Version 83.12 by Xiaoling on 2022/06/29 17:45

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16 = 1.Introduction =
17
18 == 1.1 What is LT Series I/O Controller ==
19
20 (((
21
22
23 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
24 )))
25
26 (((
27 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
28 )))
29
30 (((
31 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
32 )))
33
34 (((
35 The use environment includes:
36 )))
37
38 (((
39 1) If user’s area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
40 )))
41
42 (((
43 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
44 )))
45
46 (((
47 [[image:1653295757274-912.png]]
48
49
50 )))
51
52
53 == 1.2  Specifications ==
54
55 (((
56
57
58 **Hardware System:**
59 )))
60
61 * (((
62 STM32L072CZT6 MCU
63 )))
64 * (((
65 SX1276/78 Wireless Chip 
66 )))
67 * (((
68 (((
69 Power Consumption:
70 )))
71
72 * (((
73 Idle: 4mA@12v
74 )))
75 * (((
76 20dB Transmit: 34mA@12v
77 )))
78 )))
79
80 (((
81
82
83 **Interface for Model: LT22222-L:**
84 )))
85
86 * (((
87 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
88 )))
89 * (((
90 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
91 )))
92 * (((
93 2 x Relay Output (5A@250VAC / 30VDC)
94 )))
95 * (((
96 2 x 0~~20mA Analog Input (res:0.01mA)
97 )))
98 * (((
99 2 x 0~~30V Analog Input (res:0.01v)
100 )))
101 * (((
102 Power Input 7~~ 24V DC. 
103 )))
104
105 (((
106
107
108 **LoRa Spec:**
109 )))
110
111 * (((
112 (((
113 Frequency Range:
114 )))
115
116 * (((
117 Band 1 (HF): 862 ~~ 1020 Mhz
118 )))
119 * (((
120 Band 2 (LF): 410 ~~ 528 Mhz
121 )))
122 )))
123 * (((
124 168 dB maximum link budget.
125 )))
126 * (((
127 +20 dBm - 100 mW constant RF output vs.
128 )))
129 * (((
130 +14 dBm high efficiency PA.
131 )))
132 * (((
133 Programmable bit rate up to 300 kbps.
134 )))
135 * (((
136 High sensitivity: down to -148 dBm.
137 )))
138 * (((
139 Bullet-proof front end: IIP3 = -12.5 dBm.
140 )))
141 * (((
142 Excellent blocking immunity.
143 )))
144 * (((
145 Low RX current of 10.3 mA, 200 nA register retention.
146 )))
147 * (((
148 Fully integrated synthesizer with a resolution of 61 Hz.
149 )))
150 * (((
151 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
152 )))
153 * (((
154 Built-in bit synchronizer for clock recovery.
155 )))
156 * (((
157 Preamble detection.
158 )))
159 * (((
160 127 dB Dynamic Range RSSI.
161 )))
162 * (((
163 Automatic RF Sense and CAD with ultra-fast AFC.
164 )))
165 * (((
166 Packet engine up to 256 bytes with CRC.
167
168
169
170 )))
171
172 == 1.3 Features ==
173
174 * LoRaWAN Class A & Class C protocol
175 * Optional Customized LoRa Protocol
176 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865
177 * AT Commands to change parameters
178 * Remote configure parameters via LoRa Downlink
179 * Firmware upgradable via program port
180 * Counting
181
182 == 1.4  Applications ==
183
184 * Smart Buildings & Home Automation
185 * Logistics and Supply Chain Management
186 * Smart Metering
187 * Smart Agriculture
188 * Smart Cities
189 * Smart Factory
190
191 == 1.5 Hardware Variants ==
192
193 (% border="1" style="background-color:#f7faff; width:500px" %)
194 |(% style="width:103px" %)**Model**|(% style="width:131px" %)**Photo**|(% style="width:334px" %)**Description**
195 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)[[image:1653296302983-697.png]]|(% style="width:334px" %)(((
196 * 2 x Digital Input (Bi-direction)
197 * 2 x Digital Output
198 * 2 x Relay Output (5A@250VAC / 30VDC)
199 * 2 x 0~~20mA Analog Input (res:0.01mA)
200 * 2 x 0~~30V Analog Input (res:0.01v)
201 * 1 x Counting Port
202 )))
203
204 = 2. Power ON Device =
205
206 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
207
208 (((
209 PWR will on when device is properly powered.
210 )))
211
212 [[image:1653297104069-180.png]]
213
214
215
216 = 3. Operation Mode =
217
218 == 3.1 How it works? ==
219
220 (((
221 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
222 )))
223
224 (((
225 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
226 )))
227
228
229 == 3.2 Example to join LoRaWAN network ==
230
231 (((
232 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
233 )))
234
235 [[image:image-20220523172350-1.png||height="266" width="864"]]
236
237
238 (((
239 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
240 )))
241
242 (((
243 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
244 )))
245
246 (((
247 Each LT is shipped with a sticker with the default device EUI as below:
248 )))
249
250 [[image:1653297924498-393.png]]
251
252
253 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
254
255 Add APP EUI in the application.
256
257 [[image:1653297955910-247.png||height="321" width="716"]]
258
259
260 Add APP KEY and DEV EUI
261
262 [[image:1653298023685-319.png]]
263
264
265 (((
266 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
267 )))
268
269 [[image:1653298044601-602.png||height="405" width="709"]]
270
271
272
273 == 3.3 Uplink Payload ==
274
275 There are five working modes + one interrupt mode on LT for different type application:
276
277 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
278 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
279 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
280 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
281 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
282 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
283
284
285 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
286
287 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default.
288
289 [[image:image-20220523174024-3.png]]
290
291 (((
292
293
294 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
295 )))
296
297 [[image:image-20220523174254-4.png]]
298
299 * RO is for relay. ROx=1 : close,ROx=0 always open.
300 * DI is for digital input. DIx=1: high or float, DIx=0: low.
301 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
302
303 (% style="color:red" %)Note: DI3 and DO3 bit are not valid for LT-22222-L
304
305 For example if payload is: [[image:image-20220523175847-2.png]]
306
307
308 **The value for the interface is:  **
309
310 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
311
312 AVI2 channel voltage is 0x04AC/1000=1.196V
313
314 ACI1 channel current is 0x1310/1000=4.880mA
315
316 ACI2 channel current is 0x1300/1000=4.864mA
317
318 The last byte 0xAA= 10101010(B) means
319
320 * [1] RO1 relay channel is close and the RO1 LED is ON.
321 * [0] RO2 relay channel is open and RO2 LED is OFF;
322
323
324 **LT22222-L:**
325
326 * [1] DI2 channel is high input and DI2 LED is ON;
327 * [0] DI1 channel is low input;
328
329 * [0] DO3 channel output state
330 ** DO3 is float in case no load between DO3 and V+.;
331 ** DO3 is high in case there is load between DO3 and V+.
332 ** DO3 LED is off in both case
333 * [1] DO2 channel output is low and DO2 LED is ON.
334 * [0] DO1 channel output state
335 ** DO1 is float in case no load between DO1 and V+.;
336 ** DO1 is high in case there is load between DO1 and V+.
337 ** DO1 LED is off in both case
338
339
340 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
341
342
343 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
344
345 (((
346 Total : 11 bytes payload
347 )))
348
349 [[image:image-20220523180452-3.png]]
350
351
352 (((
353 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
354 )))
355
356 [[image:image-20220523180506-4.png]]
357
358 * RO is for relay. ROx=1 : close,ROx=0 always open.
359 * FIRST: Indicate this is the first packet after join network.
360 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
361
362 (((
363 (% style="color:red" %)Note: DO3 bit is not valid for LT-22222-L.
364 )))
365
366 (((
367
368
369 **To use counting mode, please run:**
370 )))
371
372 (% class="box infomessage" %)
373 (((
374 (((
375 **AT+MOD=2**
376
377 **ATZ**
378 )))
379 )))
380
381 (((
382
383
384 (% style="color:#4f81bd" %)**AT Commands for counting:**
385 )))
386
387 (((
388 **For LT22222-L:**
389
390
391 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
392
393 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
394
395 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
396
397 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
398
399 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
400
401 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
402 )))
403
404
405
406 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
407
408 **LT22222-L**: This mode the DI1 is used as a counting pin.
409
410 [[image:image-20220523181246-5.png]]
411
412 (((
413
414
415 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
416 )))
417
418 [[image:image-20220523181301-6.png]]
419
420 * RO is for relay. ROx=1 : close,ROx=0 always open.
421 * FIRST: Indicate this is the first packet after join network.
422 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
423
424 (((
425 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
426 )))
427
428
429 (((
430 **To use counting mode, please run:**
431 )))
432
433 (% class="box infomessage" %)
434 (((
435 (((
436 **AT+MOD=3**
437
438 **ATZ**
439 )))
440 )))
441
442 (((
443 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
444 )))
445
446
447
448 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
449
450
451 **LT22222-L**: This mode the DI1 is used as a counting pin.
452
453 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
454
455 [[image:image-20220523181903-8.png]]
456
457
458 (((
459 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
460 )))
461
462 [[image:image-20220523181727-7.png]]
463
464 * RO is for relay. ROx=1 : close,ROx=0 always open.
465 * FIRST: Indicate this is the first packet after join network.
466 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
467
468 (((
469 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
470 )))
471
472 (((
473
474
475 **To use this mode, please run:**
476 )))
477
478 (% class="box infomessage" %)
479 (((
480 (((
481 **AT+MOD=4**
482
483 **ATZ**
484 )))
485 )))
486
487
488
489 (((
490 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
491 )))
492
493 (((
494
495
496 **Plus below command for AVI1 Counting:**
497
498
499 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
500
501 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
502
503 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
504
505 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
506 )))
507
508
509
510 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
511
512
513 **LT22222-L**: This mode the DI1 is used as a counting pin.
514
515 [[image:image-20220523182334-9.png]]
516
517 (((
518
519
520 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
521 )))
522
523 * RO is for relay. ROx=1 : close,ROx=0 always open.
524 * FIRST: Indicate this is the first packet after join network.
525 * (((
526 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
527 )))
528
529 (((
530 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
531 )))
532
533 (((
534
535
536 **To use this mode, please run:**
537 )))
538
539 (% class="box infomessage" %)
540 (((
541 (((
542 **AT+MOD=5**
543
544 **ATZ**
545 )))
546 )))
547
548 (((
549 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
550 )))
551
552
553
554 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
555
556
557 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
558
559 For example, if user has configured below commands:
560
561 * **AT+MOD=1 ** **~-~->**  The normal working mode
562 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
563
564 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
565
566 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
567 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
568
569 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
570
571
572 (% style="color:#4f81bd" %)**Trigger base on voltage**:
573
574 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
575
576 **Example:**
577
578 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
579
580 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
581
582
583
584 (% style="color:#4f81bd" %)**Trigger base on current**:
585
586 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
587
588 **Example:**
589
590 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
591
592
593
594 (% style="color:#4f81bd" %)**Trigger base on DI status**:
595
596 DI status trigger Flag.
597
598 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
599
600
601 **Example:**
602
603 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
604
605
606 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
607
608 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
609
610 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
611
612 AA: Code for this downlink Command:
613
614 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
615
616 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
617
618 yy2 yy2: AC1 or AV1 high limit.
619
620 yy3 yy3: AC2 or AV2 low limit.
621
622 Yy4 yy4: AC2 or AV2 high limit.
623
624
625 **Example1**: AA 00 13 88 00 00 00 00 00 00
626
627 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
628
629
630 **Example2**: AA 02 01 00
631
632 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
633
634
635
636 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
637
638 MOD6 Payload : total 11 bytes payload
639
640 [[image:image-20220524085923-1.png]]
641
642
643 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
644
645 [[image:image-20220524090106-2.png]]
646
647 * Each bits shows if the corresponding trigger has been configured.
648
649 **Example:**
650
651 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
652
653
654 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
655
656 [[image:image-20220524090249-3.png]]
657
658 * Each bits shows which status has been trigger on this uplink.
659
660 **Example:**
661
662 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
663
664
665 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
666
667 [[image:image-20220524090456-4.png]]
668
669 * Each bits shows which status has been trigger on this uplink.
670
671 **Example:**
672
673 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
674
675 00000101: Means both DI1 and DI2 trigger are enabled.
676
677
678 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
679
680 Downlink command to poll MOD6 status:
681
682 **AB 06**
683
684 When device got this command, it will send the MOD6 payload.
685
686
687
688 === 3.3.7 Payload Decoder ===
689
690 (((
691
692
693 **Decoder for TTN/loraserver/ChirpStack**: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/Payload_decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/Payload_decoder/]]
694
695
696 )))
697
698
699 == 3.4 ​Configure LT via AT or Downlink ==
700
701 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
702
703 (((
704 There are two kinds of Commands:
705 )))
706
707 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
708
709 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
710
711
712 === 3.4.1 Common Commands ===
713
714 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
715
716
717
718 === 3.4.2 Sensor related commands ===
719
720
721 ==== 3.4.2.1 Set Transmit Interval ====
722
723 Set device uplink interval.
724
725 * (% style="color:#037691" %)**AT Command:**
726
727 **AT+TDC=N **
728
729
730 **Example: **AT+TDC=30000. Means set interval to 30 seconds
731
732
733 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
734
735 **0x01 aa bb cc     ~/~/ Same as AT+TDC=0x(aa bb cc)**
736
737
738
739
740 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
741
742 Set work mode.
743
744 * (% style="color:#037691" %)**AT Command:**
745
746 **AT+MOD=N  **
747
748
749 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
750
751
752 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
753
754 **0x0A aa    ** ~/~/ Same as AT+MOD=aa
755
756
757
758
759 ==== 3.4.2.3 Poll an uplink ====
760
761 * (% style="color:#037691" %)**AT Command:**
762
763 There is no AT Command to poll uplink
764
765
766 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
767
768 **0x08 FF     **~/~/ Poll an uplink
769
770 **Example**: 0x08FF, ask device to send an Uplink
771
772
773
774
775 ==== 3.4.2.4 Enable Trigger Mode ====
776
777 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
778
779 * (% style="color:#037691" %)**AT Command:**
780
781 **AT+ADDMOD6=1 or 0**
782
783 1: Enable Trigger Mode
784
785 0: Disable Trigger Mode
786
787
788 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
789
790 **0x0A 06 aa    ** ~/~/ Same as AT+ADDMOD6=aa
791
792
793
794
795 ==== 3.4.2.5 Poll trigger settings ====
796
797 Poll trigger settings,
798
799 * (% style="color:#037691" %)**AT Command:**
800
801 There is no AT Command for this feature.
802
803
804 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
805
806 **0xAB 06         **~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
807
808
809
810
811 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
812
813 Enable Disable DI1/DI2/DI2 as trigger,
814
815 * (% style="color:#037691" %)**AT Command:**
816
817 **Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
818
819
820 **Example:**
821
822 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
823
824 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
825
826 **0xAA 02 aa bb        **~/~/ Same as AT+DTRI=aa,bb
827
828
829
830
831 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
832
833 Set DI1 or DI3(for LT-33222-L) trigger.
834
835 * (% style="color:#037691" %)**AT Command:**
836
837 **AT+TRIG1=a,b**
838
839 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
840
841 b : delay timing.
842
843
844 **Example:**
845
846 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
847
848
849 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
850 * **0x09 01 aa bb cc    ** ~/~/ same as AT+TRIG1=aa,0x(bb cc)
851
852 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
853
854 Set DI2 trigger.
855
856 * (% style="color:#037691" %)**AT Command:**
857
858 **AT+TRIG2=a,b**
859
860
861 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
862
863 b : delay timing.
864
865
866 **Example:**
867
868 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
869
870
871 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
872
873 **0x09 02 aa bb cc           **~/~/ same as AT+TRIG1=aa,0x(bb cc)
874
875
876
877
878 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
879
880 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
881
882 * (% style="color:#037691" %)**AT Command**
883
884 **AT+ACLIM**
885
886
887 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
888
889 **0x AA 01 aa bb cc dd ee ff gg hh        ** ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
890
891
892
893
894 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
895
896 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
897
898 * (% style="color:#037691" %)**AT Command**
899
900 **AT+AVLIM  See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
901
902
903 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
904
905 **0x AA 00 aa bb cc dd ee ff gg hh    ** ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
906
907
908
909
910 ==== 3.4.2.11 Trigger – Set minimum interval ====
911
912 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
913
914 * (% style="color:#037691" %)**AT Command**
915
916 **AT+ATDC=5        ** Device won't response the second trigger within 5 minute after the first trigger.
917
918
919 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
920
921 **0x AC aa bb   ** ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
922
923 (((
924
925
926 (% style="color:red" %)Note: ATDC setting must be more than 5min
927 )))
928
929
930
931
932 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
933
934 * (% style="color:#037691" %)**AT Command**
935
936 There is no AT Command to control Digital Output
937
938
939 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
940 * **0x02 aa bb cc     **~/~/ Set DO1/DO2/DO3 output
941
942 (((
943 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
944 )))
945
946 (((
947 01: Low,  00: High ,  11: No action
948 )))
949
950 [[image:image-20220524092754-5.png]]
951
952 (((
953 (% style="color:red" %)Note: For LT-22222-L, there is no DO3, the last byte can use any value.
954 )))
955
956 (((
957 (% style="color:red" %)Device will upload a packet if downlink code executes successfully.
958 )))
959
960
961
962
963 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
964
965 * (% style="color:#037691" %)**AT Command**
966
967 There is no AT Command to control Digital Output
968
969
970 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
971
972 **0xA9 aa bb cc     **~/~/ Set DO1/DO2/DO3 output with time control
973
974
975 This is to control the digital output time of DO pin. Include four bytes:
976
977 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
978
979 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
980
981 01: DO pins will change back to original state after timeout.
982
983 00: DO pins will change to an inverter state after timeout 
984
985
986 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
987
988 [[image:image-20220524093238-6.png]]
989
990
991 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
992
993 [[image:image-20220524093328-7.png]]
994
995
996 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
997
998 [[image:image-20220524093351-8.png]]
999
1000
1001 (% style="color:#4f81bd" %)**Sixth and Seventh Byte**:
1002
1003 Latching time. Unit: ms
1004
1005 Device will upload a packet if downlink code executes successfully.
1006
1007
1008 **Example payload:**
1009
1010 **~1. A9 01 01 01 01 07 D0**
1011
1012 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1013
1014 **2. A9 01 00 01 11 07 D0**
1015
1016 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1017
1018 **3. A9 00 00 00 00 07 D0**
1019
1020 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1021
1022 **4. A9 00 11 01 00 07 D0**
1023
1024 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1025
1026
1027
1028
1029 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1030
1031 * (% style="color:#037691" %)**AT Command:**
1032
1033 There is no AT Command to control Relay Output
1034
1035
1036 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1037
1038 **0x03 aa bb     **~/~/ Set RO1/RO2 output
1039
1040
1041 (((
1042 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1043 )))
1044
1045 (((
1046 01: Close ,  00: Open , 11: No action
1047 )))
1048
1049 (((
1050 [[image:image-20220524093724-9.png]]
1051 )))
1052
1053 Device will upload a packet if downlink code executes successfully.
1054
1055
1056
1057
1058 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1059
1060 * (% style="color:#037691" %)**AT Command:**
1061
1062 There is no AT Command to control Relay Output
1063
1064
1065 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1066
1067 **0x05 aa bb cc dd     **~/~/ Set RO1/RO2 relay with time control
1068
1069
1070 This is to control the relay output time of relay. Include four bytes:
1071
1072 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1073
1074 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1075
1076 01: Relays will change back to original state after timeout.
1077
1078 00: Relays will change to an inverter state after timeout
1079
1080
1081 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1082
1083 [[image:image-20220524093831-10.png]]
1084
1085
1086 (% style="color:#4f81bd" %)**Fourth/Fifth Bytes(cc)**(%%): Latching time. Unit: ms
1087
1088 Device will upload a packet if downlink code executes successfully.
1089
1090
1091 **Example payload:**
1092
1093 **~1. 05 01 11 07 D0**
1094
1095 Relay1 and Relay 2 will be set to NO , last 2 seconds, then change back to original state.
1096
1097 **2. 05 01 10 07 D0**
1098
1099 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then both change back to original state.
1100
1101 **3. 05 00 01 07 D0**
1102
1103 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then relay change to NO, Relay2 change to NC.
1104
1105 **4. 05 00 00 07 D0**
1106
1107 Relay 1 & relay2 will change to NC, last 2 seconds, then both change to NO.
1108
1109
1110
1111
1112 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1113
1114 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1115
1116 * (% style="color:#037691" %)**AT Command:**
1117
1118 **AT+VOLMAX   ** ~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1119
1120
1121 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1122
1123 **0xA5 aa bb cc   **~/~/ Same as AT+VOLMAX=(aa bb),cc
1124
1125
1126
1127
1128 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1129
1130 * (% style="color:#037691" %)**AT Command:**
1131
1132 **AT+SETCNT=aa,(bb cc dd ee) **
1133
1134 aa: 1: Set count1,
1135
1136 2: Set count2,
1137
1138 3: Set AV1 count
1139
1140 Bb cc dd ee: number to be set
1141
1142
1143 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1144
1145 **0x A8 aa bb cc dd ee     **~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1146
1147
1148
1149
1150 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1151
1152 Clear counting for counting mode
1153
1154 * (% style="color:#037691" %)**AT Command:**
1155
1156 **AT+CLRCOUNT ** ~/~/ clear all counting
1157
1158
1159 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1160
1161 **0x A6 01    ** ~/~/ clear all counting
1162
1163
1164
1165
1166 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1167
1168 * (% style="color:#037691" %)**AT Command:**
1169
1170 **AT+COUTIME=60  **~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1171
1172
1173 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1174
1175 **0x A7 aa bb cc     **~/~/ same as AT+COUTIME =aa bb cc,
1176
1177 (((
1178 range: aa bb cc:0 to 16777215,  (unit:second)
1179
1180
1181 )))
1182
1183
1184
1185 == 3.5 Integrate with Mydevice ==
1186
1187 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1188
1189 (((
1190 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1191 )))
1192
1193 (((
1194 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1195 )))
1196
1197 [[image:1653356737703-362.png||height="232" width="732"]]
1198
1199 [[image:image-20220524094641-11.png||height="390" width="723"]]
1200
1201
1202 [[image:image-20220524094641-12.png||height="402" width="718"]]
1203
1204
1205 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1206
1207 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1208
1209 Search under The things network
1210
1211 [[image:1653356838789-523.png||height="337" width="740"]]
1212
1213
1214
1215 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1216
1217 [[image:image-20220524094909-1.png||height="335" width="729"]]
1218
1219
1220 [[image:image-20220524094909-2.png||height="337" width="729"]]
1221
1222
1223 [[image:image-20220524094909-3.png||height="338" width="727"]]
1224
1225
1226 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1227
1228
1229 [[image:image-20220524094909-5.png||height="341" width="734"]]
1230
1231
1232
1233 == 3.6 Interface Detail ==
1234
1235 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1236
1237 Support NPN Type sensor
1238
1239 [[image:1653356991268-289.png]]
1240
1241
1242
1243 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1244
1245 (((
1246 The DI port of LT-22222-L can support NPN or PNP output sensor.
1247 )))
1248
1249 (((
1250 (((
1251 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high
1252 )))
1253 )))
1254
1255 [[image:1653357170703-587.png]]
1256
1257 (((
1258 (((
1259 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1260 )))
1261 )))
1262
1263 (((
1264
1265 )))
1266
1267 (((
1268 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1269 )))
1270
1271 (((
1272 This type of sensor will output a low signal GND when active.
1273 )))
1274
1275 * (((
1276 Connect sensor’s output to DI1-
1277 )))
1278 * (((
1279 Connect sensor’s VCC to DI1+.
1280 )))
1281
1282 (((
1283 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1284 )))
1285
1286 (((
1287 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1288 )))
1289
1290 (((
1291 If DI1+ = 12v, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1292 )))
1293
1294 (((
1295
1296 )))
1297
1298 (((
1299 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1300 )))
1301
1302 (((
1303 This type of sensor will output a high signal (example 24v) when active.
1304 )))
1305
1306 * (((
1307 Connect sensor’s output to DI1+
1308 )))
1309 * (((
1310 Connect sensor’s GND DI1-.
1311 )))
1312
1313 (((
1314 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1315 )))
1316
1317 (((
1318 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1319 )))
1320
1321 (((
1322 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1323 )))
1324
1325 (((
1326
1327 )))
1328
1329 (((
1330 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1331 )))
1332
1333 (((
1334 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1335 )))
1336
1337 * (((
1338 Connect sensor’s output to DI1+ with a serial 50K resistor
1339 )))
1340 * (((
1341 Connect sensor’s GND DI1-.
1342 )))
1343
1344 (((
1345 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1346 )))
1347
1348 (((
1349 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1350 )))
1351
1352 (((
1353 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1354 )))
1355
1356
1357
1358 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1359
1360 NPN output: GND or Float. Max voltage can apply to output pin is 36v.
1361
1362 [[image:1653357531600-905.png]]
1363
1364
1365
1366 === 3.6.4 Analog Input Interface ===
1367
1368 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1369
1370
1371 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1372
1373 [[image:1653357592296-182.png]]
1374
1375 Example to connect a 4~~20mA sensor
1376
1377 We take the wind speed sensor as an example for reference only.
1378
1379
1380 **Specifications of the wind speed sensor:**
1381
1382 Red:  12~~24v
1383
1384 Yellow:  4~~20mA
1385
1386 Black:  GND
1387
1388
1389 **Connection diagram:**
1390
1391 [[image:1653357640609-758.png]]
1392
1393 [[image:1653357648330-671.png||height="155" width="733"]]
1394
1395
1396
1397 === 3.6.5 Relay Output ===
1398
1399 (((
1400 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device’s Power Line to in serial of RO1_1 and RO_2. Such as below:
1401 )))
1402
1403 [[image:image-20220524100215-9.png]]
1404
1405 [[image:image-20220524100215-10.png||height="382" width="723"]]
1406
1407
1408
1409 == 3.7 LEDs Indicators ==
1410
1411 [[image:image-20220524100748-11.png]]
1412
1413
1414
1415 = 4. Use AT Command =
1416
1417 == 4.1 Access AT Command ==
1418
1419 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1420
1421 [[image:1653358238933-385.png]]
1422
1423
1424 (((
1425 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1426 )))
1427
1428 [[image:1653358355238-883.png]]
1429
1430
1431 (((
1432 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1433 )))
1434
1435 (((
1436 AT+<CMD>?        : Help on <CMD>
1437 )))
1438
1439 (((
1440 AT+<CMD>         : Run <CMD>
1441 )))
1442
1443 (((
1444 AT+<CMD>=<value> : Set the value
1445 )))
1446
1447 (((
1448 AT+<CMD>=?       : Get the value
1449 )))
1450
1451 (((
1452 ATZ: Trig a reset of the MCU
1453 )))
1454
1455 (((
1456 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1457 )))
1458
1459 (((
1460 AT+DEUI: Get or Set the Device EUI
1461 )))
1462
1463 (((
1464 AT+DADDR: Get or Set the Device Address
1465 )))
1466
1467 (((
1468 AT+APPKEY: Get or Set the Application Key
1469 )))
1470
1471 (((
1472 AT+NWKSKEY: Get or Set the Network Session Key
1473 )))
1474
1475 (((
1476 AT+APPSKEY: Get or Set the Application Session Key
1477 )))
1478
1479 (((
1480 AT+APPEUI: Get or Set the Application EUI
1481 )))
1482
1483 (((
1484 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1485 )))
1486
1487 (((
1488 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1489 )))
1490
1491 (((
1492 AT+DR: Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1493 )))
1494
1495 (((
1496 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1497 )))
1498
1499 (((
1500 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1501 )))
1502
1503 (((
1504 AT+RX2FQ: Get or Set the Rx2 window frequency
1505 )))
1506
1507 (((
1508 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1509 )))
1510
1511 (((
1512 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1513 )))
1514
1515 (((
1516 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1517 )))
1518
1519 (((
1520 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1521 )))
1522
1523 (((
1524 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1525 )))
1526
1527 (((
1528 AT+NJM: Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1529 )))
1530
1531 (((
1532 AT+NWKID: Get or Set the Network ID
1533 )))
1534
1535 (((
1536 AT+FCU: Get or Set the Frame Counter Uplink
1537 )))
1538
1539 (((
1540 AT+FCD: Get or Set the Frame Counter Downlink
1541 )))
1542
1543 (((
1544 AT+CLASS: Get or Set the Device Class
1545 )))
1546
1547 (((
1548 AT+JOIN: Join network
1549 )))
1550
1551 (((
1552 AT+NJS: Get OTAA Join Status
1553 )))
1554
1555 (((
1556 AT+SENDB: Send hexadecimal data along with the application port
1557 )))
1558
1559 (((
1560 AT+SEND: Send text data along with the application port
1561 )))
1562
1563 (((
1564 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1565 )))
1566
1567 (((
1568 AT+RECV: Print last received data in raw format
1569 )))
1570
1571 (((
1572 AT+VER: Get current image version and Frequency Band
1573 )))
1574
1575 (((
1576 AT+CFM: Get or Set the confirmation mode (0-1)
1577 )))
1578
1579 (((
1580 AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1581 )))
1582
1583 (((
1584 AT+SNR: Get the SNR of the last received packet
1585 )))
1586
1587 (((
1588 AT+RSSI: Get the RSSI of the last received packet
1589 )))
1590
1591 (((
1592 AT+TDC: Get or set the application data transmission interval in ms
1593 )))
1594
1595 (((
1596 AT+PORT: Get or set the application port
1597 )))
1598
1599 (((
1600 AT+DISAT: Disable AT commands
1601 )))
1602
1603 (((
1604 AT+PWORD: Set password, max 9 digits
1605 )))
1606
1607 (((
1608 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1609 )))
1610
1611 (((
1612 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1613 )))
1614
1615 (((
1616 AT+CFG: Print all settings
1617 )))
1618
1619
1620
1621 == 4.2 Common AT Command Sequence ==
1622
1623 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1624
1625 (((
1626
1627
1628 **If device has not joined network yet:**
1629 )))
1630
1631 (((
1632 (% style="background-color:#dcdcdc" %)123456
1633 )))
1634
1635 (((
1636 (% style="background-color:#dcdcdc" %)AT+FDR
1637 )))
1638
1639 (((
1640 (% style="background-color:#dcdcdc" %)123456
1641 )))
1642
1643 (((
1644 (% style="background-color:#dcdcdc" %)AT+NJM=0
1645 )))
1646
1647 (((
1648 (% style="background-color:#dcdcdc" %)ATZ
1649 )))
1650
1651
1652 (((
1653 **If device already joined network:**
1654 )))
1655
1656 (((
1657 (% style="background-color:#dcdcdc" %)AT+NJM=0
1658 )))
1659
1660 (((
1661 (% style="background-color:#dcdcdc" %)ATZ
1662 )))
1663
1664
1665
1666 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1667
1668 (((
1669
1670
1671 (% style="background-color:#dcdcdc" %)123456(%%)  Enter Password to have AT access.
1672 )))
1673
1674 (((
1675 (% style="background-color:#dcdcdc" %) AT+FDR(%%)   Reset Parameters to Factory Default, Keys Reserve
1676 )))
1677
1678 (((
1679 (% style="background-color:#dcdcdc" %) 123456(%%)  Enter Password to have AT access.
1680 )))
1681
1682 (((
1683 (% style="background-color:#dcdcdc" %) AT+CLASS=C(%%) Set to work in CLASS C
1684 )))
1685
1686 (((
1687 (% style="background-color:#dcdcdc" %) AT+NJM=0(%%)  Set to ABP mode
1688 )))
1689
1690 (((
1691 (% style="background-color:#dcdcdc" %) AT+ADR=0(%%)  Set the Adaptive Data Rate Off
1692 )))
1693
1694 (((
1695 (% style="background-color:#dcdcdc" %) AT+DR=5(%%)  Set Data Rate
1696 )))
1697
1698 (((
1699 (% style="background-color:#dcdcdc" %) AT+TDC=60000(%%)  Set transmit interval to 60 seconds
1700 )))
1701
1702 (((
1703 (% style="background-color:#dcdcdc" %) AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1704 )))
1705
1706 (((
1707 (% style="background-color:#dcdcdc" %) AT+RX2FQ=868400000(%%)  Set RX2Frequency to 868.4Mhz (according to the result from server)
1708 )))
1709
1710 (((
1711 (% style="background-color:#dcdcdc" %) AT+RX2DR=5(%%)  Set RX2DR to match the downlink DR from server. see below
1712 )))
1713
1714 (((
1715 (% style="background-color:#dcdcdc" %) AT+DADDR=26 01 1A F1 (%%) Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1716 )))
1717
1718 (((
1719 (% style="background-color:#dcdcdc" %) ATZ         (%%) Reset MCU
1720
1721
1722 )))
1723
1724 (((
1725 (% style="color:red" %)**Note:**
1726 )))
1727
1728 (((
1729 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1730 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1731 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1732 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1733 )))
1734
1735 (((
1736 [[image:1653359097980-169.png||height="188" width="729"]]
1737 )))
1738
1739 (((
1740
1741 )))
1742
1743
1744 === 4.2.3 Change to Class A ===
1745
1746 If sensor JOINED
1747 (% style="background-color:#dcdcdc" %)AT+CLASS=A
1748 ATZ
1749
1750
1751 = 5. FAQ =
1752
1753 == 5.1 How to upgrade the image? ==
1754
1755
1756 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1757
1758 * Support new features
1759 * For bug fix
1760 * Change LoRaWAN bands.
1761
1762 Below shows the hardware connection for how to upload an image to the LT:
1763
1764 [[image:1653359603330-121.png]]
1765
1766
1767 (((
1768 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1769 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1770 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
1771
1772
1773 (% style="color:blue" %)**For LT-22222-L**(%%):
1774 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
1775 )))
1776
1777 [[image:image-20220524103407-12.png]]
1778
1779 [[image:image-20220524103429-13.png]]
1780
1781 [[image:image-20220524104033-15.png]]
1782
1783
1784 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1785
1786 [[image:1653360054704-518.png||height="186" width="745"]]
1787
1788
1789 (((
1790 (((
1791
1792
1793 == 5.2 How to change the LoRa Frequency Bands/Region? ==
1794 )))
1795 )))
1796
1797 (((
1798 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1799 )))
1800
1801 (((
1802
1803
1804 == 5.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
1805 )))
1806
1807 (((
1808 (((
1809 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
1810 )))
1811 )))
1812
1813 (((
1814 (((
1815 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
1816
1817
1818 )))
1819 )))
1820
1821 (((
1822 (% style="color:#4f81bd" %)**Step1**(%%): Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
1823 )))
1824
1825 (((
1826 [[image:1653360231087-571.png||height="401" width="727"]]
1827 )))
1828
1829 (((
1830 (% style="color:red" %)Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.
1831 )))
1832
1833
1834 (((
1835 (% style="color:#4f81bd" %)**Step2**(%%)**: **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
1836 )))
1837
1838 (((
1839 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
1840 (% style="background-color:#dcdcdc" %)AT+FDR(%%)  Reset Parameters to Factory Default, Keys Reserve
1841 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
1842 (% style="background-color:#dcdcdc" %)AT+NJM=0 (%%) Set to ABP mode
1843 (% style="background-color:#dcdcdc" %)AT+ADR=0 (%%) Set the Adaptive Data Rate Off
1844 (% style="background-color:#dcdcdc" %)AT+DR=5 (%%) Set Data Rate (Set AT+DR=3 for 915 band)
1845 (% style="background-color:#dcdcdc" %)AT+TDC=60000 (%%) Set transmit interval to 60 seconds
1846 (% style="background-color:#dcdcdc" %)AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1847 (% style="background-color:#dcdcdc" %)AT+DADDR=26 01 1A F1(%%)  Set Device Address to 26 01 1A F1
1848 (% style="background-color:#dcdcdc" %)ATZ        (%%) Reset MCU
1849 )))
1850
1851
1852 (((
1853 As shown in below:
1854 )))
1855
1856 [[image:1653360498588-932.png||height="485" width="726"]]
1857
1858
1859 == 5.4 Can I see counting event in Serial? ==
1860
1861 (((
1862 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn’t support AT+DEBUG. User can update to latest firmware first.
1863
1864
1865 == 5.5 Can i use point to point communication for LT-22222-L? ==
1866
1867 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]
1868
1869
1870 )))
1871
1872 (((
1873 == 5.6 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
1874
1875 If the device is not shut down, but directly powered off.
1876
1877 It will default that this is a power-off state.
1878
1879 In modes 2 to 5, DO RO status and pulse count are saved in flash.
1880
1881 After restart, the status before power failure will be read from flash.
1882
1883
1884 = 6. Trouble Shooting =
1885 )))
1886
1887 (((
1888 (((
1889 == 6.1 Downlink doesn't work, how to solve it? ==
1890 )))
1891 )))
1892
1893 (((
1894 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
1895 )))
1896
1897 (((
1898
1899
1900 == 6.2 Have trouble to upload image. ==
1901 )))
1902
1903 (((
1904 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
1905 )))
1906
1907 (((
1908
1909
1910 == 6.3 Why I can't join TTN in US915 /AU915 bands? ==
1911 )))
1912
1913 (((
1914 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1915 )))
1916
1917
1918 = 7. Order Info =
1919
1920 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
1921
1922
1923 (% style="color:#4f81bd" %)**XXX:**
1924
1925 * (% style="color:#4f81bd" %)**EU433**(%%): LT with frequency bands EU433
1926 * (% style="color:#4f81bd" %)**EU868**(%%): LT with frequency bands EU868
1927 * (% style="color:#4f81bd" %)**KR920**(%%): LT with frequency bands KR920
1928 * (% style="color:#4f81bd" %)**CN470**(%%): LT with frequency bands CN470
1929 * (% style="color:#4f81bd" %)**AS923**(%%): LT with frequency bands AS923
1930 * (% style="color:#4f81bd" %)**AU915**(%%): LT with frequency bands AU915
1931 * (% style="color:#4f81bd" %)**US915**(%%): LT with frequency bands US915
1932 * (% style="color:#4f81bd" %)**IN865**(%%): LT with frequency bands IN865
1933 * (% style="color:#4f81bd" %)**CN779**(%%): LT with frequency bands CN779
1934
1935 = 8. Packing Info =
1936
1937
1938 **Package Includes**:
1939
1940 * LT-22222-L I/O Controller x 1
1941 * Stick Antenna for LoRa RF part x 1
1942 * Bracket for controller x1
1943 * Program cable x 1
1944
1945 **Dimension and weight**:
1946
1947 * Device Size: 13.5 x 7 x 3 cm
1948 * Device Weight: 105g
1949 * Package Size / pcs : 14.5 x 8 x 5 cm
1950 * Weight / pcs : 170g
1951
1952 = 9. Support =
1953
1954 * (((
1955 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1956 )))
1957 * (((
1958 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1959
1960
1961
1962
1963 )))
1964
1965 = 10. Reference​​​​​ =
1966
1967 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
1968 * [[Image Download>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]]
1969 * [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1970 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]