Version 82.30 by Xiaoling on 2022/06/20 13:34

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4 **LT-22222-L LoRa IO Controller User Manual **
5
6
7 **Table of Contents:**
8
9 {{toc/}}
10
11
12
13
14
15
16
17 = 1.Introduction =
18
19 == 1.1 What is LT Series I/O Controller ==
20
21 (((
22
23
24 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 )))
26
27 (((
28 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
29 )))
30
31 (((
32 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
33 )))
34
35 (((
36 The use environment includes:
37 )))
38
39 (((
40 1) If user’s area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
41 )))
42
43 (((
44 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
45 )))
46
47 (((
48 [[image:1653295757274-912.png]]
49
50
51 )))
52
53
54 == 1.2  Specifications ==
55
56 (((
57
58
59 **Hardware System:**
60 )))
61
62 * (((
63 STM32L072CZT6 MCU
64 )))
65 * (((
66 SX1276/78 Wireless Chip 
67 )))
68 * (((
69 (((
70 Power Consumption:
71 )))
72
73 * (((
74 Idle: 4mA@12v
75 )))
76 * (((
77 20dB Transmit: 34mA@12v
78 )))
79 )))
80
81 (((
82
83
84 **Interface for Model: LT22222-L:**
85 )))
86
87 * (((
88 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
89 )))
90 * (((
91 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
92 )))
93 * (((
94 2 x Relay Output (5A@250VAC / 30VDC)
95 )))
96 * (((
97 2 x 0~~20mA Analog Input (res:0.01mA)
98 )))
99 * (((
100 2 x 0~~30V Analog Input (res:0.01v)
101 )))
102 * (((
103 Power Input 7~~ 24V DC. 
104 )))
105
106 (((
107
108
109 **LoRa Spec:**
110 )))
111
112 * (((
113 (((
114 Frequency Range:
115 )))
116
117 * (((
118 Band 1 (HF): 862 ~~ 1020 Mhz
119 )))
120 * (((
121 Band 2 (LF): 410 ~~ 528 Mhz
122 )))
123 )))
124 * (((
125 168 dB maximum link budget.
126 )))
127 * (((
128 +20 dBm - 100 mW constant RF output vs.
129 )))
130 * (((
131 +14 dBm high efficiency PA.
132 )))
133 * (((
134 Programmable bit rate up to 300 kbps.
135 )))
136 * (((
137 High sensitivity: down to -148 dBm.
138 )))
139 * (((
140 Bullet-proof front end: IIP3 = -12.5 dBm.
141 )))
142 * (((
143 Excellent blocking immunity.
144 )))
145 * (((
146 Low RX current of 10.3 mA, 200 nA register retention.
147 )))
148 * (((
149 Fully integrated synthesizer with a resolution of 61 Hz.
150 )))
151 * (((
152 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
153 )))
154 * (((
155 Built-in bit synchronizer for clock recovery.
156 )))
157 * (((
158 Preamble detection.
159 )))
160 * (((
161 127 dB Dynamic Range RSSI.
162 )))
163 * (((
164 Automatic RF Sense and CAD with ultra-fast AFC.
165 )))
166 * (((
167 Packet engine up to 256 bytes with CRC.
168
169
170
171
172 )))
173
174 == 1.3 Features ==
175
176 * LoRaWAN Class A & Class C protocol
177 * Optional Customized LoRa Protocol
178 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865
179 * AT Commands to change parameters
180 * Remote configure parameters via LoRa Downlink
181 * Firmware upgradable via program port
182 * Counting
183
184 == 1.4  Applications ==
185
186 * Smart Buildings & Home Automation
187 * Logistics and Supply Chain Management
188 * Smart Metering
189 * Smart Agriculture
190 * Smart Cities
191 * Smart Factory
192
193 == 1.5 Hardware Variants ==
194
195 (% border="1" style="background-color:#f7faff; width:500px" %)
196 |(% style="width:103px" %)**Model**|(% style="width:131px" %)**Photo**|(% style="width:334px" %)**Description**
197 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)[[image:1653296302983-697.png]]|(% style="width:334px" %)(((
198 * 2 x Digital Input (Bi-direction)
199 * 2 x Digital Output
200 * 2 x Relay Output (5A@250VAC / 30VDC)
201 * 2 x 0~~20mA Analog Input (res:0.01mA)
202 * 2 x 0~~30V Analog Input (res:0.01v)
203 * 1 x Counting Port
204 )))
205
206
207
208 = 2. Power ON Device =
209
210 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
211
212 (((
213 PWR will on when device is properly powered.
214 )))
215
216 [[image:1653297104069-180.png]]
217
218
219
220 = 3. Operation Mode =
221
222 == 3.1 How it works? ==
223
224 (((
225 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on **TX LED** will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. **TX LED** will be on for 5 seconds after joined in network. When there is message from server, the **RX LED** will be on for 1 second. 
226 )))
227
228 (((
229 In case user can’t set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
230 )))
231
232
233 == 3.2 Example to join LoRaWAN network ==
234
235 (((
236 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
237 )))
238
239 [[image:image-20220523172350-1.png||height="266" width="864"]]
240
241
242 (((
243 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
244 )))
245
246 (((
247 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
248 )))
249
250 (((
251 Each LT is shipped with a sticker with the default device EUI as below:
252 )))
253
254 [[image:1653297924498-393.png]]
255
256
257 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
258
259 Add APP EUI in the application.
260
261 [[image:1653297955910-247.png||height="321" width="716"]]
262
263
264 Add APP KEY and DEV EUI
265
266 [[image:1653298023685-319.png]]
267
268
269 (((
270 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
271 )))
272
273 [[image:1653298044601-602.png||height="405" width="709"]]
274
275
276
277 == 3.3 Uplink Payload ==
278
279 There are five working modes + one interrupt mode on LT for different type application:
280
281 * **MOD1**: (default setting): 2 x ACI + 2AVI + DI + DO + RO
282 * **MOD2**: Double DI Counting + DO + RO
283 * **MOD3**: Single DI Counting + 2 x ACI + DO + RO
284 * **MOD4**: Single DI Counting + 1 x Voltage Counting + DO + RO
285 * **MOD5**: Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
286 * **ADDMOD6**: Trigger Mode, Optional, used together with MOD1 ~~ MOD5
287
288 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
289
290 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default.
291
292 [[image:image-20220523174024-3.png]]
293
294 (((
295
296
297 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
298 )))
299
300 [[image:image-20220523174254-4.png]]
301
302 * RO is for relay. ROx=1 : close,ROx=0 always open.
303 * DI is for digital input. DIx=1: high or float, DIx=0: low.
304 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
305
306 (% style="color:red" %)Note: DI3 and DO3 bit are not valid for LT-22222-L
307
308 For example if payload is: [[image:image-20220523175847-2.png]]
309
310
311 **The value for the interface is:  **
312
313 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
314
315 AVI2 channel voltage is 0x04AC/1000=1.196V
316
317 ACI1 channel current is 0x1310/1000=4.880mA
318
319 ACI2 channel current is 0x1300/1000=4.864mA
320
321 The last byte 0xAA= 10101010(B) means
322
323 * [1] RO1 relay channel is close and the RO1 LED is ON.
324 * [0] RO2 relay channel is open and RO2 LED is OFF;
325
326 **LT22222-L:**
327
328 * [1] DI2 channel is high input and DI2 LED is ON;
329 * [0] DI1 channel is low input;
330
331 * [0] DO3 channel output state
332 ** DO3 is float in case no load between DO3 and V+.;
333 ** DO3 is high in case there is load between DO3 and V+.
334 ** DO3 LED is off in both case
335 * [1] DO2 channel output is low and DO2 LED is ON.
336 * [0] DO1 channel output state
337 ** DO1 is float in case no load between DO1 and V+.;
338 ** DO1 is high in case there is load between DO1 and V+.
339 ** DO1 LED is off in both case
340
341 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
342
343
344 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
345
346 (((
347 Total : 11 bytes payload
348 )))
349
350 [[image:image-20220523180452-3.png]]
351
352
353 (((
354 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
355 )))
356
357 [[image:image-20220523180506-4.png]]
358
359 * RO is for relay. ROx=1 : close,ROx=0 always open.
360 * FIRST: Indicate this is the first packet after join network.
361 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
362
363 (((
364 (% style="color:red" %)Note: DO3 bit is not valid for LT-22222-L.
365 )))
366
367 (((
368
369
370 **To use counting mode, please run:**
371 )))
372
373 (% class="box infomessage" %)
374 (((
375 (((
376 **AT+MOD=2**
377
378 **ATZ**
379 )))
380 )))
381
382 (((
383
384
385 (% style="color:#4f81bd" %)**AT Commands for counting:**
386 )))
387
388 (((
389 **For LT22222-L:**
390
391
392 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
393
394 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
395
396 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
397
398 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
399
400 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
401
402 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
403 )))
404
405
406
407 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
408
409 **LT22222-L**: This mode the DI1 is used as a counting pin.
410
411 [[image:image-20220523181246-5.png]]
412
413 (((
414 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
415 )))
416
417 [[image:image-20220523181301-6.png]]
418
419 * RO is for relay. ROx=1 : close,ROx=0 always open.
420 * FIRST: Indicate this is the first packet after join network.
421 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
422
423 (((
424 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
425 )))
426
427 (((
428 **To use counting mode, please run:**
429 )))
430
431 (% class="box infomessage" %)
432 (((
433 (((
434 **AT+MOD=3**
435
436 **ATZ**
437 )))
438 )))
439
440 (((
441 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
442 )))
443
444
445
446 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
447
448
449 **LT22222-L**: This mode the DI1 is used as a counting pin.
450
451 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
452
453 [[image:image-20220523181903-8.png]]
454
455
456 (((
457 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
458 )))
459
460 [[image:image-20220523181727-7.png]]
461
462 * RO is for relay. ROx=1 : close,ROx=0 always open.
463 * FIRST: Indicate this is the first packet after join network.
464 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
465
466 (((
467 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
468 )))
469
470 (((
471
472
473 **To use this mode, please run:**
474 )))
475
476 (% class="box infomessage" %)
477 (((
478 (((
479 **AT+MOD=4**
480
481 **ATZ**
482 )))
483 )))
484
485
486
487 (((
488 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
489 )))
490
491 (((
492
493
494 **Plus below command for AVI1 Counting:**
495
496
497 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
498
499 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
500
501 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
502
503 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
504 )))
505
506
507
508 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
509
510
511 **LT22222-L**: This mode the DI1 is used as a counting pin.
512
513 [[image:image-20220523182334-9.png]]
514
515 (((
516
517
518 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
519 )))
520
521 * RO is for relay. ROx=1 : close,ROx=0 always open.
522 * FIRST: Indicate this is the first packet after join network.
523 * (((
524 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
525 )))
526
527 (((
528 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
529 )))
530
531 (((
532
533
534 **To use this mode, please run:**
535 )))
536
537 (% class="box infomessage" %)
538 (((
539 (((
540 **AT+MOD=5**
541
542 **ATZ**
543 )))
544 )))
545
546 (((
547 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
548 )))
549
550
551
552 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
553
554
555 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
556
557 For example, if user has configured below commands:
558
559 * **AT+MOD=1 ** **~-~->** The normal working mode
560 * **AT+ADDMOD6=1**   **~-~->** Enable trigger
561
562 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
563
564 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
565 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
566
567
568 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
569
570 (% style="color:#4f81bd" %)**Trigger base on voltage**:
571
572 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
573
574 **Example:**
575
576 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
577
578 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
579
580
581
582 (% style="color:#4f81bd" %)**Trigger base on current**:
583
584 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
585
586 **Example:**
587
588 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
589
590
591
592 (% style="color:#4f81bd" %)**Trigger base on DI status**:
593
594 DI status trigger Flag.
595
596 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
597
598
599 **Example:**
600
601 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
602
603
604 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
605
606 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
607
608 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
609
610 AA: Code for this downlink Command:
611
612 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
613
614 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
615
616 yy2 yy2: AC1 or AV1 high limit.
617
618 yy3 yy3: AC2 or AV2 low limit.
619
620 Yy4 yy4: AC2 or AV2 high limit.
621
622
623 **Example1**: AA 00 13 88 00 00 00 00 00 00
624
625 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
626
627
628 **Example2**: AA 02 01 00
629
630 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
631
632
633
634 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
635
636 MOD6 Payload : total 11 bytes payload
637
638 [[image:image-20220524085923-1.png]]
639
640
641 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
642
643 [[image:image-20220524090106-2.png]]
644
645 * Each bits shows if the corresponding trigger has been configured.
646
647 **Example:**
648
649 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
650
651
652 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
653
654 [[image:image-20220524090249-3.png]]
655
656 * Each bits shows which status has been trigger on this uplink.
657
658 **Example:**
659
660 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
661
662
663 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
664
665 [[image:image-20220524090456-4.png]]
666
667 * Each bits shows which status has been trigger on this uplink.
668
669 **Example:**
670
671 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
672
673 00000101: Means both DI1 and DI2 trigger are enabled.
674
675
676 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
677
678 Downlink command to poll MOD6 status:
679
680 **AB 06**
681
682 When device got this command, it will send the MOD6 payload.
683
684
685
686 === 3.3.7 Payload Decoder ===
687
688 (((
689
690
691 **Decoder for TTN/loraserver/ChirpStack**: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/Payload_decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/Payload_decoder/]]
692
693
694 )))
695
696
697 == 3.4 ​Configure LT via AT or Downlink ==
698
699 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
700
701 (((
702 There are two kinds of Commands:
703 )))
704
705 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
706
707 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
708
709 === 3.4.1 Common Commands ===
710
711 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
712
713
714
715 === 3.4.2 Sensor related commands ===
716
717 ==== 3.4.2.1 Set Transmit Interval ====
718
719 Set device uplink interval.
720
721 * (% style="color:#037691" %)**AT Command:**
722
723 **AT+TDC=N **
724
725
726 **Example: **AT+TDC=30000. Means set interval to 30 seconds
727
728
729 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
730
731 **0x01 aa bb cc     ~/~/ Same as AT+TDC=0x(aa bb cc)**
732
733
734
735
736 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
737
738 Set work mode.
739
740 * (% style="color:#037691" %)**AT Command:**
741
742 **AT+MOD=N  **
743
744
745 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
746
747
748 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
749
750 (% class="box infomessage" %)
751 (((
752 **0x0A aa     ~/~/ Same as AT+MOD=aa**
753 )))
754
755
756
757 ==== 3.4.2.3 Poll an uplink ====
758
759 * (% style="color:#037691" %)AT Command:
760
761 There is no AT Command to poll uplink
762
763
764 * (% style="color:#037691" %)Downlink Payload (prefix 0x08):
765
766 (% class="box infomessage" %)
767 (((
768 **0x08 FF     ~/~/ Poll an uplink,**
769 )))
770
771 **Example**: 0x08FF, ask device to send an Uplink
772
773
774
775 ==== 3.4.2.4 Enable Trigger Mode ====
776
777 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
778
779 * (% style="color:#037691" %)AT Command:
780
781 (% class="box infomessage" %)
782 (((
783 **AT+ADDMOD6=1 or 0**
784 )))
785
786 1: Enable Trigger Mode
787
788 0: Disable Trigger Mode
789
790
791 * (% style="color:#037691" %)Downlink Payload (prefix 0x0A 06):
792
793 (% class="box infomessage" %)
794 (((
795 **0x0A 06 aa     ~/~/ Same as AT+ADDMOD6=aa,**
796 )))
797
798
799
800 ==== 3.4.2.5 Poll trigger settings ====
801
802 Poll trigger settings,
803
804 * (% style="color:#037691" %)AT Command:
805
806 There is no AT Command for this feature.
807
808
809 * (% style="color:#037691" %)Downlink Payload (prefix 0x AB 06):
810
811 (% class="box infomessage" %)
812 (((
813 **0xAB 06  ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command**
814 )))
815
816
817
818 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
819
820 Enable Disable DI1/DI2/DI2 as trigger,
821
822 * (% style="color:#037691" %)AT Command:
823
824 **Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
825
826
827 **Example:**
828
829 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
830
831 * (% style="color:#037691" %)Downlink Payload (prefix 0xAA 02):
832
833 **0xAA 02 aa bb        **~/~/ Same as AT+DTRI=aa,bb
834
835
836
837
838 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
839
840 Set DI1 or DI3(for LT-33222-L) trigger.
841
842 * (% style="color:#037691" %)AT Command:
843
844 **AT+TRIG1=a,b**
845
846 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
847
848 b : delay timing.
849
850
851 **Example:**
852
853 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
854
855
856 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
857 * **0x09 01 aa bb cc    ** ~/~/ same as AT+TRIG1=aa,0x(bb cc)
858
859
860 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
861
862 Set DI2 trigger.
863
864 * (% style="color:#037691" %)**AT Command:**
865
866 **AT+TRIG2=a,b**
867
868
869 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
870
871 b : delay timing.
872
873
874 **Example:**
875
876 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
877
878
879 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
880
881 **0x09 02 aa bb cc           **~/~/ same as AT+TRIG1=aa,0x(bb cc)
882
883
884
885
886 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
887
888 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
889
890 * (% style="color:#037691" %)**AT Command**
891
892 **AT+ACLIM**
893
894
895 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
896
897 **0x AA 01 aa bb cc dd ee ff gg hh        ** ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
898
899
900
901
902 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
903
904 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
905
906 * (% style="color:#037691" %)**AT Command**
907
908 **AT+AVLIM  See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
909
910
911 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
912
913 **0x AA 00 aa bb cc dd ee ff gg hh    ** ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
914
915
916
917
918 ==== 3.4.2.11 Trigger – Set minimum interval ====
919
920 Set AV and AC trigger minimum interval, system won’t response to the second trigger within this set time after the first trigger.
921
922 * (% style="color:#037691" %)**AT Command**
923
924 **AT+ATDC=5. Device won’t response the second trigger within 5 minute after the first trigger.**
925
926
927 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
928
929 **0x AC aa bb   ** ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
930
931
932
933
934 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
935
936 * (% style="color:#037691" %)**AT Command**
937
938 There is no AT Command to control Digital Output
939
940
941 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
942 * **0x02 aa bb cc     **~/~/ Set DO1/DO2/DO3 output
943
944 (((
945 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
946 )))
947
948 (((
949 01: Low,  00: High ,  11: No action
950 )))
951
952 [[image:image-20220524092754-5.png]]
953
954 (((
955 (% style="color:red" %)Note: For LT-22222-L, there is no DO3, the last byte can use any value.
956 )))
957
958 (((
959 (% style="color:red" %)Device will upload a packet if downlink code executes successfully.
960 )))
961
962
963
964
965 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
966
967 * (% style="color:#037691" %)**AT Command**
968
969 There is no AT Command to control Digital Output
970
971
972 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
973
974 **0xA9 aa bb cc     **~/~/ Set DO1/DO2/DO3 output with time control
975
976
977 This is to control the digital output time of DO pin. Include four bytes:
978
979 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
980
981 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
982
983 01: DO pins will change back to original state after timeout.
984
985 00: DO pins will change to an inverter state after timeout 
986
987
988 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
989
990 [[image:image-20220524093238-6.png]]
991
992
993 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
994
995 [[image:image-20220524093328-7.png]]
996
997
998 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
999
1000 [[image:image-20220524093351-8.png]]
1001
1002
1003 (% style="color:#4f81bd" %)**Sixth and Seventh Byte**:
1004
1005 Latching time. Unit: ms
1006
1007 Device will upload a packet if downlink code executes successfully.
1008
1009
1010 **Example payload:**
1011
1012 **~1. A9 01 01 01 01 07 D0**
1013
1014 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1015
1016 **2. A9 01 00 01 11 07 D0**
1017
1018 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1019
1020 **3. A9 00 00 00 00 07 D0**
1021
1022 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1023
1024 **4. A9 00 11 01 00 07 D0**
1025
1026 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1027
1028
1029
1030
1031 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1032
1033 * (% style="color:#037691" %)**AT Command:**
1034
1035 There is no AT Command to control Relay Output
1036
1037
1038 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1039
1040 **0x03 aa bb     **~/~/ Set RO1/RO2 output
1041
1042
1043 (((
1044 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1045 )))
1046
1047 (((
1048 01: Close ,  00: Open , 11: No action
1049 )))
1050
1051 (((
1052 [[image:image-20220524093724-9.png]]
1053 )))
1054
1055 Device will upload a packet if downlink code executes successfully.
1056
1057
1058
1059
1060 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1061
1062 * (% style="color:#037691" %)**AT Command:**
1063
1064 There is no AT Command to control Relay Output
1065
1066
1067 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1068
1069 **0x05 aa bb cc dd     **~/~/ Set RO1/RO2 relay with time control
1070
1071
1072 This is to control the relay output time of relay. Include four bytes:
1073
1074 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1075
1076 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1077
1078 01: Relays will change back to original state after timeout.
1079
1080 00: Relays will change to an inverter state after timeout
1081
1082
1083 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1084
1085 [[image:image-20220524093831-10.png]]
1086
1087
1088 (% style="color:#4f81bd" %)**Fourth/Fifth Bytes(cc)**(%%): Latching time. Unit: ms
1089
1090 Device will upload a packet if downlink code executes successfully.
1091
1092
1093 **Example payload:**
1094
1095 **~1. 05 01 11 07 D0**
1096
1097 Relay1 and Relay 2 will be set to NO , last 2 seconds, then change back to original state.
1098
1099 **2. 05 01 10 07 D0**
1100
1101 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then both change back to original state.
1102
1103 **3. 05 00 01 07 D0**
1104
1105 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then relay change to NO, Relay2 change to NC.
1106
1107 **4. 05 00 00 07 D0**
1108
1109 Relay 1 & relay2 will change to NC, last 2 seconds, then both change to NO.
1110
1111
1112
1113
1114 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1115
1116 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1117
1118 * (% style="color:#037691" %)**AT Command:**
1119
1120 **AT+VOLMAX   ** ~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1121
1122
1123 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1124
1125 **0xA5 aa bb cc   **~/~/ Same as AT+VOLMAX=(aa bb),cc
1126
1127
1128
1129
1130 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1131
1132 * (% style="color:#037691" %)**AT Command:**
1133
1134 (% style="color:#037691" %)**​​​​​​​**(%%)**AT+SETCNT=aa,(bb cc dd ee) **
1135
1136 aa: 1: Set count1,
1137
1138 2: Set count2,
1139
1140 3: Set AV1 count
1141
1142 Bb cc dd ee: number to be set
1143
1144
1145 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1146
1147 **0x A8 aa bb cc dd ee     **~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1148
1149
1150
1151
1152 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1153
1154 Clear counting for counting mode
1155
1156 * (% style="color:#037691" %)**AT Command:**
1157
1158 (% style="color:#037691" %)​​​​​​​​​​​​​​(%%)**AT+CLRCOUNT ** ~/~/ clear all counting
1159
1160
1161 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1162
1163 **0x A6 01    ** ~/~/ clear all counting
1164
1165
1166
1167
1168 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1169
1170 * (% style="color:#037691" %)**AT Command:**
1171
1172 **AT+COUTIME=60  **~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1173
1174
1175 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1176
1177 **0x A7 aa bb cc     **~/~/ same as AT+COUTIME =aa bb cc,
1178
1179 (((
1180 range: aa bb cc:0 to 16777215,  (unit:second)
1181
1182
1183 )))
1184
1185
1186
1187 == 3.5 Integrate with Mydevice ==
1188
1189 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1190
1191 (((
1192 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1193 )))
1194
1195 (((
1196 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1197 )))
1198
1199 [[image:1653356737703-362.png||height="232" width="732"]]
1200
1201 [[image:image-20220524094641-11.png||height="390" width="723"]]
1202
1203
1204 [[image:image-20220524094641-12.png||height="402" width="718"]]
1205
1206
1207 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1208
1209 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1210
1211 Search under The things network
1212
1213 [[image:1653356838789-523.png||height="337" width="740"]]
1214
1215
1216
1217 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1218
1219 [[image:image-20220524094909-1.png||height="335" width="729"]]
1220
1221
1222 [[image:image-20220524094909-2.png||height="337" width="729"]]
1223
1224
1225 [[image:image-20220524094909-3.png||height="338" width="727"]]
1226
1227
1228 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1229
1230
1231 [[image:image-20220524094909-5.png||height="341" width="734"]]
1232
1233
1234
1235 == 3.6 Interface Detail ==
1236
1237 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1238
1239 Support NPN Type sensor
1240
1241 [[image:1653356991268-289.png]]
1242
1243
1244
1245 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1246
1247 (((
1248 The DI port of LT-22222-L can support NPN or PNP output sensor.
1249 )))
1250
1251 (((
1252 (((
1253 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high
1254 )))
1255 )))
1256
1257 [[image:1653357170703-587.png]]
1258
1259 (((
1260 (((
1261 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1262 )))
1263 )))
1264
1265 (((
1266
1267 )))
1268
1269 (((
1270 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1271 )))
1272
1273 (((
1274 This type of sensor will output a low signal GND when active.
1275 )))
1276
1277 * (((
1278 Connect sensor’s output to DI1-
1279 )))
1280 * (((
1281 Connect sensor’s VCC to DI1+.
1282 )))
1283
1284 (((
1285 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1286 )))
1287
1288 (((
1289 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1290 )))
1291
1292 (((
1293 If DI1+ = 12v, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1294 )))
1295
1296 (((
1297
1298 )))
1299
1300 (((
1301 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1302 )))
1303
1304 (((
1305 This type of sensor will output a high signal (example 24v) when active.
1306 )))
1307
1308 * (((
1309 Connect sensor’s output to DI1+
1310 )))
1311 * (((
1312 Connect sensor’s GND DI1-.
1313 )))
1314
1315 (((
1316 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1317 )))
1318
1319 (((
1320 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1321 )))
1322
1323 (((
1324 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1325 )))
1326
1327 (((
1328
1329 )))
1330
1331 (((
1332 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1333 )))
1334
1335 (((
1336 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1337 )))
1338
1339 * (((
1340 Connect sensor’s output to DI1+ with a serial 50K resistor
1341 )))
1342 * (((
1343 Connect sensor’s GND DI1-.
1344 )))
1345
1346 (((
1347 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1348 )))
1349
1350 (((
1351 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1352 )))
1353
1354 (((
1355 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1356 )))
1357
1358
1359
1360 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1361
1362 NPN output: GND or Float. Max voltage can apply to output pin is 36v.
1363
1364 [[image:1653357531600-905.png]]
1365
1366
1367
1368 === 3.6.4 Analog Input Interface ===
1369
1370 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1371
1372
1373 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1374
1375 [[image:1653357592296-182.png]]
1376
1377 Example to connect a 4~~20mA sensor
1378
1379 We take the wind speed sensor as an example for reference only.
1380
1381
1382 **Specifications of the wind speed sensor:**
1383
1384 Red:  12~~24v
1385
1386 Yellow:  4~~20mA
1387
1388 Black:  GND
1389
1390
1391 **Connection diagram:**
1392
1393 [[image:1653357640609-758.png]]
1394
1395 [[image:1653357648330-671.png||height="155" width="733"]]
1396
1397
1398
1399 === 3.6.5 Relay Output ===
1400
1401 (((
1402 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device’s Power Line to in serial of RO1_1 and RO_2. Such as below:
1403 )))
1404
1405 [[image:image-20220524100215-9.png]]
1406
1407 [[image:image-20220524100215-10.png||height="382" width="723"]]
1408
1409
1410
1411 == 3.7 LEDs Indicators ==
1412
1413 [[image:image-20220524100748-11.png]]
1414
1415
1416 = 4. Use AT Command =
1417
1418 == 4.1 Access AT Command ==
1419
1420 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1421
1422 [[image:1653358238933-385.png]]
1423
1424
1425 (((
1426 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1427 )))
1428
1429 [[image:1653358355238-883.png]]
1430
1431
1432 (((
1433 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1434 )))
1435
1436 (((
1437 AT+<CMD>?        : Help on <CMD>
1438 )))
1439
1440 (((
1441 AT+<CMD>         : Run <CMD>
1442 )))
1443
1444 (((
1445 AT+<CMD>=<value> : Set the value
1446 )))
1447
1448 (((
1449 AT+<CMD>=?       : Get the value
1450 )))
1451
1452 (((
1453 ATZ: Trig a reset of the MCU
1454 )))
1455
1456 (((
1457 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1458 )))
1459
1460 (((
1461 AT+DEUI: Get or Set the Device EUI
1462 )))
1463
1464 (((
1465 AT+DADDR: Get or Set the Device Address
1466 )))
1467
1468 (((
1469 AT+APPKEY: Get or Set the Application Key
1470 )))
1471
1472 (((
1473 AT+NWKSKEY: Get or Set the Network Session Key
1474 )))
1475
1476 (((
1477 AT+APPSKEY: Get or Set the Application Session Key
1478 )))
1479
1480 (((
1481 AT+APPEUI: Get or Set the Application EUI
1482 )))
1483
1484 (((
1485 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1486 )))
1487
1488 (((
1489 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1490 )))
1491
1492 (((
1493 AT+DR: Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1494 )))
1495
1496 (((
1497 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1498 )))
1499
1500 (((
1501 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1502 )))
1503
1504 (((
1505 AT+RX2FQ: Get or Set the Rx2 window frequency
1506 )))
1507
1508 (((
1509 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1510 )))
1511
1512 (((
1513 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1514 )))
1515
1516 (((
1517 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1518 )))
1519
1520 (((
1521 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1522 )))
1523
1524 (((
1525 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1526 )))
1527
1528 (((
1529 AT+NJM: Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1530 )))
1531
1532 (((
1533 AT+NWKID: Get or Set the Network ID
1534 )))
1535
1536 (((
1537 AT+FCU: Get or Set the Frame Counter Uplink
1538 )))
1539
1540 (((
1541 AT+FCD: Get or Set the Frame Counter Downlink
1542 )))
1543
1544 (((
1545 AT+CLASS: Get or Set the Device Class
1546 )))
1547
1548 (((
1549 AT+JOIN: Join network
1550 )))
1551
1552 (((
1553 AT+NJS: Get OTAA Join Status
1554 )))
1555
1556 (((
1557 AT+SENDB: Send hexadecimal data along with the application port
1558 )))
1559
1560 (((
1561 AT+SEND: Send text data along with the application port
1562 )))
1563
1564 (((
1565 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1566 )))
1567
1568 (((
1569 AT+RECV: Print last received data in raw format
1570 )))
1571
1572 (((
1573 AT+VER: Get current image version and Frequency Band
1574 )))
1575
1576 (((
1577 AT+CFM: Get or Set the confirmation mode (0-1)
1578 )))
1579
1580 (((
1581 AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1582 )))
1583
1584 (((
1585 AT+SNR: Get the SNR of the last received packet
1586 )))
1587
1588 (((
1589 AT+RSSI: Get the RSSI of the last received packet
1590 )))
1591
1592 (((
1593 AT+TDC: Get or set the application data transmission interval in ms
1594 )))
1595
1596 (((
1597 AT+PORT: Get or set the application port
1598 )))
1599
1600 (((
1601 AT+DISAT: Disable AT commands
1602 )))
1603
1604 (((
1605 AT+PWORD: Set password, max 9 digits
1606 )))
1607
1608 (((
1609 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1610 )))
1611
1612 (((
1613 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1614 )))
1615
1616 (((
1617 AT+CFG: Print all settings
1618
1619
1620 )))
1621
1622
1623
1624 == 4.2 Common AT Command Sequence ==
1625
1626 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1627
1628 (((
1629
1630
1631 **If device has not joined network yet:**
1632 )))
1633
1634 (((
1635 (% style="background-color:#dcdcdc" %)123456
1636 )))
1637
1638 (((
1639 (% style="background-color:#dcdcdc" %)AT+FDR
1640 )))
1641
1642 (((
1643 (% style="background-color:#dcdcdc" %)123456
1644 )))
1645
1646 (((
1647 (% style="background-color:#dcdcdc" %)AT+NJM=0
1648 )))
1649
1650 (((
1651 (% style="background-color:#dcdcdc" %)ATZ
1652 )))
1653
1654
1655 (((
1656 **If device already joined network:**
1657 )))
1658
1659 (((
1660 (% style="background-color:#dcdcdc" %)AT+NJM=0
1661 )))
1662
1663 (((
1664 (% style="background-color:#dcdcdc" %)ATZ
1665
1666
1667 )))
1668
1669
1670
1671 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1672
1673 (((
1674
1675
1676 (% style="background-color:#dcdcdc" %)123456(%%)  Enter Password to have AT access.
1677 )))
1678
1679 (((
1680 (% style="background-color:#dcdcdc" %) AT+FDR(%%)   Reset Parameters to Factory Default, Keys Reserve
1681 )))
1682
1683 (((
1684 (% style="background-color:#dcdcdc" %) 123456(%%)  Enter Password to have AT access.
1685 )))
1686
1687 (((
1688 (% style="background-color:#dcdcdc" %) AT+CLASS=C(%%) Set to work in CLASS C
1689 )))
1690
1691 (((
1692 (% style="background-color:#dcdcdc" %) AT+NJM=0(%%)  Set to ABP mode
1693 )))
1694
1695 (((
1696 (% style="background-color:#dcdcdc" %) AT+ADR=0(%%)  Set the Adaptive Data Rate Off
1697 )))
1698
1699 (((
1700 (% style="background-color:#dcdcdc" %) AT+DR=5(%%)  Set Data Rate
1701 )))
1702
1703 (((
1704 (% style="background-color:#dcdcdc" %) AT+TDC=60000(%%)  Set transmit interval to 60 seconds
1705 )))
1706
1707 (((
1708 (% style="background-color:#dcdcdc" %) AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1709 )))
1710
1711 (((
1712 (% style="background-color:#dcdcdc" %) AT+RX2FQ=868400000(%%)  Set RX2Frequency to 868.4Mhz (according to the result from server)
1713 )))
1714
1715 (((
1716 (% style="background-color:#dcdcdc" %) AT+RX2DR=5(%%)  Set RX2DR to match the downlink DR from server. see below
1717 )))
1718
1719 (((
1720 (% style="background-color:#dcdcdc" %) AT+DADDR=26 01 1A F1 (%%) Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1721 )))
1722
1723 (((
1724 (% style="background-color:#dcdcdc" %) ATZ         (%%) Reset MCU
1725
1726
1727 )))
1728
1729 (((
1730 (% style="color:red" %)**Note:**
1731 )))
1732
1733 (((
1734 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1735 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1736 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1737 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1738 )))
1739
1740 (((
1741 [[image:1653359097980-169.png||height="188" width="729"]]
1742 )))
1743
1744 (((
1745
1746 )))
1747
1748
1749 === 4.2.3 Change to Class A ===
1750
1751 If sensor JOINED
1752 (% style="background-color:#dcdcdc" %)AT+CLASS=A
1753 ATZ
1754
1755
1756 = 5. FAQ =
1757
1758 == 5.1 How to upgrade the image? ==
1759
1760
1761 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1762
1763 * Support new features
1764 * For bug fix
1765 * Change LoRaWAN bands.
1766
1767 Below shows the hardware connection for how to upload an image to the LT:
1768
1769 [[image:1653359603330-121.png]]
1770
1771
1772 (((
1773 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1774 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1775 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
1776
1777
1778 (% style="color:blue" %)**For LT-22222-L**(%%):
1779 Hold down the PRO button and then momentarily press the RST reset button and the **DO1 led** will change from OFF to ON. When **DO1 LED** is on, it means the device is in download mode.
1780 )))
1781
1782 [[image:image-20220524103407-12.png]]
1783
1784 [[image:image-20220524103429-13.png]]
1785
1786 [[image:image-20220524104033-15.png]]
1787
1788
1789 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1790
1791 [[image:1653360054704-518.png||height="186" width="745"]]
1792
1793
1794 (((
1795 (((
1796
1797
1798 == 5.2 How to change the LoRa Frequency Bands/Region? ==
1799 )))
1800 )))
1801
1802 (((
1803 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1804 )))
1805
1806 (((
1807
1808
1809 == 5.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
1810 )))
1811
1812 (((
1813 (((
1814 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
1815 )))
1816 )))
1817
1818 (((
1819 (((
1820 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
1821
1822
1823 )))
1824 )))
1825
1826 (((
1827 (% style="color:#4f81bd" %)**Step1**(%%): Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
1828 )))
1829
1830 (((
1831 [[image:1653360231087-571.png||height="401" width="727"]]
1832 )))
1833
1834 (((
1835 (% style="color:red" %)Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.
1836 )))
1837
1838
1839 (((
1840 (% style="color:#4f81bd" %)**Step2**(%%)**: **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
1841 )))
1842
1843 (((
1844 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
1845 (% style="background-color:#dcdcdc" %)AT+FDR(%%)  Reset Parameters to Factory Default, Keys Reserve
1846 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
1847 (% style="background-color:#dcdcdc" %)AT+NJM=0 (%%) Set to ABP mode
1848 (% style="background-color:#dcdcdc" %)AT+ADR=0 (%%) Set the Adaptive Data Rate Off
1849 (% style="background-color:#dcdcdc" %)AT+DR=5 (%%) Set Data Rate (Set AT+DR=3 for 915 band)
1850 (% style="background-color:#dcdcdc" %)AT+TDC=60000 (%%) Set transmit interval to 60 seconds
1851 (% style="background-color:#dcdcdc" %)AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1852 (% style="background-color:#dcdcdc" %)AT+DADDR=26 01 1A F1(%%)  Set Device Address to 26 01 1A F1
1853 (% style="background-color:#dcdcdc" %)ATZ        (%%) Reset MCU
1854 )))
1855
1856
1857 (((
1858 As shown in below:
1859 )))
1860
1861 [[image:1653360498588-932.png||height="485" width="726"]]
1862
1863
1864 == 5.4 Can I see counting event in Serial? ==
1865
1866 (((
1867 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn’t support AT+DEBUG. User can update to latest firmware first.
1868
1869
1870 == 5.5 Can i use point to point communication for LT-22222-L? ==
1871
1872 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]
1873 )))
1874
1875 (((
1876 == 5.6 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
1877
1878 If the device is not shut down, but directly powered off.
1879
1880 It will default that this is a power-off state.
1881
1882 In modes 2 to 5, DO RO status and pulse count are saved in flash.
1883
1884 After restart, the status before power failure will be read from flash.
1885
1886 = 6. Trouble Shooting =
1887 )))
1888
1889 (((
1890 (((
1891 == 6.1 Downlink doesn’t work, how to solve it? ==
1892 )))
1893 )))
1894
1895 (((
1896 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
1897 )))
1898
1899 (((
1900
1901
1902 == 6.2 Have trouble to upload image. ==
1903 )))
1904
1905 (((
1906 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
1907 )))
1908
1909 (((
1910
1911
1912 == 6.3 Why I can’t join TTN in US915 /AU915 bands? ==
1913 )))
1914
1915 (((
1916 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1917 )))
1918
1919
1920
1921 = 7. Order Info =
1922
1923
1924 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
1925
1926
1927 (% style="color:#4f81bd" %)**XXX:**
1928
1929 * (% style="color:#4f81bd" %)**EU433**(%%): LT with frequency bands EU433
1930 * (% style="color:#4f81bd" %)**EU868**(%%): LT with frequency bands EU868
1931 * (% style="color:#4f81bd" %)**KR920**(%%): LT with frequency bands KR920
1932 * (% style="color:#4f81bd" %)**CN470**(%%): LT with frequency bands CN470
1933 * (% style="color:#4f81bd" %)**AS923**(%%): LT with frequency bands AS923
1934 * (% style="color:#4f81bd" %)**AU915**(%%): LT with frequency bands AU915
1935 * (% style="color:#4f81bd" %)**US915**(%%): LT with frequency bands US915
1936 * (% style="color:#4f81bd" %)**IN865**(%%): LT with frequency bands IN865
1937 * (% style="color:#4f81bd" %)**CN779**(%%): LT with frequency bands CN779
1938
1939 = 8. Packing Info =
1940
1941
1942 **Package Includes**:
1943
1944 * LT-22222-L I/O Controller x 1
1945 * Stick Antenna for LoRa RF part x 1
1946 * Bracket for controller x1
1947 * Program cable x 1
1948
1949 **Dimension and weight**:
1950
1951 * Device Size: 13.5 x 7 x 3 cm
1952 * Device Weight: 105g
1953 * Package Size / pcs : 14.5 x 8 x 5 cm
1954 * Weight / pcs : 170g
1955
1956 = 9. Support =
1957
1958 * (((
1959 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1960 )))
1961 * (((
1962 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1963 )))
1964
1965 = 10. Reference​​​​​ =
1966
1967 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
1968 * [[Image Download>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]]
1969 * [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1970 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]