Version 82.26 by Xiaoling on 2022/06/20 12:00

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4 **LT-22222-L LoRa IO Controller User Manual **
5
6
7 **Table of Contents:**
8
9 {{toc/}}
10
11
12
13
14
15
16
17 = 1.Introduction =
18
19 == 1.1 What is LT Series I/O Controller ==
20
21 (((
22
23
24 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 )))
26
27 (((
28 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
29 )))
30
31 (((
32 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
33 )))
34
35 (((
36 The use environment includes:
37 )))
38
39 (((
40 1) If user’s area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
41 )))
42
43 (((
44 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
45 )))
46
47 (((
48 [[image:1653295757274-912.png]]
49
50
51 )))
52
53
54 == 1.2  Specifications ==
55
56 (((
57
58
59 **Hardware System:**
60 )))
61
62 * (((
63 STM32L072CZT6 MCU
64 )))
65 * (((
66 SX1276/78 Wireless Chip 
67 )))
68 * (((
69 (((
70 Power Consumption:
71 )))
72
73 * (((
74 Idle: 4mA@12v
75 )))
76 * (((
77 20dB Transmit: 34mA@12v
78 )))
79 )))
80
81 (((
82
83
84 **Interface for Model: LT22222-L:**
85 )))
86
87 * (((
88 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
89 )))
90 * (((
91 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
92 )))
93 * (((
94 2 x Relay Output (5A@250VAC / 30VDC)
95 )))
96 * (((
97 2 x 0~~20mA Analog Input (res:0.01mA)
98 )))
99 * (((
100 2 x 0~~30V Analog Input (res:0.01v)
101 )))
102 * (((
103 Power Input 7~~ 24V DC. 
104 )))
105
106 (((
107
108
109 **LoRa Spec:**
110 )))
111
112 * (((
113 (((
114 Frequency Range:
115 )))
116
117 * (((
118 Band 1 (HF): 862 ~~ 1020 Mhz
119 )))
120 * (((
121 Band 2 (LF): 410 ~~ 528 Mhz
122 )))
123 )))
124 * (((
125 168 dB maximum link budget.
126 )))
127 * (((
128 +20 dBm - 100 mW constant RF output vs.
129 )))
130 * (((
131 +14 dBm high efficiency PA.
132 )))
133 * (((
134 Programmable bit rate up to 300 kbps.
135 )))
136 * (((
137 High sensitivity: down to -148 dBm.
138 )))
139 * (((
140 Bullet-proof front end: IIP3 = -12.5 dBm.
141 )))
142 * (((
143 Excellent blocking immunity.
144 )))
145 * (((
146 Low RX current of 10.3 mA, 200 nA register retention.
147 )))
148 * (((
149 Fully integrated synthesizer with a resolution of 61 Hz.
150 )))
151 * (((
152 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
153 )))
154 * (((
155 Built-in bit synchronizer for clock recovery.
156 )))
157 * (((
158 Preamble detection.
159 )))
160 * (((
161 127 dB Dynamic Range RSSI.
162 )))
163 * (((
164 Automatic RF Sense and CAD with ultra-fast AFC.
165 )))
166 * (((
167 Packet engine up to 256 bytes with CRC.
168
169
170
171
172 )))
173
174 == 1.3 Features ==
175
176 * LoRaWAN Class A & Class C protocol
177 * Optional Customized LoRa Protocol
178 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865
179 * AT Commands to change parameters
180 * Remote configure parameters via LoRa Downlink
181 * Firmware upgradable via program port
182 * Counting
183
184
185 == 1.4  Applications ==
186
187 * Smart Buildings & Home Automation
188 * Logistics and Supply Chain Management
189 * Smart Metering
190 * Smart Agriculture
191 * Smart Cities
192 * Smart Factory
193
194
195 == 1.5 Hardware Variants ==
196
197 (% border="1" style="background-color:#f7faff; width:500px" %)
198 |(% style="width:103px" %)**Model**|(% style="width:131px" %)**Photo**|(% style="width:334px" %)**Description**
199 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)[[image:1653296302983-697.png]]|(% style="width:334px" %)(((
200 * 2 x Digital Input (Bi-direction)
201 * 2 x Digital Output
202 * 2 x Relay Output (5A@250VAC / 30VDC)
203 * 2 x 0~~20mA Analog Input (res:0.01mA)
204 * 2 x 0~~30V Analog Input (res:0.01v)
205 * 1 x Counting Port
206 )))
207
208
209
210
211 = 2. Power ON Device =
212
213 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
214
215 (((
216 PWR will on when device is properly powered.
217 )))
218
219 [[image:1653297104069-180.png]]
220
221
222
223 = 3. Operation Mode =
224
225 == 3.1 How it works? ==
226
227 (((
228 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on **TX LED** will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. **TX LED** will be on for 5 seconds after joined in network. When there is message from server, the **RX LED** will be on for 1 second. 
229 )))
230
231 (((
232 In case user can’t set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
233 )))
234
235
236 == 3.2 Example to join LoRaWAN network ==
237
238 (((
239 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
240 )))
241
242 [[image:image-20220523172350-1.png||height="266" width="864"]]
243
244
245 (((
246 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
247 )))
248
249 (((
250 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
251 )))
252
253 (((
254 Each LT is shipped with a sticker with the default device EUI as below:
255 )))
256
257 [[image:1653297924498-393.png]]
258
259
260 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
261
262 Add APP EUI in the application.
263
264 [[image:1653297955910-247.png||height="321" width="716"]]
265
266
267 Add APP KEY and DEV EUI
268
269 [[image:1653298023685-319.png]]
270
271
272 (((
273 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
274 )))
275
276 [[image:1653298044601-602.png||height="405" width="709"]]
277
278
279
280 == 3.3 Uplink Payload ==
281
282 There are five working modes + one interrupt mode on LT for different type application:
283
284 * **MOD1**: (default setting): 2 x ACI + 2AVI + DI + DO + RO
285 * **MOD2**: Double DI Counting + DO + RO
286 * **MOD3**: Single DI Counting + 2 x ACI + DO + RO
287 * **MOD4**: Single DI Counting + 1 x Voltage Counting + DO + RO
288 * **MOD5**: Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
289 * **ADDMOD6**: Trigger Mode, Optional, used together with MOD1 ~~ MOD5
290
291
292 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
293
294 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default.
295
296 [[image:image-20220523174024-3.png]]
297
298 (((
299
300
301 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
302 )))
303
304 [[image:image-20220523174254-4.png]]
305
306 * RO is for relay. ROx=1 : close,ROx=0 always open.
307 * DI is for digital input. DIx=1: high or float, DIx=0: low.
308 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
309
310 (% style="color:red" %)Note: DI3 and DO3 bit are not valid for LT-22222-L
311
312 For example if payload is: [[image:image-20220523175847-2.png]]
313
314
315 **The value for the interface is:  **
316
317 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
318
319 AVI2 channel voltage is 0x04AC/1000=1.196V
320
321 ACI1 channel current is 0x1310/1000=4.880mA
322
323 ACI2 channel current is 0x1300/1000=4.864mA
324
325 The last byte 0xAA= 10101010(B) means
326
327 * [1] RO1 relay channel is close and the RO1 LED is ON.
328 * [0] RO2 relay channel is open and RO2 LED is OFF;
329
330 **LT22222-L:**
331
332 * [1] DI2 channel is high input and DI2 LED is ON;
333 * [0] DI1 channel is low input;
334
335 * [0] DO3 channel output state
336 ** DO3 is float in case no load between DO3 and V+.;
337 ** DO3 is high in case there is load between DO3 and V+.
338 ** DO3 LED is off in both case
339 * [1] DO2 channel output is low and DO2 LED is ON.
340 * [0] DO1 channel output state
341 ** DO1 is float in case no load between DO1 and V+.;
342 ** DO1 is high in case there is load between DO1 and V+.
343 ** DO1 LED is off in both case
344
345
346 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
347
348
349 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
350
351 (((
352 Total : 11 bytes payload
353 )))
354
355 [[image:image-20220523180452-3.png]]
356
357
358 (((
359 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
360 )))
361
362 [[image:image-20220523180506-4.png]]
363
364 * RO is for relay. ROx=1 : close,ROx=0 always open.
365 * FIRST: Indicate this is the first packet after join network.
366 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
367
368 (((
369 (% style="color:red" %)Note: DO3 bit is not valid for LT-22222-L.
370 )))
371
372 (((
373
374
375 **To use counting mode, please run:**
376 )))
377
378 (% class="box infomessage" %)
379 (((
380 (((
381 **AT+MOD=2**
382
383 **ATZ**
384 )))
385 )))
386
387 (((
388
389
390 (% style="color:#4f81bd" %)**AT Commands for counting:**
391 )))
392
393 (((
394 **For LT22222-L:**
395
396
397 **AT+TRIG1=0,100  (set DI1 port to trigger on low level, valid signal is 100ms) **
398
399 **AT+TRIG1=1,100  (set DI1 port to trigger on high level, valid signal is 100ms ) **
400
401 **AT+TRIG2=0,100  (set DI2 port to trigger on low level, valid signal is 100ms) **
402
403 **AT+TRIG2=1,100  (set DI2 port to trigger on high level, valid signal is 100ms ) **
404
405 **AT+SETCNT=1,60   (Set COUNT1 value to 60)**
406
407 **AT+SETCNT=2,60   (Set COUNT2 value to 60)**
408 )))
409
410
411
412 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
413
414 **LT22222-L**: This mode the DI1 is used as a counting pin.
415
416 [[image:image-20220523181246-5.png]]
417
418 (((
419 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
420 )))
421
422 [[image:image-20220523181301-6.png]]
423
424 * RO is for relay. ROx=1 : close,ROx=0 always open.
425 * FIRST: Indicate this is the first packet after join network.
426 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
427
428 (((
429 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
430 )))
431
432 (((
433 **To use counting mode, please run:**
434 )))
435
436 (% class="box infomessage" %)
437 (((
438 (((
439 **AT+MOD=3**
440
441 **ATZ**
442 )))
443 )))
444
445 (((
446 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
447 )))
448
449
450
451 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
452
453
454 **LT22222-L**: This mode the DI1 is used as a counting pin.
455
456 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
457
458 [[image:image-20220523181903-8.png]]
459
460
461 (((
462 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
463 )))
464
465 [[image:image-20220523181727-7.png]]
466
467 * RO is for relay. ROx=1 : close,ROx=0 always open.
468 * FIRST: Indicate this is the first packet after join network.
469 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
470
471 (((
472 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
473 )))
474
475 (((
476
477
478 **To use this mode, please run:**
479 )))
480
481 (% class="box infomessage" %)
482 (((
483 (((
484 **AT+MOD=4**
485
486 **ATZ**
487 )))
488 )))
489
490
491
492 (((
493 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
494 )))
495
496 (((
497
498
499 **Plus below command for AVI1 Counting:**
500
501
502 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
503
504 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
505
506 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
507
508 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
509 )))
510
511
512
513 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
514
515
516 **LT22222-L**: This mode the DI1 is used as a counting pin.
517
518 [[image:image-20220523182334-9.png]]
519
520 (((
521
522
523 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
524 )))
525
526 * RO is for relay. ROx=1 : close,ROx=0 always open.
527 * FIRST: Indicate this is the first packet after join network.
528 * (((
529 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
530 )))
531
532 (((
533 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
534 )))
535
536 (((
537
538
539 **To use this mode, please run:**
540 )))
541
542 (% class="box infomessage" %)
543 (((
544 (((
545 **AT+MOD=5**
546
547 **ATZ**
548 )))
549 )))
550
551 (((
552 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
553 )))
554
555
556
557 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
558
559
560 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
561
562 For example, if user has configured below commands:
563
564 * **AT+MOD=1 ** **~-~->** The normal working mode
565 * **AT+ADDMOD6=1**   **~-~->** Enable trigger
566
567 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
568
569 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
570 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
571
572
573 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
574
575 (% style="color:#4f81bd" %)**Trigger base on voltage**:
576
577 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
578
579 **Example:**
580
581 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
582
583 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
584
585
586
587 (% style="color:#4f81bd" %)**Trigger base on current**:
588
589 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
590
591 **Example:**
592
593 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
594
595
596
597 (% style="color:#4f81bd" %)**Trigger base on DI status**:
598
599 DI status trigger Flag.
600
601 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
602
603
604 **Example:**
605
606 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
607
608
609 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
610
611 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
612
613 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
614
615 AA: Code for this downlink Command:
616
617 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
618
619 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
620
621 yy2 yy2: AC1 or AV1 high limit.
622
623 yy3 yy3: AC2 or AV2 low limit.
624
625 Yy4 yy4: AC2 or AV2 high limit.
626
627
628 **Example1**: AA 00 13 88 00 00 00 00 00 00
629
630 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
631
632
633 **Example2**: AA 02 01 00
634
635 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
636
637
638
639 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
640
641 MOD6 Payload : total 11 bytes payload
642
643 [[image:image-20220524085923-1.png]]
644
645
646 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
647
648 [[image:image-20220524090106-2.png]]
649
650 * Each bits shows if the corresponding trigger has been configured.
651
652 **Example:**
653
654 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
655
656
657 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
658
659 [[image:image-20220524090249-3.png]]
660
661 * Each bits shows which status has been trigger on this uplink.
662
663 **Example:**
664
665 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
666
667
668 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
669
670 [[image:image-20220524090456-4.png]]
671
672 * Each bits shows which status has been trigger on this uplink.
673
674 **Example:**
675
676 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
677
678 00000101: Means both DI1 and DI2 trigger are enabled.
679
680
681 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
682
683 Downlink command to poll MOD6 status:
684
685 **AB 06**
686
687 When device got this command, it will send the MOD6 payload.
688
689
690
691 === 3.3.7 Payload Decoder ===
692
693 (((
694
695
696 **Decoder for TTN/loraserver/ChirpStack**: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/Payload_decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/Payload_decoder/]]
697
698
699 )))
700
701
702 == 3.4 ​Configure LT via AT or Downlink ==
703
704 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
705
706 (((
707 There are two kinds of Commands:
708 )))
709
710 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
711
712 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
713
714
715 === 3.4.1 Common Commands ===
716
717 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
718
719
720
721 === 3.4.2 Sensor related commands ===
722
723 ==== 3.4.2.1 Set Transmit Interval ====
724
725 Set device uplink interval.
726
727 * (% style="color:#037691" %)**AT Command:**
728
729 (% class="box infomessage" %)
730 (((
731 **AT+TDC=N **
732 )))
733
734 **Example: **AT+TDC=30000. Means set interval to 30 seconds
735
736
737 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
738
739 (% class="box infomessage" %)
740 (((
741 **0x01 aa bb cc     ~/~/ Same as AT+TDC=0x(aa bb cc)**
742 )))
743
744
745
746 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
747
748 Set work mode.
749
750 * (% style="color:#037691" %)**AT Command:**
751
752 (% class="box infomessage" %)
753 (((
754 **AT+MOD=N  **
755 )))
756
757 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
758
759
760 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
761
762 (% class="box infomessage" %)
763 (((
764 **0x0A aa     ~/~/ Same as AT+MOD=aa**
765 )))
766
767
768
769 ==== 3.4.2.3 Poll an uplink ====
770
771 * (% style="color:#037691" %)AT Command:
772
773 There is no AT Command to poll uplink
774
775
776 * (% style="color:#037691" %)Downlink Payload (prefix 0x08):
777
778 (% class="box infomessage" %)
779 (((
780 **0x08 FF     ~/~/ Poll an uplink,**
781 )))
782
783 **Example**: 0x08FF, ask device to send an Uplink
784
785
786
787 ==== 3.4.2.4 Enable Trigger Mode ====
788
789 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
790
791 * (% style="color:#037691" %)AT Command:
792
793 (% class="box infomessage" %)
794 (((
795 **AT+ADDMOD6=1 or 0**
796 )))
797
798 1: Enable Trigger Mode
799
800 0: Disable Trigger Mode
801
802
803 * (% style="color:#037691" %)Downlink Payload (prefix 0x0A 06):
804
805 (% class="box infomessage" %)
806 (((
807 **0x0A 06 aa     ~/~/ Same as AT+ADDMOD6=aa,**
808 )))
809
810
811
812 ==== 3.4.2.5 Poll trigger settings ====
813
814 Poll trigger settings,
815
816 * (% style="color:#037691" %)AT Command:
817
818 There is no AT Command for this feature.
819
820
821 * (% style="color:#037691" %)Downlink Payload (prefix 0x AB 06):
822
823 (% class="box infomessage" %)
824 (((
825 **0xAB 06  ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command**
826 )))
827
828
829
830 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
831
832 Enable Disable DI1/DI2/DI2 as trigger,
833
834 * (% style="color:#037691" %)AT Command:
835
836 **Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
837
838
839 **Example:**
840
841 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
842
843 * (% style="color:#037691" %)Downlink Payload (prefix 0xAA 02):
844
845 **0xAA 02 aa bb        **~/~/ Same as AT+DTRI=aa,bb
846
847
848
849
850 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
851
852 Set DI1 or DI3(for LT-33222-L) trigger.
853
854 * (% style="color:#037691" %)AT Command:
855
856 **AT+TRIG1=a,b**
857
858 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
859
860 b : delay timing.
861
862
863 **Example:**
864
865 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
866
867
868 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
869 * **0x09 01 aa bb cc    ** ~/~/ same as AT+TRIG1=aa,0x(bb cc)
870
871
872
873 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
874
875 Set DI2 trigger.
876
877 * (% style="color:#037691" %)**AT Command:**
878
879 **AT+TRIG2=a,b**
880
881
882 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
883
884 b : delay timing.
885
886
887 **Example:**
888
889 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
890
891
892 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
893
894 **0x09 02 aa bb cc           **~/~/ same as AT+TRIG1=aa,0x(bb cc)
895
896
897
898
899 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
900
901 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
902
903 * (% style="color:#037691" %)**AT Command**
904
905 **AT+ACLIM**
906
907
908 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
909
910 **0x AA 01 aa bb cc dd ee ff gg hh        ** ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
911
912
913
914
915 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
916
917 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
918
919 * (% style="color:#037691" %)**AT Command**
920
921 **AT+AVLIM  See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
922
923
924 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
925
926 **0x AA 00 aa bb cc dd ee ff gg hh    ** ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
927
928
929
930
931 ==== 3.4.2.11 Trigger – Set minimum interval ====
932
933 Set AV and AC trigger minimum interval, system won’t response to the second trigger within this set time after the first trigger.
934
935 * (% style="color:#037691" %)**AT Command**
936
937 **AT+ATDC=5. Device won’t response the second trigger within 5 minute after the first trigger.**
938
939
940 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
941
942 **0x AC aa bb   ** ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
943
944
945
946
947 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
948
949 * (% style="color:#037691" %)**AT Command**
950
951 There is no AT Command to control Digital Output
952
953
954 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
955 * **0x02 aa bb cc     **~/~/ Set DO1/DO2/DO3 output
956
957 (((
958 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
959 )))
960
961 (((
962 01: Low,  00: High ,  11: No action
963 )))
964
965 [[image:image-20220524092754-5.png]]
966
967 (((
968 (% style="color:red" %)Note: For LT-22222-L, there is no DO3, the last byte can use any value.
969 )))
970
971 (((
972 (% style="color:red" %)Device will upload a packet if downlink code executes successfully.
973 )))
974
975
976
977
978 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
979
980 * (% style="color:#037691" %)**AT Command**
981
982 There is no AT Command to control Digital Output
983
984
985 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
986
987 **0xA9 aa bb cc     **~/~/ Set DO1/DO2/DO3 output with time control
988
989
990 This is to control the digital output time of DO pin. Include four bytes:
991
992 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
993
994 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
995
996 01: DO pins will change back to original state after timeout.
997
998 00: DO pins will change to an inverter state after timeout 
999
1000
1001 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1002
1003 [[image:image-20220524093238-6.png]]
1004
1005
1006 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1007
1008 [[image:image-20220524093328-7.png]]
1009
1010
1011 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1012
1013 [[image:image-20220524093351-8.png]]
1014
1015
1016 (% style="color:#4f81bd" %)**Sixth and Seventh Byte**:
1017
1018 Latching time. Unit: ms
1019
1020 Device will upload a packet if downlink code executes successfully.
1021
1022
1023 **Example payload:**
1024
1025 **~1. A9 01 01 01 01 07 D0**
1026
1027 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1028
1029 **2. A9 01 00 01 11 07 D0**
1030
1031 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1032
1033 **3. A9 00 00 00 00 07 D0**
1034
1035 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1036
1037 **4. A9 00 11 01 00 07 D0**
1038
1039 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1040
1041
1042
1043
1044 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1045
1046 * (% style="color:#037691" %)**AT Command:**
1047
1048 There is no AT Command to control Relay Output
1049
1050
1051 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1052
1053 **0x03 aa bb     **~/~/ Set RO1/RO2 output
1054
1055
1056 (((
1057 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1058 )))
1059
1060 (((
1061 01: Close ,  00: Open , 11: No action
1062 )))
1063
1064 (((
1065 [[image:image-20220524093724-9.png]]
1066 )))
1067
1068 Device will upload a packet if downlink code executes successfully.
1069
1070
1071
1072
1073 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1074
1075 * (% style="color:#037691" %)**AT Command:**
1076
1077 There is no AT Command to control Relay Output
1078
1079
1080 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1081
1082 **0x05 aa bb cc dd     **~/~/ Set RO1/RO2 relay with time control
1083
1084
1085 This is to control the relay output time of relay. Include four bytes:
1086
1087 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1088
1089 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1090
1091 01: Relays will change back to original state after timeout.
1092
1093 00: Relays will change to an inverter state after timeout
1094
1095
1096 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1097
1098 [[image:image-20220524093831-10.png]]
1099
1100
1101 (% style="color:#4f81bd" %)**Fourth/Fifth Bytes(cc)**(%%): Latching time. Unit: ms
1102
1103 Device will upload a packet if downlink code executes successfully.
1104
1105
1106 **Example payload:**
1107
1108 **~1. 05 01 11 07 D0**
1109
1110 Relay1 and Relay 2 will be set to NO , last 2 seconds, then change back to original state.
1111
1112 **2. 05 01 10 07 D0**
1113
1114 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then both change back to original state.
1115
1116 **3. 05 00 01 07 D0**
1117
1118 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then relay change to NO, Relay2 change to NC.
1119
1120 **4. 05 00 00 07 D0**
1121
1122 Relay 1 & relay2 will change to NC, last 2 seconds, then both change to NO.
1123
1124
1125
1126
1127 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1128
1129 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1130
1131 * (% style="color:#037691" %)**AT Command:**
1132
1133 **AT+VOLMAX   ** ~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1134
1135
1136 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1137
1138 **0xA5 aa bb cc   **~/~/ Same as AT+VOLMAX=(aa bb),cc
1139
1140
1141
1142
1143 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1144
1145 * (% style="color:#037691" %)**AT Command:**
1146
1147 (% style="color:#037691" %)**​​​​​​​​​​​​​​**(%%)**AT+SETCNT=aa,(bb cc dd ee) **
1148
1149 aa: 1: Set count1,
1150
1151 2: Set count2,
1152
1153 3: Set AV1 count
1154
1155 Bb cc dd ee: number to be set
1156
1157
1158 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1159
1160 **0x A8 aa bb cc dd ee     **~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1161
1162
1163
1164
1165 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1166
1167 Clear counting for counting mode
1168
1169 * (% style="color:#037691" %)**AT Command:**
1170
1171 (% style="color:#037691" %)​​​​​​​​​​​​​​(%%)**AT+CLRCOUNT ** ~/~/ clear all counting
1172
1173
1174 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1175
1176 **0x A6 01    ** ~/~/ clear all counting
1177
1178
1179
1180
1181 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1182
1183 * (% style="color:#037691" %)**AT Command:**
1184
1185 **AT+COUTIME=60  **~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1186
1187
1188 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1189
1190 **0x A7 aa bb cc     **~/~/ same as AT+COUTIME =aa bb cc,
1191
1192 (((
1193 range: aa bb cc:0 to 16777215,  (unit:second)
1194
1195
1196 )))
1197
1198
1199
1200 == 3.5 Integrate with Mydevice ==
1201
1202 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1203
1204 (((
1205 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1206 )))
1207
1208 (((
1209 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1210 )))
1211
1212 [[image:1653356737703-362.png||height="232" width="732"]]
1213
1214 [[image:image-20220524094641-11.png||height="390" width="723"]]
1215
1216
1217 [[image:image-20220524094641-12.png||height="402" width="718"]]
1218
1219
1220 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1221
1222 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1223
1224 Search under The things network
1225
1226 [[image:1653356838789-523.png||height="337" width="740"]]
1227
1228
1229
1230 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1231
1232 [[image:image-20220524094909-1.png||height="335" width="729"]]
1233
1234
1235 [[image:image-20220524094909-2.png||height="337" width="729"]]
1236
1237
1238 [[image:image-20220524094909-3.png||height="338" width="727"]]
1239
1240
1241 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1242
1243
1244 [[image:image-20220524094909-5.png||height="341" width="734"]]
1245
1246
1247
1248 == 3.6 Interface Detail ==
1249
1250 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1251
1252 Support NPN Type sensor
1253
1254 [[image:1653356991268-289.png]]
1255
1256
1257
1258 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1259
1260 (((
1261 The DI port of LT-22222-L can support NPN or PNP output sensor.
1262 )))
1263
1264 (((
1265 (((
1266 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high
1267 )))
1268 )))
1269
1270 [[image:1653357170703-587.png]]
1271
1272 (((
1273 (((
1274 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1275 )))
1276 )))
1277
1278 (((
1279
1280 )))
1281
1282 (((
1283 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1284 )))
1285
1286 (((
1287 This type of sensor will output a low signal GND when active.
1288 )))
1289
1290 * (((
1291 Connect sensor’s output to DI1-
1292 )))
1293 * (((
1294 Connect sensor’s VCC to DI1+.
1295 )))
1296
1297 (((
1298 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1299 )))
1300
1301 (((
1302 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1303 )))
1304
1305 (((
1306 If DI1+ = 12v, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1307 )))
1308
1309 (((
1310
1311 )))
1312
1313 (((
1314 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1315 )))
1316
1317 (((
1318 This type of sensor will output a high signal (example 24v) when active.
1319 )))
1320
1321 * (((
1322 Connect sensor’s output to DI1+
1323 )))
1324 * (((
1325 Connect sensor’s GND DI1-.
1326 )))
1327
1328 (((
1329 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1330 )))
1331
1332 (((
1333 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1334 )))
1335
1336 (((
1337 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1338 )))
1339
1340 (((
1341
1342 )))
1343
1344 (((
1345 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1346 )))
1347
1348 (((
1349 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1350 )))
1351
1352 * (((
1353 Connect sensor’s output to DI1+ with a serial 50K resistor
1354 )))
1355 * (((
1356 Connect sensor’s GND DI1-.
1357 )))
1358
1359 (((
1360 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1361 )))
1362
1363 (((
1364 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1365 )))
1366
1367 (((
1368 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1369 )))
1370
1371
1372
1373 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1374
1375 NPN output: GND or Float. Max voltage can apply to output pin is 36v.
1376
1377 [[image:1653357531600-905.png]]
1378
1379
1380
1381 === 3.6.4 Analog Input Interface ===
1382
1383 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1384
1385
1386 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1387
1388 [[image:1653357592296-182.png]]
1389
1390 Example to connect a 4~~20mA sensor
1391
1392 We take the wind speed sensor as an example for reference only.
1393
1394
1395 **Specifications of the wind speed sensor:**
1396
1397 Red:  12~~24v
1398
1399 Yellow:  4~~20mA
1400
1401 Black:  GND
1402
1403
1404 **Connection diagram:**
1405
1406 [[image:1653357640609-758.png]]
1407
1408 [[image:1653357648330-671.png||height="155" width="733"]]
1409
1410
1411
1412 === 3.6.5 Relay Output ===
1413
1414 (((
1415 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device’s Power Line to in serial of RO1_1 and RO_2. Such as below:
1416 )))
1417
1418 [[image:image-20220524100215-9.png]]
1419
1420 [[image:image-20220524100215-10.png||height="382" width="723"]]
1421
1422
1423
1424 == 3.7 LEDs Indicators ==
1425
1426 [[image:image-20220524100748-11.png]]
1427
1428
1429 = 4. Use AT Command =
1430
1431 == 4.1 Access AT Command ==
1432
1433 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1434
1435 [[image:1653358238933-385.png]]
1436
1437
1438 (((
1439 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1440 )))
1441
1442 [[image:1653358355238-883.png]]
1443
1444
1445 (((
1446 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1447 )))
1448
1449 (((
1450 AT+<CMD>?        : Help on <CMD>
1451 )))
1452
1453 (((
1454 AT+<CMD>         : Run <CMD>
1455 )))
1456
1457 (((
1458 AT+<CMD>=<value> : Set the value
1459 )))
1460
1461 (((
1462 AT+<CMD>=?       : Get the value
1463 )))
1464
1465 (((
1466 ATZ: Trig a reset of the MCU
1467 )))
1468
1469 (((
1470 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1471 )))
1472
1473 (((
1474 AT+DEUI: Get or Set the Device EUI
1475 )))
1476
1477 (((
1478 AT+DADDR: Get or Set the Device Address
1479 )))
1480
1481 (((
1482 AT+APPKEY: Get or Set the Application Key
1483 )))
1484
1485 (((
1486 AT+NWKSKEY: Get or Set the Network Session Key
1487 )))
1488
1489 (((
1490 AT+APPSKEY: Get or Set the Application Session Key
1491 )))
1492
1493 (((
1494 AT+APPEUI: Get or Set the Application EUI
1495 )))
1496
1497 (((
1498 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1499 )))
1500
1501 (((
1502 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1503 )))
1504
1505 (((
1506 AT+DR: Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1507 )))
1508
1509 (((
1510 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1511 )))
1512
1513 (((
1514 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1515 )))
1516
1517 (((
1518 AT+RX2FQ: Get or Set the Rx2 window frequency
1519 )))
1520
1521 (((
1522 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1523 )))
1524
1525 (((
1526 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1527 )))
1528
1529 (((
1530 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1531 )))
1532
1533 (((
1534 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1535 )))
1536
1537 (((
1538 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1539 )))
1540
1541 (((
1542 AT+NJM: Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1543 )))
1544
1545 (((
1546 AT+NWKID: Get or Set the Network ID
1547 )))
1548
1549 (((
1550 AT+FCU: Get or Set the Frame Counter Uplink
1551 )))
1552
1553 (((
1554 AT+FCD: Get or Set the Frame Counter Downlink
1555 )))
1556
1557 (((
1558 AT+CLASS: Get or Set the Device Class
1559 )))
1560
1561 (((
1562 AT+JOIN: Join network
1563 )))
1564
1565 (((
1566 AT+NJS: Get OTAA Join Status
1567 )))
1568
1569 (((
1570 AT+SENDB: Send hexadecimal data along with the application port
1571 )))
1572
1573 (((
1574 AT+SEND: Send text data along with the application port
1575 )))
1576
1577 (((
1578 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1579 )))
1580
1581 (((
1582 AT+RECV: Print last received data in raw format
1583 )))
1584
1585 (((
1586 AT+VER: Get current image version and Frequency Band
1587 )))
1588
1589 (((
1590 AT+CFM: Get or Set the confirmation mode (0-1)
1591 )))
1592
1593 (((
1594 AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1595 )))
1596
1597 (((
1598 AT+SNR: Get the SNR of the last received packet
1599 )))
1600
1601 (((
1602 AT+RSSI: Get the RSSI of the last received packet
1603 )))
1604
1605 (((
1606 AT+TDC: Get or set the application data transmission interval in ms
1607 )))
1608
1609 (((
1610 AT+PORT: Get or set the application port
1611 )))
1612
1613 (((
1614 AT+DISAT: Disable AT commands
1615 )))
1616
1617 (((
1618 AT+PWORD: Set password, max 9 digits
1619 )))
1620
1621 (((
1622 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1623 )))
1624
1625 (((
1626 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1627 )))
1628
1629 (((
1630 AT+CFG: Print all settings
1631
1632
1633 )))
1634
1635
1636
1637 == 4.2 Common AT Command Sequence ==
1638
1639 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1640
1641 (((
1642
1643
1644 **If device has not joined network yet:**
1645 )))
1646
1647 (((
1648 (% style="background-color:#dcdcdc" %)123456
1649 )))
1650
1651 (((
1652 (% style="background-color:#dcdcdc" %)AT+FDR
1653 )))
1654
1655 (((
1656 (% style="background-color:#dcdcdc" %)123456
1657 )))
1658
1659 (((
1660 (% style="background-color:#dcdcdc" %)AT+NJM=0
1661 )))
1662
1663 (((
1664 (% style="background-color:#dcdcdc" %)ATZ
1665 )))
1666
1667
1668 (((
1669 **If device already joined network:**
1670 )))
1671
1672 (((
1673 (% style="background-color:#dcdcdc" %)AT+NJM=0
1674 )))
1675
1676 (((
1677 (% style="background-color:#dcdcdc" %)ATZ
1678
1679
1680 )))
1681
1682
1683
1684 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1685
1686 (((
1687
1688
1689 (% style="background-color:#dcdcdc" %)123456(%%)  Enter Password to have AT access.
1690 )))
1691
1692 (((
1693 (% style="background-color:#dcdcdc" %) AT+FDR(%%)   Reset Parameters to Factory Default, Keys Reserve
1694 )))
1695
1696 (((
1697 (% style="background-color:#dcdcdc" %) 123456(%%)  Enter Password to have AT access.
1698 )))
1699
1700 (((
1701 (% style="background-color:#dcdcdc" %) AT+CLASS=C(%%) Set to work in CLASS C
1702 )))
1703
1704 (((
1705 (% style="background-color:#dcdcdc" %) AT+NJM=0(%%)  Set to ABP mode
1706 )))
1707
1708 (((
1709 (% style="background-color:#dcdcdc" %) AT+ADR=0(%%)  Set the Adaptive Data Rate Off
1710 )))
1711
1712 (((
1713 (% style="background-color:#dcdcdc" %) AT+DR=5(%%)  Set Data Rate
1714 )))
1715
1716 (((
1717 (% style="background-color:#dcdcdc" %) AT+TDC=60000(%%)  Set transmit interval to 60 seconds
1718 )))
1719
1720 (((
1721 (% style="background-color:#dcdcdc" %) AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1722 )))
1723
1724 (((
1725 (% style="background-color:#dcdcdc" %) AT+RX2FQ=868400000(%%)  Set RX2Frequency to 868.4Mhz (according to the result from server)
1726 )))
1727
1728 (((
1729 (% style="background-color:#dcdcdc" %) AT+RX2DR=5(%%)  Set RX2DR to match the downlink DR from server. see below
1730 )))
1731
1732 (((
1733 (% style="background-color:#dcdcdc" %) AT+DADDR=26 01 1A F1 (%%) Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1734 )))
1735
1736 (((
1737 (% style="background-color:#dcdcdc" %) ATZ         (%%) Reset MCU
1738
1739
1740 )))
1741
1742 (((
1743 (% style="color:red" %)**Note:**
1744 )))
1745
1746 (((
1747 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1748 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1749 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1750 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1751 )))
1752
1753 (((
1754 [[image:1653359097980-169.png||height="188" width="729"]]
1755 )))
1756
1757 (((
1758
1759 )))
1760
1761
1762 === 4.2.3 Change to Class A ===
1763
1764 If sensor JOINED
1765 (% style="background-color:#dcdcdc" %)AT+CLASS=A
1766 ATZ
1767
1768
1769 = 5. FAQ =
1770
1771 == 5.1 How to upgrade the image? ==
1772
1773
1774 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1775
1776 * Support new features
1777 * For bug fix
1778 * Change LoRaWAN bands.
1779
1780 Below shows the hardware connection for how to upload an image to the LT:
1781
1782 [[image:1653359603330-121.png]]
1783
1784
1785 (((
1786 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1787 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1788 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
1789
1790
1791 (% style="color:blue" %)**For LT-22222-L**(%%):
1792 Hold down the PRO button and then momentarily press the RST reset button and the **DO1 led** will change from OFF to ON. When **DO1 LED** is on, it means the device is in download mode.
1793 )))
1794
1795 [[image:image-20220524103407-12.png]]
1796
1797 [[image:image-20220524103429-13.png]]
1798
1799 [[image:image-20220524104033-15.png]]
1800
1801
1802 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1803
1804 [[image:1653360054704-518.png||height="186" width="745"]]
1805
1806
1807 (((
1808 (((
1809
1810
1811 == 5.2 How to change the LoRa Frequency Bands/Region? ==
1812 )))
1813 )))
1814
1815 (((
1816 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1817 )))
1818
1819 (((
1820
1821
1822 == 5.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
1823 )))
1824
1825 (((
1826 (((
1827 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
1828 )))
1829 )))
1830
1831 (((
1832 (((
1833 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
1834
1835
1836 )))
1837 )))
1838
1839 (((
1840 (% style="color:#4f81bd" %)**Step1**(%%): Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
1841 )))
1842
1843 (((
1844 [[image:1653360231087-571.png||height="401" width="727"]]
1845 )))
1846
1847 (((
1848 (% style="color:red" %)Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.
1849 )))
1850
1851
1852 (((
1853 (% style="color:#4f81bd" %)**Step2**(%%)**: **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
1854 )))
1855
1856 (((
1857 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
1858 (% style="background-color:#dcdcdc" %)AT+FDR(%%)  Reset Parameters to Factory Default, Keys Reserve
1859 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
1860 (% style="background-color:#dcdcdc" %)AT+NJM=0 (%%) Set to ABP mode
1861 (% style="background-color:#dcdcdc" %)AT+ADR=0 (%%) Set the Adaptive Data Rate Off
1862 (% style="background-color:#dcdcdc" %)AT+DR=5 (%%) Set Data Rate (Set AT+DR=3 for 915 band)
1863 (% style="background-color:#dcdcdc" %)AT+TDC=60000 (%%) Set transmit interval to 60 seconds
1864 (% style="background-color:#dcdcdc" %)AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1865 (% style="background-color:#dcdcdc" %)AT+DADDR=26 01 1A F1(%%)  Set Device Address to 26 01 1A F1
1866 (% style="background-color:#dcdcdc" %)ATZ        (%%) Reset MCU
1867 )))
1868
1869
1870 (((
1871 As shown in below:
1872 )))
1873
1874 [[image:1653360498588-932.png||height="485" width="726"]]
1875
1876
1877 == 5.4 Can I see counting event in Serial? ==
1878
1879 (((
1880 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn’t support AT+DEBUG. User can update to latest firmware first.
1881
1882
1883 == 5.5 Can i use point to point communication for LT-22222-L? ==
1884
1885 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]
1886 )))
1887
1888 (((
1889 == 5.6 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
1890
1891 If the device is not shut down, but directly powered off.
1892
1893 It will default that this is a power-off state.
1894
1895 In modes 2 to 5, DO RO status and pulse count are saved in flash.
1896
1897 After restart, the status before power failure will be read from flash.
1898
1899 = 6. Trouble Shooting =
1900 )))
1901
1902 (((
1903 (((
1904 == 6.1 Downlink doesn’t work, how to solve it? ==
1905 )))
1906 )))
1907
1908 (((
1909 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
1910 )))
1911
1912 (((
1913
1914
1915 == 6.2 Have trouble to upload image. ==
1916 )))
1917
1918 (((
1919 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
1920 )))
1921
1922 (((
1923
1924
1925 == 6.3 Why I can’t join TTN in US915 /AU915 bands? ==
1926 )))
1927
1928 (((
1929 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1930 )))
1931
1932
1933
1934 = 7. Order Info =
1935
1936
1937 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
1938
1939
1940 (% style="color:#4f81bd" %)**XXX:**
1941
1942 * (% style="color:#4f81bd" %)**EU433**(%%): LT with frequency bands EU433
1943 * (% style="color:#4f81bd" %)**EU868**(%%): LT with frequency bands EU868
1944 * (% style="color:#4f81bd" %)**KR920**(%%): LT with frequency bands KR920
1945 * (% style="color:#4f81bd" %)**CN470**(%%): LT with frequency bands CN470
1946 * (% style="color:#4f81bd" %)**AS923**(%%): LT with frequency bands AS923
1947 * (% style="color:#4f81bd" %)**AU915**(%%): LT with frequency bands AU915
1948 * (% style="color:#4f81bd" %)**US915**(%%): LT with frequency bands US915
1949 * (% style="color:#4f81bd" %)**IN865**(%%): LT with frequency bands IN865
1950 * (% style="color:#4f81bd" %)**CN779**(%%): LT with frequency bands CN779
1951
1952 = 8. Packing Info =
1953
1954
1955 **Package Includes**:
1956
1957 * LT-22222-L I/O Controller x 1
1958 * Stick Antenna for LoRa RF part x 1
1959 * Bracket for controller x1
1960 * Program cable x 1
1961
1962 **Dimension and weight**:
1963
1964 * Device Size: 13.5 x 7 x 3 cm
1965 * Device Weight: 105g
1966 * Package Size / pcs : 14.5 x 8 x 5 cm
1967 * Weight / pcs : 170g
1968
1969 = 9. Support =
1970
1971 * (((
1972 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1973 )))
1974 * (((
1975 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1976 )))
1977
1978 = 10. Reference​​​​​ =
1979
1980 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
1981 * [[Image Download>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]]
1982 * [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1983 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]