Version 82.27 by Xiaoling on 2022/06/20 12:01

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4 **LT-22222-L LoRa IO Controller User Manual **
5
6
7 **Table of Contents:**
8
9 {{toc/}}
10
11
12
13
14
15
16
17 = 1.Introduction =
18
19 == 1.1 What is LT Series I/O Controller ==
20
21 (((
22
23
24 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 )))
26
27 (((
28 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
29 )))
30
31 (((
32 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
33 )))
34
35 (((
36 The use environment includes:
37 )))
38
39 (((
40 1) If user’s area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
41 )))
42
43 (((
44 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
45 )))
46
47 (((
48 [[image:1653295757274-912.png]]
49
50
51 )))
52
53
54 == 1.2  Specifications ==
55
56 (((
57
58
59 **Hardware System:**
60 )))
61
62 * (((
63 STM32L072CZT6 MCU
64 )))
65 * (((
66 SX1276/78 Wireless Chip 
67 )))
68 * (((
69 (((
70 Power Consumption:
71 )))
72
73 * (((
74 Idle: 4mA@12v
75 )))
76 * (((
77 20dB Transmit: 34mA@12v
78 )))
79 )))
80
81 (((
82
83
84 **Interface for Model: LT22222-L:**
85 )))
86
87 * (((
88 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
89 )))
90 * (((
91 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
92 )))
93 * (((
94 2 x Relay Output (5A@250VAC / 30VDC)
95 )))
96 * (((
97 2 x 0~~20mA Analog Input (res:0.01mA)
98 )))
99 * (((
100 2 x 0~~30V Analog Input (res:0.01v)
101 )))
102 * (((
103 Power Input 7~~ 24V DC. 
104 )))
105
106 (((
107
108
109 **LoRa Spec:**
110 )))
111
112 * (((
113 (((
114 Frequency Range:
115 )))
116
117 * (((
118 Band 1 (HF): 862 ~~ 1020 Mhz
119 )))
120 * (((
121 Band 2 (LF): 410 ~~ 528 Mhz
122 )))
123 )))
124 * (((
125 168 dB maximum link budget.
126 )))
127 * (((
128 +20 dBm - 100 mW constant RF output vs.
129 )))
130 * (((
131 +14 dBm high efficiency PA.
132 )))
133 * (((
134 Programmable bit rate up to 300 kbps.
135 )))
136 * (((
137 High sensitivity: down to -148 dBm.
138 )))
139 * (((
140 Bullet-proof front end: IIP3 = -12.5 dBm.
141 )))
142 * (((
143 Excellent blocking immunity.
144 )))
145 * (((
146 Low RX current of 10.3 mA, 200 nA register retention.
147 )))
148 * (((
149 Fully integrated synthesizer with a resolution of 61 Hz.
150 )))
151 * (((
152 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
153 )))
154 * (((
155 Built-in bit synchronizer for clock recovery.
156 )))
157 * (((
158 Preamble detection.
159 )))
160 * (((
161 127 dB Dynamic Range RSSI.
162 )))
163 * (((
164 Automatic RF Sense and CAD with ultra-fast AFC.
165 )))
166 * (((
167 Packet engine up to 256 bytes with CRC.
168
169
170
171
172 )))
173
174 == 1.3 Features ==
175
176 * LoRaWAN Class A & Class C protocol
177 * Optional Customized LoRa Protocol
178 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865
179 * AT Commands to change parameters
180 * Remote configure parameters via LoRa Downlink
181 * Firmware upgradable via program port
182 * Counting
183
184 == 1.4  Applications ==
185
186 * Smart Buildings & Home Automation
187 * Logistics and Supply Chain Management
188 * Smart Metering
189 * Smart Agriculture
190 * Smart Cities
191 * Smart Factory
192
193 == 1.5 Hardware Variants ==
194
195 (% border="1" style="background-color:#f7faff; width:500px" %)
196 |(% style="width:103px" %)**Model**|(% style="width:131px" %)**Photo**|(% style="width:334px" %)**Description**
197 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)[[image:1653296302983-697.png]]|(% style="width:334px" %)(((
198 * 2 x Digital Input (Bi-direction)
199 * 2 x Digital Output
200 * 2 x Relay Output (5A@250VAC / 30VDC)
201 * 2 x 0~~20mA Analog Input (res:0.01mA)
202 * 2 x 0~~30V Analog Input (res:0.01v)
203 * 1 x Counting Port
204 )))
205
206
207
208 = 2. Power ON Device =
209
210 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
211
212 (((
213 PWR will on when device is properly powered.
214 )))
215
216 [[image:1653297104069-180.png]]
217
218
219
220 = 3. Operation Mode =
221
222 == 3.1 How it works? ==
223
224 (((
225 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on **TX LED** will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. **TX LED** will be on for 5 seconds after joined in network. When there is message from server, the **RX LED** will be on for 1 second. 
226 )))
227
228 (((
229 In case user can’t set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
230 )))
231
232
233 == 3.2 Example to join LoRaWAN network ==
234
235 (((
236 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
237 )))
238
239 [[image:image-20220523172350-1.png||height="266" width="864"]]
240
241
242 (((
243 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
244 )))
245
246 (((
247 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
248 )))
249
250 (((
251 Each LT is shipped with a sticker with the default device EUI as below:
252 )))
253
254 [[image:1653297924498-393.png]]
255
256
257 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
258
259 Add APP EUI in the application.
260
261 [[image:1653297955910-247.png||height="321" width="716"]]
262
263
264 Add APP KEY and DEV EUI
265
266 [[image:1653298023685-319.png]]
267
268
269 (((
270 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
271 )))
272
273 [[image:1653298044601-602.png||height="405" width="709"]]
274
275
276
277 == 3.3 Uplink Payload ==
278
279 There are five working modes + one interrupt mode on LT for different type application:
280
281 * **MOD1**: (default setting): 2 x ACI + 2AVI + DI + DO + RO
282 * **MOD2**: Double DI Counting + DO + RO
283 * **MOD3**: Single DI Counting + 2 x ACI + DO + RO
284 * **MOD4**: Single DI Counting + 1 x Voltage Counting + DO + RO
285 * **MOD5**: Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
286 * **ADDMOD6**: Trigger Mode, Optional, used together with MOD1 ~~ MOD5
287
288 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
289
290 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default.
291
292 [[image:image-20220523174024-3.png]]
293
294 (((
295
296
297 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
298 )))
299
300 [[image:image-20220523174254-4.png]]
301
302 * RO is for relay. ROx=1 : close,ROx=0 always open.
303 * DI is for digital input. DIx=1: high or float, DIx=0: low.
304 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
305
306 (% style="color:red" %)Note: DI3 and DO3 bit are not valid for LT-22222-L
307
308 For example if payload is: [[image:image-20220523175847-2.png]]
309
310
311 **The value for the interface is:  **
312
313 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
314
315 AVI2 channel voltage is 0x04AC/1000=1.196V
316
317 ACI1 channel current is 0x1310/1000=4.880mA
318
319 ACI2 channel current is 0x1300/1000=4.864mA
320
321 The last byte 0xAA= 10101010(B) means
322
323 * [1] RO1 relay channel is close and the RO1 LED is ON.
324 * [0] RO2 relay channel is open and RO2 LED is OFF;
325
326 **LT22222-L:**
327
328 * [1] DI2 channel is high input and DI2 LED is ON;
329 * [0] DI1 channel is low input;
330
331 * [0] DO3 channel output state
332 ** DO3 is float in case no load between DO3 and V+.;
333 ** DO3 is high in case there is load between DO3 and V+.
334 ** DO3 LED is off in both case
335 * [1] DO2 channel output is low and DO2 LED is ON.
336 * [0] DO1 channel output state
337 ** DO1 is float in case no load between DO1 and V+.;
338 ** DO1 is high in case there is load between DO1 and V+.
339 ** DO1 LED is off in both case
340
341 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
342
343
344 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
345
346 (((
347 Total : 11 bytes payload
348 )))
349
350 [[image:image-20220523180452-3.png]]
351
352
353 (((
354 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
355 )))
356
357 [[image:image-20220523180506-4.png]]
358
359 * RO is for relay. ROx=1 : close,ROx=0 always open.
360 * FIRST: Indicate this is the first packet after join network.
361 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
362
363 (((
364 (% style="color:red" %)Note: DO3 bit is not valid for LT-22222-L.
365 )))
366
367 (((
368
369
370 **To use counting mode, please run:**
371 )))
372
373 (% class="box infomessage" %)
374 (((
375 (((
376 **AT+MOD=2**
377
378 **ATZ**
379 )))
380 )))
381
382 (((
383
384
385 (% style="color:#4f81bd" %)**AT Commands for counting:**
386 )))
387
388 (((
389 **For LT22222-L:**
390
391
392 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
393
394 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
395
396 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
397
398 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
399
400 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
401
402 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
403 )))
404
405
406
407 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
408
409 **LT22222-L**: This mode the DI1 is used as a counting pin.
410
411 [[image:image-20220523181246-5.png]]
412
413 (((
414 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
415 )))
416
417 [[image:image-20220523181301-6.png]]
418
419 * RO is for relay. ROx=1 : close,ROx=0 always open.
420 * FIRST: Indicate this is the first packet after join network.
421 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
422
423 (((
424 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
425 )))
426
427 (((
428 **To use counting mode, please run:**
429 )))
430
431 (% class="box infomessage" %)
432 (((
433 (((
434 **AT+MOD=3**
435
436 **ATZ**
437 )))
438 )))
439
440 (((
441 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
442 )))
443
444
445
446 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
447
448
449 **LT22222-L**: This mode the DI1 is used as a counting pin.
450
451 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
452
453 [[image:image-20220523181903-8.png]]
454
455
456 (((
457 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
458 )))
459
460 [[image:image-20220523181727-7.png]]
461
462 * RO is for relay. ROx=1 : close,ROx=0 always open.
463 * FIRST: Indicate this is the first packet after join network.
464 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
465
466 (((
467 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
468 )))
469
470 (((
471
472
473 **To use this mode, please run:**
474 )))
475
476 (% class="box infomessage" %)
477 (((
478 (((
479 **AT+MOD=4**
480
481 **ATZ**
482 )))
483 )))
484
485
486
487 (((
488 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
489 )))
490
491 (((
492
493
494 **Plus below command for AVI1 Counting:**
495
496
497 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
498
499 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
500
501 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
502
503 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
504 )))
505
506
507
508 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
509
510
511 **LT22222-L**: This mode the DI1 is used as a counting pin.
512
513 [[image:image-20220523182334-9.png]]
514
515 (((
516
517
518 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
519 )))
520
521 * RO is for relay. ROx=1 : close,ROx=0 always open.
522 * FIRST: Indicate this is the first packet after join network.
523 * (((
524 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
525 )))
526
527 (((
528 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
529 )))
530
531 (((
532
533
534 **To use this mode, please run:**
535 )))
536
537 (% class="box infomessage" %)
538 (((
539 (((
540 **AT+MOD=5**
541
542 **ATZ**
543 )))
544 )))
545
546 (((
547 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
548 )))
549
550
551
552 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
553
554
555 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
556
557 For example, if user has configured below commands:
558
559 * **AT+MOD=1 ** **~-~->** The normal working mode
560 * **AT+ADDMOD6=1**   **~-~->** Enable trigger
561
562 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
563
564 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
565 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
566
567 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
568
569 (% style="color:#4f81bd" %)**Trigger base on voltage**:
570
571 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
572
573 **Example:**
574
575 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
576
577 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
578
579
580
581 (% style="color:#4f81bd" %)**Trigger base on current**:
582
583 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
584
585 **Example:**
586
587 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
588
589
590
591 (% style="color:#4f81bd" %)**Trigger base on DI status**:
592
593 DI status trigger Flag.
594
595 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
596
597
598 **Example:**
599
600 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
601
602
603 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
604
605 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
606
607 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
608
609 AA: Code for this downlink Command:
610
611 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
612
613 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
614
615 yy2 yy2: AC1 or AV1 high limit.
616
617 yy3 yy3: AC2 or AV2 low limit.
618
619 Yy4 yy4: AC2 or AV2 high limit.
620
621
622 **Example1**: AA 00 13 88 00 00 00 00 00 00
623
624 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
625
626
627 **Example2**: AA 02 01 00
628
629 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
630
631
632
633 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
634
635 MOD6 Payload : total 11 bytes payload
636
637 [[image:image-20220524085923-1.png]]
638
639
640 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
641
642 [[image:image-20220524090106-2.png]]
643
644 * Each bits shows if the corresponding trigger has been configured.
645
646 **Example:**
647
648 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
649
650
651 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
652
653 [[image:image-20220524090249-3.png]]
654
655 * Each bits shows which status has been trigger on this uplink.
656
657 **Example:**
658
659 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
660
661
662 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
663
664 [[image:image-20220524090456-4.png]]
665
666 * Each bits shows which status has been trigger on this uplink.
667
668 **Example:**
669
670 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
671
672 00000101: Means both DI1 and DI2 trigger are enabled.
673
674
675 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
676
677 Downlink command to poll MOD6 status:
678
679 **AB 06**
680
681 When device got this command, it will send the MOD6 payload.
682
683
684
685 === 3.3.7 Payload Decoder ===
686
687 (((
688
689
690 **Decoder for TTN/loraserver/ChirpStack**: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/Payload_decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/Payload_decoder/]]
691
692
693 )))
694
695
696 == 3.4 ​Configure LT via AT or Downlink ==
697
698 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
699
700 (((
701 There are two kinds of Commands:
702 )))
703
704 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
705
706 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
707
708 === 3.4.1 Common Commands ===
709
710 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
711
712
713
714 === 3.4.2 Sensor related commands ===
715
716 ==== 3.4.2.1 Set Transmit Interval ====
717
718 Set device uplink interval.
719
720 * (% style="color:#037691" %)**AT Command:**
721
722 (% class="box infomessage" %)
723 (((
724 **AT+TDC=N **
725 )))
726
727 **Example: **AT+TDC=30000. Means set interval to 30 seconds
728
729
730 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
731
732 (% class="box infomessage" %)
733 (((
734 **0x01 aa bb cc     ~/~/ Same as AT+TDC=0x(aa bb cc)**
735 )))
736
737
738
739 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
740
741 Set work mode.
742
743 * (% style="color:#037691" %)**AT Command:**
744
745 (% class="box infomessage" %)
746 (((
747 **AT+MOD=N  **
748 )))
749
750 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
751
752
753 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
754
755 (% class="box infomessage" %)
756 (((
757 **0x0A aa     ~/~/ Same as AT+MOD=aa**
758 )))
759
760
761
762 ==== 3.4.2.3 Poll an uplink ====
763
764 * (% style="color:#037691" %)AT Command:
765
766 There is no AT Command to poll uplink
767
768
769 * (% style="color:#037691" %)Downlink Payload (prefix 0x08):
770
771 (% class="box infomessage" %)
772 (((
773 **0x08 FF     ~/~/ Poll an uplink,**
774 )))
775
776 **Example**: 0x08FF, ask device to send an Uplink
777
778
779
780 ==== 3.4.2.4 Enable Trigger Mode ====
781
782 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
783
784 * (% style="color:#037691" %)AT Command:
785
786 (% class="box infomessage" %)
787 (((
788 **AT+ADDMOD6=1 or 0**
789 )))
790
791 1: Enable Trigger Mode
792
793 0: Disable Trigger Mode
794
795
796 * (% style="color:#037691" %)Downlink Payload (prefix 0x0A 06):
797
798 (% class="box infomessage" %)
799 (((
800 **0x0A 06 aa     ~/~/ Same as AT+ADDMOD6=aa,**
801 )))
802
803
804
805 ==== 3.4.2.5 Poll trigger settings ====
806
807 Poll trigger settings,
808
809 * (% style="color:#037691" %)AT Command:
810
811 There is no AT Command for this feature.
812
813
814 * (% style="color:#037691" %)Downlink Payload (prefix 0x AB 06):
815
816 (% class="box infomessage" %)
817 (((
818 **0xAB 06  ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command**
819 )))
820
821
822
823 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
824
825 Enable Disable DI1/DI2/DI2 as trigger,
826
827 * (% style="color:#037691" %)AT Command:
828
829 **Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
830
831
832 **Example:**
833
834 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
835
836 * (% style="color:#037691" %)Downlink Payload (prefix 0xAA 02):
837
838 **0xAA 02 aa bb        **~/~/ Same as AT+DTRI=aa,bb
839
840
841
842
843 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
844
845 Set DI1 or DI3(for LT-33222-L) trigger.
846
847 * (% style="color:#037691" %)AT Command:
848
849 **AT+TRIG1=a,b**
850
851 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
852
853 b : delay timing.
854
855
856 **Example:**
857
858 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
859
860
861 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
862 * **0x09 01 aa bb cc    ** ~/~/ same as AT+TRIG1=aa,0x(bb cc)
863
864
865 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
866
867 Set DI2 trigger.
868
869 * (% style="color:#037691" %)**AT Command:**
870
871 **AT+TRIG2=a,b**
872
873
874 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
875
876 b : delay timing.
877
878
879 **Example:**
880
881 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
882
883
884 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
885
886 **0x09 02 aa bb cc           **~/~/ same as AT+TRIG1=aa,0x(bb cc)
887
888
889
890
891 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
892
893 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
894
895 * (% style="color:#037691" %)**AT Command**
896
897 **AT+ACLIM**
898
899
900 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
901
902 **0x AA 01 aa bb cc dd ee ff gg hh        ** ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
903
904
905
906
907 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
908
909 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
910
911 * (% style="color:#037691" %)**AT Command**
912
913 **AT+AVLIM  See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
914
915
916 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
917
918 **0x AA 00 aa bb cc dd ee ff gg hh    ** ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
919
920
921
922
923 ==== 3.4.2.11 Trigger – Set minimum interval ====
924
925 Set AV and AC trigger minimum interval, system won’t response to the second trigger within this set time after the first trigger.
926
927 * (% style="color:#037691" %)**AT Command**
928
929 **AT+ATDC=5. Device won’t response the second trigger within 5 minute after the first trigger.**
930
931
932 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
933
934 **0x AC aa bb   ** ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
935
936
937
938
939 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
940
941 * (% style="color:#037691" %)**AT Command**
942
943 There is no AT Command to control Digital Output
944
945
946 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
947 * **0x02 aa bb cc     **~/~/ Set DO1/DO2/DO3 output
948
949 (((
950 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
951 )))
952
953 (((
954 01: Low,  00: High ,  11: No action
955 )))
956
957 [[image:image-20220524092754-5.png]]
958
959 (((
960 (% style="color:red" %)Note: For LT-22222-L, there is no DO3, the last byte can use any value.
961 )))
962
963 (((
964 (% style="color:red" %)Device will upload a packet if downlink code executes successfully.
965 )))
966
967
968
969
970 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
971
972 * (% style="color:#037691" %)**AT Command**
973
974 There is no AT Command to control Digital Output
975
976
977 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
978
979 **0xA9 aa bb cc     **~/~/ Set DO1/DO2/DO3 output with time control
980
981
982 This is to control the digital output time of DO pin. Include four bytes:
983
984 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
985
986 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
987
988 01: DO pins will change back to original state after timeout.
989
990 00: DO pins will change to an inverter state after timeout 
991
992
993 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
994
995 [[image:image-20220524093238-6.png]]
996
997
998 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
999
1000 [[image:image-20220524093328-7.png]]
1001
1002
1003 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1004
1005 [[image:image-20220524093351-8.png]]
1006
1007
1008 (% style="color:#4f81bd" %)**Sixth and Seventh Byte**:
1009
1010 Latching time. Unit: ms
1011
1012 Device will upload a packet if downlink code executes successfully.
1013
1014
1015 **Example payload:**
1016
1017 **~1. A9 01 01 01 01 07 D0**
1018
1019 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1020
1021 **2. A9 01 00 01 11 07 D0**
1022
1023 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1024
1025 **3. A9 00 00 00 00 07 D0**
1026
1027 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1028
1029 **4. A9 00 11 01 00 07 D0**
1030
1031 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1032
1033
1034
1035
1036 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1037
1038 * (% style="color:#037691" %)**AT Command:**
1039
1040 There is no AT Command to control Relay Output
1041
1042
1043 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1044
1045 **0x03 aa bb     **~/~/ Set RO1/RO2 output
1046
1047
1048 (((
1049 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1050 )))
1051
1052 (((
1053 01: Close ,  00: Open , 11: No action
1054 )))
1055
1056 (((
1057 [[image:image-20220524093724-9.png]]
1058 )))
1059
1060 Device will upload a packet if downlink code executes successfully.
1061
1062
1063
1064
1065 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1066
1067 * (% style="color:#037691" %)**AT Command:**
1068
1069 There is no AT Command to control Relay Output
1070
1071
1072 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1073
1074 **0x05 aa bb cc dd     **~/~/ Set RO1/RO2 relay with time control
1075
1076
1077 This is to control the relay output time of relay. Include four bytes:
1078
1079 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1080
1081 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1082
1083 01: Relays will change back to original state after timeout.
1084
1085 00: Relays will change to an inverter state after timeout
1086
1087
1088 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1089
1090 [[image:image-20220524093831-10.png]]
1091
1092
1093 (% style="color:#4f81bd" %)**Fourth/Fifth Bytes(cc)**(%%): Latching time. Unit: ms
1094
1095 Device will upload a packet if downlink code executes successfully.
1096
1097
1098 **Example payload:**
1099
1100 **~1. 05 01 11 07 D0**
1101
1102 Relay1 and Relay 2 will be set to NO , last 2 seconds, then change back to original state.
1103
1104 **2. 05 01 10 07 D0**
1105
1106 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then both change back to original state.
1107
1108 **3. 05 00 01 07 D0**
1109
1110 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then relay change to NO, Relay2 change to NC.
1111
1112 **4. 05 00 00 07 D0**
1113
1114 Relay 1 & relay2 will change to NC, last 2 seconds, then both change to NO.
1115
1116
1117
1118
1119 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1120
1121 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1122
1123 * (% style="color:#037691" %)**AT Command:**
1124
1125 **AT+VOLMAX   ** ~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1126
1127
1128 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1129
1130 **0xA5 aa bb cc   **~/~/ Same as AT+VOLMAX=(aa bb),cc
1131
1132
1133
1134
1135 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1136
1137 * (% style="color:#037691" %)**AT Command:**
1138
1139 (% style="color:#037691" %)**​​​​​​​**(%%)**AT+SETCNT=aa,(bb cc dd ee) **
1140
1141 aa: 1: Set count1,
1142
1143 2: Set count2,
1144
1145 3: Set AV1 count
1146
1147 Bb cc dd ee: number to be set
1148
1149
1150 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1151
1152 **0x A8 aa bb cc dd ee     **~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1153
1154
1155
1156
1157 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1158
1159 Clear counting for counting mode
1160
1161 * (% style="color:#037691" %)**AT Command:**
1162
1163 (% style="color:#037691" %)​​​​​​​​​​​​​​(%%)**AT+CLRCOUNT ** ~/~/ clear all counting
1164
1165
1166 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1167
1168 **0x A6 01    ** ~/~/ clear all counting
1169
1170
1171
1172
1173 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1174
1175 * (% style="color:#037691" %)**AT Command:**
1176
1177 **AT+COUTIME=60  **~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1178
1179
1180 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1181
1182 **0x A7 aa bb cc     **~/~/ same as AT+COUTIME =aa bb cc,
1183
1184 (((
1185 range: aa bb cc:0 to 16777215,  (unit:second)
1186
1187
1188 )))
1189
1190
1191
1192 == 3.5 Integrate with Mydevice ==
1193
1194 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1195
1196 (((
1197 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1198 )))
1199
1200 (((
1201 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1202 )))
1203
1204 [[image:1653356737703-362.png||height="232" width="732"]]
1205
1206 [[image:image-20220524094641-11.png||height="390" width="723"]]
1207
1208
1209 [[image:image-20220524094641-12.png||height="402" width="718"]]
1210
1211
1212 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1213
1214 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1215
1216 Search under The things network
1217
1218 [[image:1653356838789-523.png||height="337" width="740"]]
1219
1220
1221
1222 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1223
1224 [[image:image-20220524094909-1.png||height="335" width="729"]]
1225
1226
1227 [[image:image-20220524094909-2.png||height="337" width="729"]]
1228
1229
1230 [[image:image-20220524094909-3.png||height="338" width="727"]]
1231
1232
1233 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1234
1235
1236 [[image:image-20220524094909-5.png||height="341" width="734"]]
1237
1238
1239
1240 == 3.6 Interface Detail ==
1241
1242 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1243
1244 Support NPN Type sensor
1245
1246 [[image:1653356991268-289.png]]
1247
1248
1249
1250 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1251
1252 (((
1253 The DI port of LT-22222-L can support NPN or PNP output sensor.
1254 )))
1255
1256 (((
1257 (((
1258 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high
1259 )))
1260 )))
1261
1262 [[image:1653357170703-587.png]]
1263
1264 (((
1265 (((
1266 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1267 )))
1268 )))
1269
1270 (((
1271
1272 )))
1273
1274 (((
1275 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1276 )))
1277
1278 (((
1279 This type of sensor will output a low signal GND when active.
1280 )))
1281
1282 * (((
1283 Connect sensor’s output to DI1-
1284 )))
1285 * (((
1286 Connect sensor’s VCC to DI1+.
1287 )))
1288
1289 (((
1290 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1291 )))
1292
1293 (((
1294 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1295 )))
1296
1297 (((
1298 If DI1+ = 12v, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1299 )))
1300
1301 (((
1302
1303 )))
1304
1305 (((
1306 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1307 )))
1308
1309 (((
1310 This type of sensor will output a high signal (example 24v) when active.
1311 )))
1312
1313 * (((
1314 Connect sensor’s output to DI1+
1315 )))
1316 * (((
1317 Connect sensor’s GND DI1-.
1318 )))
1319
1320 (((
1321 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1322 )))
1323
1324 (((
1325 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1326 )))
1327
1328 (((
1329 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1330 )))
1331
1332 (((
1333
1334 )))
1335
1336 (((
1337 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1338 )))
1339
1340 (((
1341 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1342 )))
1343
1344 * (((
1345 Connect sensor’s output to DI1+ with a serial 50K resistor
1346 )))
1347 * (((
1348 Connect sensor’s GND DI1-.
1349 )))
1350
1351 (((
1352 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1353 )))
1354
1355 (((
1356 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1357 )))
1358
1359 (((
1360 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1361 )))
1362
1363
1364
1365 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1366
1367 NPN output: GND or Float. Max voltage can apply to output pin is 36v.
1368
1369 [[image:1653357531600-905.png]]
1370
1371
1372
1373 === 3.6.4 Analog Input Interface ===
1374
1375 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1376
1377
1378 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1379
1380 [[image:1653357592296-182.png]]
1381
1382 Example to connect a 4~~20mA sensor
1383
1384 We take the wind speed sensor as an example for reference only.
1385
1386
1387 **Specifications of the wind speed sensor:**
1388
1389 Red:  12~~24v
1390
1391 Yellow:  4~~20mA
1392
1393 Black:  GND
1394
1395
1396 **Connection diagram:**
1397
1398 [[image:1653357640609-758.png]]
1399
1400 [[image:1653357648330-671.png||height="155" width="733"]]
1401
1402
1403
1404 === 3.6.5 Relay Output ===
1405
1406 (((
1407 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device’s Power Line to in serial of RO1_1 and RO_2. Such as below:
1408 )))
1409
1410 [[image:image-20220524100215-9.png]]
1411
1412 [[image:image-20220524100215-10.png||height="382" width="723"]]
1413
1414
1415
1416 == 3.7 LEDs Indicators ==
1417
1418 [[image:image-20220524100748-11.png]]
1419
1420
1421 = 4. Use AT Command =
1422
1423 == 4.1 Access AT Command ==
1424
1425 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1426
1427 [[image:1653358238933-385.png]]
1428
1429
1430 (((
1431 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1432 )))
1433
1434 [[image:1653358355238-883.png]]
1435
1436
1437 (((
1438 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1439 )))
1440
1441 (((
1442 AT+<CMD>?        : Help on <CMD>
1443 )))
1444
1445 (((
1446 AT+<CMD>         : Run <CMD>
1447 )))
1448
1449 (((
1450 AT+<CMD>=<value> : Set the value
1451 )))
1452
1453 (((
1454 AT+<CMD>=?       : Get the value
1455 )))
1456
1457 (((
1458 ATZ: Trig a reset of the MCU
1459 )))
1460
1461 (((
1462 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1463 )))
1464
1465 (((
1466 AT+DEUI: Get or Set the Device EUI
1467 )))
1468
1469 (((
1470 AT+DADDR: Get or Set the Device Address
1471 )))
1472
1473 (((
1474 AT+APPKEY: Get or Set the Application Key
1475 )))
1476
1477 (((
1478 AT+NWKSKEY: Get or Set the Network Session Key
1479 )))
1480
1481 (((
1482 AT+APPSKEY: Get or Set the Application Session Key
1483 )))
1484
1485 (((
1486 AT+APPEUI: Get or Set the Application EUI
1487 )))
1488
1489 (((
1490 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1491 )))
1492
1493 (((
1494 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1495 )))
1496
1497 (((
1498 AT+DR: Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1499 )))
1500
1501 (((
1502 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1503 )))
1504
1505 (((
1506 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1507 )))
1508
1509 (((
1510 AT+RX2FQ: Get or Set the Rx2 window frequency
1511 )))
1512
1513 (((
1514 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1515 )))
1516
1517 (((
1518 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1519 )))
1520
1521 (((
1522 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1523 )))
1524
1525 (((
1526 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1527 )))
1528
1529 (((
1530 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1531 )))
1532
1533 (((
1534 AT+NJM: Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1535 )))
1536
1537 (((
1538 AT+NWKID: Get or Set the Network ID
1539 )))
1540
1541 (((
1542 AT+FCU: Get or Set the Frame Counter Uplink
1543 )))
1544
1545 (((
1546 AT+FCD: Get or Set the Frame Counter Downlink
1547 )))
1548
1549 (((
1550 AT+CLASS: Get or Set the Device Class
1551 )))
1552
1553 (((
1554 AT+JOIN: Join network
1555 )))
1556
1557 (((
1558 AT+NJS: Get OTAA Join Status
1559 )))
1560
1561 (((
1562 AT+SENDB: Send hexadecimal data along with the application port
1563 )))
1564
1565 (((
1566 AT+SEND: Send text data along with the application port
1567 )))
1568
1569 (((
1570 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1571 )))
1572
1573 (((
1574 AT+RECV: Print last received data in raw format
1575 )))
1576
1577 (((
1578 AT+VER: Get current image version and Frequency Band
1579 )))
1580
1581 (((
1582 AT+CFM: Get or Set the confirmation mode (0-1)
1583 )))
1584
1585 (((
1586 AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1587 )))
1588
1589 (((
1590 AT+SNR: Get the SNR of the last received packet
1591 )))
1592
1593 (((
1594 AT+RSSI: Get the RSSI of the last received packet
1595 )))
1596
1597 (((
1598 AT+TDC: Get or set the application data transmission interval in ms
1599 )))
1600
1601 (((
1602 AT+PORT: Get or set the application port
1603 )))
1604
1605 (((
1606 AT+DISAT: Disable AT commands
1607 )))
1608
1609 (((
1610 AT+PWORD: Set password, max 9 digits
1611 )))
1612
1613 (((
1614 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1615 )))
1616
1617 (((
1618 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1619 )))
1620
1621 (((
1622 AT+CFG: Print all settings
1623
1624
1625 )))
1626
1627
1628
1629 == 4.2 Common AT Command Sequence ==
1630
1631 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1632
1633 (((
1634
1635
1636 **If device has not joined network yet:**
1637 )))
1638
1639 (((
1640 (% style="background-color:#dcdcdc" %)123456
1641 )))
1642
1643 (((
1644 (% style="background-color:#dcdcdc" %)AT+FDR
1645 )))
1646
1647 (((
1648 (% style="background-color:#dcdcdc" %)123456
1649 )))
1650
1651 (((
1652 (% style="background-color:#dcdcdc" %)AT+NJM=0
1653 )))
1654
1655 (((
1656 (% style="background-color:#dcdcdc" %)ATZ
1657 )))
1658
1659
1660 (((
1661 **If device already joined network:**
1662 )))
1663
1664 (((
1665 (% style="background-color:#dcdcdc" %)AT+NJM=0
1666 )))
1667
1668 (((
1669 (% style="background-color:#dcdcdc" %)ATZ
1670
1671
1672 )))
1673
1674
1675
1676 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1677
1678 (((
1679
1680
1681 (% style="background-color:#dcdcdc" %)123456(%%)  Enter Password to have AT access.
1682 )))
1683
1684 (((
1685 (% style="background-color:#dcdcdc" %) AT+FDR(%%)   Reset Parameters to Factory Default, Keys Reserve
1686 )))
1687
1688 (((
1689 (% style="background-color:#dcdcdc" %) 123456(%%)  Enter Password to have AT access.
1690 )))
1691
1692 (((
1693 (% style="background-color:#dcdcdc" %) AT+CLASS=C(%%) Set to work in CLASS C
1694 )))
1695
1696 (((
1697 (% style="background-color:#dcdcdc" %) AT+NJM=0(%%)  Set to ABP mode
1698 )))
1699
1700 (((
1701 (% style="background-color:#dcdcdc" %) AT+ADR=0(%%)  Set the Adaptive Data Rate Off
1702 )))
1703
1704 (((
1705 (% style="background-color:#dcdcdc" %) AT+DR=5(%%)  Set Data Rate
1706 )))
1707
1708 (((
1709 (% style="background-color:#dcdcdc" %) AT+TDC=60000(%%)  Set transmit interval to 60 seconds
1710 )))
1711
1712 (((
1713 (% style="background-color:#dcdcdc" %) AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1714 )))
1715
1716 (((
1717 (% style="background-color:#dcdcdc" %) AT+RX2FQ=868400000(%%)  Set RX2Frequency to 868.4Mhz (according to the result from server)
1718 )))
1719
1720 (((
1721 (% style="background-color:#dcdcdc" %) AT+RX2DR=5(%%)  Set RX2DR to match the downlink DR from server. see below
1722 )))
1723
1724 (((
1725 (% style="background-color:#dcdcdc" %) AT+DADDR=26 01 1A F1 (%%) Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1726 )))
1727
1728 (((
1729 (% style="background-color:#dcdcdc" %) ATZ         (%%) Reset MCU
1730
1731
1732 )))
1733
1734 (((
1735 (% style="color:red" %)**Note:**
1736 )))
1737
1738 (((
1739 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1740 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1741 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1742 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1743 )))
1744
1745 (((
1746 [[image:1653359097980-169.png||height="188" width="729"]]
1747 )))
1748
1749 (((
1750
1751 )))
1752
1753
1754 === 4.2.3 Change to Class A ===
1755
1756 If sensor JOINED
1757 (% style="background-color:#dcdcdc" %)AT+CLASS=A
1758 ATZ
1759
1760
1761 = 5. FAQ =
1762
1763 == 5.1 How to upgrade the image? ==
1764
1765
1766 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1767
1768 * Support new features
1769 * For bug fix
1770 * Change LoRaWAN bands.
1771
1772 Below shows the hardware connection for how to upload an image to the LT:
1773
1774 [[image:1653359603330-121.png]]
1775
1776
1777 (((
1778 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1779 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1780 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
1781
1782
1783 (% style="color:blue" %)**For LT-22222-L**(%%):
1784 Hold down the PRO button and then momentarily press the RST reset button and the **DO1 led** will change from OFF to ON. When **DO1 LED** is on, it means the device is in download mode.
1785 )))
1786
1787 [[image:image-20220524103407-12.png]]
1788
1789 [[image:image-20220524103429-13.png]]
1790
1791 [[image:image-20220524104033-15.png]]
1792
1793
1794 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1795
1796 [[image:1653360054704-518.png||height="186" width="745"]]
1797
1798
1799 (((
1800 (((
1801
1802
1803 == 5.2 How to change the LoRa Frequency Bands/Region? ==
1804 )))
1805 )))
1806
1807 (((
1808 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1809 )))
1810
1811 (((
1812
1813
1814 == 5.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
1815 )))
1816
1817 (((
1818 (((
1819 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
1820 )))
1821 )))
1822
1823 (((
1824 (((
1825 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
1826
1827
1828 )))
1829 )))
1830
1831 (((
1832 (% style="color:#4f81bd" %)**Step1**(%%): Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
1833 )))
1834
1835 (((
1836 [[image:1653360231087-571.png||height="401" width="727"]]
1837 )))
1838
1839 (((
1840 (% style="color:red" %)Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.
1841 )))
1842
1843
1844 (((
1845 (% style="color:#4f81bd" %)**Step2**(%%)**: **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
1846 )))
1847
1848 (((
1849 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
1850 (% style="background-color:#dcdcdc" %)AT+FDR(%%)  Reset Parameters to Factory Default, Keys Reserve
1851 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
1852 (% style="background-color:#dcdcdc" %)AT+NJM=0 (%%) Set to ABP mode
1853 (% style="background-color:#dcdcdc" %)AT+ADR=0 (%%) Set the Adaptive Data Rate Off
1854 (% style="background-color:#dcdcdc" %)AT+DR=5 (%%) Set Data Rate (Set AT+DR=3 for 915 band)
1855 (% style="background-color:#dcdcdc" %)AT+TDC=60000 (%%) Set transmit interval to 60 seconds
1856 (% style="background-color:#dcdcdc" %)AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1857 (% style="background-color:#dcdcdc" %)AT+DADDR=26 01 1A F1(%%)  Set Device Address to 26 01 1A F1
1858 (% style="background-color:#dcdcdc" %)ATZ        (%%) Reset MCU
1859 )))
1860
1861
1862 (((
1863 As shown in below:
1864 )))
1865
1866 [[image:1653360498588-932.png||height="485" width="726"]]
1867
1868
1869 == 5.4 Can I see counting event in Serial? ==
1870
1871 (((
1872 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn’t support AT+DEBUG. User can update to latest firmware first.
1873
1874
1875 == 5.5 Can i use point to point communication for LT-22222-L? ==
1876
1877 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]
1878 )))
1879
1880 (((
1881 == 5.6 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
1882
1883 If the device is not shut down, but directly powered off.
1884
1885 It will default that this is a power-off state.
1886
1887 In modes 2 to 5, DO RO status and pulse count are saved in flash.
1888
1889 After restart, the status before power failure will be read from flash.
1890
1891 = 6. Trouble Shooting =
1892 )))
1893
1894 (((
1895 (((
1896 == 6.1 Downlink doesn’t work, how to solve it? ==
1897 )))
1898 )))
1899
1900 (((
1901 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
1902 )))
1903
1904 (((
1905
1906
1907 == 6.2 Have trouble to upload image. ==
1908 )))
1909
1910 (((
1911 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
1912 )))
1913
1914 (((
1915
1916
1917 == 6.3 Why I can’t join TTN in US915 /AU915 bands? ==
1918 )))
1919
1920 (((
1921 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1922 )))
1923
1924
1925
1926 = 7. Order Info =
1927
1928
1929 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
1930
1931
1932 (% style="color:#4f81bd" %)**XXX:**
1933
1934 * (% style="color:#4f81bd" %)**EU433**(%%): LT with frequency bands EU433
1935 * (% style="color:#4f81bd" %)**EU868**(%%): LT with frequency bands EU868
1936 * (% style="color:#4f81bd" %)**KR920**(%%): LT with frequency bands KR920
1937 * (% style="color:#4f81bd" %)**CN470**(%%): LT with frequency bands CN470
1938 * (% style="color:#4f81bd" %)**AS923**(%%): LT with frequency bands AS923
1939 * (% style="color:#4f81bd" %)**AU915**(%%): LT with frequency bands AU915
1940 * (% style="color:#4f81bd" %)**US915**(%%): LT with frequency bands US915
1941 * (% style="color:#4f81bd" %)**IN865**(%%): LT with frequency bands IN865
1942 * (% style="color:#4f81bd" %)**CN779**(%%): LT with frequency bands CN779
1943
1944 = 8. Packing Info =
1945
1946
1947 **Package Includes**:
1948
1949 * LT-22222-L I/O Controller x 1
1950 * Stick Antenna for LoRa RF part x 1
1951 * Bracket for controller x1
1952 * Program cable x 1
1953
1954 **Dimension and weight**:
1955
1956 * Device Size: 13.5 x 7 x 3 cm
1957 * Device Weight: 105g
1958 * Package Size / pcs : 14.5 x 8 x 5 cm
1959 * Weight / pcs : 170g
1960
1961 = 9. Support =
1962
1963 * (((
1964 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1965 )))
1966 * (((
1967 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1968 )))
1969
1970 = 10. Reference​​​​​ =
1971
1972 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
1973 * [[Image Download>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]]
1974 * [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1975 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]