Version 83.11 by Xiaoling on 2022/06/29 17:35

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16 = 1.Introduction =
17
18 == 1.1 What is LT Series I/O Controller ==
19
20 (((
21
22
23 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
24 )))
25
26 (((
27 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
28 )))
29
30 (((
31 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
32 )))
33
34 (((
35 The use environment includes:
36 )))
37
38 (((
39 1) If user’s area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
40 )))
41
42 (((
43 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
44 )))
45
46 (((
47 [[image:1653295757274-912.png]]
48
49
50 )))
51
52
53 == 1.2  Specifications ==
54
55 (((
56
57
58 **Hardware System:**
59 )))
60
61 * (((
62 STM32L072CZT6 MCU
63 )))
64 * (((
65 SX1276/78 Wireless Chip 
66 )))
67 * (((
68 (((
69 Power Consumption:
70 )))
71
72 * (((
73 Idle: 4mA@12v
74 )))
75 * (((
76 20dB Transmit: 34mA@12v
77 )))
78 )))
79
80 (((
81
82
83 **Interface for Model: LT22222-L:**
84 )))
85
86 * (((
87 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
88 )))
89 * (((
90 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
91 )))
92 * (((
93 2 x Relay Output (5A@250VAC / 30VDC)
94 )))
95 * (((
96 2 x 0~~20mA Analog Input (res:0.01mA)
97 )))
98 * (((
99 2 x 0~~30V Analog Input (res:0.01v)
100 )))
101 * (((
102 Power Input 7~~ 24V DC. 
103 )))
104
105 (((
106
107
108 **LoRa Spec:**
109 )))
110
111 * (((
112 (((
113 Frequency Range:
114 )))
115
116 * (((
117 Band 1 (HF): 862 ~~ 1020 Mhz
118 )))
119 * (((
120 Band 2 (LF): 410 ~~ 528 Mhz
121 )))
122 )))
123 * (((
124 168 dB maximum link budget.
125 )))
126 * (((
127 +20 dBm - 100 mW constant RF output vs.
128 )))
129 * (((
130 +14 dBm high efficiency PA.
131 )))
132 * (((
133 Programmable bit rate up to 300 kbps.
134 )))
135 * (((
136 High sensitivity: down to -148 dBm.
137 )))
138 * (((
139 Bullet-proof front end: IIP3 = -12.5 dBm.
140 )))
141 * (((
142 Excellent blocking immunity.
143 )))
144 * (((
145 Low RX current of 10.3 mA, 200 nA register retention.
146 )))
147 * (((
148 Fully integrated synthesizer with a resolution of 61 Hz.
149 )))
150 * (((
151 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
152 )))
153 * (((
154 Built-in bit synchronizer for clock recovery.
155 )))
156 * (((
157 Preamble detection.
158 )))
159 * (((
160 127 dB Dynamic Range RSSI.
161 )))
162 * (((
163 Automatic RF Sense and CAD with ultra-fast AFC.
164 )))
165 * (((
166 Packet engine up to 256 bytes with CRC.
167
168
169
170 )))
171
172 == 1.3 Features ==
173
174 * LoRaWAN Class A & Class C protocol
175 * Optional Customized LoRa Protocol
176 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865
177 * AT Commands to change parameters
178 * Remote configure parameters via LoRa Downlink
179 * Firmware upgradable via program port
180 * Counting
181
182 == 1.4  Applications ==
183
184 * Smart Buildings & Home Automation
185 * Logistics and Supply Chain Management
186 * Smart Metering
187 * Smart Agriculture
188 * Smart Cities
189 * Smart Factory
190
191 == 1.5 Hardware Variants ==
192
193 (% border="1" style="background-color:#f7faff; width:500px" %)
194 |(% style="width:103px" %)**Model**|(% style="width:131px" %)**Photo**|(% style="width:334px" %)**Description**
195 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)[[image:1653296302983-697.png]]|(% style="width:334px" %)(((
196 * 2 x Digital Input (Bi-direction)
197 * 2 x Digital Output
198 * 2 x Relay Output (5A@250VAC / 30VDC)
199 * 2 x 0~~20mA Analog Input (res:0.01mA)
200 * 2 x 0~~30V Analog Input (res:0.01v)
201 * 1 x Counting Port
202 )))
203
204 = 2. Power ON Device =
205
206 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
207
208 (((
209 PWR will on when device is properly powered.
210 )))
211
212 [[image:1653297104069-180.png]]
213
214
215
216 = 3. Operation Mode =
217
218 == 3.1 How it works? ==
219
220 (((
221 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
222 )))
223
224 (((
225 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
226 )))
227
228
229 == 3.2 Example to join LoRaWAN network ==
230
231 (((
232 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
233 )))
234
235 [[image:image-20220523172350-1.png||height="266" width="864"]]
236
237
238 (((
239 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
240 )))
241
242 (((
243 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
244 )))
245
246 (((
247 Each LT is shipped with a sticker with the default device EUI as below:
248 )))
249
250 [[image:1653297924498-393.png]]
251
252
253 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
254
255 Add APP EUI in the application.
256
257 [[image:1653297955910-247.png||height="321" width="716"]]
258
259
260 Add APP KEY and DEV EUI
261
262 [[image:1653298023685-319.png]]
263
264
265 (((
266 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
267 )))
268
269 [[image:1653298044601-602.png||height="405" width="709"]]
270
271
272
273 == 3.3 Uplink Payload ==
274
275 There are five working modes + one interrupt mode on LT for different type application:
276
277 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
278 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
279 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
280 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
281 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
282 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
283
284
285
286 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
287
288 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default.
289
290 [[image:image-20220523174024-3.png]]
291
292 (((
293
294
295 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
296 )))
297
298 [[image:image-20220523174254-4.png]]
299
300 * RO is for relay. ROx=1 : close,ROx=0 always open.
301 * DI is for digital input. DIx=1: high or float, DIx=0: low.
302 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
303
304 (% style="color:red" %)Note: DI3 and DO3 bit are not valid for LT-22222-L
305
306 For example if payload is: [[image:image-20220523175847-2.png]]
307
308
309 **The value for the interface is:  **
310
311 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
312
313 AVI2 channel voltage is 0x04AC/1000=1.196V
314
315 ACI1 channel current is 0x1310/1000=4.880mA
316
317 ACI2 channel current is 0x1300/1000=4.864mA
318
319 The last byte 0xAA= 10101010(B) means
320
321 * [1] RO1 relay channel is close and the RO1 LED is ON.
322 * [0] RO2 relay channel is open and RO2 LED is OFF;
323
324
325
326 **LT22222-L:**
327
328 * [1] DI2 channel is high input and DI2 LED is ON;
329 * [0] DI1 channel is low input;
330
331 * [0] DO3 channel output state
332 ** DO3 is float in case no load between DO3 and V+.;
333 ** DO3 is high in case there is load between DO3 and V+.
334 ** DO3 LED is off in both case
335 * [1] DO2 channel output is low and DO2 LED is ON.
336 * [0] DO1 channel output state
337 ** DO1 is float in case no load between DO1 and V+.;
338 ** DO1 is high in case there is load between DO1 and V+.
339 ** DO1 LED is off in both case
340
341
342
343 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
344
345
346 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
347
348 (((
349 Total : 11 bytes payload
350 )))
351
352 [[image:image-20220523180452-3.png]]
353
354
355 (((
356 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
357 )))
358
359 [[image:image-20220523180506-4.png]]
360
361 * RO is for relay. ROx=1 : close,ROx=0 always open.
362 * FIRST: Indicate this is the first packet after join network.
363 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
364
365 (((
366 (% style="color:red" %)Note: DO3 bit is not valid for LT-22222-L.
367 )))
368
369 (((
370
371
372 **To use counting mode, please run:**
373 )))
374
375 (% class="box infomessage" %)
376 (((
377 (((
378 **AT+MOD=2**
379
380 **ATZ**
381 )))
382 )))
383
384 (((
385
386
387 (% style="color:#4f81bd" %)**AT Commands for counting:**
388 )))
389
390 (((
391 **For LT22222-L:**
392
393
394 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
395
396 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
397
398 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
399
400 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
401
402 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
403
404 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
405 )))
406
407
408
409 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
410
411 **LT22222-L**: This mode the DI1 is used as a counting pin.
412
413 [[image:image-20220523181246-5.png]]
414
415 (((
416
417
418 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
419 )))
420
421 [[image:image-20220523181301-6.png]]
422
423 * RO is for relay. ROx=1 : close,ROx=0 always open.
424 * FIRST: Indicate this is the first packet after join network.
425 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
426
427 (((
428 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
429 )))
430
431
432 (((
433 **To use counting mode, please run:**
434 )))
435
436 (% class="box infomessage" %)
437 (((
438 (((
439 **AT+MOD=3**
440
441 **ATZ**
442 )))
443 )))
444
445 (((
446 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
447 )))
448
449
450
451 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
452
453
454 **LT22222-L**: This mode the DI1 is used as a counting pin.
455
456 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
457
458 [[image:image-20220523181903-8.png]]
459
460
461 (((
462 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
463 )))
464
465 [[image:image-20220523181727-7.png]]
466
467 * RO is for relay. ROx=1 : close,ROx=0 always open.
468 * FIRST: Indicate this is the first packet after join network.
469 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
470
471 (((
472 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
473 )))
474
475 (((
476
477
478 **To use this mode, please run:**
479 )))
480
481 (% class="box infomessage" %)
482 (((
483 (((
484 **AT+MOD=4**
485
486 **ATZ**
487 )))
488 )))
489
490
491
492 (((
493 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
494 )))
495
496 (((
497
498
499 **Plus below command for AVI1 Counting:**
500
501
502 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
503
504 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
505
506 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
507
508 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
509 )))
510
511
512
513 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
514
515
516 **LT22222-L**: This mode the DI1 is used as a counting pin.
517
518 [[image:image-20220523182334-9.png]]
519
520 (((
521
522
523 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
524 )))
525
526 * RO is for relay. ROx=1 : close,ROx=0 always open.
527 * FIRST: Indicate this is the first packet after join network.
528 * (((
529 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
530 )))
531
532 (((
533 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
534 )))
535
536 (((
537
538
539 **To use this mode, please run:**
540 )))
541
542 (% class="box infomessage" %)
543 (((
544 (((
545 **AT+MOD=5**
546
547 **ATZ**
548 )))
549 )))
550
551 (((
552 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
553 )))
554
555
556
557 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
558
559
560 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
561
562 For example, if user has configured below commands:
563
564 * **AT+MOD=1 ** **~-~->**  The normal working mode
565 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
566
567 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
568
569 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
570 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
571
572
573 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
574
575
576 (% style="color:#4f81bd" %)**Trigger base on voltage**:
577
578 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
579
580 **Example:**
581
582 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
583
584 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
585
586
587
588 (% style="color:#4f81bd" %)**Trigger base on current**:
589
590 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
591
592 **Example:**
593
594 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
595
596
597
598 (% style="color:#4f81bd" %)**Trigger base on DI status**:
599
600 DI status trigger Flag.
601
602 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
603
604
605 **Example:**
606
607 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
608
609
610 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
611
612 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
613
614 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
615
616 AA: Code for this downlink Command:
617
618 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
619
620 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
621
622 yy2 yy2: AC1 or AV1 high limit.
623
624 yy3 yy3: AC2 or AV2 low limit.
625
626 Yy4 yy4: AC2 or AV2 high limit.
627
628
629 **Example1**: AA 00 13 88 00 00 00 00 00 00
630
631 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
632
633
634 **Example2**: AA 02 01 00
635
636 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
637
638
639
640 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
641
642 MOD6 Payload : total 11 bytes payload
643
644 [[image:image-20220524085923-1.png]]
645
646
647 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
648
649 [[image:image-20220524090106-2.png]]
650
651 * Each bits shows if the corresponding trigger has been configured.
652
653 **Example:**
654
655 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
656
657
658 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
659
660 [[image:image-20220524090249-3.png]]
661
662 * Each bits shows which status has been trigger on this uplink.
663
664 **Example:**
665
666 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
667
668
669 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
670
671 [[image:image-20220524090456-4.png]]
672
673 * Each bits shows which status has been trigger on this uplink.
674
675 **Example:**
676
677 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
678
679 00000101: Means both DI1 and DI2 trigger are enabled.
680
681
682 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
683
684 Downlink command to poll MOD6 status:
685
686 **AB 06**
687
688 When device got this command, it will send the MOD6 payload.
689
690
691
692 === 3.3.7 Payload Decoder ===
693
694 (((
695
696
697 **Decoder for TTN/loraserver/ChirpStack**: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/Payload_decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/Payload_decoder/]]
698
699
700 )))
701
702
703 == 3.4 ​Configure LT via AT or Downlink ==
704
705 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
706
707 (((
708 There are two kinds of Commands:
709 )))
710
711 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
712
713 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
714
715
716
717 === 3.4.1 Common Commands ===
718
719 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
720
721
722
723 === 3.4.2 Sensor related commands ===
724
725
726 ==== 3.4.2.1 Set Transmit Interval ====
727
728 Set device uplink interval.
729
730 * (% style="color:#037691" %)**AT Command:**
731
732 **AT+TDC=N **
733
734
735 **Example: **AT+TDC=30000. Means set interval to 30 seconds
736
737
738 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
739
740 **0x01 aa bb cc     ~/~/ Same as AT+TDC=0x(aa bb cc)**
741
742
743
744
745 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
746
747 Set work mode.
748
749 * (% style="color:#037691" %)**AT Command:**
750
751 **AT+MOD=N  **
752
753
754 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
755
756
757 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
758
759 **0x0A aa    ** ~/~/ Same as AT+MOD=aa
760
761
762
763
764 ==== 3.4.2.3 Poll an uplink ====
765
766 * (% style="color:#037691" %)**AT Command:**
767
768 There is no AT Command to poll uplink
769
770
771 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
772
773 **0x08 FF     **~/~/ Poll an uplink
774
775 **Example**: 0x08FF, ask device to send an Uplink
776
777
778
779
780 ==== 3.4.2.4 Enable Trigger Mode ====
781
782 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
783
784 * (% style="color:#037691" %)**AT Command:**
785
786 **AT+ADDMOD6=1 or 0**
787
788 1: Enable Trigger Mode
789
790 0: Disable Trigger Mode
791
792
793 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
794
795 **0x0A 06 aa    ** ~/~/ Same as AT+ADDMOD6=aa
796
797
798
799
800 ==== 3.4.2.5 Poll trigger settings ====
801
802 Poll trigger settings,
803
804 * (% style="color:#037691" %)**AT Command:**
805
806 There is no AT Command for this feature.
807
808
809 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
810
811 **0xAB 06         **~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
812
813
814
815
816 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
817
818 Enable Disable DI1/DI2/DI2 as trigger,
819
820 * (% style="color:#037691" %)**AT Command:**
821
822 **Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
823
824
825 **Example:**
826
827 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
828
829 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
830
831 **0xAA 02 aa bb        **~/~/ Same as AT+DTRI=aa,bb
832
833
834
835
836 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
837
838 Set DI1 or DI3(for LT-33222-L) trigger.
839
840 * (% style="color:#037691" %)**AT Command:**
841
842 **AT+TRIG1=a,b**
843
844 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
845
846 b : delay timing.
847
848
849 **Example:**
850
851 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
852
853
854 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
855 * **0x09 01 aa bb cc    ** ~/~/ same as AT+TRIG1=aa,0x(bb cc)
856
857 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
858
859 Set DI2 trigger.
860
861 * (% style="color:#037691" %)**AT Command:**
862
863 **AT+TRIG2=a,b**
864
865
866 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
867
868 b : delay timing.
869
870
871 **Example:**
872
873 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
874
875
876 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
877
878 **0x09 02 aa bb cc           **~/~/ same as AT+TRIG1=aa,0x(bb cc)
879
880
881
882
883 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
884
885 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
886
887 * (% style="color:#037691" %)**AT Command**
888
889 **AT+ACLIM**
890
891
892 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
893
894 **0x AA 01 aa bb cc dd ee ff gg hh        ** ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
895
896
897
898
899 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
900
901 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
902
903 * (% style="color:#037691" %)**AT Command**
904
905 **AT+AVLIM  See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
906
907
908 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
909
910 **0x AA 00 aa bb cc dd ee ff gg hh    ** ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
911
912
913
914
915 ==== 3.4.2.11 Trigger – Set minimum interval ====
916
917 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
918
919 * (% style="color:#037691" %)**AT Command**
920
921 **AT+ATDC=5        ** Device won't response the second trigger within 5 minute after the first trigger.
922
923
924 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
925
926 **0x AC aa bb   ** ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
927
928 (((
929
930
931 (% style="color:red" %)Note: ATDC setting must be more than 5min
932 )))
933
934
935
936
937 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
938
939 * (% style="color:#037691" %)**AT Command**
940
941 There is no AT Command to control Digital Output
942
943
944 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
945 * **0x02 aa bb cc     **~/~/ Set DO1/DO2/DO3 output
946
947 (((
948 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
949 )))
950
951 (((
952 01: Low,  00: High ,  11: No action
953 )))
954
955 [[image:image-20220524092754-5.png]]
956
957 (((
958 (% style="color:red" %)Note: For LT-22222-L, there is no DO3, the last byte can use any value.
959 )))
960
961 (((
962 (% style="color:red" %)Device will upload a packet if downlink code executes successfully.
963 )))
964
965
966
967
968 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
969
970 * (% style="color:#037691" %)**AT Command**
971
972 There is no AT Command to control Digital Output
973
974
975 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
976
977 **0xA9 aa bb cc     **~/~/ Set DO1/DO2/DO3 output with time control
978
979
980 This is to control the digital output time of DO pin. Include four bytes:
981
982 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
983
984 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
985
986 01: DO pins will change back to original state after timeout.
987
988 00: DO pins will change to an inverter state after timeout 
989
990
991 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
992
993 [[image:image-20220524093238-6.png]]
994
995
996 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
997
998 [[image:image-20220524093328-7.png]]
999
1000
1001 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1002
1003 [[image:image-20220524093351-8.png]]
1004
1005
1006 (% style="color:#4f81bd" %)**Sixth and Seventh Byte**:
1007
1008 Latching time. Unit: ms
1009
1010 Device will upload a packet if downlink code executes successfully.
1011
1012
1013 **Example payload:**
1014
1015 **~1. A9 01 01 01 01 07 D0**
1016
1017 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1018
1019 **2. A9 01 00 01 11 07 D0**
1020
1021 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1022
1023 **3. A9 00 00 00 00 07 D0**
1024
1025 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1026
1027 **4. A9 00 11 01 00 07 D0**
1028
1029 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1030
1031
1032
1033
1034 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1035
1036 * (% style="color:#037691" %)**AT Command:**
1037
1038 There is no AT Command to control Relay Output
1039
1040
1041 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1042
1043 **0x03 aa bb     **~/~/ Set RO1/RO2 output
1044
1045
1046 (((
1047 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1048 )))
1049
1050 (((
1051 01: Close ,  00: Open , 11: No action
1052 )))
1053
1054 (((
1055 [[image:image-20220524093724-9.png]]
1056 )))
1057
1058 Device will upload a packet if downlink code executes successfully.
1059
1060
1061
1062
1063 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1064
1065 * (% style="color:#037691" %)**AT Command:**
1066
1067 There is no AT Command to control Relay Output
1068
1069
1070 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1071
1072 **0x05 aa bb cc dd     **~/~/ Set RO1/RO2 relay with time control
1073
1074
1075 This is to control the relay output time of relay. Include four bytes:
1076
1077 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1078
1079 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1080
1081 01: Relays will change back to original state after timeout.
1082
1083 00: Relays will change to an inverter state after timeout
1084
1085
1086 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1087
1088 [[image:image-20220524093831-10.png]]
1089
1090
1091 (% style="color:#4f81bd" %)**Fourth/Fifth Bytes(cc)**(%%): Latching time. Unit: ms
1092
1093 Device will upload a packet if downlink code executes successfully.
1094
1095
1096 **Example payload:**
1097
1098 **~1. 05 01 11 07 D0**
1099
1100 Relay1 and Relay 2 will be set to NO , last 2 seconds, then change back to original state.
1101
1102 **2. 05 01 10 07 D0**
1103
1104 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then both change back to original state.
1105
1106 **3. 05 00 01 07 D0**
1107
1108 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then relay change to NO, Relay2 change to NC.
1109
1110 **4. 05 00 00 07 D0**
1111
1112 Relay 1 & relay2 will change to NC, last 2 seconds, then both change to NO.
1113
1114
1115
1116
1117 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1118
1119 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1120
1121 * (% style="color:#037691" %)**AT Command:**
1122
1123 **AT+VOLMAX   ** ~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1124
1125
1126 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1127
1128 **0xA5 aa bb cc   **~/~/ Same as AT+VOLMAX=(aa bb),cc
1129
1130
1131
1132
1133 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1134
1135 * (% style="color:#037691" %)**AT Command:**
1136
1137 **AT+SETCNT=aa,(bb cc dd ee) **
1138
1139 aa: 1: Set count1,
1140
1141 2: Set count2,
1142
1143 3: Set AV1 count
1144
1145 Bb cc dd ee: number to be set
1146
1147
1148 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1149
1150 **0x A8 aa bb cc dd ee     **~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1151
1152
1153
1154
1155 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1156
1157 Clear counting for counting mode
1158
1159 * (% style="color:#037691" %)**AT Command:**
1160
1161 **AT+CLRCOUNT ** ~/~/ clear all counting
1162
1163
1164 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1165
1166 **0x A6 01    ** ~/~/ clear all counting
1167
1168
1169
1170
1171 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1172
1173 * (% style="color:#037691" %)**AT Command:**
1174
1175 **AT+COUTIME=60  **~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1176
1177
1178 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1179
1180 **0x A7 aa bb cc     **~/~/ same as AT+COUTIME =aa bb cc,
1181
1182 (((
1183 range: aa bb cc:0 to 16777215,  (unit:second)
1184
1185
1186 )))
1187
1188
1189
1190 == 3.5 Integrate with Mydevice ==
1191
1192 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1193
1194 (((
1195 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1196 )))
1197
1198 (((
1199 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1200 )))
1201
1202 [[image:1653356737703-362.png||height="232" width="732"]]
1203
1204 [[image:image-20220524094641-11.png||height="390" width="723"]]
1205
1206
1207 [[image:image-20220524094641-12.png||height="402" width="718"]]
1208
1209
1210 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1211
1212 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1213
1214 Search under The things network
1215
1216 [[image:1653356838789-523.png||height="337" width="740"]]
1217
1218
1219
1220 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1221
1222 [[image:image-20220524094909-1.png||height="335" width="729"]]
1223
1224
1225 [[image:image-20220524094909-2.png||height="337" width="729"]]
1226
1227
1228 [[image:image-20220524094909-3.png||height="338" width="727"]]
1229
1230
1231 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1232
1233
1234 [[image:image-20220524094909-5.png||height="341" width="734"]]
1235
1236
1237
1238 == 3.6 Interface Detail ==
1239
1240 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1241
1242 Support NPN Type sensor
1243
1244 [[image:1653356991268-289.png]]
1245
1246
1247
1248 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1249
1250 (((
1251 The DI port of LT-22222-L can support NPN or PNP output sensor.
1252 )))
1253
1254 (((
1255 (((
1256 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high
1257 )))
1258 )))
1259
1260 [[image:1653357170703-587.png]]
1261
1262 (((
1263 (((
1264 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1265 )))
1266 )))
1267
1268 (((
1269
1270 )))
1271
1272 (((
1273 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1274 )))
1275
1276 (((
1277 This type of sensor will output a low signal GND when active.
1278 )))
1279
1280 * (((
1281 Connect sensor’s output to DI1-
1282 )))
1283 * (((
1284 Connect sensor’s VCC to DI1+.
1285 )))
1286
1287 (((
1288 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1289 )))
1290
1291 (((
1292 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1293 )))
1294
1295 (((
1296 If DI1+ = 12v, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1297 )))
1298
1299 (((
1300
1301 )))
1302
1303 (((
1304 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1305 )))
1306
1307 (((
1308 This type of sensor will output a high signal (example 24v) when active.
1309 )))
1310
1311 * (((
1312 Connect sensor’s output to DI1+
1313 )))
1314 * (((
1315 Connect sensor’s GND DI1-.
1316 )))
1317
1318 (((
1319 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1320 )))
1321
1322 (((
1323 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1324 )))
1325
1326 (((
1327 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1328 )))
1329
1330 (((
1331
1332 )))
1333
1334 (((
1335 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1336 )))
1337
1338 (((
1339 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1340 )))
1341
1342 * (((
1343 Connect sensor’s output to DI1+ with a serial 50K resistor
1344 )))
1345 * (((
1346 Connect sensor’s GND DI1-.
1347 )))
1348
1349 (((
1350 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1351 )))
1352
1353 (((
1354 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1355 )))
1356
1357 (((
1358 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1359 )))
1360
1361
1362
1363 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1364
1365 NPN output: GND or Float. Max voltage can apply to output pin is 36v.
1366
1367 [[image:1653357531600-905.png]]
1368
1369
1370
1371 === 3.6.4 Analog Input Interface ===
1372
1373 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1374
1375
1376 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1377
1378 [[image:1653357592296-182.png]]
1379
1380 Example to connect a 4~~20mA sensor
1381
1382 We take the wind speed sensor as an example for reference only.
1383
1384
1385 **Specifications of the wind speed sensor:**
1386
1387 Red:  12~~24v
1388
1389 Yellow:  4~~20mA
1390
1391 Black:  GND
1392
1393
1394 **Connection diagram:**
1395
1396 [[image:1653357640609-758.png]]
1397
1398 [[image:1653357648330-671.png||height="155" width="733"]]
1399
1400
1401
1402 === 3.6.5 Relay Output ===
1403
1404 (((
1405 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device’s Power Line to in serial of RO1_1 and RO_2. Such as below:
1406 )))
1407
1408 [[image:image-20220524100215-9.png]]
1409
1410 [[image:image-20220524100215-10.png||height="382" width="723"]]
1411
1412
1413
1414 == 3.7 LEDs Indicators ==
1415
1416 [[image:image-20220524100748-11.png]]
1417
1418
1419
1420 = 4. Use AT Command =
1421
1422 == 4.1 Access AT Command ==
1423
1424 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1425
1426 [[image:1653358238933-385.png]]
1427
1428
1429 (((
1430 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1431 )))
1432
1433 [[image:1653358355238-883.png]]
1434
1435
1436 (((
1437 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1438 )))
1439
1440 (((
1441 AT+<CMD>?        : Help on <CMD>
1442 )))
1443
1444 (((
1445 AT+<CMD>         : Run <CMD>
1446 )))
1447
1448 (((
1449 AT+<CMD>=<value> : Set the value
1450 )))
1451
1452 (((
1453 AT+<CMD>=?       : Get the value
1454 )))
1455
1456 (((
1457 ATZ: Trig a reset of the MCU
1458 )))
1459
1460 (((
1461 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1462 )))
1463
1464 (((
1465 AT+DEUI: Get or Set the Device EUI
1466 )))
1467
1468 (((
1469 AT+DADDR: Get or Set the Device Address
1470 )))
1471
1472 (((
1473 AT+APPKEY: Get or Set the Application Key
1474 )))
1475
1476 (((
1477 AT+NWKSKEY: Get or Set the Network Session Key
1478 )))
1479
1480 (((
1481 AT+APPSKEY: Get or Set the Application Session Key
1482 )))
1483
1484 (((
1485 AT+APPEUI: Get or Set the Application EUI
1486 )))
1487
1488 (((
1489 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1490 )))
1491
1492 (((
1493 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1494 )))
1495
1496 (((
1497 AT+DR: Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1498 )))
1499
1500 (((
1501 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1502 )))
1503
1504 (((
1505 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1506 )))
1507
1508 (((
1509 AT+RX2FQ: Get or Set the Rx2 window frequency
1510 )))
1511
1512 (((
1513 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1514 )))
1515
1516 (((
1517 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1518 )))
1519
1520 (((
1521 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1522 )))
1523
1524 (((
1525 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1526 )))
1527
1528 (((
1529 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1530 )))
1531
1532 (((
1533 AT+NJM: Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1534 )))
1535
1536 (((
1537 AT+NWKID: Get or Set the Network ID
1538 )))
1539
1540 (((
1541 AT+FCU: Get or Set the Frame Counter Uplink
1542 )))
1543
1544 (((
1545 AT+FCD: Get or Set the Frame Counter Downlink
1546 )))
1547
1548 (((
1549 AT+CLASS: Get or Set the Device Class
1550 )))
1551
1552 (((
1553 AT+JOIN: Join network
1554 )))
1555
1556 (((
1557 AT+NJS: Get OTAA Join Status
1558 )))
1559
1560 (((
1561 AT+SENDB: Send hexadecimal data along with the application port
1562 )))
1563
1564 (((
1565 AT+SEND: Send text data along with the application port
1566 )))
1567
1568 (((
1569 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1570 )))
1571
1572 (((
1573 AT+RECV: Print last received data in raw format
1574 )))
1575
1576 (((
1577 AT+VER: Get current image version and Frequency Band
1578 )))
1579
1580 (((
1581 AT+CFM: Get or Set the confirmation mode (0-1)
1582 )))
1583
1584 (((
1585 AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1586 )))
1587
1588 (((
1589 AT+SNR: Get the SNR of the last received packet
1590 )))
1591
1592 (((
1593 AT+RSSI: Get the RSSI of the last received packet
1594 )))
1595
1596 (((
1597 AT+TDC: Get or set the application data transmission interval in ms
1598 )))
1599
1600 (((
1601 AT+PORT: Get or set the application port
1602 )))
1603
1604 (((
1605 AT+DISAT: Disable AT commands
1606 )))
1607
1608 (((
1609 AT+PWORD: Set password, max 9 digits
1610 )))
1611
1612 (((
1613 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1614 )))
1615
1616 (((
1617 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1618 )))
1619
1620 (((
1621 AT+CFG: Print all settings
1622 )))
1623
1624
1625
1626 == 4.2 Common AT Command Sequence ==
1627
1628 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1629
1630 (((
1631
1632
1633 **If device has not joined network yet:**
1634 )))
1635
1636 (((
1637 (% style="background-color:#dcdcdc" %)123456
1638 )))
1639
1640 (((
1641 (% style="background-color:#dcdcdc" %)AT+FDR
1642 )))
1643
1644 (((
1645 (% style="background-color:#dcdcdc" %)123456
1646 )))
1647
1648 (((
1649 (% style="background-color:#dcdcdc" %)AT+NJM=0
1650 )))
1651
1652 (((
1653 (% style="background-color:#dcdcdc" %)ATZ
1654 )))
1655
1656
1657 (((
1658 **If device already joined network:**
1659 )))
1660
1661 (((
1662 (% style="background-color:#dcdcdc" %)AT+NJM=0
1663 )))
1664
1665 (((
1666 (% style="background-color:#dcdcdc" %)ATZ
1667 )))
1668
1669
1670
1671 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1672
1673 (((
1674
1675
1676 (% style="background-color:#dcdcdc" %)123456(%%)  Enter Password to have AT access.
1677 )))
1678
1679 (((
1680 (% style="background-color:#dcdcdc" %) AT+FDR(%%)   Reset Parameters to Factory Default, Keys Reserve
1681 )))
1682
1683 (((
1684 (% style="background-color:#dcdcdc" %) 123456(%%)  Enter Password to have AT access.
1685 )))
1686
1687 (((
1688 (% style="background-color:#dcdcdc" %) AT+CLASS=C(%%) Set to work in CLASS C
1689 )))
1690
1691 (((
1692 (% style="background-color:#dcdcdc" %) AT+NJM=0(%%)  Set to ABP mode
1693 )))
1694
1695 (((
1696 (% style="background-color:#dcdcdc" %) AT+ADR=0(%%)  Set the Adaptive Data Rate Off
1697 )))
1698
1699 (((
1700 (% style="background-color:#dcdcdc" %) AT+DR=5(%%)  Set Data Rate
1701 )))
1702
1703 (((
1704 (% style="background-color:#dcdcdc" %) AT+TDC=60000(%%)  Set transmit interval to 60 seconds
1705 )))
1706
1707 (((
1708 (% style="background-color:#dcdcdc" %) AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1709 )))
1710
1711 (((
1712 (% style="background-color:#dcdcdc" %) AT+RX2FQ=868400000(%%)  Set RX2Frequency to 868.4Mhz (according to the result from server)
1713 )))
1714
1715 (((
1716 (% style="background-color:#dcdcdc" %) AT+RX2DR=5(%%)  Set RX2DR to match the downlink DR from server. see below
1717 )))
1718
1719 (((
1720 (% style="background-color:#dcdcdc" %) AT+DADDR=26 01 1A F1 (%%) Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1721 )))
1722
1723 (((
1724 (% style="background-color:#dcdcdc" %) ATZ         (%%) Reset MCU
1725
1726
1727 )))
1728
1729 (((
1730 (% style="color:red" %)**Note:**
1731 )))
1732
1733 (((
1734 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1735 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1736 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1737 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1738 )))
1739
1740 (((
1741 [[image:1653359097980-169.png||height="188" width="729"]]
1742 )))
1743
1744 (((
1745
1746 )))
1747
1748
1749 === 4.2.3 Change to Class A ===
1750
1751 If sensor JOINED
1752 (% style="background-color:#dcdcdc" %)AT+CLASS=A
1753 ATZ
1754
1755
1756 = 5. FAQ =
1757
1758 == 5.1 How to upgrade the image? ==
1759
1760
1761 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1762
1763 * Support new features
1764 * For bug fix
1765 * Change LoRaWAN bands.
1766
1767 Below shows the hardware connection for how to upload an image to the LT:
1768
1769 [[image:1653359603330-121.png]]
1770
1771
1772 (((
1773 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1774 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1775 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
1776
1777
1778 (% style="color:blue" %)**For LT-22222-L**(%%):
1779 Hold down the PRO button and then momentarily press the RST reset button and the **DO1 led** will change from OFF to ON. When **DO1 LED** is on, it means the device is in download mode.
1780 )))
1781
1782 [[image:image-20220524103407-12.png]]
1783
1784 [[image:image-20220524103429-13.png]]
1785
1786 [[image:image-20220524104033-15.png]]
1787
1788
1789 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1790
1791 [[image:1653360054704-518.png||height="186" width="745"]]
1792
1793
1794 (((
1795 (((
1796
1797
1798 == 5.2 How to change the LoRa Frequency Bands/Region? ==
1799 )))
1800 )))
1801
1802 (((
1803 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1804 )))
1805
1806 (((
1807
1808
1809 == 5.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
1810 )))
1811
1812 (((
1813 (((
1814 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
1815 )))
1816 )))
1817
1818 (((
1819 (((
1820 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
1821
1822
1823 )))
1824 )))
1825
1826 (((
1827 (% style="color:#4f81bd" %)**Step1**(%%): Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
1828 )))
1829
1830 (((
1831 [[image:1653360231087-571.png||height="401" width="727"]]
1832 )))
1833
1834 (((
1835 (% style="color:red" %)Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.
1836 )))
1837
1838
1839 (((
1840 (% style="color:#4f81bd" %)**Step2**(%%)**: **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
1841 )))
1842
1843 (((
1844 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
1845 (% style="background-color:#dcdcdc" %)AT+FDR(%%)  Reset Parameters to Factory Default, Keys Reserve
1846 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
1847 (% style="background-color:#dcdcdc" %)AT+NJM=0 (%%) Set to ABP mode
1848 (% style="background-color:#dcdcdc" %)AT+ADR=0 (%%) Set the Adaptive Data Rate Off
1849 (% style="background-color:#dcdcdc" %)AT+DR=5 (%%) Set Data Rate (Set AT+DR=3 for 915 band)
1850 (% style="background-color:#dcdcdc" %)AT+TDC=60000 (%%) Set transmit interval to 60 seconds
1851 (% style="background-color:#dcdcdc" %)AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1852 (% style="background-color:#dcdcdc" %)AT+DADDR=26 01 1A F1(%%)  Set Device Address to 26 01 1A F1
1853 (% style="background-color:#dcdcdc" %)ATZ        (%%) Reset MCU
1854 )))
1855
1856
1857 (((
1858 As shown in below:
1859 )))
1860
1861 [[image:1653360498588-932.png||height="485" width="726"]]
1862
1863
1864 == 5.4 Can I see counting event in Serial? ==
1865
1866 (((
1867 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn’t support AT+DEBUG. User can update to latest firmware first.
1868
1869
1870 == 5.5 Can i use point to point communication for LT-22222-L? ==
1871
1872 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]
1873
1874
1875 )))
1876
1877 (((
1878 == 5.6 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
1879
1880 If the device is not shut down, but directly powered off.
1881
1882 It will default that this is a power-off state.
1883
1884 In modes 2 to 5, DO RO status and pulse count are saved in flash.
1885
1886 After restart, the status before power failure will be read from flash.
1887
1888
1889 = 6. Trouble Shooting =
1890 )))
1891
1892 (((
1893 (((
1894 == 6.1 Downlink doesn’t work, how to solve it? ==
1895 )))
1896 )))
1897
1898 (((
1899 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
1900 )))
1901
1902 (((
1903
1904
1905 == 6.2 Have trouble to upload image. ==
1906 )))
1907
1908 (((
1909 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
1910 )))
1911
1912 (((
1913
1914
1915 == 6.3 Why I can’t join TTN in US915 /AU915 bands? ==
1916 )))
1917
1918 (((
1919 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1920 )))
1921
1922
1923 = 7. Order Info =
1924
1925 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
1926
1927
1928 (% style="color:#4f81bd" %)**XXX:**
1929
1930 * (% style="color:#4f81bd" %)**EU433**(%%): LT with frequency bands EU433
1931 * (% style="color:#4f81bd" %)**EU868**(%%): LT with frequency bands EU868
1932 * (% style="color:#4f81bd" %)**KR920**(%%): LT with frequency bands KR920
1933 * (% style="color:#4f81bd" %)**CN470**(%%): LT with frequency bands CN470
1934 * (% style="color:#4f81bd" %)**AS923**(%%): LT with frequency bands AS923
1935 * (% style="color:#4f81bd" %)**AU915**(%%): LT with frequency bands AU915
1936 * (% style="color:#4f81bd" %)**US915**(%%): LT with frequency bands US915
1937 * (% style="color:#4f81bd" %)**IN865**(%%): LT with frequency bands IN865
1938 * (% style="color:#4f81bd" %)**CN779**(%%): LT with frequency bands CN779
1939
1940 = 8. Packing Info =
1941
1942
1943 **Package Includes**:
1944
1945 * LT-22222-L I/O Controller x 1
1946 * Stick Antenna for LoRa RF part x 1
1947 * Bracket for controller x1
1948 * Program cable x 1
1949
1950 **Dimension and weight**:
1951
1952 * Device Size: 13.5 x 7 x 3 cm
1953 * Device Weight: 105g
1954 * Package Size / pcs : 14.5 x 8 x 5 cm
1955 * Weight / pcs : 170g
1956
1957 = 9. Support =
1958
1959 * (((
1960 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1961 )))
1962 * (((
1963 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1964
1965
1966
1967
1968 )))
1969
1970 = 10. Reference​​​​​ =
1971
1972 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
1973 * [[Image Download>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]]
1974 * [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1975 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]