF Sense and CAD with ultra-fast AFC.
164 )))
165 * (((
166 Packet engine up to 256 bytes with CRC.
167
168
169
170 )))
171
172 == 1.3 Features ==
173
174 * LoRaWAN Class A & Class C protocol
175 * Optional Customized LoRa Protocol
176 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865
177 * AT Commands to change parameters
178 * Remote configure parameters via LoRa Downlink
179 * Firmware upgradable via program port
180 * Counting
181
182 == 1.4  Applications ==
183
184 * Smart Buildings & Home Automation
185 * Logistics and Supply Chain Management
186 * Smart Metering
187 * Smart Agriculture
188 * Smart Cities
189 * Smart Factory
190
191 == 1.5 Hardware Variants ==
192
193 (% border="1" style="background-color:#f7faff; width:500px" %)
194 |(% style="width:103px" %)**Model**|(% style="width:131px" %)**Photo**|(% style="width:334px" %)**Description**
195 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)[[image:1653296302983-697.png]]|(% style="width:334px" %)(((
196 * 2 x Digital Input (Bi-direction)
197 * 2 x Digital Output
198 * 2 x Relay Output (5A@250VAC / 30VDC)
199 * 2 x 0~~20mA Analog Input (res:0.01mA)
200 * 2 x 0~~30V Analog Input (res:0.01v)
201 * 1 x Counting Port
202 )))
203
204 = 2. Power ON Device =
205
206 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
207
208 (((
209 PWR will on when device is properly powered.
210 )))
211
212 [[image:1653297104069-180.png]]
213
214
215
216 = 3. Operation Mode =
217
218 == 3.1 How it works? ==
219
220 (((
221 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
222 )))
223
224 (((
225 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
226 )))
227
228
229 == 3.2 Example to join LoRaWAN network ==
230
231 (((
232 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
233 )))
234
235 [[image:image-20220523172350-1.png||height="266" width="864"]]
236
237
238 (((
239 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
240 )))
241
242 (((
243 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
244 )))
245
246 (((
247 Each LT is shipped with a sticker with the default device EUI as below:
248 )))
249
250 [[image:1653297924498-393.png]]
251
252
253 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
254
255 Add APP EUI in the application.
256
257 [[image:1653297955910-247.png||height="321" width="716"]]
258
259
260 Add APP KEY and DEV EUI
261
262 [[image:1653298023685-319.png]]
263
264
265 (((
266 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
267 )))
268
269 [[image:1653298044601-602.png||height="405" width="709"]]
270
271
272
273 == 3.3 Uplink Payload ==
274
275 There are five working modes + one interrupt mode on LT for different type application:
276
277 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
278 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
279 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
280 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
281 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
282 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
283
284 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
285
286 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default.
287
288 [[image:image-20220523174024-3.png]]
289
290 (((
291
292
293 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
294 )))
295
296 [[image:image-20220523174254-4.png]]
297
298 * RO is for relay. ROx=1 : close,ROx=0 always open.
299 * DI is for digital input. DIx=1: high or float, DIx=0: low.
300 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
301
302 (% style="color:red" %)Note: DI3 and DO3 bit are not valid for LT-22222-L
303
304 For example if payload is: [[image:image-20220523175847-2.png]]
305
306
307 **The value for the interface is:  **
308
309 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
310
311 AVI2 channel voltage is 0x04AC/1000=1.196V
312
313 ACI1 channel current is 0x1310/1000=4.880mA
314
315 ACI2 channel current is 0x1300/1000=4.864mA
316
317 The last byte 0xAA= 10101010(B) means
318
319 * [1] RO1 relay channel is close and the RO1 LED is ON.
320 * [0] RO2 relay channel is open and RO2 LED is OFF;
321
322 **LT22222-L:**
323
324 * [1] DI2 channel is high input and DI2 LED is ON;
325 * [0] DI1 channel is low input;
326
327 * [0] DO3 channel output state
328 ** DO3 is float in case no load between DO3 and V+.;
329 ** DO3 is high in case there is load between DO3 and V+.
330 ** DO3 LED is off in both case
331 * [1] DO2 channel output is low and DO2 LED is ON.
332 * [0] DO1 channel output state
333 ** DO1 is float in case no load between DO1 and V+.;
334 ** DO1 is high in case there is load between DO1 and V+.
335 ** DO1 LED is off in both case
336
337 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
338
339
340 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
341
342 (((
343 Total : 11 bytes payload
344 )))
345
346 [[image:image-20220523180452-3.png]]
347
348
349 (((
350 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
351 )))
352
353 [[image:image-20220523180506-4.png]]
354
355 * RO is for relay. ROx=1 : close,ROx=0 always open.
356 * FIRST: Indicate this is the first packet after join network.
357 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
358
359 (((
360 (% style="color:red" %)Note: DO3 bit is not valid for LT-22222-L.
361 )))
362
363 (((
364
365
366 **To use counting mode, please run:**
367 )))
368
369 (% class="box infomessage" %)
370 (((
371 (((
372 **AT+MOD=2**
373
374 **ATZ**
375 )))
376 )))
377
378 (((
379
380
381 (% style="color:#4f81bd" %)**AT Commands for counting:**
382 )))
383
384 (((
385 **For LT22222-L:**
386
387
388 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
389
390 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
391
392 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
393
394 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
395
396 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
397
398 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
399 )))
400
401
402
403 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
404
405 **LT22222-L**: This mode the DI1 is used as a counting pin.
406
407 [[image:image-20220523181246-5.png]]
408
409 (((
410
411
412 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
413 )))
414
415 [[image:image-20220523181301-6.png]]
416
417 * RO is for relay. ROx=1 : close,ROx=0 always open.
418 * FIRST: Indicate this is the first packet after join network.
419 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
420
421 (((
422 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
423 )))
424
425
426 (((
427 **To use counting mode, please run:**
428 )))
429
430 (% class="box infomessage" %)
431 (((
432 (((
433 **AT+MOD=3**
434
435 **ATZ**
436 )))
437 )))
438
439 (((
440 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
441 )))
442
443
444
445 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
446
447
448 **LT22222-L**: This mode the DI1 is used as a counting pin.
449
450 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
451
452 [[image:image-20220523181903-8.png]]
453
454
455 (((
456 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
457 )))
458
459 [[image:image-20220523181727-7.png]]
460
461 * RO is for relay. ROx=1 : close,ROx=0 always open.
462 * FIRST: Indicate this is the first packet after join network.
463 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
464
465 (((
466 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
467 )))
468
469 (((
470
471
472 **To use this mode, please run:**
473 )))
474
475 (% class="box infomessage" %)
476 (((
477 (((
478 **AT+MOD=4**
479
480 **ATZ**
481 )))
482 )))
483
484
485
486 (((
487 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
488 )))
489
490 (((
491
492
493 **Plus below command for AVI1 Counting:**
494
495
496 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
497
498 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
499
500 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
501
502 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
503 )))
504
505
506
507 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
508
509
510 **LT22222-L**: This mode the DI1 is used as a counting pin.
511
512 [[image:image-20220523182334-9.png]]
513
514 (((
515
516
517 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
518 )))
519
520 * RO is for relay. ROx=1 : close,ROx=0 always open.
521 * FIRST: Indicate this is the first packet after join network.
522 * (((
523 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
524 )))
525
526 (((
527 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
528 )))
529
530 (((
531
532
533 **To use this mode, please run:**
534 )))
535
536 (% class="box infomessage" %)
537 (((
538 (((
539 **AT+MOD=5**
540
541 **ATZ**
542 )))
543 )))
544
545 (((
546 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
547 )))
548
549
550
551 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
552
553
554 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
555
556 For example, if user has configured below commands:
557
558 * **AT+MOD=1 ** **~-~->**  The normal working mode
559 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
560
561 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
562
563 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
564 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
565
566 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
567
568
569 (% style="color:#4f81bd" %)**Trigger base on voltage**:
570
571 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
572
573 **Example:**
574
575 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
576
577 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
578
579
580
581 (% style="color:#4f81bd" %)**Trigger base on current**:
582
583 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
584
585 **Example:**
586
587 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
588
589
590
591 (% style="color:#4f81bd" %)**Trigger base on DI status**:
592
593 DI status trigger Flag.
594
595 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
596
597
598 **Example:**
599
600 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
601
602
603 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
604
605 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
606
607 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
608
609 AA: Code for this downlink Command:
610
611 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
612
613 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
614
615 yy2 yy2: AC1 or AV1 high limit.
616
617 yy3 yy3: AC2 or AV2 low limit.
618
619 Yy4 yy4: AC2 or AV2 high limit.
620
621
622 **Example1**: AA 00 13 88 00 00 00 00 00 00
623
624 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
625
626
627 **Example2**: AA 02 01 00
628
629 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
630
631
632
633 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
634
635 MOD6 Payload : total 11 bytes payload
636
637 [[image:image-20220524085923-1.png]]
638
639
640 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
641
642 [[image:image-20220524090106-2.png]]
643
644 * Each bits shows if the corresponding trigger has been configured.
645
646 **Example:**
647
648 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
649
650
651 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
652
653 [[image:image-20220524090249-3.png]]
654
655 * Each bits shows which status has been trigger on this uplink.
656
657 **Example:**
658
659 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
660
661
662 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
663
664 [[image:image-20220524090456-4.png]]
665
666 * Each bits shows which status has been trigger on this uplink.
667
668 **Example:**
669
670 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
671
672 00000101: Means both DI1 and DI2 trigger are enabled.
673
674
675 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
676
677 Downlink command to poll MOD6 status:
678
679 **AB 06**
680
681 When device got this command, it will send the MOD6 payload.
682
683
684
685 === 3.3.7 Payload Decoder ===
686
687 (((
688
689
690 **Decoder for TTN/loraserver/ChirpStack**: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/Payload_decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/Payload_decoder/]]
691
692
693 )))
694
695
696 == 3.4 ​Configure LT via AT or Downlink ==
697
698 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
699
700 (((
701 There are two kinds of Commands:
702 )))
703
704 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
705
706 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
707
708 === 3.4.1 Common Commands ===
709
710 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
711
712
713
714 === 3.4.2 Sensor related commands ===
715
716
717 ==== 3.4.2.1 Set Transmit Interval ====
718
719 Set device uplink interval.
720
721 * (% style="color:#037691" %)**AT Command:**
722
723 **AT+TDC=N **
724
725
726 **Example: **AT+TDC=30000. Means set interval to 30 seconds
727
728
729 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
730
731 **0x01 aa bb cc     ~/~/ Same as AT+TDC=0x(aa bb cc)**
732
733
734
735
736 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
737
738 Set work mode.
739
740 * (% style="color:#037691" %)**AT Command:**
741
742 **AT+MOD=N  **
743
744
745 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
746
747
748 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
749
750 **0x0A aa    ** ~/~/ Same as AT+MOD=aa
751
752
753
754
755 ==== 3.4.2.3 Poll an uplink ====
756
757 * (% style="color:#037691" %)**AT Command:**
758
759 There is no AT Command to poll uplink
760
761
762 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
763
764 **0x08 FF     **~/~/ Poll an uplink
765
766 **Example**: 0x08FF, ask device to send an Uplink
767
768
769
770
771 ==== 3.4.2.4 Enable Trigger Mode ====
772
773 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
774
775 * (% style="color:#037691" %)**AT Command:**
776
777 **AT+ADDMOD6=1 or 0**
778
779 1: Enable Trigger Mode
780
781 0: Disable Trigger Mode
782
783
784 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
785
786 **0x0A 06 aa    ** ~/~/ Same as AT+ADDMOD6=aa
787
788
789
790
791 ==== 3.4.2.5 Poll trigger settings ====
792
793 Poll trigger settings,
794
795 * (% style="color:#037691" %)**AT Command:**
796
797 There is no AT Command for this feature.
798
799
800 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
801
802 **0xAB 06         **~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
803
804
805
806
807 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
808
809 Enable Disable DI1/DI2/DI2 as trigger,
810
811 * (% style="color:#037691" %)**AT Command:**
812
813 **Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
814
815
816 **Example:**
817
818 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
819
820 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
821
822 **0xAA 02 aa bb        **~/~/ Same as AT+DTRI=aa,bb
823
824
825
826
827 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
828
829 Set DI1 or DI3(for LT-33222-L) trigger.
830
831 * (% style="color:#037691" %)**AT Command:**
832
833 **AT+TRIG1=a,b**
834
835 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
836
837 b : delay timing.
838
839
840 **Example:**
841
842 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
843
844
845 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
846 * **0x09 01 aa bb cc    ** ~/~/ same as AT+TRIG1=aa,0x(bb cc)
847
848 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
849
850 Set DI2 trigger.
851
852 * (% style="color:#037691" %)**AT Command:**
853
854 **AT+TRIG2=a,b**
855
856
857 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
858
859 b : delay timing.
860
861
862 **Example:**
863
864 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
865
866
867 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
868
869 **0x09 02 aa bb cc           **~/~/ same as AT+TRIG1=aa,0x(bb cc)
870
871
872
873
874 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
875
876 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
877
878 * (% style="color:#037691" %)**AT Command**
879
880 **AT+ACLIM**
881
882
883 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
884
885 **0x AA 01 aa bb cc dd ee ff gg hh        ** ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
886
887
888
889
890 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
891
892 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
893
894 * (% style="color:#037691" %)**AT Command**
895
896 **AT+AVLIM  See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
897
898
899 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
900
901 **0x AA 00 aa bb cc dd ee ff gg hh    ** ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
902
903
904
905
906 ==== 3.4.2.11 Trigger – Set minimum interval ====
907
908 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
909
910 * (% style="color:#037691" %)**AT Command**
911
912 **AT+ATDC=5        ** Device won't response the second trigger within 5 minute after the first trigger.
913
914
915 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
916
917 **0x AC aa bb   ** ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
918
919 (((
920
921
922 (% style="color:red" %)Note: ATDC setting must be more than 5min
923 )))
924
925
926
927
928 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
929
930 * (% style="color:#037691" %)**AT Command**
931
932 There is no AT Command to control Digital Output
933
934
935 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
936 * **0x02 aa bb cc     **~/~/ Set DO1/DO2/DO3 output
937
938 (((
939 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
940 )))
941
942 (((
943 01: Low,  00: High ,  11: No action
944 )))
945
946 [[image:image-20220524092754-5.png]]
947
948 (((
949 (% style="color:red" %)Note: For LT-22222-L, there is no DO3, the last byte can use any value.
950 )))
951
952 (((
953 (% style="color:red" %)Device will upload a packet if downlink code executes successfully.
954 )))
955
956
957
958
959 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
960
961 * (% style="color:#037691" %)**AT Command**
962
963 There is no AT Command to control Digital Output
964
965
966 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
967
968 **0xA9 aa bb cc     **~/~/ Set DO1/DO2/DO3 output with time control
969
970
971 This is to control the digital output time of DO pin. Include four bytes:
972
973 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
974
975 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
976
977 01: DO pins will change back to original state after timeout.
978
979 00: DO pins will change to an inverter state after timeout 
980
981
982 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
983
984 [[image:image-20220524093238-6.png]]
985
986
987 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
988
989 [[image:image-20220524093328-7.png]]
990
991
992 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
993
994 [[image:image-20220524093351-8.png]]
995
996
997 (% style="color:#4f81bd" %)**Sixth and Seventh Byte**:
998
999 Latching time. Unit: ms
1000
1001 Device will upload a packet if downlink code executes successfully.
1002
1003
1004 **Example payload:**
1005
1006 **~1. A9 01 01 01 01 07 D0**
1007
1008 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1009
1010 **2. A9 01 00 01 11 07 D0**
1011
1012 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1013
1014 **3. A9 00 00 00 00 07 D0**
1015
1016 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1017
1018 **4. A9 00 11 01 00 07 D0**
1019
1020 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1021
1022
1023
1024
1025 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1026
1027 * (% style="color:#037691" %)**AT Command:**
1028
1029 There is no AT Command to control Relay Output
1030
1031
1032 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1033
1034 **0x03 aa bb     **~/~/ Set RO1/RO2 output
1035
1036
1037 (((
1038 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1039 )))
1040
1041 (((
1042 01: Close ,  00: Open , 11: No action
1043 )))
1044
1045 (((
1046 [[image:image-20220524093724-9.png]]
1047 )))
1048
1049 Device will upload a packet if downlink code executes successfully.
1050
1051
1052
1053
1054 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1055
1056 * (% style="color:#037691" %)**AT Command:**
1057
1058 There is no AT Command to control Relay Output
1059
1060
1061 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1062
1063 **0x05 aa bb cc dd     **~/~/ Set RO1/RO2 relay with time control
1064
1065
1066 This is to control the relay output time of relay. Include four bytes:
1067
1068 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1069
1070 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1071
1072 01: Relays will change back to original state after timeout.
1073
1074 00: Relays will change to an inverter state after timeout
1075
1076
1077 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1078
1079 [[image:image-20220714135731-1.png||height="406" width="627"]]
1080
1081
1082 (% style="color:#4f81bd" %)**Fourth/Fifth Bytes(cc)**(%%): Latching time. Unit: ms
1083
1084 Device will upload a packet if downlink code executes successfully.
1085
1086
1087 **Example payload:**
1088
1089 **~1. 05 01 11 07 D**
1090
1091 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1092
1093 **2. 05 01 10 07 D0**
1094
1095 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1096
1097 **3. 05 00 01 07 D0**
1098
1099 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1100
1101 **4. 05 00 00 07 D0**
1102
1103 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1104
1105
1106
1107
1108 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1109
1110 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1111
1112 * (% style="color:#037691" %)**AT Command:**
1113
1114 **AT+VOLMAX   ** ~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1115
1116
1117 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1118
1119 **0xA5 aa bb cc   **~/~/ Same as AT+VOLMAX=(aa bb),cc
1120
1121
1122
1123
1124 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1125
1126 * (% style="color:#037691" %)**AT Command:**
1127
1128 **AT+SETCNT=aa,(bb cc dd ee) **
1129
1130 aa: 1: Set count1,
1131
1132 2: Set count2,
1133
1134 3: Set AV1 count
1135
1136 Bb cc dd ee: number to be set
1137
1138
1139 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1140
1141 **0x A8 aa bb cc dd ee     **~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1142
1143
1144
1145
1146 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1147
1148 Clear counting for counting mode
1149
1150 * (% style="color:#037691" %)**AT Command:**
1151
1152 **AT+CLRCOUNT ** ~/~/ clear all counting
1153
1154
1155 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1156
1157 **0x A6 01    ** ~/~/ clear all counting
1158
1159
1160
1161
1162 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1163
1164 * (% style="color:#037691" %)**AT Command:**
1165
1166 **AT+COUTIME=60  **~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1167
1168
1169 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1170
1171 **0x A7 aa bb cc     **~/~/ same as AT+COUTIME =aa bb cc,
1172
1173 (((
1174 range: aa bb cc:0 to 16777215,  (unit:second)
1175
1176
1177 )))
1178
1179
1180
1181 == 3.5 Integrate with Mydevice ==
1182
1183 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1184
1185 (((
1186 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1187 )))
1188
1189 (((
1190 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1191 )))
1192
1193 [[image:image-20220719105525-1.png||height="452" width="814"]]
1194
1195
1196
1197 [[image:image-20220719110247-2.png||height="457" width="804"]]
1198
1199
1200 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1201
1202 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1203
1204 Search under The things network
1205
1206 [[image:1653356838789-523.png||height="337" width="740"]]
1207
1208
1209
1210 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1211
1212 [[image:image-20220524094909-1.png||height="335" width="729"]]
1213
1214
1215 [[image:image-20220524094909-2.png||height="337" width="729"]]
1216
1217
1218 [[image:image-20220524094909-3.png||height="338" width="727"]]
1219
1220
1221 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1222
1223
1224 [[image:image-20220524094909-5.png||height="341" width="734"]]
1225
1226
1227
1228 == 3.6 Interface Detail ==
1229
1230 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1231
1232 Support NPN Type sensor
1233
1234 [[image:1653356991268-289.png]]
1235
1236
1237
1238 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1239
1240 (((
1241 The DI port of LT-22222-L can support NPN or PNP output sensor.
1242 )))
1243
1244 (((
1245 (((
1246 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high
1247 )))
1248 )))
1249
1250 [[image:1653357170703-587.png]]
1251
1252 (((
1253 (((
1254 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1255 )))
1256 )))
1257
1258 (((
1259
1260 )))
1261
1262 (((
1263 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1264 )))
1265
1266 (((
1267 This type of sensor will output a low signal GND when active.
1268 )))
1269
1270 * (((
1271 Connect sensor’s output to DI1-
1272 )))
1273 * (((
1274 Connect sensor’s VCC to DI1+.
1275 )))
1276
1277 (((
1278 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1279 )))
1280
1281 (((
1282 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1283 )))
1284
1285 (((
1286 If DI1+ = 12v, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1287 )))
1288
1289 (((
1290
1291 )))
1292
1293 (((
1294 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1295 )))
1296
1297 (((
1298 This type of sensor will output a high signal (example 24v) when active.
1299 )))
1300
1301 * (((
1302 Connect sensor’s output to DI1+
1303 )))
1304 * (((
1305 Connect sensor’s GND DI1-.
1306 )))
1307
1308 (((
1309 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1310 )))
1311
1312 (((
1313 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1314 )))
1315
1316 (((
1317 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1318 )))
1319
1320 (((
1321
1322 )))
1323
1324 (((
1325 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1326 )))
1327
1328 (((
1329 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1330 )))
1331
1332 * (((
1333 Connect sensor’s output to DI1+ with a serial 50K resistor
1334 )))
1335 * (((
1336 Connect sensor’s GND DI1-.
1337 )))
1338
1339 (((
1340 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1341 )))
1342
1343 (((
1344 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1345 )))
1346
1347 (((
1348 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1349 )))
1350
1351
1352
1353 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1354
1355 NPN output: GND or Float. Max voltage can apply to output pin is 36v.
1356
1357 [[image:1653357531600-905.png]]
1358
1359
1360
1361 === 3.6.4 Analog Input Interface ===
1362
1363 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1364
1365
1366 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1367
1368 [[image:1653357592296-182.png]]
1369
1370 Example to connect a 4~~20mA sensor
1371
1372 We take the wind speed sensor as an example for reference only.
1373
1374
1375 **Specifications of the wind speed sensor:**
1376
1377 Red:  12~~24v
1378
1379 Yellow:  4~~20mA
1380
1381 Black:  GND
1382
1383
1384 **Connection diagram:**
1385
1386 [[image:1653357640609-758.png]]
1387
1388 [[image:1653357648330-671.png||height="155" width="733"]]
1389
1390
1391
1392 === 3.6.5 Relay Output ===
1393
1394 (((
1395 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device’s Power Line to in serial of RO1_1 and RO_2. Such as below:
1396 )))
1397
1398 [[image:image-20220524100215-9.png]]
1399
1400 [[image:image-20220524100215-10.png||height="382" width="723"]]
1401
1402
1403
1404 == 3.7 LEDs Indicators ==
1405
1406 [[image:image-20220524100748-11.png]]
1407
1408
1409
1410 = 4. Use AT Command =
1411
1412 == 4.1 Access AT Command ==
1413
1414 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1415
1416 [[image:1653358238933-385.png]]
1417
1418
1419 (((
1420 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1421 )))
1422
1423 [[image:1653358355238-883.png]]
1424
1425
1426 (((
1427 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1428 )))
1429
1430 (((
1431 AT+<CMD>?        : Help on <CMD>
1432 )))
1433
1434 (((
1435 AT+<CMD>         : Run <CMD>
1436 )))
1437
1438 (((
1439 AT+<CMD>=<value> : Set the value
1440 )))
1441
1442 (((
1443 AT+<CMD>=?       : Get the value
1444 )))
1445
1446 (((
1447 ATZ: Trig a reset of the MCU
1448 )))
1449
1450 (((
1451 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1452 )))
1453
1454 (((
1455 AT+DEUI: Get or Set the Device EUI
1456 )))
1457
1458 (((
1459 AT+DADDR: Get or Set the Device Address
1460 )))
1461
1462 (((
1463 AT+APPKEY: Get or Set the Application Key
1464 )))
1465
1466 (((
1467 AT+NWKSKEY: Get or Set the Network Session Key
1468 )))
1469
1470 (((
1471 AT+APPSKEY: Get or Set the Application Session Key
1472 )))
1473
1474 (((
1475 AT+APPEUI: Get or Set the Application EUI
1476 )))
1477
1478 (((
1479 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1480 )))
1481
1482 (((
1483 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1484 )))
1485
1486 (((
1487 AT+DR: Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1488 )))
1489
1490 (((
1491 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1492 )))
1493
1494 (((
1495 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1496 )))
1497
1498 (((
1499 AT+RX2FQ: Get or Set the Rx2 window frequency
1500 )))
1501
1502 (((
1503 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1504 )))
1505
1506 (((
1507 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1508 )))
1509
1510 (((
1511 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1512 )))
1513
1514 (((
1515 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1516 )))
1517
1518 (((
1519 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1520 )))
1521
1522 (((
1523 AT+NJM: Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1524 )))
1525
1526 (((
1527 AT+NWKID: Get or Set the Network ID
1528 )))
1529
1530 (((
1531 AT+FCU: Get or Set the Frame Counter Uplink
1532 )))
1533
1534 (((
1535 AT+FCD: Get or Set the Frame Counter Downlink
1536 )))
1537
1538 (((
1539 AT+CLASS: Get or Set the Device Class
1540 )))
1541
1542 (((
1543 AT+JOIN: Join network
1544 )))
1545
1546 (((
1547 AT+NJS: Get OTAA Join Status
1548 )))
1549
1550 (((
1551 AT+SENDB: Send hexadecimal data along with the application port
1552 )))
1553
1554 (((
1555 AT+SEND: Send text data along with the application port
1556 )))
1557
1558 (((
1559 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1560 )))
1561
1562 (((
1563 AT+RECV: Print last received data in raw format
1564 )))
1565
1566 (((
1567 AT+VER: Get current image version and Frequency Band
1568 )))
1569
1570 (((
1571 AT+CFM: Get or Set the confirmation mode (0-1)
1572 )))
1573
1574 (((
1575 AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1576 )))
1577
1578 (((
1579 AT+SNR: Get the SNR of the last received packet
1580 )))
1581
1582 (((
1583 AT+RSSI: Get the RSSI of the last received packet
1584 )))
1585
1586 (((
1587 AT+TDC: Get or set the application data transmission interval in ms
1588 )))
1589
1590 (((
1591 AT+PORT: Get or set the application port
1592 )))
1593
1594 (((
1595 AT+DISAT: Disable AT commands
1596 )))
1597
1598 (((
1599 AT+PWORD: Set password, max 9 digits
1600 )))
1601
1602 (((
1603 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1604 )))
1605
1606 (((
1607 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1608 )))
1609
1610 (((
1611 AT+CFG: Print all settings
1612 )))
1613
1614
1615
1616 == 4.2 Common AT Command Sequence ==
1617
1618 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1619
1620 (((
1621
1622
1623 **If device has not joined network yet:**
1624 )))
1625
1626 (((
1627 (% style="background-color:#dcdcdc" %)123456
1628 )))
1629
1630 (((
1631 (% style="background-color:#dcdcdc" %)AT+FDR
1632 )))
1633
1634 (((
1635 (% style="background-color:#dcdcdc" %)123456
1636 )))
1637
1638 (((
1639 (% style="background-color:#dcdcdc" %)AT+NJM=0
1640 )))
1641
1642 (((
1643 (% style="background-color:#dcdcdc" %)ATZ
1644 )))
1645
1646
1647 (((
1648 **If device already joined network:**
1649 )))
1650
1651 (((
1652 (% style="background-color:#dcdcdc" %)AT+NJM=0
1653 )))
1654
1655 (((
1656 (% style="background-color:#dcdcdc" %)ATZ
1657 )))
1658
1659
1660
1661 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1662
1663 (((
1664
1665
1666 (% style="background-color:#dcdcdc" %)123456(%%)  Enter Password to have AT access.
1667 )))
1668
1669 (((
1670 (% style="background-color:#dcdcdc" %) AT+FDR(%%)   Reset Parameters to Factory Default, Keys Reserve
1671 )))
1672
1673 (((
1674 (% style="background-color:#dcdcdc" %) 123456(%%)  Enter Password to have AT access.
1675 )))
1676
1677 (((
1678 (% style="background-color:#dcdcdc" %) AT+CLASS=C(%%) Set to work in CLASS C
1679 )))
1680
1681 (((
1682 (% style="background-color:#dcdcdc" %) AT+NJM=0(%%)  Set to ABP mode
1683 )))
1684
1685 (((
1686 (% style="background-color:#dcdcdc" %) AT+ADR=0(%%)  Set the Adaptive Data Rate Off
1687 )))
1688
1689 (((
1690 (% style="background-color:#dcdcdc" %) AT+DR=5(%%)  Set Data Rate
1691 )))
1692
1693 (((
1694 (% style="background-color:#dcdcdc" %) AT+TDC=60000(%%)  Set transmit interval to 60 seconds
1695 )))
1696
1697 (((
1698 (% style="background-color:#dcdcdc" %) AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1699 )))
1700
1701 (((
1702 (% style="background-color:#dcdcdc" %) AT+RX2FQ=868400000(%%)  Set RX2Frequency to 868.4Mhz (according to the result from server)
1703 )))
1704
1705 (((
1706 (% style="background-color:#dcdcdc" %) AT+RX2DR=5(%%)  Set RX2DR to match the downlink DR from server. see below
1707 )))
1708
1709 (((
1710 (% style="background-color:#dcdcdc" %) AT+DADDR=26 01 1A F1 (%%) Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1711 )))
1712
1713 (((
1714 (% style="background-color:#dcdcdc" %) ATZ         (%%) Reset MCU
1715
1716
1717 )))
1718
1719 (((
1720 (% style="color:red" %)**Note:**
1721 )))
1722
1723 (((
1724 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1725 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1726 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1727 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1728 )))
1729
1730 (((
1731 [[image:1653359097980-169.png||height="188" width="729"]]
1732 )))
1733
1734 (((
1735
1736 )))
1737
1738
1739 === 4.2.3 Change to Class A ===
1740
1741 If sensor JOINED
1742 (% style="background-color:#dcdcdc" %)AT+CLASS=A
1743 ATZ
1744
1745
1746 = 5. FAQ =
1747
1748 == 5.1 How to upgrade the image? ==
1749
1750
1751 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1752
1753 * Support new features
1754 * For bug fix
1755 * Change LoRaWAN bands.
1756
1757 Below shows the hardware connection for how to upload an image to the LT:
1758
1759 [[image:1653359603330-121.png]]
1760
1761
1762 (((
1763 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1764 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1765 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
1766
1767
1768 (% style="color:blue" %)**For LT-22222-L**(%%):
1769 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
1770 )))
1771
1772 [[image:image-20220524103407-12.png]]
1773
1774 [[image:image-20220524103429-13.png]]
1775
1776 [[image:image-20220524104033-15.png]]
1777
1778
1779 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1780
1781 [[image:1653360054704-518.png||height="186" width="745"]]
1782
1783
1784 (((
1785 (((
1786
1787
1788 == 5.2 How to change the LoRa Frequency Bands/Region? ==
1789 )))
1790 )))
1791
1792 (((
1793 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1794 )))
1795
1796 (((
1797
1798
1799 == 5.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
1800 )))
1801
1802 (((
1803 (((
1804 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
1805 )))
1806 )))
1807
1808 (((
1809 (((
1810 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
1811
1812
1813 )))
1814 )))
1815
1816 (((
1817 (% style="color:#4f81bd" %)**Step1**(%%): Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
1818 )))
1819
1820 (((
1821 [[image:1653360231087-571.png||height="401" width="727"]]
1822 )))
1823
1824 (((
1825 (% style="color:red" %)Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.
1826 )))
1827
1828
1829 (((
1830 (% style="color:#4f81bd" %)**Step2**(%%)**: **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
1831 )))
1832
1833 (((
1834 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
1835 (% style="background-color:#dcdcdc" %)AT+FDR(%%)  Reset Parameters to Factory Default, Keys Reserve
1836 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
1837 (% style="background-color:#dcdcdc" %)AT+NJM=0 (%%) Set to ABP mode
1838 (% style="background-color:#dcdcdc" %)AT+ADR=0 (%%) Set the Adaptive Data Rate Off
1839 (% style="background-color:#dcdcdc" %)AT+DR=5 (%%) Set Data Rate (Set AT+DR=3 for 915 band)
1840 (% style="background-color:#dcdcdc" %)AT+TDC=60000 (%%) Set transmit interval to 60 seconds
1841 (% style="background-color:#dcdcdc" %)AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1842 (% style="background-color:#dcdcdc" %)AT+DADDR=26 01 1A F1(%%)  Set Device Address to 26 01 1A F1
1843 (% style="background-color:#dcdcdc" %)ATZ        (%%) Reset MCU
1844 )))
1845
1846
1847 (((
1848 As shown in below:
1849 )))
1850
1851 [[image:1653360498588-932.png||height="485" width="726"]]
1852
1853
1854 == 5.4 Can I see counting event in Serial? ==
1855
1856 (((
1857 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn’t support AT+DEBUG. User can update to latest firmware first.
1858
1859
1860 == 5.5 Can i use point to point communication for LT-22222-L? ==
1861
1862 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]
1863
1864
1865 )))
1866
1867 (((
1868 == 5.6 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
1869
1870 If the device is not shut down, but directly powered off.
1871
1872 It will default that this is a power-off state.
1873
1874 In modes 2 to 5, DO RO status and pulse count are saved in flash.
1875
1876 After restart, the status before power failure will be read from flash.
1877
1878
1879 = 6. Trouble Shooting =
1880 )))
1881
1882 (((
1883 (((
1884 == 6.1 Downlink doesn't work, how to solve it? ==
1885 )))
1886 )))
1887
1888 (((
1889 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
1890 )))
1891
1892 (((
1893
1894
1895 == 6.2 Have trouble to upload image. ==
1896 )))
1897
1898 (((
1899 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
1900 )))
1901
1902 (((
1903
1904
1905 == 6.3 Why I can't join TTN in US915 /AU915 bands? ==
1906 )))
1907
1908 (((
1909 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1910 )))
1911
1912
1913 = 7. Order Info =
1914
1915
1916 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
1917
1918 (% style="color:#4f81bd" %)**XXX:**
1919
1920 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
1921 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
1922 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
1923 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
1924 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
1925 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
1926 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
1927 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
1928 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
1929
1930
1931
1932 = 8. Packing Info =
1933
1934
1935 **Package Includes**:
1936
1937 * LT-22222-L I/O Controller x 1
1938 * Stick Antenna for LoRa RF part x 1
1939 * Bracket for controller x1
1940 * Program cable x 1
1941
1942 **Dimension and weight**:
1943
1944 * Device Size: 13.5 x 7 x 3 cm
1945 * Device Weight: 105g
1946 * Package Size / pcs : 14.5 x 8 x 5 cm
1947 * Weight / pcs : 170g
1948
1949
1950
1951 = 9. Support =
1952
1953 * (((
1954 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1955 )))
1956 * (((
1957 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1958 )))
1959
1960
1961 = 10. Reference​​​​​ =
1962
1963 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
1964 * [[Image Download>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]]
1965 * [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1966 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]