Version 82.29 by Xiaoling on 2022/06/20 13:34

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4 **LT-22222-L LoRa IO Controller User Manual **
5
6
7 **Table of Contents:**
8
9 {{toc/}}
10
11
12
13
14
15
16
17 = 1.Introduction =
18
19 == 1.1 What is LT Series I/O Controller ==
20
21 (((
22
23
24 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 )))
26
27 (((
28 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
29 )))
30
31 (((
32 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
33 )))
34
35 (((
36 The use environment includes:
37 )))
38
39 (((
40 1) If user’s area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
41 )))
42
43 (((
44 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
45 )))
46
47 (((
48 [[image:1653295757274-912.png]]
49
50
51 )))
52
53
54 == 1.2  Specifications ==
55
56 (((
57
58
59 **Hardware System:**
60 )))
61
62 * (((
63 STM32L072CZT6 MCU
64 )))
65 * (((
66 SX1276/78 Wireless Chip 
67 )))
68 * (((
69 (((
70 Power Consumption:
71 )))
72
73 * (((
74 Idle: 4mA@12v
75 )))
76 * (((
77 20dB Transmit: 34mA@12v
78 )))
79 )))
80
81 (((
82
83
84 **Interface for Model: LT22222-L:**
85 )))
86
87 * (((
88 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
89 )))
90 * (((
91 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
92 )))
93 * (((
94 2 x Relay Output (5A@250VAC / 30VDC)
95 )))
96 * (((
97 2 x 0~~20mA Analog Input (res:0.01mA)
98 )))
99 * (((
100 2 x 0~~30V Analog Input (res:0.01v)
101 )))
102 * (((
103 Power Input 7~~ 24V DC. 
104 )))
105
106 (((
107
108
109 **LoRa Spec:**
110 )))
111
112 * (((
113 (((
114 Frequency Range:
115 )))
116
117 * (((
118 Band 1 (HF): 862 ~~ 1020 Mhz
119 )))
120 * (((
121 Band 2 (LF): 410 ~~ 528 Mhz
122 )))
123 )))
124 * (((
125 168 dB maximum link budget.
126 )))
127 * (((
128 +20 dBm - 100 mW constant RF output vs.
129 )))
130 * (((
131 +14 dBm high efficiency PA.
132 )))
133 * (((
134 Programmable bit rate up to 300 kbps.
135 )))
136 * (((
137 High sensitivity: down to -148 dBm.
138 )))
139 * (((
140 Bullet-proof front end: IIP3 = -12.5 dBm.
141 )))
142 * (((
143 Excellent blocking immunity.
144 )))
145 * (((
146 Low RX current of 10.3 mA, 200 nA register retention.
147 )))
148 * (((
149 Fully integrated synthesizer with a resolution of 61 Hz.
150 )))
151 * (((
152 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
153 )))
154 * (((
155 Built-in bit synchronizer for clock recovery.
156 )))
157 * (((
158 Preamble detection.
159 )))
160 * (((
161 127 dB Dynamic Range RSSI.
162 )))
163 * (((
164 Automatic RF Sense and CAD with ultra-fast AFC.
165 )))
166 * (((
167 Packet engine up to 256 bytes with CRC.
168
169
170
171
172 )))
173
174 == 1.3 Features ==
175
176 * LoRaWAN Class A & Class C protocol
177 * Optional Customized LoRa Protocol
178 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865
179 * AT Commands to change parameters
180 * Remote configure parameters via LoRa Downlink
181 * Firmware upgradable via program port
182 * Counting
183
184 == 1.4  Applications ==
185
186 * Smart Buildings & Home Automation
187 * Logistics and Supply Chain Management
188 * Smart Metering
189 * Smart Agriculture
190 * Smart Cities
191 * Smart Factory
192
193 == 1.5 Hardware Variants ==
194
195 (% border="1" style="background-color:#f7faff; width:500px" %)
196 |(% style="width:103px" %)**Model**|(% style="width:131px" %)**Photo**|(% style="width:334px" %)**Description**
197 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)[[image:1653296302983-697.png]]|(% style="width:334px" %)(((
198 * 2 x Digital Input (Bi-direction)
199 * 2 x Digital Output
200 * 2 x Relay Output (5A@250VAC / 30VDC)
201 * 2 x 0~~20mA Analog Input (res:0.01mA)
202 * 2 x 0~~30V Analog Input (res:0.01v)
203 * 1 x Counting Port
204 )))
205
206
207
208 = 2. Power ON Device =
209
210 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
211
212 (((
213 PWR will on when device is properly powered.
214 )))
215
216 [[image:1653297104069-180.png]]
217
218
219
220 = 3. Operation Mode =
221
222 == 3.1 How it works? ==
223
224 (((
225 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on **TX LED** will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. **TX LED** will be on for 5 seconds after joined in network. When there is message from server, the **RX LED** will be on for 1 second. 
226 )))
227
228 (((
229 In case user can’t set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
230 )))
231
232
233 == 3.2 Example to join LoRaWAN network ==
234
235 (((
236 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
237 )))
238
239 [[image:image-20220523172350-1.png||height="266" width="864"]]
240
241
242 (((
243 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
244 )))
245
246 (((
247 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
248 )))
249
250 (((
251 Each LT is shipped with a sticker with the default device EUI as below:
252 )))
253
254 [[image:1653297924498-393.png]]
255
256
257 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
258
259 Add APP EUI in the application.
260
261 [[image:1653297955910-247.png||height="321" width="716"]]
262
263
264 Add APP KEY and DEV EUI
265
266 [[image:1653298023685-319.png]]
267
268
269 (((
270 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
271 )))
272
273 [[image:1653298044601-602.png||height="405" width="709"]]
274
275
276
277 == 3.3 Uplink Payload ==
278
279 There are five working modes + one interrupt mode on LT for different type application:
280
281 * **MOD1**: (default setting): 2 x ACI + 2AVI + DI + DO + RO
282 * **MOD2**: Double DI Counting + DO + RO
283 * **MOD3**: Single DI Counting + 2 x ACI + DO + RO
284 * **MOD4**: Single DI Counting + 1 x Voltage Counting + DO + RO
285 * **MOD5**: Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
286 * **ADDMOD6**: Trigger Mode, Optional, used together with MOD1 ~~ MOD5
287
288 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
289
290 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default.
291
292 [[image:image-20220523174024-3.png]]
293
294 (((
295
296
297 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
298 )))
299
300 [[image:image-20220523174254-4.png]]
301
302 * RO is for relay. ROx=1 : close,ROx=0 always open.
303 * DI is for digital input. DIx=1: high or float, DIx=0: low.
304 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
305
306 (% style="color:red" %)Note: DI3 and DO3 bit are not valid for LT-22222-L
307
308 For example if payload is: [[image:image-20220523175847-2.png]]
309
310
311 **The value for the interface is:  **
312
313 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
314
315 AVI2 channel voltage is 0x04AC/1000=1.196V
316
317 ACI1 channel current is 0x1310/1000=4.880mA
318
319 ACI2 channel current is 0x1300/1000=4.864mA
320
321 The last byte 0xAA= 10101010(B) means
322
323 * [1] RO1 relay channel is close and the RO1 LED is ON.
324 * [0] RO2 relay channel is open and RO2 LED is OFF;
325
326 **LT22222-L:**
327
328 * [1] DI2 channel is high input and DI2 LED is ON;
329 * [0] DI1 channel is low input;
330
331 * [0] DO3 channel output state
332 ** DO3 is float in case no load between DO3 and V+.;
333 ** DO3 is high in case there is load between DO3 and V+.
334 ** DO3 LED is off in both case
335 * [1] DO2 channel output is low and DO2 LED is ON.
336 * [0] DO1 channel output state
337 ** DO1 is float in case no load between DO1 and V+.;
338 ** DO1 is high in case there is load between DO1 and V+.
339 ** DO1 LED is off in both case
340
341 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
342
343
344 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
345
346 (((
347 Total : 11 bytes payload
348 )))
349
350 [[image:image-20220523180452-3.png]]
351
352
353 (((
354 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
355 )))
356
357 [[image:image-20220523180506-4.png]]
358
359 * RO is for relay. ROx=1 : close,ROx=0 always open.
360 * FIRST: Indicate this is the first packet after join network.
361 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
362
363 (((
364 (% style="color:red" %)Note: DO3 bit is not valid for LT-22222-L.
365 )))
366
367 (((
368
369
370 **To use counting mode, please run:**
371 )))
372
373 (% class="box infomessage" %)
374 (((
375 (((
376 **AT+MOD=2**
377
378 **ATZ**
379 )))
380 )))
381
382 (((
383
384
385 (% style="color:#4f81bd" %)**AT Commands for counting:**
386 )))
387
388 (((
389 **For LT22222-L:**
390
391
392 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
393
394 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
395
396 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
397
398 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
399
400 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
401
402 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
403 )))
404
405
406
407 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
408
409 **LT22222-L**: This mode the DI1 is used as a counting pin.
410
411 [[image:image-20220523181246-5.png]]
412
413 (((
414 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
415 )))
416
417 [[image:image-20220523181301-6.png]]
418
419 * RO is for relay. ROx=1 : close,ROx=0 always open.
420 * FIRST: Indicate this is the first packet after join network.
421 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
422
423 (((
424 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
425 )))
426
427 (((
428 **To use counting mode, please run:**
429 )))
430
431 (% class="box infomessage" %)
432 (((
433 (((
434 **AT+MOD=3**
435
436 **ATZ**
437 )))
438 )))
439
440 (((
441 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
442 )))
443
444
445
446 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
447
448
449 **LT22222-L**: This mode the DI1 is used as a counting pin.
450
451 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
452
453 [[image:image-20220523181903-8.png]]
454
455
456 (((
457 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
458 )))
459
460 [[image:image-20220523181727-7.png]]
461
462 * RO is for relay. ROx=1 : close,ROx=0 always open.
463 * FIRST: Indicate this is the first packet after join network.
464 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
465
466 (((
467 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
468 )))
469
470 (((
471
472
473 **To use this mode, please run:**
474 )))
475
476 (% class="box infomessage" %)
477 (((
478 (((
479 **AT+MOD=4**
480
481 **ATZ**
482 )))
483 )))
484
485
486
487 (((
488 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
489 )))
490
491 (((
492
493
494 **Plus below command for AVI1 Counting:**
495
496
497 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
498
499 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
500
501 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
502
503 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
504 )))
505
506
507
508 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
509
510
511 **LT22222-L**: This mode the DI1 is used as a counting pin.
512
513 [[image:image-20220523182334-9.png]]
514
515 (((
516
517
518 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
519 )))
520
521 * RO is for relay. ROx=1 : close,ROx=0 always open.
522 * FIRST: Indicate this is the first packet after join network.
523 * (((
524 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
525 )))
526
527 (((
528 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
529 )))
530
531 (((
532
533
534 **To use this mode, please run:**
535 )))
536
537 (% class="box infomessage" %)
538 (((
539 (((
540 **AT+MOD=5**
541
542 **ATZ**
543 )))
544 )))
545
546 (((
547 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
548 )))
549
550
551
552 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
553
554
555 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
556
557 For example, if user has configured below commands:
558
559 * **AT+MOD=1 ** **~-~->** The normal working mode
560 * **AT+ADDMOD6=1**   **~-~->** Enable trigger
561
562 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
563
564 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
565 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
566
567
568 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
569
570 (% style="color:#4f81bd" %)**Trigger base on voltage**:
571
572 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
573
574 **Example:**
575
576 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
577
578 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
579
580
581
582 (% style="color:#4f81bd" %)**Trigger base on current**:
583
584 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
585
586 **Example:**
587
588 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
589
590
591
592 (% style="color:#4f81bd" %)**Trigger base on DI status**:
593
594 DI status trigger Flag.
595
596 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
597
598
599 **Example:**
600
601 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
602
603
604 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
605
606 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
607
608 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
609
610 AA: Code for this downlink Command:
611
612 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
613
614 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
615
616 yy2 yy2: AC1 or AV1 high limit.
617
618 yy3 yy3: AC2 or AV2 low limit.
619
620 Yy4 yy4: AC2 or AV2 high limit.
621
622
623 **Example1**: AA 00 13 88 00 00 00 00 00 00
624
625 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
626
627
628 **Example2**: AA 02 01 00
629
630 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
631
632
633
634 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
635
636 MOD6 Payload : total 11 bytes payload
637
638 [[image:image-20220524085923-1.png]]
639
640
641 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
642
643 [[image:image-20220524090106-2.png]]
644
645 * Each bits shows if the corresponding trigger has been configured.
646
647 **Example:**
648
649 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
650
651
652 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
653
654 [[image:image-20220524090249-3.png]]
655
656 * Each bits shows which status has been trigger on this uplink.
657
658 **Example:**
659
660 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
661
662
663 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
664
665 [[image:image-20220524090456-4.png]]
666
667 * Each bits shows which status has been trigger on this uplink.
668
669 **Example:**
670
671 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
672
673 00000101: Means both DI1 and DI2 trigger are enabled.
674
675
676 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
677
678 Downlink command to poll MOD6 status:
679
680 **AB 06**
681
682 When device got this command, it will send the MOD6 payload.
683
684
685
686 === 3.3.7 Payload Decoder ===
687
688 (((
689
690
691 **Decoder for TTN/loraserver/ChirpStack**: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/Payload_decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/Payload_decoder/]]
692
693
694 )))
695
696
697 == 3.4 ​Configure LT via AT or Downlink ==
698
699 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
700
701 (((
702 There are two kinds of Commands:
703 )))
704
705 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
706
707 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
708
709 === 3.4.1 Common Commands ===
710
711 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
712
713
714
715 === 3.4.2 Sensor related commands ===
716
717 ==== 3.4.2.1 Set Transmit Interval ====
718
719 Set device uplink interval.
720
721 * (% style="color:#037691" %)**AT Command:**
722
723 **AT+TDC=N **
724
725
726 **Example: **AT+TDC=30000. Means set interval to 30 seconds
727
728
729 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
730
731 **0x01 aa bb cc     ~/~/ Same as AT+TDC=0x(aa bb cc)**
732
733 (% class="box infomessage" %)
734 (((
735
736 )))
737
738
739
740 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
741
742 Set work mode.
743
744 * (% style="color:#037691" %)**AT Command:**
745
746 (% class="box infomessage" %)
747 (((
748 **AT+MOD=N  **
749 )))
750
751 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
752
753
754 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
755
756 (% class="box infomessage" %)
757 (((
758 **0x0A aa     ~/~/ Same as AT+MOD=aa**
759 )))
760
761
762
763 ==== 3.4.2.3 Poll an uplink ====
764
765 * (% style="color:#037691" %)AT Command:
766
767 There is no AT Command to poll uplink
768
769
770 * (% style="color:#037691" %)Downlink Payload (prefix 0x08):
771
772 (% class="box infomessage" %)
773 (((
774 **0x08 FF     ~/~/ Poll an uplink,**
775 )))
776
777 **Example**: 0x08FF, ask device to send an Uplink
778
779
780
781 ==== 3.4.2.4 Enable Trigger Mode ====
782
783 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
784
785 * (% style="color:#037691" %)AT Command:
786
787 (% class="box infomessage" %)
788 (((
789 **AT+ADDMOD6=1 or 0**
790 )))
791
792 1: Enable Trigger Mode
793
794 0: Disable Trigger Mode
795
796
797 * (% style="color:#037691" %)Downlink Payload (prefix 0x0A 06):
798
799 (% class="box infomessage" %)
800 (((
801 **0x0A 06 aa     ~/~/ Same as AT+ADDMOD6=aa,**
802 )))
803
804
805
806 ==== 3.4.2.5 Poll trigger settings ====
807
808 Poll trigger settings,
809
810 * (% style="color:#037691" %)AT Command:
811
812 There is no AT Command for this feature.
813
814
815 * (% style="color:#037691" %)Downlink Payload (prefix 0x AB 06):
816
817 (% class="box infomessage" %)
818 (((
819 **0xAB 06  ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command**
820 )))
821
822
823
824 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
825
826 Enable Disable DI1/DI2/DI2 as trigger,
827
828 * (% style="color:#037691" %)AT Command:
829
830 **Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
831
832
833 **Example:**
834
835 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
836
837 * (% style="color:#037691" %)Downlink Payload (prefix 0xAA 02):
838
839 **0xAA 02 aa bb        **~/~/ Same as AT+DTRI=aa,bb
840
841
842
843
844 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
845
846 Set DI1 or DI3(for LT-33222-L) trigger.
847
848 * (% style="color:#037691" %)AT Command:
849
850 **AT+TRIG1=a,b**
851
852 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
853
854 b : delay timing.
855
856
857 **Example:**
858
859 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
860
861
862 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
863 * **0x09 01 aa bb cc    ** ~/~/ same as AT+TRIG1=aa,0x(bb cc)
864
865
866 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
867
868 Set DI2 trigger.
869
870 * (% style="color:#037691" %)**AT Command:**
871
872 **AT+TRIG2=a,b**
873
874
875 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
876
877 b : delay timing.
878
879
880 **Example:**
881
882 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
883
884
885 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
886
887 **0x09 02 aa bb cc           **~/~/ same as AT+TRIG1=aa,0x(bb cc)
888
889
890
891
892 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
893
894 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
895
896 * (% style="color:#037691" %)**AT Command**
897
898 **AT+ACLIM**
899
900
901 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
902
903 **0x AA 01 aa bb cc dd ee ff gg hh        ** ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
904
905
906
907
908 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
909
910 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
911
912 * (% style="color:#037691" %)**AT Command**
913
914 **AT+AVLIM  See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
915
916
917 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
918
919 **0x AA 00 aa bb cc dd ee ff gg hh    ** ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
920
921
922
923
924 ==== 3.4.2.11 Trigger – Set minimum interval ====
925
926 Set AV and AC trigger minimum interval, system won’t response to the second trigger within this set time after the first trigger.
927
928 * (% style="color:#037691" %)**AT Command**
929
930 **AT+ATDC=5. Device won’t response the second trigger within 5 minute after the first trigger.**
931
932
933 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
934
935 **0x AC aa bb   ** ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
936
937
938
939
940 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
941
942 * (% style="color:#037691" %)**AT Command**
943
944 There is no AT Command to control Digital Output
945
946
947 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
948 * **0x02 aa bb cc     **~/~/ Set DO1/DO2/DO3 output
949
950 (((
951 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
952 )))
953
954 (((
955 01: Low,  00: High ,  11: No action
956 )))
957
958 [[image:image-20220524092754-5.png]]
959
960 (((
961 (% style="color:red" %)Note: For LT-22222-L, there is no DO3, the last byte can use any value.
962 )))
963
964 (((
965 (% style="color:red" %)Device will upload a packet if downlink code executes successfully.
966 )))
967
968
969
970
971 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
972
973 * (% style="color:#037691" %)**AT Command**
974
975 There is no AT Command to control Digital Output
976
977
978 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
979
980 **0xA9 aa bb cc     **~/~/ Set DO1/DO2/DO3 output with time control
981
982
983 This is to control the digital output time of DO pin. Include four bytes:
984
985 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
986
987 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
988
989 01: DO pins will change back to original state after timeout.
990
991 00: DO pins will change to an inverter state after timeout 
992
993
994 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
995
996 [[image:image-20220524093238-6.png]]
997
998
999 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1000
1001 [[image:image-20220524093328-7.png]]
1002
1003
1004 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1005
1006 [[image:image-20220524093351-8.png]]
1007
1008
1009 (% style="color:#4f81bd" %)**Sixth and Seventh Byte**:
1010
1011 Latching time. Unit: ms
1012
1013 Device will upload a packet if downlink code executes successfully.
1014
1015
1016 **Example payload:**
1017
1018 **~1. A9 01 01 01 01 07 D0**
1019
1020 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1021
1022 **2. A9 01 00 01 11 07 D0**
1023
1024 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1025
1026 **3. A9 00 00 00 00 07 D0**
1027
1028 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1029
1030 **4. A9 00 11 01 00 07 D0**
1031
1032 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1033
1034
1035
1036
1037 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1038
1039 * (% style="color:#037691" %)**AT Command:**
1040
1041 There is no AT Command to control Relay Output
1042
1043
1044 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1045
1046 **0x03 aa bb     **~/~/ Set RO1/RO2 output
1047
1048
1049 (((
1050 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1051 )))
1052
1053 (((
1054 01: Close ,  00: Open , 11: No action
1055 )))
1056
1057 (((
1058 [[image:image-20220524093724-9.png]]
1059 )))
1060
1061 Device will upload a packet if downlink code executes successfully.
1062
1063
1064
1065
1066 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1067
1068 * (% style="color:#037691" %)**AT Command:**
1069
1070 There is no AT Command to control Relay Output
1071
1072
1073 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1074
1075 **0x05 aa bb cc dd     **~/~/ Set RO1/RO2 relay with time control
1076
1077
1078 This is to control the relay output time of relay. Include four bytes:
1079
1080 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1081
1082 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1083
1084 01: Relays will change back to original state after timeout.
1085
1086 00: Relays will change to an inverter state after timeout
1087
1088
1089 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1090
1091 [[image:image-20220524093831-10.png]]
1092
1093
1094 (% style="color:#4f81bd" %)**Fourth/Fifth Bytes(cc)**(%%): Latching time. Unit: ms
1095
1096 Device will upload a packet if downlink code executes successfully.
1097
1098
1099 **Example payload:**
1100
1101 **~1. 05 01 11 07 D0**
1102
1103 Relay1 and Relay 2 will be set to NO , last 2 seconds, then change back to original state.
1104
1105 **2. 05 01 10 07 D0**
1106
1107 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then both change back to original state.
1108
1109 **3. 05 00 01 07 D0**
1110
1111 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then relay change to NO, Relay2 change to NC.
1112
1113 **4. 05 00 00 07 D0**
1114
1115 Relay 1 & relay2 will change to NC, last 2 seconds, then both change to NO.
1116
1117
1118
1119
1120 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1121
1122 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1123
1124 * (% style="color:#037691" %)**AT Command:**
1125
1126 **AT+VOLMAX   ** ~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1127
1128
1129 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1130
1131 **0xA5 aa bb cc   **~/~/ Same as AT+VOLMAX=(aa bb),cc
1132
1133
1134
1135
1136 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1137
1138 * (% style="color:#037691" %)**AT Command:**
1139
1140 (% style="color:#037691" %)**​​​​​​​**(%%)**AT+SETCNT=aa,(bb cc dd ee) **
1141
1142 aa: 1: Set count1,
1143
1144 2: Set count2,
1145
1146 3: Set AV1 count
1147
1148 Bb cc dd ee: number to be set
1149
1150
1151 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1152
1153 **0x A8 aa bb cc dd ee     **~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1154
1155
1156
1157
1158 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1159
1160 Clear counting for counting mode
1161
1162 * (% style="color:#037691" %)**AT Command:**
1163
1164 (% style="color:#037691" %)​​​​​​​​​​​​​​(%%)**AT+CLRCOUNT ** ~/~/ clear all counting
1165
1166
1167 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1168
1169 **0x A6 01    ** ~/~/ clear all counting
1170
1171
1172
1173
1174 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1175
1176 * (% style="color:#037691" %)**AT Command:**
1177
1178 **AT+COUTIME=60  **~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1179
1180
1181 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1182
1183 **0x A7 aa bb cc     **~/~/ same as AT+COUTIME =aa bb cc,
1184
1185 (((
1186 range: aa bb cc:0 to 16777215,  (unit:second)
1187
1188
1189 )))
1190
1191
1192
1193 == 3.5 Integrate with Mydevice ==
1194
1195 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1196
1197 (((
1198 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1199 )))
1200
1201 (((
1202 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1203 )))
1204
1205 [[image:1653356737703-362.png||height="232" width="732"]]
1206
1207 [[image:image-20220524094641-11.png||height="390" width="723"]]
1208
1209
1210 [[image:image-20220524094641-12.png||height="402" width="718"]]
1211
1212
1213 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1214
1215 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1216
1217 Search under The things network
1218
1219 [[image:1653356838789-523.png||height="337" width="740"]]
1220
1221
1222
1223 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1224
1225 [[image:image-20220524094909-1.png||height="335" width="729"]]
1226
1227
1228 [[image:image-20220524094909-2.png||height="337" width="729"]]
1229
1230
1231 [[image:image-20220524094909-3.png||height="338" width="727"]]
1232
1233
1234 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1235
1236
1237 [[image:image-20220524094909-5.png||height="341" width="734"]]
1238
1239
1240
1241 == 3.6 Interface Detail ==
1242
1243 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1244
1245 Support NPN Type sensor
1246
1247 [[image:1653356991268-289.png]]
1248
1249
1250
1251 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1252
1253 (((
1254 The DI port of LT-22222-L can support NPN or PNP output sensor.
1255 )))
1256
1257 (((
1258 (((
1259 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high
1260 )))
1261 )))
1262
1263 [[image:1653357170703-587.png]]
1264
1265 (((
1266 (((
1267 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1268 )))
1269 )))
1270
1271 (((
1272
1273 )))
1274
1275 (((
1276 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1277 )))
1278
1279 (((
1280 This type of sensor will output a low signal GND when active.
1281 )))
1282
1283 * (((
1284 Connect sensor’s output to DI1-
1285 )))
1286 * (((
1287 Connect sensor’s VCC to DI1+.
1288 )))
1289
1290 (((
1291 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1292 )))
1293
1294 (((
1295 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1296 )))
1297
1298 (((
1299 If DI1+ = 12v, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1300 )))
1301
1302 (((
1303
1304 )))
1305
1306 (((
1307 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1308 )))
1309
1310 (((
1311 This type of sensor will output a high signal (example 24v) when active.
1312 )))
1313
1314 * (((
1315 Connect sensor’s output to DI1+
1316 )))
1317 * (((
1318 Connect sensor’s GND DI1-.
1319 )))
1320
1321 (((
1322 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1323 )))
1324
1325 (((
1326 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1327 )))
1328
1329 (((
1330 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1331 )))
1332
1333 (((
1334
1335 )))
1336
1337 (((
1338 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1339 )))
1340
1341 (((
1342 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1343 )))
1344
1345 * (((
1346 Connect sensor’s output to DI1+ with a serial 50K resistor
1347 )))
1348 * (((
1349 Connect sensor’s GND DI1-.
1350 )))
1351
1352 (((
1353 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1354 )))
1355
1356 (((
1357 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1358 )))
1359
1360 (((
1361 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1362 )))
1363
1364
1365
1366 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1367
1368 NPN output: GND or Float. Max voltage can apply to output pin is 36v.
1369
1370 [[image:1653357531600-905.png]]
1371
1372
1373
1374 === 3.6.4 Analog Input Interface ===
1375
1376 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1377
1378
1379 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1380
1381 [[image:1653357592296-182.png]]
1382
1383 Example to connect a 4~~20mA sensor
1384
1385 We take the wind speed sensor as an example for reference only.
1386
1387
1388 **Specifications of the wind speed sensor:**
1389
1390 Red:  12~~24v
1391
1392 Yellow:  4~~20mA
1393
1394 Black:  GND
1395
1396
1397 **Connection diagram:**
1398
1399 [[image:1653357640609-758.png]]
1400
1401 [[image:1653357648330-671.png||height="155" width="733"]]
1402
1403
1404
1405 === 3.6.5 Relay Output ===
1406
1407 (((
1408 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device’s Power Line to in serial of RO1_1 and RO_2. Such as below:
1409 )))
1410
1411 [[image:image-20220524100215-9.png]]
1412
1413 [[image:image-20220524100215-10.png||height="382" width="723"]]
1414
1415
1416
1417 == 3.7 LEDs Indicators ==
1418
1419 [[image:image-20220524100748-11.png]]
1420
1421
1422 = 4. Use AT Command =
1423
1424 == 4.1 Access AT Command ==
1425
1426 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1427
1428 [[image:1653358238933-385.png]]
1429
1430
1431 (((
1432 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1433 )))
1434
1435 [[image:1653358355238-883.png]]
1436
1437
1438 (((
1439 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1440 )))
1441
1442 (((
1443 AT+<CMD>?        : Help on <CMD>
1444 )))
1445
1446 (((
1447 AT+<CMD>         : Run <CMD>
1448 )))
1449
1450 (((
1451 AT+<CMD>=<value> : Set the value
1452 )))
1453
1454 (((
1455 AT+<CMD>=?       : Get the value
1456 )))
1457
1458 (((
1459 ATZ: Trig a reset of the MCU
1460 )))
1461
1462 (((
1463 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1464 )))
1465
1466 (((
1467 AT+DEUI: Get or Set the Device EUI
1468 )))
1469
1470 (((
1471 AT+DADDR: Get or Set the Device Address
1472 )))
1473
1474 (((
1475 AT+APPKEY: Get or Set the Application Key
1476 )))
1477
1478 (((
1479 AT+NWKSKEY: Get or Set the Network Session Key
1480 )))
1481
1482 (((
1483 AT+APPSKEY: Get or Set the Application Session Key
1484 )))
1485
1486 (((
1487 AT+APPEUI: Get or Set the Application EUI
1488 )))
1489
1490 (((
1491 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1492 )))
1493
1494 (((
1495 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1496 )))
1497
1498 (((
1499 AT+DR: Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1500 )))
1501
1502 (((
1503 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1504 )))
1505
1506 (((
1507 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1508 )))
1509
1510 (((
1511 AT+RX2FQ: Get or Set the Rx2 window frequency
1512 )))
1513
1514 (((
1515 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1516 )))
1517
1518 (((
1519 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1520 )))
1521
1522 (((
1523 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1524 )))
1525
1526 (((
1527 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1528 )))
1529
1530 (((
1531 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1532 )))
1533
1534 (((
1535 AT+NJM: Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1536 )))
1537
1538 (((
1539 AT+NWKID: Get or Set the Network ID
1540 )))
1541
1542 (((
1543 AT+FCU: Get or Set the Frame Counter Uplink
1544 )))
1545
1546 (((
1547 AT+FCD: Get or Set the Frame Counter Downlink
1548 )))
1549
1550 (((
1551 AT+CLASS: Get or Set the Device Class
1552 )))
1553
1554 (((
1555 AT+JOIN: Join network
1556 )))
1557
1558 (((
1559 AT+NJS: Get OTAA Join Status
1560 )))
1561
1562 (((
1563 AT+SENDB: Send hexadecimal data along with the application port
1564 )))
1565
1566 (((
1567 AT+SEND: Send text data along with the application port
1568 )))
1569
1570 (((
1571 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1572 )))
1573
1574 (((
1575 AT+RECV: Print last received data in raw format
1576 )))
1577
1578 (((
1579 AT+VER: Get current image version and Frequency Band
1580 )))
1581
1582 (((
1583 AT+CFM: Get or Set the confirmation mode (0-1)
1584 )))
1585
1586 (((
1587 AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1588 )))
1589
1590 (((
1591 AT+SNR: Get the SNR of the last received packet
1592 )))
1593
1594 (((
1595 AT+RSSI: Get the RSSI of the last received packet
1596 )))
1597
1598 (((
1599 AT+TDC: Get or set the application data transmission interval in ms
1600 )))
1601
1602 (((
1603 AT+PORT: Get or set the application port
1604 )))
1605
1606 (((
1607 AT+DISAT: Disable AT commands
1608 )))
1609
1610 (((
1611 AT+PWORD: Set password, max 9 digits
1612 )))
1613
1614 (((
1615 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1616 )))
1617
1618 (((
1619 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1620 )))
1621
1622 (((
1623 AT+CFG: Print all settings
1624
1625
1626 )))
1627
1628
1629
1630 == 4.2 Common AT Command Sequence ==
1631
1632 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1633
1634 (((
1635
1636
1637 **If device has not joined network yet:**
1638 )))
1639
1640 (((
1641 (% style="background-color:#dcdcdc" %)123456
1642 )))
1643
1644 (((
1645 (% style="background-color:#dcdcdc" %)AT+FDR
1646 )))
1647
1648 (((
1649 (% style="background-color:#dcdcdc" %)123456
1650 )))
1651
1652 (((
1653 (% style="background-color:#dcdcdc" %)AT+NJM=0
1654 )))
1655
1656 (((
1657 (% style="background-color:#dcdcdc" %)ATZ
1658 )))
1659
1660
1661 (((
1662 **If device already joined network:**
1663 )))
1664
1665 (((
1666 (% style="background-color:#dcdcdc" %)AT+NJM=0
1667 )))
1668
1669 (((
1670 (% style="background-color:#dcdcdc" %)ATZ
1671
1672
1673 )))
1674
1675
1676
1677 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1678
1679 (((
1680
1681
1682 (% style="background-color:#dcdcdc" %)123456(%%)  Enter Password to have AT access.
1683 )))
1684
1685 (((
1686 (% style="background-color:#dcdcdc" %) AT+FDR(%%)   Reset Parameters to Factory Default, Keys Reserve
1687 )))
1688
1689 (((
1690 (% style="background-color:#dcdcdc" %) 123456(%%)  Enter Password to have AT access.
1691 )))
1692
1693 (((
1694 (% style="background-color:#dcdcdc" %) AT+CLASS=C(%%) Set to work in CLASS C
1695 )))
1696
1697 (((
1698 (% style="background-color:#dcdcdc" %) AT+NJM=0(%%)  Set to ABP mode
1699 )))
1700
1701 (((
1702 (% style="background-color:#dcdcdc" %) AT+ADR=0(%%)  Set the Adaptive Data Rate Off
1703 )))
1704
1705 (((
1706 (% style="background-color:#dcdcdc" %) AT+DR=5(%%)  Set Data Rate
1707 )))
1708
1709 (((
1710 (% style="background-color:#dcdcdc" %) AT+TDC=60000(%%)  Set transmit interval to 60 seconds
1711 )))
1712
1713 (((
1714 (% style="background-color:#dcdcdc" %) AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1715 )))
1716
1717 (((
1718 (% style="background-color:#dcdcdc" %) AT+RX2FQ=868400000(%%)  Set RX2Frequency to 868.4Mhz (according to the result from server)
1719 )))
1720
1721 (((
1722 (% style="background-color:#dcdcdc" %) AT+RX2DR=5(%%)  Set RX2DR to match the downlink DR from server. see below
1723 )))
1724
1725 (((
1726 (% style="background-color:#dcdcdc" %) AT+DADDR=26 01 1A F1 (%%) Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1727 )))
1728
1729 (((
1730 (% style="background-color:#dcdcdc" %) ATZ         (%%) Reset MCU
1731
1732
1733 )))
1734
1735 (((
1736 (% style="color:red" %)**Note:**
1737 )))
1738
1739 (((
1740 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1741 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1742 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1743 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1744 )))
1745
1746 (((
1747 [[image:1653359097980-169.png||height="188" width="729"]]
1748 )))
1749
1750 (((
1751
1752 )))
1753
1754
1755 === 4.2.3 Change to Class A ===
1756
1757 If sensor JOINED
1758 (% style="background-color:#dcdcdc" %)AT+CLASS=A
1759 ATZ
1760
1761
1762 = 5. FAQ =
1763
1764 == 5.1 How to upgrade the image? ==
1765
1766
1767 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1768
1769 * Support new features
1770 * For bug fix
1771 * Change LoRaWAN bands.
1772
1773 Below shows the hardware connection for how to upload an image to the LT:
1774
1775 [[image:1653359603330-121.png]]
1776
1777
1778 (((
1779 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1780 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1781 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
1782
1783
1784 (% style="color:blue" %)**For LT-22222-L**(%%):
1785 Hold down the PRO button and then momentarily press the RST reset button and the **DO1 led** will change from OFF to ON. When **DO1 LED** is on, it means the device is in download mode.
1786 )))
1787
1788 [[image:image-20220524103407-12.png]]
1789
1790 [[image:image-20220524103429-13.png]]
1791
1792 [[image:image-20220524104033-15.png]]
1793
1794
1795 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1796
1797 [[image:1653360054704-518.png||height="186" width="745"]]
1798
1799
1800 (((
1801 (((
1802
1803
1804 == 5.2 How to change the LoRa Frequency Bands/Region? ==
1805 )))
1806 )))
1807
1808 (((
1809 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1810 )))
1811
1812 (((
1813
1814
1815 == 5.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
1816 )))
1817
1818 (((
1819 (((
1820 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
1821 )))
1822 )))
1823
1824 (((
1825 (((
1826 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
1827
1828
1829 )))
1830 )))
1831
1832 (((
1833 (% style="color:#4f81bd" %)**Step1**(%%): Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
1834 )))
1835
1836 (((
1837 [[image:1653360231087-571.png||height="401" width="727"]]
1838 )))
1839
1840 (((
1841 (% style="color:red" %)Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.
1842 )))
1843
1844
1845 (((
1846 (% style="color:#4f81bd" %)**Step2**(%%)**: **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
1847 )))
1848
1849 (((
1850 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
1851 (% style="background-color:#dcdcdc" %)AT+FDR(%%)  Reset Parameters to Factory Default, Keys Reserve
1852 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
1853 (% style="background-color:#dcdcdc" %)AT+NJM=0 (%%) Set to ABP mode
1854 (% style="background-color:#dcdcdc" %)AT+ADR=0 (%%) Set the Adaptive Data Rate Off
1855 (% style="background-color:#dcdcdc" %)AT+DR=5 (%%) Set Data Rate (Set AT+DR=3 for 915 band)
1856 (% style="background-color:#dcdcdc" %)AT+TDC=60000 (%%) Set transmit interval to 60 seconds
1857 (% style="background-color:#dcdcdc" %)AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1858 (% style="background-color:#dcdcdc" %)AT+DADDR=26 01 1A F1(%%)  Set Device Address to 26 01 1A F1
1859 (% style="background-color:#dcdcdc" %)ATZ        (%%) Reset MCU
1860 )))
1861
1862
1863 (((
1864 As shown in below:
1865 )))
1866
1867 [[image:1653360498588-932.png||height="485" width="726"]]
1868
1869
1870 == 5.4 Can I see counting event in Serial? ==
1871
1872 (((
1873 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn’t support AT+DEBUG. User can update to latest firmware first.
1874
1875
1876 == 5.5 Can i use point to point communication for LT-22222-L? ==
1877
1878 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]
1879 )))
1880
1881 (((
1882 == 5.6 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
1883
1884 If the device is not shut down, but directly powered off.
1885
1886 It will default that this is a power-off state.
1887
1888 In modes 2 to 5, DO RO status and pulse count are saved in flash.
1889
1890 After restart, the status before power failure will be read from flash.
1891
1892 = 6. Trouble Shooting =
1893 )))
1894
1895 (((
1896 (((
1897 == 6.1 Downlink doesn’t work, how to solve it? ==
1898 )))
1899 )))
1900
1901 (((
1902 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
1903 )))
1904
1905 (((
1906
1907
1908 == 6.2 Have trouble to upload image. ==
1909 )))
1910
1911 (((
1912 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
1913 )))
1914
1915 (((
1916
1917
1918 == 6.3 Why I can’t join TTN in US915 /AU915 bands? ==
1919 )))
1920
1921 (((
1922 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1923 )))
1924
1925
1926
1927 = 7. Order Info =
1928
1929
1930 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
1931
1932
1933 (% style="color:#4f81bd" %)**XXX:**
1934
1935 * (% style="color:#4f81bd" %)**EU433**(%%): LT with frequency bands EU433
1936 * (% style="color:#4f81bd" %)**EU868**(%%): LT with frequency bands EU868
1937 * (% style="color:#4f81bd" %)**KR920**(%%): LT with frequency bands KR920
1938 * (% style="color:#4f81bd" %)**CN470**(%%): LT with frequency bands CN470
1939 * (% style="color:#4f81bd" %)**AS923**(%%): LT with frequency bands AS923
1940 * (% style="color:#4f81bd" %)**AU915**(%%): LT with frequency bands AU915
1941 * (% style="color:#4f81bd" %)**US915**(%%): LT with frequency bands US915
1942 * (% style="color:#4f81bd" %)**IN865**(%%): LT with frequency bands IN865
1943 * (% style="color:#4f81bd" %)**CN779**(%%): LT with frequency bands CN779
1944
1945 = 8. Packing Info =
1946
1947
1948 **Package Includes**:
1949
1950 * LT-22222-L I/O Controller x 1
1951 * Stick Antenna for LoRa RF part x 1
1952 * Bracket for controller x1
1953 * Program cable x 1
1954
1955 **Dimension and weight**:
1956
1957 * Device Size: 13.5 x 7 x 3 cm
1958 * Device Weight: 105g
1959 * Package Size / pcs : 14.5 x 8 x 5 cm
1960 * Weight / pcs : 170g
1961
1962 = 9. Support =
1963
1964 * (((
1965 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1966 )))
1967 * (((
1968 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1969 )))
1970
1971 = 10. Reference​​​​​ =
1972
1973 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
1974 * [[Image Download>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]]
1975 * [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1976 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]