Version 82.31 by Xiaoling on 2022/06/20 13:35

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4 **LT-22222-L LoRa IO Controller User Manual **
5
6
7 **Table of Contents:**
8
9 {{toc/}}
10
11
12
13
14
15
16
17 = 1.Introduction =
18
19 == 1.1 What is LT Series I/O Controller ==
20
21 (((
22
23
24 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 )))
26
27 (((
28 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
29 )))
30
31 (((
32 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
33 )))
34
35 (((
36 The use environment includes:
37 )))
38
39 (((
40 1) If user’s area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
41 )))
42
43 (((
44 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
45 )))
46
47 (((
48 [[image:1653295757274-912.png]]
49
50
51 )))
52
53
54 == 1.2  Specifications ==
55
56 (((
57
58
59 **Hardware System:**
60 )))
61
62 * (((
63 STM32L072CZT6 MCU
64 )))
65 * (((
66 SX1276/78 Wireless Chip 
67 )))
68 * (((
69 (((
70 Power Consumption:
71 )))
72
73 * (((
74 Idle: 4mA@12v
75 )))
76 * (((
77 20dB Transmit: 34mA@12v
78 )))
79 )))
80
81 (((
82
83
84 **Interface for Model: LT22222-L:**
85 )))
86
87 * (((
88 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
89 )))
90 * (((
91 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
92 )))
93 * (((
94 2 x Relay Output (5A@250VAC / 30VDC)
95 )))
96 * (((
97 2 x 0~~20mA Analog Input (res:0.01mA)
98 )))
99 * (((
100 2 x 0~~30V Analog Input (res:0.01v)
101 )))
102 * (((
103 Power Input 7~~ 24V DC. 
104 )))
105
106 (((
107
108
109 **LoRa Spec:**
110 )))
111
112 * (((
113 (((
114 Frequency Range:
115 )))
116
117 * (((
118 Band 1 (HF): 862 ~~ 1020 Mhz
119 )))
120 * (((
121 Band 2 (LF): 410 ~~ 528 Mhz
122 )))
123 )))
124 * (((
125 168 dB maximum link budget.
126 )))
127 * (((
128 +20 dBm - 100 mW constant RF output vs.
129 )))
130 * (((
131 +14 dBm high efficiency PA.
132 )))
133 * (((
134 Programmable bit rate up to 300 kbps.
135 )))
136 * (((
137 High sensitivity: down to -148 dBm.
138 )))
139 * (((
140 Bullet-proof front end: IIP3 = -12.5 dBm.
141 )))
142 * (((
143 Excellent blocking immunity.
144 )))
145 * (((
146 Low RX current of 10.3 mA, 200 nA register retention.
147 )))
148 * (((
149 Fully integrated synthesizer with a resolution of 61 Hz.
150 )))
151 * (((
152 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
153 )))
154 * (((
155 Built-in bit synchronizer for clock recovery.
156 )))
157 * (((
158 Preamble detection.
159 )))
160 * (((
161 127 dB Dynamic Range RSSI.
162 )))
163 * (((
164 Automatic RF Sense and CAD with ultra-fast AFC.
165 )))
166 * (((
167 Packet engine up to 256 bytes with CRC.
168
169
170
171
172 )))
173
174 == 1.3 Features ==
175
176 * LoRaWAN Class A & Class C protocol
177 * Optional Customized LoRa Protocol
178 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865
179 * AT Commands to change parameters
180 * Remote configure parameters via LoRa Downlink
181 * Firmware upgradable via program port
182 * Counting
183
184 == 1.4  Applications ==
185
186 * Smart Buildings & Home Automation
187 * Logistics and Supply Chain Management
188 * Smart Metering
189 * Smart Agriculture
190 * Smart Cities
191 * Smart Factory
192
193 == 1.5 Hardware Variants ==
194
195 (% border="1" style="background-color:#f7faff; width:500px" %)
196 |(% style="width:103px" %)**Model**|(% style="width:131px" %)**Photo**|(% style="width:334px" %)**Description**
197 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)[[image:1653296302983-697.png]]|(% style="width:334px" %)(((
198 * 2 x Digital Input (Bi-direction)
199 * 2 x Digital Output
200 * 2 x Relay Output (5A@250VAC / 30VDC)
201 * 2 x 0~~20mA Analog Input (res:0.01mA)
202 * 2 x 0~~30V Analog Input (res:0.01v)
203 * 1 x Counting Port
204 )))
205
206
207
208 = 2. Power ON Device =
209
210 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
211
212 (((
213 PWR will on when device is properly powered.
214 )))
215
216 [[image:1653297104069-180.png]]
217
218
219
220 = 3. Operation Mode =
221
222 == 3.1 How it works? ==
223
224 (((
225 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on **TX LED** will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. **TX LED** will be on for 5 seconds after joined in network. When there is message from server, the **RX LED** will be on for 1 second. 
226 )))
227
228 (((
229 In case user can’t set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
230 )))
231
232
233 == 3.2 Example to join LoRaWAN network ==
234
235 (((
236 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
237 )))
238
239 [[image:image-20220523172350-1.png||height="266" width="864"]]
240
241
242 (((
243 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
244 )))
245
246 (((
247 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
248 )))
249
250 (((
251 Each LT is shipped with a sticker with the default device EUI as below:
252 )))
253
254 [[image:1653297924498-393.png]]
255
256
257 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
258
259 Add APP EUI in the application.
260
261 [[image:1653297955910-247.png||height="321" width="716"]]
262
263
264 Add APP KEY and DEV EUI
265
266 [[image:1653298023685-319.png]]
267
268
269 (((
270 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
271 )))
272
273 [[image:1653298044601-602.png||height="405" width="709"]]
274
275
276
277 == 3.3 Uplink Payload ==
278
279 There are five working modes + one interrupt mode on LT for different type application:
280
281 * **MOD1**: (default setting): 2 x ACI + 2AVI + DI + DO + RO
282 * **MOD2**: Double DI Counting + DO + RO
283 * **MOD3**: Single DI Counting + 2 x ACI + DO + RO
284 * **MOD4**: Single DI Counting + 1 x Voltage Counting + DO + RO
285 * **MOD5**: Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
286 * **ADDMOD6**: Trigger Mode, Optional, used together with MOD1 ~~ MOD5
287
288 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
289
290 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default.
291
292 [[image:image-20220523174024-3.png]]
293
294 (((
295
296
297 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
298 )))
299
300 [[image:image-20220523174254-4.png]]
301
302 * RO is for relay. ROx=1 : close,ROx=0 always open.
303 * DI is for digital input. DIx=1: high or float, DIx=0: low.
304 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
305
306 (% style="color:red" %)Note: DI3 and DO3 bit are not valid for LT-22222-L
307
308 For example if payload is: [[image:image-20220523175847-2.png]]
309
310
311 **The value for the interface is:  **
312
313 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
314
315 AVI2 channel voltage is 0x04AC/1000=1.196V
316
317 ACI1 channel current is 0x1310/1000=4.880mA
318
319 ACI2 channel current is 0x1300/1000=4.864mA
320
321 The last byte 0xAA= 10101010(B) means
322
323 * [1] RO1 relay channel is close and the RO1 LED is ON.
324 * [0] RO2 relay channel is open and RO2 LED is OFF;
325
326 **LT22222-L:**
327
328 * [1] DI2 channel is high input and DI2 LED is ON;
329 * [0] DI1 channel is low input;
330
331 * [0] DO3 channel output state
332 ** DO3 is float in case no load between DO3 and V+.;
333 ** DO3 is high in case there is load between DO3 and V+.
334 ** DO3 LED is off in both case
335 * [1] DO2 channel output is low and DO2 LED is ON.
336 * [0] DO1 channel output state
337 ** DO1 is float in case no load between DO1 and V+.;
338 ** DO1 is high in case there is load between DO1 and V+.
339 ** DO1 LED is off in both case
340
341 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
342
343
344 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
345
346 (((
347 Total : 11 bytes payload
348 )))
349
350 [[image:image-20220523180452-3.png]]
351
352
353 (((
354 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
355 )))
356
357 [[image:image-20220523180506-4.png]]
358
359 * RO is for relay. ROx=1 : close,ROx=0 always open.
360 * FIRST: Indicate this is the first packet after join network.
361 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
362
363 (((
364 (% style="color:red" %)Note: DO3 bit is not valid for LT-22222-L.
365 )))
366
367 (((
368
369
370 **To use counting mode, please run:**
371 )))
372
373 (% class="box infomessage" %)
374 (((
375 (((
376 **AT+MOD=2**
377
378 **ATZ**
379 )))
380 )))
381
382 (((
383
384
385 (% style="color:#4f81bd" %)**AT Commands for counting:**
386 )))
387
388 (((
389 **For LT22222-L:**
390
391
392 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
393
394 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
395
396 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
397
398 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
399
400 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
401
402 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
403 )))
404
405
406
407 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
408
409 **LT22222-L**: This mode the DI1 is used as a counting pin.
410
411 [[image:image-20220523181246-5.png]]
412
413 (((
414 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
415 )))
416
417 [[image:image-20220523181301-6.png]]
418
419 * RO is for relay. ROx=1 : close,ROx=0 always open.
420 * FIRST: Indicate this is the first packet after join network.
421 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
422
423 (((
424 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
425 )))
426
427 (((
428 **To use counting mode, please run:**
429 )))
430
431 (% class="box infomessage" %)
432 (((
433 (((
434 **AT+MOD=3**
435
436 **ATZ**
437 )))
438 )))
439
440 (((
441 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
442 )))
443
444
445
446 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
447
448
449 **LT22222-L**: This mode the DI1 is used as a counting pin.
450
451 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
452
453 [[image:image-20220523181903-8.png]]
454
455
456 (((
457 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
458 )))
459
460 [[image:image-20220523181727-7.png]]
461
462 * RO is for relay. ROx=1 : close,ROx=0 always open.
463 * FIRST: Indicate this is the first packet after join network.
464 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
465
466 (((
467 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
468 )))
469
470 (((
471
472
473 **To use this mode, please run:**
474 )))
475
476 (% class="box infomessage" %)
477 (((
478 (((
479 **AT+MOD=4**
480
481 **ATZ**
482 )))
483 )))
484
485
486
487 (((
488 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
489 )))
490
491 (((
492
493
494 **Plus below command for AVI1 Counting:**
495
496
497 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
498
499 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
500
501 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
502
503 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
504 )))
505
506
507
508 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
509
510
511 **LT22222-L**: This mode the DI1 is used as a counting pin.
512
513 [[image:image-20220523182334-9.png]]
514
515 (((
516
517
518 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
519 )))
520
521 * RO is for relay. ROx=1 : close,ROx=0 always open.
522 * FIRST: Indicate this is the first packet after join network.
523 * (((
524 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
525 )))
526
527 (((
528 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
529 )))
530
531 (((
532
533
534 **To use this mode, please run:**
535 )))
536
537 (% class="box infomessage" %)
538 (((
539 (((
540 **AT+MOD=5**
541
542 **ATZ**
543 )))
544 )))
545
546 (((
547 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
548 )))
549
550
551
552 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
553
554
555 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
556
557 For example, if user has configured below commands:
558
559 * **AT+MOD=1 ** **~-~->** The normal working mode
560 * **AT+ADDMOD6=1**   **~-~->** Enable trigger
561
562 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
563
564 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
565 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
566
567
568 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
569
570 (% style="color:#4f81bd" %)**Trigger base on voltage**:
571
572 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
573
574 **Example:**
575
576 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
577
578 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
579
580
581
582 (% style="color:#4f81bd" %)**Trigger base on current**:
583
584 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
585
586 **Example:**
587
588 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
589
590
591
592 (% style="color:#4f81bd" %)**Trigger base on DI status**:
593
594 DI status trigger Flag.
595
596 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
597
598
599 **Example:**
600
601 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
602
603
604 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
605
606 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
607
608 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
609
610 AA: Code for this downlink Command:
611
612 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
613
614 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
615
616 yy2 yy2: AC1 or AV1 high limit.
617
618 yy3 yy3: AC2 or AV2 low limit.
619
620 Yy4 yy4: AC2 or AV2 high limit.
621
622
623 **Example1**: AA 00 13 88 00 00 00 00 00 00
624
625 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
626
627
628 **Example2**: AA 02 01 00
629
630 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
631
632
633
634 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
635
636 MOD6 Payload : total 11 bytes payload
637
638 [[image:image-20220524085923-1.png]]
639
640
641 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
642
643 [[image:image-20220524090106-2.png]]
644
645 * Each bits shows if the corresponding trigger has been configured.
646
647 **Example:**
648
649 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
650
651
652 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
653
654 [[image:image-20220524090249-3.png]]
655
656 * Each bits shows which status has been trigger on this uplink.
657
658 **Example:**
659
660 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
661
662
663 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
664
665 [[image:image-20220524090456-4.png]]
666
667 * Each bits shows which status has been trigger on this uplink.
668
669 **Example:**
670
671 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
672
673 00000101: Means both DI1 and DI2 trigger are enabled.
674
675
676 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
677
678 Downlink command to poll MOD6 status:
679
680 **AB 06**
681
682 When device got this command, it will send the MOD6 payload.
683
684
685
686 === 3.3.7 Payload Decoder ===
687
688 (((
689
690
691 **Decoder for TTN/loraserver/ChirpStack**: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/Payload_decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/Payload_decoder/]]
692
693
694 )))
695
696
697 == 3.4 ​Configure LT via AT or Downlink ==
698
699 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
700
701 (((
702 There are two kinds of Commands:
703 )))
704
705 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
706
707 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
708
709 === 3.4.1 Common Commands ===
710
711 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
712
713
714
715 === 3.4.2 Sensor related commands ===
716
717 ==== 3.4.2.1 Set Transmit Interval ====
718
719 Set device uplink interval.
720
721 * (% style="color:#037691" %)**AT Command:**
722
723 **AT+TDC=N **
724
725
726 **Example: **AT+TDC=30000. Means set interval to 30 seconds
727
728
729 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
730
731 **0x01 aa bb cc     ~/~/ Same as AT+TDC=0x(aa bb cc)**
732
733
734
735
736 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
737
738 Set work mode.
739
740 * (% style="color:#037691" %)**AT Command:**
741
742 **AT+MOD=N  **
743
744
745 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
746
747
748 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
749
750 (% style="color:#037691" %)**​​​​​​​**(%%)**0x0A aa    ** ~/~/ Same as AT+MOD=aa
751
752
753
754
755 ==== 3.4.2.3 Poll an uplink ====
756
757 * (% style="color:#037691" %)**AT Command:**
758
759 There is no AT Command to poll uplink
760
761
762 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
763
764 **0x08 FF     **~/~/ Poll an uplink
765
766 **Example**: 0x08FF, ask device to send an Uplink
767
768
769
770 ==== 3.4.2.4 Enable Trigger Mode ====
771
772 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
773
774 * (% style="color:#037691" %)AT Command:
775
776 (% class="box infomessage" %)
777 (((
778 **AT+ADDMOD6=1 or 0**
779 )))
780
781 1: Enable Trigger Mode
782
783 0: Disable Trigger Mode
784
785
786 * (% style="color:#037691" %)Downlink Payload (prefix 0x0A 06):
787
788 (% class="box infomessage" %)
789 (((
790 **0x0A 06 aa     ~/~/ Same as AT+ADDMOD6=aa,**
791 )))
792
793
794
795 ==== 3.4.2.5 Poll trigger settings ====
796
797 Poll trigger settings,
798
799 * (% style="color:#037691" %)AT Command:
800
801 There is no AT Command for this feature.
802
803
804 * (% style="color:#037691" %)Downlink Payload (prefix 0x AB 06):
805
806 (% class="box infomessage" %)
807 (((
808 **0xAB 06  ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command**
809 )))
810
811
812
813 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
814
815 Enable Disable DI1/DI2/DI2 as trigger,
816
817 * (% style="color:#037691" %)AT Command:
818
819 **Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
820
821
822 **Example:**
823
824 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
825
826 * (% style="color:#037691" %)Downlink Payload (prefix 0xAA 02):
827
828 **0xAA 02 aa bb        **~/~/ Same as AT+DTRI=aa,bb
829
830
831
832
833 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
834
835 Set DI1 or DI3(for LT-33222-L) trigger.
836
837 * (% style="color:#037691" %)AT Command:
838
839 **AT+TRIG1=a,b**
840
841 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
842
843 b : delay timing.
844
845
846 **Example:**
847
848 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
849
850
851 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
852 * **0x09 01 aa bb cc    ** ~/~/ same as AT+TRIG1=aa,0x(bb cc)
853
854
855 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
856
857 Set DI2 trigger.
858
859 * (% style="color:#037691" %)**AT Command:**
860
861 **AT+TRIG2=a,b**
862
863
864 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
865
866 b : delay timing.
867
868
869 **Example:**
870
871 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
872
873
874 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
875
876 **0x09 02 aa bb cc           **~/~/ same as AT+TRIG1=aa,0x(bb cc)
877
878
879
880
881 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
882
883 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
884
885 * (% style="color:#037691" %)**AT Command**
886
887 **AT+ACLIM**
888
889
890 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
891
892 **0x AA 01 aa bb cc dd ee ff gg hh        ** ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
893
894
895
896
897 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
898
899 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
900
901 * (% style="color:#037691" %)**AT Command**
902
903 **AT+AVLIM  See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
904
905
906 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
907
908 **0x AA 00 aa bb cc dd ee ff gg hh    ** ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
909
910
911
912
913 ==== 3.4.2.11 Trigger – Set minimum interval ====
914
915 Set AV and AC trigger minimum interval, system won’t response to the second trigger within this set time after the first trigger.
916
917 * (% style="color:#037691" %)**AT Command**
918
919 **AT+ATDC=5. Device won’t response the second trigger within 5 minute after the first trigger.**
920
921
922 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
923
924 **0x AC aa bb   ** ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
925
926
927
928
929 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
930
931 * (% style="color:#037691" %)**AT Command**
932
933 There is no AT Command to control Digital Output
934
935
936 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
937 * **0x02 aa bb cc     **~/~/ Set DO1/DO2/DO3 output
938
939 (((
940 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
941 )))
942
943 (((
944 01: Low,  00: High ,  11: No action
945 )))
946
947 [[image:image-20220524092754-5.png]]
948
949 (((
950 (% style="color:red" %)Note: For LT-22222-L, there is no DO3, the last byte can use any value.
951 )))
952
953 (((
954 (% style="color:red" %)Device will upload a packet if downlink code executes successfully.
955 )))
956
957
958
959
960 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
961
962 * (% style="color:#037691" %)**AT Command**
963
964 There is no AT Command to control Digital Output
965
966
967 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
968
969 **0xA9 aa bb cc     **~/~/ Set DO1/DO2/DO3 output with time control
970
971
972 This is to control the digital output time of DO pin. Include four bytes:
973
974 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
975
976 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
977
978 01: DO pins will change back to original state after timeout.
979
980 00: DO pins will change to an inverter state after timeout 
981
982
983 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
984
985 [[image:image-20220524093238-6.png]]
986
987
988 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
989
990 [[image:image-20220524093328-7.png]]
991
992
993 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
994
995 [[image:image-20220524093351-8.png]]
996
997
998 (% style="color:#4f81bd" %)**Sixth and Seventh Byte**:
999
1000 Latching time. Unit: ms
1001
1002 Device will upload a packet if downlink code executes successfully.
1003
1004
1005 **Example payload:**
1006
1007 **~1. A9 01 01 01 01 07 D0**
1008
1009 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1010
1011 **2. A9 01 00 01 11 07 D0**
1012
1013 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1014
1015 **3. A9 00 00 00 00 07 D0**
1016
1017 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1018
1019 **4. A9 00 11 01 00 07 D0**
1020
1021 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1022
1023
1024
1025
1026 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1027
1028 * (% style="color:#037691" %)**AT Command:**
1029
1030 There is no AT Command to control Relay Output
1031
1032
1033 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1034
1035 **0x03 aa bb     **~/~/ Set RO1/RO2 output
1036
1037
1038 (((
1039 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1040 )))
1041
1042 (((
1043 01: Close ,  00: Open , 11: No action
1044 )))
1045
1046 (((
1047 [[image:image-20220524093724-9.png]]
1048 )))
1049
1050 Device will upload a packet if downlink code executes successfully.
1051
1052
1053
1054
1055 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1056
1057 * (% style="color:#037691" %)**AT Command:**
1058
1059 There is no AT Command to control Relay Output
1060
1061
1062 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1063
1064 **0x05 aa bb cc dd     **~/~/ Set RO1/RO2 relay with time control
1065
1066
1067 This is to control the relay output time of relay. Include four bytes:
1068
1069 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1070
1071 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1072
1073 01: Relays will change back to original state after timeout.
1074
1075 00: Relays will change to an inverter state after timeout
1076
1077
1078 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1079
1080 [[image:image-20220524093831-10.png]]
1081
1082
1083 (% style="color:#4f81bd" %)**Fourth/Fifth Bytes(cc)**(%%): Latching time. Unit: ms
1084
1085 Device will upload a packet if downlink code executes successfully.
1086
1087
1088 **Example payload:**
1089
1090 **~1. 05 01 11 07 D0**
1091
1092 Relay1 and Relay 2 will be set to NO , last 2 seconds, then change back to original state.
1093
1094 **2. 05 01 10 07 D0**
1095
1096 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then both change back to original state.
1097
1098 **3. 05 00 01 07 D0**
1099
1100 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then relay change to NO, Relay2 change to NC.
1101
1102 **4. 05 00 00 07 D0**
1103
1104 Relay 1 & relay2 will change to NC, last 2 seconds, then both change to NO.
1105
1106
1107
1108
1109 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1110
1111 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1112
1113 * (% style="color:#037691" %)**AT Command:**
1114
1115 **AT+VOLMAX   ** ~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1116
1117
1118 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1119
1120 **0xA5 aa bb cc   **~/~/ Same as AT+VOLMAX=(aa bb),cc
1121
1122
1123
1124
1125 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1126
1127 * (% style="color:#037691" %)**AT Command:**
1128
1129 (% style="color:#037691" %)**​​​​​​​​​​​​​​**(%%)**AT+SETCNT=aa,(bb cc dd ee) **
1130
1131 aa: 1: Set count1,
1132
1133 2: Set count2,
1134
1135 3: Set AV1 count
1136
1137 Bb cc dd ee: number to be set
1138
1139
1140 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1141
1142 **0x A8 aa bb cc dd ee     **~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1143
1144
1145
1146
1147 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1148
1149 Clear counting for counting mode
1150
1151 * (% style="color:#037691" %)**AT Command:**
1152
1153 (% style="color:#037691" %)​​​​​​​​​​​​​​(%%)**AT+CLRCOUNT ** ~/~/ clear all counting
1154
1155
1156 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1157
1158 **0x A6 01    ** ~/~/ clear all counting
1159
1160
1161
1162
1163 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1164
1165 * (% style="color:#037691" %)**AT Command:**
1166
1167 **AT+COUTIME=60  **~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1168
1169
1170 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1171
1172 **0x A7 aa bb cc     **~/~/ same as AT+COUTIME =aa bb cc,
1173
1174 (((
1175 range: aa bb cc:0 to 16777215,  (unit:second)
1176
1177
1178 )))
1179
1180
1181
1182 == 3.5 Integrate with Mydevice ==
1183
1184 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1185
1186 (((
1187 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1188 )))
1189
1190 (((
1191 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1192 )))
1193
1194 [[image:1653356737703-362.png||height="232" width="732"]]
1195
1196 [[image:image-20220524094641-11.png||height="390" width="723"]]
1197
1198
1199 [[image:image-20220524094641-12.png||height="402" width="718"]]
1200
1201
1202 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1203
1204 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1205
1206 Search under The things network
1207
1208 [[image:1653356838789-523.png||height="337" width="740"]]
1209
1210
1211
1212 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1213
1214 [[image:image-20220524094909-1.png||height="335" width="729"]]
1215
1216
1217 [[image:image-20220524094909-2.png||height="337" width="729"]]
1218
1219
1220 [[image:image-20220524094909-3.png||height="338" width="727"]]
1221
1222
1223 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1224
1225
1226 [[image:image-20220524094909-5.png||height="341" width="734"]]
1227
1228
1229
1230 == 3.6 Interface Detail ==
1231
1232 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1233
1234 Support NPN Type sensor
1235
1236 [[image:1653356991268-289.png]]
1237
1238
1239
1240 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1241
1242 (((
1243 The DI port of LT-22222-L can support NPN or PNP output sensor.
1244 )))
1245
1246 (((
1247 (((
1248 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high
1249 )))
1250 )))
1251
1252 [[image:1653357170703-587.png]]
1253
1254 (((
1255 (((
1256 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1257 )))
1258 )))
1259
1260 (((
1261
1262 )))
1263
1264 (((
1265 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1266 )))
1267
1268 (((
1269 This type of sensor will output a low signal GND when active.
1270 )))
1271
1272 * (((
1273 Connect sensor’s output to DI1-
1274 )))
1275 * (((
1276 Connect sensor’s VCC to DI1+.
1277 )))
1278
1279 (((
1280 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1281 )))
1282
1283 (((
1284 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1285 )))
1286
1287 (((
1288 If DI1+ = 12v, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1289 )))
1290
1291 (((
1292
1293 )))
1294
1295 (((
1296 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1297 )))
1298
1299 (((
1300 This type of sensor will output a high signal (example 24v) when active.
1301 )))
1302
1303 * (((
1304 Connect sensor’s output to DI1+
1305 )))
1306 * (((
1307 Connect sensor’s GND DI1-.
1308 )))
1309
1310 (((
1311 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1312 )))
1313
1314 (((
1315 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1316 )))
1317
1318 (((
1319 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1320 )))
1321
1322 (((
1323
1324 )))
1325
1326 (((
1327 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1328 )))
1329
1330 (((
1331 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1332 )))
1333
1334 * (((
1335 Connect sensor’s output to DI1+ with a serial 50K resistor
1336 )))
1337 * (((
1338 Connect sensor’s GND DI1-.
1339 )))
1340
1341 (((
1342 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1343 )))
1344
1345 (((
1346 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1347 )))
1348
1349 (((
1350 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1351 )))
1352
1353
1354
1355 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1356
1357 NPN output: GND or Float. Max voltage can apply to output pin is 36v.
1358
1359 [[image:1653357531600-905.png]]
1360
1361
1362
1363 === 3.6.4 Analog Input Interface ===
1364
1365 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1366
1367
1368 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1369
1370 [[image:1653357592296-182.png]]
1371
1372 Example to connect a 4~~20mA sensor
1373
1374 We take the wind speed sensor as an example for reference only.
1375
1376
1377 **Specifications of the wind speed sensor:**
1378
1379 Red:  12~~24v
1380
1381 Yellow:  4~~20mA
1382
1383 Black:  GND
1384
1385
1386 **Connection diagram:**
1387
1388 [[image:1653357640609-758.png]]
1389
1390 [[image:1653357648330-671.png||height="155" width="733"]]
1391
1392
1393
1394 === 3.6.5 Relay Output ===
1395
1396 (((
1397 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device’s Power Line to in serial of RO1_1 and RO_2. Such as below:
1398 )))
1399
1400 [[image:image-20220524100215-9.png]]
1401
1402 [[image:image-20220524100215-10.png||height="382" width="723"]]
1403
1404
1405
1406 == 3.7 LEDs Indicators ==
1407
1408 [[image:image-20220524100748-11.png]]
1409
1410
1411 = 4. Use AT Command =
1412
1413 == 4.1 Access AT Command ==
1414
1415 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1416
1417 [[image:1653358238933-385.png]]
1418
1419
1420 (((
1421 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1422 )))
1423
1424 [[image:1653358355238-883.png]]
1425
1426
1427 (((
1428 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1429 )))
1430
1431 (((
1432 AT+<CMD>?        : Help on <CMD>
1433 )))
1434
1435 (((
1436 AT+<CMD>         : Run <CMD>
1437 )))
1438
1439 (((
1440 AT+<CMD>=<value> : Set the value
1441 )))
1442
1443 (((
1444 AT+<CMD>=?       : Get the value
1445 )))
1446
1447 (((
1448 ATZ: Trig a reset of the MCU
1449 )))
1450
1451 (((
1452 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1453 )))
1454
1455 (((
1456 AT+DEUI: Get or Set the Device EUI
1457 )))
1458
1459 (((
1460 AT+DADDR: Get or Set the Device Address
1461 )))
1462
1463 (((
1464 AT+APPKEY: Get or Set the Application Key
1465 )))
1466
1467 (((
1468 AT+NWKSKEY: Get or Set the Network Session Key
1469 )))
1470
1471 (((
1472 AT+APPSKEY: Get or Set the Application Session Key
1473 )))
1474
1475 (((
1476 AT+APPEUI: Get or Set the Application EUI
1477 )))
1478
1479 (((
1480 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1481 )))
1482
1483 (((
1484 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1485 )))
1486
1487 (((
1488 AT+DR: Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1489 )))
1490
1491 (((
1492 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1493 )))
1494
1495 (((
1496 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1497 )))
1498
1499 (((
1500 AT+RX2FQ: Get or Set the Rx2 window frequency
1501 )))
1502
1503 (((
1504 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1505 )))
1506
1507 (((
1508 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1509 )))
1510
1511 (((
1512 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1513 )))
1514
1515 (((
1516 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1517 )))
1518
1519 (((
1520 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1521 )))
1522
1523 (((
1524 AT+NJM: Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1525 )))
1526
1527 (((
1528 AT+NWKID: Get or Set the Network ID
1529 )))
1530
1531 (((
1532 AT+FCU: Get or Set the Frame Counter Uplink
1533 )))
1534
1535 (((
1536 AT+FCD: Get or Set the Frame Counter Downlink
1537 )))
1538
1539 (((
1540 AT+CLASS: Get or Set the Device Class
1541 )))
1542
1543 (((
1544 AT+JOIN: Join network
1545 )))
1546
1547 (((
1548 AT+NJS: Get OTAA Join Status
1549 )))
1550
1551 (((
1552 AT+SENDB: Send hexadecimal data along with the application port
1553 )))
1554
1555 (((
1556 AT+SEND: Send text data along with the application port
1557 )))
1558
1559 (((
1560 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1561 )))
1562
1563 (((
1564 AT+RECV: Print last received data in raw format
1565 )))
1566
1567 (((
1568 AT+VER: Get current image version and Frequency Band
1569 )))
1570
1571 (((
1572 AT+CFM: Get or Set the confirmation mode (0-1)
1573 )))
1574
1575 (((
1576 AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1577 )))
1578
1579 (((
1580 AT+SNR: Get the SNR of the last received packet
1581 )))
1582
1583 (((
1584 AT+RSSI: Get the RSSI of the last received packet
1585 )))
1586
1587 (((
1588 AT+TDC: Get or set the application data transmission interval in ms
1589 )))
1590
1591 (((
1592 AT+PORT: Get or set the application port
1593 )))
1594
1595 (((
1596 AT+DISAT: Disable AT commands
1597 )))
1598
1599 (((
1600 AT+PWORD: Set password, max 9 digits
1601 )))
1602
1603 (((
1604 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1605 )))
1606
1607 (((
1608 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1609 )))
1610
1611 (((
1612 AT+CFG: Print all settings
1613
1614
1615 )))
1616
1617
1618
1619 == 4.2 Common AT Command Sequence ==
1620
1621 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1622
1623 (((
1624
1625
1626 **If device has not joined network yet:**
1627 )))
1628
1629 (((
1630 (% style="background-color:#dcdcdc" %)123456
1631 )))
1632
1633 (((
1634 (% style="background-color:#dcdcdc" %)AT+FDR
1635 )))
1636
1637 (((
1638 (% style="background-color:#dcdcdc" %)123456
1639 )))
1640
1641 (((
1642 (% style="background-color:#dcdcdc" %)AT+NJM=0
1643 )))
1644
1645 (((
1646 (% style="background-color:#dcdcdc" %)ATZ
1647 )))
1648
1649
1650 (((
1651 **If device already joined network:**
1652 )))
1653
1654 (((
1655 (% style="background-color:#dcdcdc" %)AT+NJM=0
1656 )))
1657
1658 (((
1659 (% style="background-color:#dcdcdc" %)ATZ
1660
1661
1662 )))
1663
1664
1665
1666 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1667
1668 (((
1669
1670
1671 (% style="background-color:#dcdcdc" %)123456(%%)  Enter Password to have AT access.
1672 )))
1673
1674 (((
1675 (% style="background-color:#dcdcdc" %) AT+FDR(%%)   Reset Parameters to Factory Default, Keys Reserve
1676 )))
1677
1678 (((
1679 (% style="background-color:#dcdcdc" %) 123456(%%)  Enter Password to have AT access.
1680 )))
1681
1682 (((
1683 (% style="background-color:#dcdcdc" %) AT+CLASS=C(%%) Set to work in CLASS C
1684 )))
1685
1686 (((
1687 (% style="background-color:#dcdcdc" %) AT+NJM=0(%%)  Set to ABP mode
1688 )))
1689
1690 (((
1691 (% style="background-color:#dcdcdc" %) AT+ADR=0(%%)  Set the Adaptive Data Rate Off
1692 )))
1693
1694 (((
1695 (% style="background-color:#dcdcdc" %) AT+DR=5(%%)  Set Data Rate
1696 )))
1697
1698 (((
1699 (% style="background-color:#dcdcdc" %) AT+TDC=60000(%%)  Set transmit interval to 60 seconds
1700 )))
1701
1702 (((
1703 (% style="background-color:#dcdcdc" %) AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1704 )))
1705
1706 (((
1707 (% style="background-color:#dcdcdc" %) AT+RX2FQ=868400000(%%)  Set RX2Frequency to 868.4Mhz (according to the result from server)
1708 )))
1709
1710 (((
1711 (% style="background-color:#dcdcdc" %) AT+RX2DR=5(%%)  Set RX2DR to match the downlink DR from server. see below
1712 )))
1713
1714 (((
1715 (% style="background-color:#dcdcdc" %) AT+DADDR=26 01 1A F1 (%%) Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1716 )))
1717
1718 (((
1719 (% style="background-color:#dcdcdc" %) ATZ         (%%) Reset MCU
1720
1721
1722 )))
1723
1724 (((
1725 (% style="color:red" %)**Note:**
1726 )))
1727
1728 (((
1729 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1730 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1731 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1732 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1733 )))
1734
1735 (((
1736 [[image:1653359097980-169.png||height="188" width="729"]]
1737 )))
1738
1739 (((
1740
1741 )))
1742
1743
1744 === 4.2.3 Change to Class A ===
1745
1746 If sensor JOINED
1747 (% style="background-color:#dcdcdc" %)AT+CLASS=A
1748 ATZ
1749
1750
1751 = 5. FAQ =
1752
1753 == 5.1 How to upgrade the image? ==
1754
1755
1756 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1757
1758 * Support new features
1759 * For bug fix
1760 * Change LoRaWAN bands.
1761
1762 Below shows the hardware connection for how to upload an image to the LT:
1763
1764 [[image:1653359603330-121.png]]
1765
1766
1767 (((
1768 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1769 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1770 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
1771
1772
1773 (% style="color:blue" %)**For LT-22222-L**(%%):
1774 Hold down the PRO button and then momentarily press the RST reset button and the **DO1 led** will change from OFF to ON. When **DO1 LED** is on, it means the device is in download mode.
1775 )))
1776
1777 [[image:image-20220524103407-12.png]]
1778
1779 [[image:image-20220524103429-13.png]]
1780
1781 [[image:image-20220524104033-15.png]]
1782
1783
1784 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1785
1786 [[image:1653360054704-518.png||height="186" width="745"]]
1787
1788
1789 (((
1790 (((
1791
1792
1793 == 5.2 How to change the LoRa Frequency Bands/Region? ==
1794 )))
1795 )))
1796
1797 (((
1798 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1799 )))
1800
1801 (((
1802
1803
1804 == 5.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
1805 )))
1806
1807 (((
1808 (((
1809 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
1810 )))
1811 )))
1812
1813 (((
1814 (((
1815 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
1816
1817
1818 )))
1819 )))
1820
1821 (((
1822 (% style="color:#4f81bd" %)**Step1**(%%): Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
1823 )))
1824
1825 (((
1826 [[image:1653360231087-571.png||height="401" width="727"]]
1827 )))
1828
1829 (((
1830 (% style="color:red" %)Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.
1831 )))
1832
1833
1834 (((
1835 (% style="color:#4f81bd" %)**Step2**(%%)**: **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
1836 )))
1837
1838 (((
1839 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
1840 (% style="background-color:#dcdcdc" %)AT+FDR(%%)  Reset Parameters to Factory Default, Keys Reserve
1841 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
1842 (% style="background-color:#dcdcdc" %)AT+NJM=0 (%%) Set to ABP mode
1843 (% style="background-color:#dcdcdc" %)AT+ADR=0 (%%) Set the Adaptive Data Rate Off
1844 (% style="background-color:#dcdcdc" %)AT+DR=5 (%%) Set Data Rate (Set AT+DR=3 for 915 band)
1845 (% style="background-color:#dcdcdc" %)AT+TDC=60000 (%%) Set transmit interval to 60 seconds
1846 (% style="background-color:#dcdcdc" %)AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1847 (% style="background-color:#dcdcdc" %)AT+DADDR=26 01 1A F1(%%)  Set Device Address to 26 01 1A F1
1848 (% style="background-color:#dcdcdc" %)ATZ        (%%) Reset MCU
1849 )))
1850
1851
1852 (((
1853 As shown in below:
1854 )))
1855
1856 [[image:1653360498588-932.png||height="485" width="726"]]
1857
1858
1859 == 5.4 Can I see counting event in Serial? ==
1860
1861 (((
1862 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn’t support AT+DEBUG. User can update to latest firmware first.
1863
1864
1865 == 5.5 Can i use point to point communication for LT-22222-L? ==
1866
1867 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]
1868 )))
1869
1870 (((
1871 == 5.6 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
1872
1873 If the device is not shut down, but directly powered off.
1874
1875 It will default that this is a power-off state.
1876
1877 In modes 2 to 5, DO RO status and pulse count are saved in flash.
1878
1879 After restart, the status before power failure will be read from flash.
1880
1881 = 6. Trouble Shooting =
1882 )))
1883
1884 (((
1885 (((
1886 == 6.1 Downlink doesn’t work, how to solve it? ==
1887 )))
1888 )))
1889
1890 (((
1891 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
1892 )))
1893
1894 (((
1895
1896
1897 == 6.2 Have trouble to upload image. ==
1898 )))
1899
1900 (((
1901 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
1902 )))
1903
1904 (((
1905
1906
1907 == 6.3 Why I can’t join TTN in US915 /AU915 bands? ==
1908 )))
1909
1910 (((
1911 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1912 )))
1913
1914
1915
1916 = 7. Order Info =
1917
1918
1919 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
1920
1921
1922 (% style="color:#4f81bd" %)**XXX:**
1923
1924 * (% style="color:#4f81bd" %)**EU433**(%%): LT with frequency bands EU433
1925 * (% style="color:#4f81bd" %)**EU868**(%%): LT with frequency bands EU868
1926 * (% style="color:#4f81bd" %)**KR920**(%%): LT with frequency bands KR920
1927 * (% style="color:#4f81bd" %)**CN470**(%%): LT with frequency bands CN470
1928 * (% style="color:#4f81bd" %)**AS923**(%%): LT with frequency bands AS923
1929 * (% style="color:#4f81bd" %)**AU915**(%%): LT with frequency bands AU915
1930 * (% style="color:#4f81bd" %)**US915**(%%): LT with frequency bands US915
1931 * (% style="color:#4f81bd" %)**IN865**(%%): LT with frequency bands IN865
1932 * (% style="color:#4f81bd" %)**CN779**(%%): LT with frequency bands CN779
1933
1934 = 8. Packing Info =
1935
1936
1937 **Package Includes**:
1938
1939 * LT-22222-L I/O Controller x 1
1940 * Stick Antenna for LoRa RF part x 1
1941 * Bracket for controller x1
1942 * Program cable x 1
1943
1944 **Dimension and weight**:
1945
1946 * Device Size: 13.5 x 7 x 3 cm
1947 * Device Weight: 105g
1948 * Package Size / pcs : 14.5 x 8 x 5 cm
1949 * Weight / pcs : 170g
1950
1951 = 9. Support =
1952
1953 * (((
1954 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1955 )))
1956 * (((
1957 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1958 )))
1959
1960 = 10. Reference​​​​​ =
1961
1962 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
1963 * [[Image Download>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]]
1964 * [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1965 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]