Version 83.6 by Xiaoling on 2022/06/29 17:24

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16 = 1.Introduction =
17
18 == 1.1 What is LT Series I/O Controller ==
19
20 (((
21
22
23 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
24 )))
25
26 (((
27 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
28 )))
29
30 (((
31 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
32 )))
33
34 (((
35 The use environment includes:
36 )))
37
38 (((
39 1) If user’s area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
40 )))
41
42 (((
43 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
44 )))
45
46 (((
47 [[image:1653295757274-912.png]]
48
49
50 )))
51
52
53 == 1.2  Specifications ==
54
55 (((
56
57
58 **Hardware System:**
59 )))
60
61 * (((
62 STM32L072CZT6 MCU
63 )))
64 * (((
65 SX1276/78 Wireless Chip 
66 )))
67 * (((
68 (((
69 Power Consumption:
70 )))
71
72 * (((
73 Idle: 4mA@12v
74 )))
75 * (((
76 20dB Transmit: 34mA@12v
77 )))
78 )))
79
80 (((
81
82
83 **Interface for Model: LT22222-L:**
84 )))
85
86 * (((
87 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
88 )))
89 * (((
90 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
91 )))
92 * (((
93 2 x Relay Output (5A@250VAC / 30VDC)
94 )))
95 * (((
96 2 x 0~~20mA Analog Input (res:0.01mA)
97 )))
98 * (((
99 2 x 0~~30V Analog Input (res:0.01v)
100 )))
101 * (((
102 Power Input 7~~ 24V DC. 
103 )))
104
105 (((
106
107
108 **LoRa Spec:**
109 )))
110
111 * (((
112 (((
113 Frequency Range:
114 )))
115
116 * (((
117 Band 1 (HF): 862 ~~ 1020 Mhz
118 )))
119 * (((
120 Band 2 (LF): 410 ~~ 528 Mhz
121 )))
122 )))
123 * (((
124 168 dB maximum link budget.
125 )))
126 * (((
127 +20 dBm - 100 mW constant RF output vs.
128 )))
129 * (((
130 +14 dBm high efficiency PA.
131 )))
132 * (((
133 Programmable bit rate up to 300 kbps.
134 )))
135 * (((
136 High sensitivity: down to -148 dBm.
137 )))
138 * (((
139 Bullet-proof front end: IIP3 = -12.5 dBm.
140 )))
141 * (((
142 Excellent blocking immunity.
143 )))
144 * (((
145 Low RX current of 10.3 mA, 200 nA register retention.
146 )))
147 * (((
148 Fully integrated synthesizer with a resolution of 61 Hz.
149 )))
150 * (((
151 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
152 )))
153 * (((
154 Built-in bit synchronizer for clock recovery.
155 )))
156 * (((
157 Preamble detection.
158 )))
159 * (((
160 127 dB Dynamic Range RSSI.
161 )))
162 * (((
163 Automatic RF Sense and CAD with ultra-fast AFC.
164 )))
165 * (((
166 Packet engine up to 256 bytes with CRC.
167
168
169
170 )))
171
172 == 1.3 Features ==
173
174 * LoRaWAN Class A & Class C protocol
175 * Optional Customized LoRa Protocol
176 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865
177 * AT Commands to change parameters
178 * Remote configure parameters via LoRa Downlink
179 * Firmware upgradable via program port
180 * Counting
181
182 == 1.4  Applications ==
183
184 * Smart Buildings & Home Automation
185 * Logistics and Supply Chain Management
186 * Smart Metering
187 * Smart Agriculture
188 * Smart Cities
189 * Smart Factory
190
191 == 1.5 Hardware Variants ==
192
193 (% border="1" style="background-color:#f7faff; width:500px" %)
194 |(% style="width:103px" %)**Model**|(% style="width:131px" %)**Photo**|(% style="width:334px" %)**Description**
195 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)[[image:1653296302983-697.png]]|(% style="width:334px" %)(((
196 * 2 x Digital Input (Bi-direction)
197 * 2 x Digital Output
198 * 2 x Relay Output (5A@250VAC / 30VDC)
199 * 2 x 0~~20mA Analog Input (res:0.01mA)
200 * 2 x 0~~30V Analog Input (res:0.01v)
201 * 1 x Counting Port
202 )))
203
204 = 2. Power ON Device =
205
206 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
207
208 (((
209 PWR will on when device is properly powered.
210 )))
211
212 [[image:1653297104069-180.png]]
213
214
215
216 = 3. Operation Mode =
217
218 == 3.1 How it works? ==
219
220 (((
221 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
222 )))
223
224 (((
225 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
226 )))
227
228
229 == 3.2 Example to join LoRaWAN network ==
230
231 (((
232 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
233 )))
234
235 [[image:image-20220523172350-1.png||height="266" width="864"]]
236
237
238 (((
239 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
240 )))
241
242 (((
243 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
244 )))
245
246 (((
247 Each LT is shipped with a sticker with the default device EUI as below:
248 )))
249
250 [[image:1653297924498-393.png]]
251
252
253 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
254
255 Add APP EUI in the application.
256
257 [[image:1653297955910-247.png||height="321" width="716"]]
258
259
260 Add APP KEY and DEV EUI
261
262 [[image:1653298023685-319.png]]
263
264
265 (((
266 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
267 )))
268
269 [[image:1653298044601-602.png||height="405" width="709"]]
270
271
272
273 == 3.3 Uplink Payload ==
274
275 There are five working modes + one interrupt mode on LT for different type application:
276
277 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
278 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
279 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
280 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
281 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
282 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
283
284
285
286 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
287
288 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default.
289
290 [[image:image-20220523174024-3.png]]
291
292 (((
293
294
295 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
296 )))
297
298 [[image:image-20220523174254-4.png]]
299
300 * RO is for relay. ROx=1 : close,ROx=0 always open.
301 * DI is for digital input. DIx=1: high or float, DIx=0: low.
302 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
303
304 (% style="color:red" %)Note: DI3 and DO3 bit are not valid for LT-22222-L
305
306 For example if payload is: [[image:image-20220523175847-2.png]]
307
308
309 **The value for the interface is:  **
310
311 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
312
313 AVI2 channel voltage is 0x04AC/1000=1.196V
314
315 ACI1 channel current is 0x1310/1000=4.880mA
316
317 ACI2 channel current is 0x1300/1000=4.864mA
318
319 The last byte 0xAA= 10101010(B) means
320
321 * [1] RO1 relay channel is close and the RO1 LED is ON.
322 * [0] RO2 relay channel is open and RO2 LED is OFF;
323
324
325
326 **LT22222-L:**
327
328 * [1] DI2 channel is high input and DI2 LED is ON;
329 * [0] DI1 channel is low input;
330
331 * [0] DO3 channel output state
332 ** DO3 is float in case no load between DO3 and V+.;
333 ** DO3 is high in case there is load between DO3 and V+.
334 ** DO3 LED is off in both case
335 * [1] DO2 channel output is low and DO2 LED is ON.
336 * [0] DO1 channel output state
337 ** DO1 is float in case no load between DO1 and V+.;
338 ** DO1 is high in case there is load between DO1 and V+.
339 ** DO1 LED is off in both case
340
341
342
343 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
344
345
346 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
347
348 (((
349 Total : 11 bytes payload
350 )))
351
352 [[image:image-20220523180452-3.png]]
353
354
355 (((
356 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
357 )))
358
359 [[image:image-20220523180506-4.png]]
360
361 * RO is for relay. ROx=1 : close,ROx=0 always open.
362 * FIRST: Indicate this is the first packet after join network.
363 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
364
365 (((
366 (% style="color:red" %)Note: DO3 bit is not valid for LT-22222-L.
367 )))
368
369 (((
370
371
372 **To use counting mode, please run:**
373 )))
374
375 (% class="box infomessage" %)
376 (((
377 (((
378 **AT+MOD=2**
379
380 **ATZ**
381 )))
382 )))
383
384 (((
385
386
387 (% style="color:#4f81bd" %)**AT Commands for counting:**
388 )))
389
390 (((
391 **For LT22222-L:**
392
393
394 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
395
396 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
397
398 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
399
400 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
401
402 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
403
404 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
405 )))
406
407
408
409 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
410
411 **LT22222-L**: This mode the DI1 is used as a counting pin.
412
413 [[image:image-20220523181246-5.png]]
414
415 (((
416 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
417 )))
418
419 [[image:image-20220523181301-6.png]]
420
421 * RO is for relay. ROx=1 : close,ROx=0 always open.
422 * FIRST: Indicate this is the first packet after join network.
423 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
424
425 (((
426 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
427 )))
428
429 (((
430 **To use counting mode, please run:**
431 )))
432
433 (% class="box infomessage" %)
434 (((
435 (((
436 **AT+MOD=3**
437
438 **ATZ**
439 )))
440 )))
441
442 (((
443 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
444 )))
445
446
447
448 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
449
450
451 **LT22222-L**: This mode the DI1 is used as a counting pin.
452
453 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
454
455 [[image:image-20220523181903-8.png]]
456
457
458 (((
459 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
460 )))
461
462 [[image:image-20220523181727-7.png]]
463
464 * RO is for relay. ROx=1 : close,ROx=0 always open.
465 * FIRST: Indicate this is the first packet after join network.
466 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
467
468 (((
469 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
470 )))
471
472 (((
473
474
475 **To use this mode, please run:**
476 )))
477
478 (% class="box infomessage" %)
479 (((
480 (((
481 **AT+MOD=4**
482
483 **ATZ**
484 )))
485 )))
486
487
488
489 (((
490 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
491 )))
492
493 (((
494
495
496 **Plus below command for AVI1 Counting:**
497
498
499 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
500
501 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
502
503 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
504
505 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
506 )))
507
508
509
510 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
511
512
513 **LT22222-L**: This mode the DI1 is used as a counting pin.
514
515 [[image:image-20220523182334-9.png]]
516
517 (((
518
519
520 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
521 )))
522
523 * RO is for relay. ROx=1 : close,ROx=0 always open.
524 * FIRST: Indicate this is the first packet after join network.
525 * (((
526 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
527 )))
528
529 (((
530 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
531 )))
532
533 (((
534
535
536 **To use this mode, please run:**
537 )))
538
539 (% class="box infomessage" %)
540 (((
541 (((
542 **AT+MOD=5**
543
544 **ATZ**
545 )))
546 )))
547
548 (((
549 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
550 )))
551
552
553
554 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
555
556
557 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
558
559 For example, if user has configured below commands:
560
561 * **AT+MOD=1 ** **~-~->** The normal working mode
562 * **AT+ADDMOD6=1**   **~-~->** Enable trigger
563
564 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
565
566 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
567 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
568
569 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
570
571 (% style="color:#4f81bd" %)**Trigger base on voltage**:
572
573 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
574
575 **Example:**
576
577 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
578
579 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
580
581
582
583 (% style="color:#4f81bd" %)**Trigger base on current**:
584
585 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
586
587 **Example:**
588
589 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
590
591
592
593 (% style="color:#4f81bd" %)**Trigger base on DI status**:
594
595 DI status trigger Flag.
596
597 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
598
599
600 **Example:**
601
602 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
603
604
605 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
606
607 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
608
609 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
610
611 AA: Code for this downlink Command:
612
613 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
614
615 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
616
617 yy2 yy2: AC1 or AV1 high limit.
618
619 yy3 yy3: AC2 or AV2 low limit.
620
621 Yy4 yy4: AC2 or AV2 high limit.
622
623
624 **Example1**: AA 00 13 88 00 00 00 00 00 00
625
626 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
627
628
629 **Example2**: AA 02 01 00
630
631 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
632
633
634
635 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
636
637 MOD6 Payload : total 11 bytes payload
638
639 [[image:image-20220524085923-1.png]]
640
641
642 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
643
644 [[image:image-20220524090106-2.png]]
645
646 * Each bits shows if the corresponding trigger has been configured.
647
648 **Example:**
649
650 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
651
652
653 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
654
655 [[image:image-20220524090249-3.png]]
656
657 * Each bits shows which status has been trigger on this uplink.
658
659 **Example:**
660
661 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
662
663
664 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
665
666 [[image:image-20220524090456-4.png]]
667
668 * Each bits shows which status has been trigger on this uplink.
669
670 **Example:**
671
672 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
673
674 00000101: Means both DI1 and DI2 trigger are enabled.
675
676
677 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
678
679 Downlink command to poll MOD6 status:
680
681 **AB 06**
682
683 When device got this command, it will send the MOD6 payload.
684
685
686
687 === 3.3.7 Payload Decoder ===
688
689 (((
690
691
692 **Decoder for TTN/loraserver/ChirpStack**: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/Payload_decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/Payload_decoder/]]
693
694
695 )))
696
697
698 == 3.4 ​Configure LT via AT or Downlink ==
699
700 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
701
702 (((
703 There are two kinds of Commands:
704 )))
705
706 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
707
708 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
709
710 === 3.4.1 Common Commands ===
711
712 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
713
714
715
716 === 3.4.2 Sensor related commands ===
717
718 ==== 3.4.2.1 Set Transmit Interval ====
719
720 Set device uplink interval.
721
722 * (% style="color:#037691" %)**AT Command:**
723
724 **AT+TDC=N **
725
726
727 **Example: **AT+TDC=30000. Means set interval to 30 seconds
728
729
730 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
731
732 **0x01 aa bb cc     ~/~/ Same as AT+TDC=0x(aa bb cc)**
733
734
735
736
737 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
738
739 Set work mode.
740
741 * (% style="color:#037691" %)**AT Command:**
742
743 **AT+MOD=N  **
744
745
746 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
747
748
749 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
750
751 **0x0A aa    ** ~/~/ Same as AT+MOD=aa
752
753
754
755
756 ==== 3.4.2.3 Poll an uplink ====
757
758 * (% style="color:#037691" %)**AT Command:**
759
760 There is no AT Command to poll uplink
761
762
763 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
764
765 **0x08 FF     **~/~/ Poll an uplink
766
767 **Example**: 0x08FF, ask device to send an Uplink
768
769
770
771 ==== 3.4.2.4 Enable Trigger Mode ====
772
773 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
774
775 * (% style="color:#037691" %)**AT Command:**
776
777 **AT+ADDMOD6=1 or 0**
778
779 1: Enable Trigger Mode
780
781 0: Disable Trigger Mode
782
783
784 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
785
786 **0x0A 06 aa    ** ~/~/ Same as AT+ADDMOD6=aa
787
788
789
790
791 ==== 3.4.2.5 Poll trigger settings ====
792
793 Poll trigger settings,
794
795 * (% style="color:#037691" %)**AT Command:**
796
797 There is no AT Command for this feature.
798
799
800 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
801
802 **0xAB 06         **~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
803
804
805
806
807 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
808
809 Enable Disable DI1/DI2/DI2 as trigger,
810
811 * (% style="color:#037691" %)**AT Command:**
812
813 **Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
814
815
816 **Example:**
817
818 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
819
820 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
821
822 **0xAA 02 aa bb        **~/~/ Same as AT+DTRI=aa,bb
823
824
825
826
827 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
828
829 Set DI1 or DI3(for LT-33222-L) trigger.
830
831 * (% style="color:#037691" %)**AT Command:**
832
833 **AT+TRIG1=a,b**
834
835 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
836
837 b : delay timing.
838
839
840 **Example:**
841
842 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
843
844
845 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
846 * **0x09 01 aa bb cc    ** ~/~/ same as AT+TRIG1=aa,0x(bb cc)
847
848 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
849
850 Set DI2 trigger.
851
852 * (% style="color:#037691" %)**AT Command:**
853
854 **AT+TRIG2=a,b**
855
856
857 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
858
859 b : delay timing.
860
861
862 **Example:**
863
864 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
865
866
867 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
868
869 **0x09 02 aa bb cc           **~/~/ same as AT+TRIG1=aa,0x(bb cc)
870
871
872
873
874 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
875
876 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
877
878 * (% style="color:#037691" %)**AT Command**
879
880 **AT+ACLIM**
881
882
883 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
884
885 **0x AA 01 aa bb cc dd ee ff gg hh        ** ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
886
887
888
889
890 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
891
892 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
893
894 * (% style="color:#037691" %)**AT Command**
895
896 **AT+AVLIM  See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
897
898
899 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
900
901 **0x AA 00 aa bb cc dd ee ff gg hh    ** ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
902
903
904
905
906 ==== 3.4.2.11 Trigger – Set minimum interval ====
907
908 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
909
910 * (% style="color:#037691" %)**AT Command**
911
912 **AT+ATDC=5        ** Device won't response the second trigger within 5 minute after the first trigger.
913
914
915 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
916
917 **0x AC aa bb   ** ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
918
919 (((
920
921
922 (% style="color:red" %)Note: ATDC setting must be more than 5min
923 )))
924
925
926
927 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
928
929 * (% style="color:#037691" %)**AT Command**
930
931 There is no AT Command to control Digital Output
932
933
934 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
935 * **0x02 aa bb cc     **~/~/ Set DO1/DO2/DO3 output
936
937 (((
938 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
939 )))
940
941 (((
942 01: Low,  00: High ,  11: No action
943 )))
944
945 [[image:image-20220524092754-5.png]]
946
947 (((
948 (% style="color:red" %)Note: For LT-22222-L, there is no DO3, the last byte can use any value.
949 )))
950
951 (((
952 (% style="color:red" %)Device will upload a packet if downlink code executes successfully.
953 )))
954
955
956
957
958 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
959
960 * (% style="color:#037691" %)**AT Command**
961
962 There is no AT Command to control Digital Output
963
964
965 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
966
967 **0xA9 aa bb cc     **~/~/ Set DO1/DO2/DO3 output with time control
968
969
970 This is to control the digital output time of DO pin. Include four bytes:
971
972 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
973
974 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
975
976 01: DO pins will change back to original state after timeout.
977
978 00: DO pins will change to an inverter state after timeout 
979
980
981 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
982
983 [[image:image-20220524093238-6.png]]
984
985
986 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
987
988 [[image:image-20220524093328-7.png]]
989
990
991 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
992
993 [[image:image-20220524093351-8.png]]
994
995
996 (% style="color:#4f81bd" %)**Sixth and Seventh Byte**:
997
998 Latching time. Unit: ms
999
1000 Device will upload a packet if downlink code executes successfully.
1001
1002
1003 **Example payload:**
1004
1005 **~1. A9 01 01 01 01 07 D0**
1006
1007 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1008
1009 **2. A9 01 00 01 11 07 D0**
1010
1011 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1012
1013 **3. A9 00 00 00 00 07 D0**
1014
1015 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1016
1017 **4. A9 00 11 01 00 07 D0**
1018
1019 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1020
1021
1022
1023
1024 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1025
1026 * (% style="color:#037691" %)**AT Command:**
1027
1028 There is no AT Command to control Relay Output
1029
1030
1031 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1032
1033 **0x03 aa bb     **~/~/ Set RO1/RO2 output
1034
1035
1036 (((
1037 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1038 )))
1039
1040 (((
1041 01: Close ,  00: Open , 11: No action
1042 )))
1043
1044 (((
1045 [[image:image-20220524093724-9.png]]
1046 )))
1047
1048 Device will upload a packet if downlink code executes successfully.
1049
1050
1051
1052
1053 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1054
1055 * (% style="color:#037691" %)**AT Command:**
1056
1057 There is no AT Command to control Relay Output
1058
1059
1060 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1061
1062 **0x05 aa bb cc dd     **~/~/ Set RO1/RO2 relay with time control
1063
1064
1065 This is to control the relay output time of relay. Include four bytes:
1066
1067 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1068
1069 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1070
1071 01: Relays will change back to original state after timeout.
1072
1073 00: Relays will change to an inverter state after timeout
1074
1075
1076 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1077
1078 [[image:image-20220524093831-10.png]]
1079
1080
1081 (% style="color:#4f81bd" %)**Fourth/Fifth Bytes(cc)**(%%): Latching time. Unit: ms
1082
1083 Device will upload a packet if downlink code executes successfully.
1084
1085
1086 **Example payload:**
1087
1088 **~1. 05 01 11 07 D0**
1089
1090 Relay1 and Relay 2 will be set to NO , last 2 seconds, then change back to original state.
1091
1092 **2. 05 01 10 07 D0**
1093
1094 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then both change back to original state.
1095
1096 **3. 05 00 01 07 D0**
1097
1098 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then relay change to NO, Relay2 change to NC.
1099
1100 **4. 05 00 00 07 D0**
1101
1102 Relay 1 & relay2 will change to NC, last 2 seconds, then both change to NO.
1103
1104
1105
1106
1107 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1108
1109 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1110
1111 * (% style="color:#037691" %)**AT Command:**
1112
1113 **AT+VOLMAX   ** ~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1114
1115
1116 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1117
1118 **0xA5 aa bb cc   **~/~/ Same as AT+VOLMAX=(aa bb),cc
1119
1120
1121
1122
1123 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1124
1125 * (% style="color:#037691" %)**AT Command:**
1126
1127 **AT+SETCNT=aa,(bb cc dd ee) **
1128
1129 aa: 1: Set count1,
1130
1131 2: Set count2,
1132
1133 3: Set AV1 count
1134
1135 Bb cc dd ee: number to be set
1136
1137
1138 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1139
1140 **0x A8 aa bb cc dd ee     **~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1141
1142
1143
1144
1145 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1146
1147 Clear counting for counting mode
1148
1149 * (% style="color:#037691" %)**AT Command:**
1150
1151 **AT+CLRCOUNT ** ~/~/ clear all counting
1152
1153
1154 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1155
1156 **0x A6 01    ** ~/~/ clear all counting
1157
1158
1159
1160
1161 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1162
1163 * (% style="color:#037691" %)**AT Command:**
1164
1165 **AT+COUTIME=60  **~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1166
1167
1168 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1169
1170 **0x A7 aa bb cc     **~/~/ same as AT+COUTIME =aa bb cc,
1171
1172 (((
1173 range: aa bb cc:0 to 16777215,  (unit:second)
1174
1175
1176 )))
1177
1178
1179
1180 == 3.5 Integrate with Mydevice ==
1181
1182 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1183
1184 (((
1185 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1186 )))
1187
1188 (((
1189 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1190 )))
1191
1192 [[image:1653356737703-362.png||height="232" width="732"]]
1193
1194 [[image:image-20220524094641-11.png||height="390" width="723"]]
1195
1196
1197 [[image:image-20220524094641-12.png||height="402" width="718"]]
1198
1199
1200 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1201
1202 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1203
1204 Search under The things network
1205
1206 [[image:1653356838789-523.png||height="337" width="740"]]
1207
1208
1209
1210 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1211
1212 [[image:image-20220524094909-1.png||height="335" width="729"]]
1213
1214
1215 [[image:image-20220524094909-2.png||height="337" width="729"]]
1216
1217
1218 [[image:image-20220524094909-3.png||height="338" width="727"]]
1219
1220
1221 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1222
1223
1224 [[image:image-20220524094909-5.png||height="341" width="734"]]
1225
1226
1227
1228 == 3.6 Interface Detail ==
1229
1230 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1231
1232 Support NPN Type sensor
1233
1234 [[image:1653356991268-289.png]]
1235
1236
1237
1238 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1239
1240 (((
1241 The DI port of LT-22222-L can support NPN or PNP output sensor.
1242 )))
1243
1244 (((
1245 (((
1246 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high
1247 )))
1248 )))
1249
1250 [[image:1653357170703-587.png]]
1251
1252 (((
1253 (((
1254 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1255 )))
1256 )))
1257
1258 (((
1259
1260 )))
1261
1262 (((
1263 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1264 )))
1265
1266 (((
1267 This type of sensor will output a low signal GND when active.
1268 )))
1269
1270 * (((
1271 Connect sensor’s output to DI1-
1272 )))
1273 * (((
1274 Connect sensor’s VCC to DI1+.
1275 )))
1276
1277 (((
1278 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1279 )))
1280
1281 (((
1282 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1283 )))
1284
1285 (((
1286 If DI1+ = 12v, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1287 )))
1288
1289 (((
1290
1291 )))
1292
1293 (((
1294 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1295 )))
1296
1297 (((
1298 This type of sensor will output a high signal (example 24v) when active.
1299 )))
1300
1301 * (((
1302 Connect sensor’s output to DI1+
1303 )))
1304 * (((
1305 Connect sensor’s GND DI1-.
1306 )))
1307
1308 (((
1309 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1310 )))
1311
1312 (((
1313 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1314 )))
1315
1316 (((
1317 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1318 )))
1319
1320 (((
1321
1322 )))
1323
1324 (((
1325 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1326 )))
1327
1328 (((
1329 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1330 )))
1331
1332 * (((
1333 Connect sensor’s output to DI1+ with a serial 50K resistor
1334 )))
1335 * (((
1336 Connect sensor’s GND DI1-.
1337 )))
1338
1339 (((
1340 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1341 )))
1342
1343 (((
1344 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1345 )))
1346
1347 (((
1348 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1349 )))
1350
1351
1352
1353 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1354
1355 NPN output: GND or Float. Max voltage can apply to output pin is 36v.
1356
1357 [[image:1653357531600-905.png]]
1358
1359
1360
1361 === 3.6.4 Analog Input Interface ===
1362
1363 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1364
1365
1366 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1367
1368 [[image:1653357592296-182.png]]
1369
1370 Example to connect a 4~~20mA sensor
1371
1372 We take the wind speed sensor as an example for reference only.
1373
1374
1375 **Specifications of the wind speed sensor:**
1376
1377 Red:  12~~24v
1378
1379 Yellow:  4~~20mA
1380
1381 Black:  GND
1382
1383
1384 **Connection diagram:**
1385
1386 [[image:1653357640609-758.png]]
1387
1388 [[image:1653357648330-671.png||height="155" width="733"]]
1389
1390
1391
1392 === 3.6.5 Relay Output ===
1393
1394 (((
1395 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device’s Power Line to in serial of RO1_1 and RO_2. Such as below:
1396 )))
1397
1398 [[image:image-20220524100215-9.png]]
1399
1400 [[image:image-20220524100215-10.png||height="382" width="723"]]
1401
1402
1403
1404 == 3.7 LEDs Indicators ==
1405
1406 [[image:image-20220524100748-11.png]]
1407
1408
1409
1410 = 4. Use AT Command =
1411
1412 == 4.1 Access AT Command ==
1413
1414 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1415
1416 [[image:1653358238933-385.png]]
1417
1418
1419 (((
1420 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1421 )))
1422
1423 [[image:1653358355238-883.png]]
1424
1425
1426 (((
1427 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1428 )))
1429
1430 (((
1431 AT+<CMD>?        : Help on <CMD>
1432 )))
1433
1434 (((
1435 AT+<CMD>         : Run <CMD>
1436 )))
1437
1438 (((
1439 AT+<CMD>=<value> : Set the value
1440 )))
1441
1442 (((
1443 AT+<CMD>=?       : Get the value
1444 )))
1445
1446 (((
1447 ATZ: Trig a reset of the MCU
1448 )))
1449
1450 (((
1451 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1452 )))
1453
1454 (((
1455 AT+DEUI: Get or Set the Device EUI
1456 )))
1457
1458 (((
1459 AT+DADDR: Get or Set the Device Address
1460 )))
1461
1462 (((
1463 AT+APPKEY: Get or Set the Application Key
1464 )))
1465
1466 (((
1467 AT+NWKSKEY: Get or Set the Network Session Key
1468 )))
1469
1470 (((
1471 AT+APPSKEY: Get or Set the Application Session Key
1472 )))
1473
1474 (((
1475 AT+APPEUI: Get or Set the Application EUI
1476 )))
1477
1478 (((
1479 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1480 )))
1481
1482 (((
1483 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1484 )))
1485
1486 (((
1487 AT+DR: Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1488 )))
1489
1490 (((
1491 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1492 )))
1493
1494 (((
1495 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1496 )))
1497
1498 (((
1499 AT+RX2FQ: Get or Set the Rx2 window frequency
1500 )))
1501
1502 (((
1503 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1504 )))
1505
1506 (((
1507 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1508 )))
1509
1510 (((
1511 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1512 )))
1513
1514 (((
1515 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1516 )))
1517
1518 (((
1519 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1520 )))
1521
1522 (((
1523 AT+NJM: Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1524 )))
1525
1526 (((
1527 AT+NWKID: Get or Set the Network ID
1528 )))
1529
1530 (((
1531 AT+FCU: Get or Set the Frame Counter Uplink
1532 )))
1533
1534 (((
1535 AT+FCD: Get or Set the Frame Counter Downlink
1536 )))
1537
1538 (((
1539 AT+CLASS: Get or Set the Device Class
1540 )))
1541
1542 (((
1543 AT+JOIN: Join network
1544 )))
1545
1546 (((
1547 AT+NJS: Get OTAA Join Status
1548 )))
1549
1550 (((
1551 AT+SENDB: Send hexadecimal data along with the application port
1552 )))
1553
1554 (((
1555 AT+SEND: Send text data along with the application port
1556 )))
1557
1558 (((
1559 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1560 )))
1561
1562 (((
1563 AT+RECV: Print last received data in raw format
1564 )))
1565
1566 (((
1567 AT+VER: Get current image version and Frequency Band
1568 )))
1569
1570 (((
1571 AT+CFM: Get or Set the confirmation mode (0-1)
1572 )))
1573
1574 (((
1575 AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1576 )))
1577
1578 (((
1579 AT+SNR: Get the SNR of the last received packet
1580 )))
1581
1582 (((
1583 AT+RSSI: Get the RSSI of the last received packet
1584 )))
1585
1586 (((
1587 AT+TDC: Get or set the application data transmission interval in ms
1588 )))
1589
1590 (((
1591 AT+PORT: Get or set the application port
1592 )))
1593
1594 (((
1595 AT+DISAT: Disable AT commands
1596 )))
1597
1598 (((
1599 AT+PWORD: Set password, max 9 digits
1600 )))
1601
1602 (((
1603 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1604 )))
1605
1606 (((
1607 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1608 )))
1609
1610 (((
1611 AT+CFG: Print all settings
1612 )))
1613
1614
1615
1616 == 4.2 Common AT Command Sequence ==
1617
1618 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1619
1620 (((
1621
1622
1623 **If device has not joined network yet:**
1624 )))
1625
1626 (((
1627 (% style="background-color:#dcdcdc" %)123456
1628 )))
1629
1630 (((
1631 (% style="background-color:#dcdcdc" %)AT+FDR
1632 )))
1633
1634 (((
1635 (% style="background-color:#dcdcdc" %)123456
1636 )))
1637
1638 (((
1639 (% style="background-color:#dcdcdc" %)AT+NJM=0
1640 )))
1641
1642 (((
1643 (% style="background-color:#dcdcdc" %)ATZ
1644 )))
1645
1646
1647 (((
1648 **If device already joined network:**
1649 )))
1650
1651 (((
1652 (% style="background-color:#dcdcdc" %)AT+NJM=0
1653 )))
1654
1655 (((
1656 (% style="background-color:#dcdcdc" %)ATZ
1657 )))
1658
1659
1660
1661 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1662
1663 (((
1664
1665
1666 (% style="background-color:#dcdcdc" %)123456(%%)  Enter Password to have AT access.
1667 )))
1668
1669 (((
1670 (% style="background-color:#dcdcdc" %) AT+FDR(%%)   Reset Parameters to Factory Default, Keys Reserve
1671 )))
1672
1673 (((
1674 (% style="background-color:#dcdcdc" %) 123456(%%)  Enter Password to have AT access.
1675 )))
1676
1677 (((
1678 (% style="background-color:#dcdcdc" %) AT+CLASS=C(%%) Set to work in CLASS C
1679 )))
1680
1681 (((
1682 (% style="background-color:#dcdcdc" %) AT+NJM=0(%%)  Set to ABP mode
1683 )))
1684
1685 (((
1686 (% style="background-color:#dcdcdc" %) AT+ADR=0(%%)  Set the Adaptive Data Rate Off
1687 )))
1688
1689 (((
1690 (% style="background-color:#dcdcdc" %) AT+DR=5(%%)  Set Data Rate
1691 )))
1692
1693 (((
1694 (% style="background-color:#dcdcdc" %) AT+TDC=60000(%%)  Set transmit interval to 60 seconds
1695 )))
1696
1697 (((
1698 (% style="background-color:#dcdcdc" %) AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1699 )))
1700
1701 (((
1702 (% style="background-color:#dcdcdc" %) AT+RX2FQ=868400000(%%)  Set RX2Frequency to 868.4Mhz (according to the result from server)
1703 )))
1704
1705 (((
1706 (% style="background-color:#dcdcdc" %) AT+RX2DR=5(%%)  Set RX2DR to match the downlink DR from server. see below
1707 )))
1708
1709 (((
1710 (% style="background-color:#dcdcdc" %) AT+DADDR=26 01 1A F1 (%%) Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1711 )))
1712
1713 (((
1714 (% style="background-color:#dcdcdc" %) ATZ         (%%) Reset MCU
1715
1716
1717 )))
1718
1719 (((
1720 (% style="color:red" %)**Note:**
1721 )))
1722
1723 (((
1724 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1725 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1726 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1727 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1728 )))
1729
1730 (((
1731 [[image:1653359097980-169.png||height="188" width="729"]]
1732 )))
1733
1734 (((
1735
1736 )))
1737
1738
1739 === 4.2.3 Change to Class A ===
1740
1741 If sensor JOINED
1742 (% style="background-color:#dcdcdc" %)AT+CLASS=A
1743 ATZ
1744
1745
1746 = 5. FAQ =
1747
1748 == 5.1 How to upgrade the image? ==
1749
1750
1751 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1752
1753 * Support new features
1754 * For bug fix
1755 * Change LoRaWAN bands.
1756
1757 Below shows the hardware connection for how to upload an image to the LT:
1758
1759 [[image:1653359603330-121.png]]
1760
1761
1762 (((
1763 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1764 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1765 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
1766
1767
1768 (% style="color:blue" %)**For LT-22222-L**(%%):
1769 Hold down the PRO button and then momentarily press the RST reset button and the **DO1 led** will change from OFF to ON. When **DO1 LED** is on, it means the device is in download mode.
1770 )))
1771
1772 [[image:image-20220524103407-12.png]]
1773
1774 [[image:image-20220524103429-13.png]]
1775
1776 [[image:image-20220524104033-15.png]]
1777
1778
1779 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1780
1781 [[image:1653360054704-518.png||height="186" width="745"]]
1782
1783
1784 (((
1785 (((
1786
1787
1788 == 5.2 How to change the LoRa Frequency Bands/Region? ==
1789 )))
1790 )))
1791
1792 (((
1793 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1794 )))
1795
1796 (((
1797
1798
1799 == 5.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
1800 )))
1801
1802 (((
1803 (((
1804 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
1805 )))
1806 )))
1807
1808 (((
1809 (((
1810 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
1811
1812
1813 )))
1814 )))
1815
1816 (((
1817 (% style="color:#4f81bd" %)**Step1**(%%): Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
1818 )))
1819
1820 (((
1821 [[image:1653360231087-571.png||height="401" width="727"]]
1822 )))
1823
1824 (((
1825 (% style="color:red" %)Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.
1826 )))
1827
1828
1829 (((
1830 (% style="color:#4f81bd" %)**Step2**(%%)**: **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
1831 )))
1832
1833 (((
1834 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
1835 (% style="background-color:#dcdcdc" %)AT+FDR(%%)  Reset Parameters to Factory Default, Keys Reserve
1836 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
1837 (% style="background-color:#dcdcdc" %)AT+NJM=0 (%%) Set to ABP mode
1838 (% style="background-color:#dcdcdc" %)AT+ADR=0 (%%) Set the Adaptive Data Rate Off
1839 (% style="background-color:#dcdcdc" %)AT+DR=5 (%%) Set Data Rate (Set AT+DR=3 for 915 band)
1840 (% style="background-color:#dcdcdc" %)AT+TDC=60000 (%%) Set transmit interval to 60 seconds
1841 (% style="background-color:#dcdcdc" %)AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1842 (% style="background-color:#dcdcdc" %)AT+DADDR=26 01 1A F1(%%)  Set Device Address to 26 01 1A F1
1843 (% style="background-color:#dcdcdc" %)ATZ        (%%) Reset MCU
1844 )))
1845
1846
1847 (((
1848 As shown in below:
1849 )))
1850
1851 [[image:1653360498588-932.png||height="485" width="726"]]
1852
1853
1854 == 5.4 Can I see counting event in Serial? ==
1855
1856 (((
1857 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn’t support AT+DEBUG. User can update to latest firmware first.
1858
1859
1860 == 5.5 Can i use point to point communication for LT-22222-L? ==
1861
1862 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]
1863
1864
1865 )))
1866
1867 (((
1868 == 5.6 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
1869
1870 If the device is not shut down, but directly powered off.
1871
1872 It will default that this is a power-off state.
1873
1874 In modes 2 to 5, DO RO status and pulse count are saved in flash.
1875
1876 After restart, the status before power failure will be read from flash.
1877
1878
1879 = 6. Trouble Shooting =
1880 )))
1881
1882 (((
1883 (((
1884 == 6.1 Downlink doesn’t work, how to solve it? ==
1885 )))
1886 )))
1887
1888 (((
1889 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
1890 )))
1891
1892 (((
1893
1894
1895 == 6.2 Have trouble to upload image. ==
1896 )))
1897
1898 (((
1899 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
1900 )))
1901
1902 (((
1903
1904
1905 == 6.3 Why I can’t join TTN in US915 /AU915 bands? ==
1906 )))
1907
1908 (((
1909 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1910 )))
1911
1912
1913 = 7. Order Info =
1914
1915 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
1916
1917
1918 (% style="color:#4f81bd" %)**XXX:**
1919
1920 * (% style="color:#4f81bd" %)**EU433**(%%): LT with frequency bands EU433
1921 * (% style="color:#4f81bd" %)**EU868**(%%): LT with frequency bands EU868
1922 * (% style="color:#4f81bd" %)**KR920**(%%): LT with frequency bands KR920
1923 * (% style="color:#4f81bd" %)**CN470**(%%): LT with frequency bands CN470
1924 * (% style="color:#4f81bd" %)**AS923**(%%): LT with frequency bands AS923
1925 * (% style="color:#4f81bd" %)**AU915**(%%): LT with frequency bands AU915
1926 * (% style="color:#4f81bd" %)**US915**(%%): LT with frequency bands US915
1927 * (% style="color:#4f81bd" %)**IN865**(%%): LT with frequency bands IN865
1928 * (% style="color:#4f81bd" %)**CN779**(%%): LT with frequency bands CN779
1929
1930 = 8. Packing Info =
1931
1932
1933 **Package Includes**:
1934
1935 * LT-22222-L I/O Controller x 1
1936 * Stick Antenna for LoRa RF part x 1
1937 * Bracket for controller x1
1938 * Program cable x 1
1939
1940 **Dimension and weight**:
1941
1942 * Device Size: 13.5 x 7 x 3 cm
1943 * Device Weight: 105g
1944 * Package Size / pcs : 14.5 x 8 x 5 cm
1945 * Weight / pcs : 170g
1946
1947 = 9. Support =
1948
1949 * (((
1950 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1951 )))
1952 * (((
1953 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1954
1955
1956
1957
1958 )))
1959
1960 = 10. Reference​​​​​ =
1961
1962 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
1963 * [[Image Download>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]]
1964 * [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1965 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]