Version 82.25 by Xiaoling on 2022/06/20 12:00

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4 **LT-22222-L LoRa IO Controller User Manual **
5
6
7 **Table of Contents:**
8
9 {{toc/}}
10
11
12
13
14
15
16
17 = 1.Introduction =
18
19 == 1.1 What is LT Series I/O Controller ==
20
21 (((
22
23
24 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 )))
26
27 (((
28 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
29 )))
30
31 (((
32 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
33 )))
34
35 (((
36 The use environment includes:
37 )))
38
39 (((
40 1) If user’s area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
41 )))
42
43 (((
44 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
45 )))
46
47 (((
48 [[image:1653295757274-912.png]]
49
50
51 )))
52
53
54 == 1.2  Specifications ==
55
56 (((
57
58
59 **Hardware System:**
60 )))
61
62 * (((
63 STM32L072CZT6 MCU
64 )))
65 * (((
66 SX1276/78 Wireless Chip 
67 )))
68 * (((
69 (((
70 Power Consumption:
71 )))
72
73 * (((
74 Idle: 4mA@12v
75 )))
76 * (((
77 20dB Transmit: 34mA@12v
78 )))
79 )))
80
81 (((
82
83
84 **Interface for Model: LT22222-L:**
85 )))
86
87 * (((
88 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
89 )))
90 * (((
91 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
92 )))
93 * (((
94 2 x Relay Output (5A@250VAC / 30VDC)
95 )))
96 * (((
97 2 x 0~~20mA Analog Input (res:0.01mA)
98 )))
99 * (((
100 2 x 0~~30V Analog Input (res:0.01v)
101 )))
102 * (((
103 Power Input 7~~ 24V DC. 
104 )))
105
106 (((
107
108
109 **LoRa Spec:**
110 )))
111
112 * (((
113 (((
114 Frequency Range:
115 )))
116
117 * (((
118 Band 1 (HF): 862 ~~ 1020 Mhz
119 )))
120 * (((
121 Band 2 (LF): 410 ~~ 528 Mhz
122 )))
123 )))
124 * (((
125 168 dB maximum link budget.
126 )))
127 * (((
128 +20 dBm - 100 mW constant RF output vs.
129 )))
130 * (((
131 +14 dBm high efficiency PA.
132 )))
133 * (((
134 Programmable bit rate up to 300 kbps.
135 )))
136 * (((
137 High sensitivity: down to -148 dBm.
138 )))
139 * (((
140 Bullet-proof front end: IIP3 = -12.5 dBm.
141 )))
142 * (((
143 Excellent blocking immunity.
144 )))
145 * (((
146 Low RX current of 10.3 mA, 200 nA register retention.
147 )))
148 * (((
149 Fully integrated synthesizer with a resolution of 61 Hz.
150 )))
151 * (((
152 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
153 )))
154 * (((
155 Built-in bit synchronizer for clock recovery.
156 )))
157 * (((
158 Preamble detection.
159 )))
160 * (((
161 127 dB Dynamic Range RSSI.
162 )))
163 * (((
164 Automatic RF Sense and CAD with ultra-fast AFC.
165 )))
166 * (((
167 Packet engine up to 256 bytes with CRC.
168
169
170
171
172 )))
173
174 == 1.3 Features ==
175
176 * LoRaWAN Class A & Class C protocol
177 * Optional Customized LoRa Protocol
178 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865
179 * AT Commands to change parameters
180 * Remote configure parameters via LoRa Downlink
181 * Firmware upgradable via program port
182 * Counting
183
184
185 == 1.4  Applications ==
186
187 * Smart Buildings & Home Automation
188 * Logistics and Supply Chain Management
189 * Smart Metering
190 * Smart Agriculture
191 * Smart Cities
192 * Smart Factory
193
194
195 == 1.5 Hardware Variants ==
196
197 (% border="1" style="background-color:#f7faff; width:500px" %)
198 |(% style="width:103px" %)**Model**|(% style="width:131px" %)**Photo**|(% style="width:334px" %)**Description**
199 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)[[image:1653296302983-697.png]]|(% style="width:334px" %)(((
200 * 2 x Digital Input (Bi-direction)
201 * 2 x Digital Output
202 * 2 x Relay Output (5A@250VAC / 30VDC)
203 * 2 x 0~~20mA Analog Input (res:0.01mA)
204 * 2 x 0~~30V Analog Input (res:0.01v)
205 * 1 x Counting Port
206 )))
207
208
209
210
211 = 2. Power ON Device =
212
213 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
214
215 (((
216 PWR will on when device is properly powered.
217 )))
218
219 [[image:1653297104069-180.png]]
220
221
222
223 = 3. Operation Mode =
224
225 == 3.1 How it works? ==
226
227 (((
228 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on **TX LED** will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. **TX LED** will be on for 5 seconds after joined in network. When there is message from server, the **RX LED** will be on for 1 second. 
229 )))
230
231 (((
232 In case user can’t set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
233 )))
234
235
236 == 3.2 Example to join LoRaWAN network ==
237
238 (((
239 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
240 )))
241
242 [[image:image-20220523172350-1.png||height="266" width="864"]]
243
244
245 (((
246 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
247 )))
248
249 (((
250 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
251 )))
252
253 (((
254 Each LT is shipped with a sticker with the default device EUI as below:
255 )))
256
257 [[image:1653297924498-393.png]]
258
259
260 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
261
262 Add APP EUI in the application.
263
264 [[image:1653297955910-247.png||height="321" width="716"]]
265
266
267 Add APP KEY and DEV EUI
268
269 [[image:1653298023685-319.png]]
270
271
272 (((
273 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
274 )))
275
276 [[image:1653298044601-602.png||height="405" width="709"]]
277
278
279
280 == 3.3 Uplink Payload ==
281
282 There are five working modes + one interrupt mode on LT for different type application:
283
284 * **MOD1**: (default setting): 2 x ACI + 2AVI + DI + DO + RO
285 * **MOD2**: Double DI Counting + DO + RO
286 * **MOD3**: Single DI Counting + 2 x ACI + DO + RO
287 * **MOD4**: Single DI Counting + 1 x Voltage Counting + DO + RO
288 * **MOD5**: Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
289 * **ADDMOD6**: Trigger Mode, Optional, used together with MOD1 ~~ MOD5
290
291
292 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
293
294 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default.
295
296 [[image:image-20220523174024-3.png]]
297
298 (((
299
300
301 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
302 )))
303
304 [[image:image-20220523174254-4.png]]
305
306 * RO is for relay. ROx=1 : close,ROx=0 always open.
307 * DI is for digital input. DIx=1: high or float, DIx=0: low.
308 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
309
310 (% style="color:red" %)Note: DI3 and DO3 bit are not valid for LT-22222-L
311
312 For example if payload is: [[image:image-20220523175847-2.png]]
313
314
315 **The value for the interface is:  **
316
317 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
318
319 AVI2 channel voltage is 0x04AC/1000=1.196V
320
321 ACI1 channel current is 0x1310/1000=4.880mA
322
323 ACI2 channel current is 0x1300/1000=4.864mA
324
325 The last byte 0xAA= 10101010(B) means
326
327 * [1] RO1 relay channel is close and the RO1 LED is ON.
328 * [0] RO2 relay channel is open and RO2 LED is OFF;
329
330 **LT22222-L:**
331
332 * [1] DI2 channel is high input and DI2 LED is ON;
333 * [0] DI1 channel is low input;
334
335 * [0] DO3 channel output state
336 ** DO3 is float in case no load between DO3 and V+.;
337 ** DO3 is high in case there is load between DO3 and V+.
338 ** DO3 LED is off in both case
339 * [1] DO2 channel output is low and DO2 LED is ON.
340 * [0] DO1 channel output state
341 ** DO1 is float in case no load between DO1 and V+.;
342 ** DO1 is high in case there is load between DO1 and V+.
343 ** DO1 LED is off in both case
344
345
346 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
347
348
349 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
350
351 (((
352 Total : 11 bytes payload
353 )))
354
355 [[image:image-20220523180452-3.png]]
356
357
358 (((
359 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
360 )))
361
362 [[image:image-20220523180506-4.png]]
363
364 * RO is for relay. ROx=1 : close,ROx=0 always open.
365 * FIRST: Indicate this is the first packet after join network.
366 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
367
368 (((
369 (% style="color:red" %)Note: DO3 bit is not valid for LT-22222-L.
370 )))
371
372 (((
373
374
375 **To use counting mode, please run:**
376 )))
377
378 (% class="box infomessage" %)
379 (((
380 (((
381 **AT+MOD=2**
382
383 **ATZ**
384 )))
385 )))
386
387 (((
388
389
390 (% style="color:#4f81bd" %)**AT Commands for counting:**
391 )))
392
393 (((
394 **For LT22222-L:**
395 )))
396
397 (% class="box infomessage" %)
398 (((
399 (((
400 **AT+TRIG1=0,100  (set DI1 port to trigger on low level, valid signal is 100ms) **
401
402 **AT+TRIG1=1,100  (set DI1 port to trigger on high level, valid signal is 100ms ) **
403
404 **AT+TRIG2=0,100  (set DI2 port to trigger on low level, valid signal is 100ms) **
405
406 **AT+TRIG2=1,100  (set DI2 port to trigger on high level, valid signal is 100ms ) **
407
408 **AT+SETCNT=1,60   (Set COUNT1 value to 60)**
409
410 **AT+SETCNT=2,60   (Set COUNT2 value to 60)**
411 )))
412 )))
413
414
415
416 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
417
418 **LT22222-L**: This mode the DI1 is used as a counting pin.
419
420 [[image:image-20220523181246-5.png]]
421
422 (((
423 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
424 )))
425
426 [[image:image-20220523181301-6.png]]
427
428 * RO is for relay. ROx=1 : close,ROx=0 always open.
429 * FIRST: Indicate this is the first packet after join network.
430 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
431
432 (((
433 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
434 )))
435
436 (((
437 **To use counting mode, please run:**
438 )))
439
440 (% class="box infomessage" %)
441 (((
442 (((
443 **AT+MOD=3**
444
445 **ATZ**
446 )))
447 )))
448
449 (((
450 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
451 )))
452
453
454
455 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
456
457
458 **LT22222-L**: This mode the DI1 is used as a counting pin.
459
460 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
461
462 [[image:image-20220523181903-8.png]]
463
464
465 (((
466 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
467 )))
468
469 [[image:image-20220523181727-7.png]]
470
471 * RO is for relay. ROx=1 : close,ROx=0 always open.
472 * FIRST: Indicate this is the first packet after join network.
473 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
474
475 (((
476 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
477 )))
478
479 (((
480
481
482 **To use this mode, please run:**
483 )))
484
485 (% class="box infomessage" %)
486 (((
487 (((
488 **AT+MOD=4**
489
490 **ATZ**
491 )))
492 )))
493
494
495
496 (((
497 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
498 )))
499
500 (((
501
502
503 **Plus below command for AVI1 Counting:**
504
505
506 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
507
508 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
509
510 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
511
512 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
513 )))
514
515
516
517 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
518
519
520 **LT22222-L**: This mode the DI1 is used as a counting pin.
521
522 [[image:image-20220523182334-9.png]]
523
524 (((
525
526
527 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
528 )))
529
530 * RO is for relay. ROx=1 : close,ROx=0 always open.
531 * FIRST: Indicate this is the first packet after join network.
532 * (((
533 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
534 )))
535
536 (((
537 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
538 )))
539
540 (((
541
542
543 **To use this mode, please run:**
544 )))
545
546 (% class="box infomessage" %)
547 (((
548 (((
549 **AT+MOD=5**
550
551 **ATZ**
552 )))
553 )))
554
555 (((
556 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
557 )))
558
559
560
561 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
562
563
564 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
565
566 For example, if user has configured below commands:
567
568 * **AT+MOD=1 ** **~-~->** The normal working mode
569 * **AT+ADDMOD6=1**   **~-~->** Enable trigger
570
571 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
572
573 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
574 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
575
576
577 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
578
579 (% style="color:#4f81bd" %)**Trigger base on voltage**:
580
581 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
582
583 **Example:**
584
585 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
586
587 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
588
589
590
591 (% style="color:#4f81bd" %)**Trigger base on current**:
592
593 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
594
595 **Example:**
596
597 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
598
599
600
601 (% style="color:#4f81bd" %)**Trigger base on DI status**:
602
603 DI status trigger Flag.
604
605 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
606
607
608 **Example:**
609
610 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
611
612
613 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
614
615 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
616
617 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
618
619 AA: Code for this downlink Command:
620
621 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
622
623 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
624
625 yy2 yy2: AC1 or AV1 high limit.
626
627 yy3 yy3: AC2 or AV2 low limit.
628
629 Yy4 yy4: AC2 or AV2 high limit.
630
631
632 **Example1**: AA 00 13 88 00 00 00 00 00 00
633
634 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
635
636
637 **Example2**: AA 02 01 00
638
639 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
640
641
642
643 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
644
645 MOD6 Payload : total 11 bytes payload
646
647 [[image:image-20220524085923-1.png]]
648
649
650 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
651
652 [[image:image-20220524090106-2.png]]
653
654 * Each bits shows if the corresponding trigger has been configured.
655
656 **Example:**
657
658 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
659
660
661 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
662
663 [[image:image-20220524090249-3.png]]
664
665 * Each bits shows which status has been trigger on this uplink.
666
667 **Example:**
668
669 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
670
671
672 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
673
674 [[image:image-20220524090456-4.png]]
675
676 * Each bits shows which status has been trigger on this uplink.
677
678 **Example:**
679
680 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
681
682 00000101: Means both DI1 and DI2 trigger are enabled.
683
684
685 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
686
687 Downlink command to poll MOD6 status:
688
689 **AB 06**
690
691 When device got this command, it will send the MOD6 payload.
692
693
694
695 === 3.3.7 Payload Decoder ===
696
697 (((
698
699
700 **Decoder for TTN/loraserver/ChirpStack**: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/Payload_decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/Payload_decoder/]]
701
702
703 )))
704
705
706 == 3.4 ​Configure LT via AT or Downlink ==
707
708 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
709
710 (((
711 There are two kinds of Commands:
712 )))
713
714 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
715
716 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
717
718
719 === 3.4.1 Common Commands ===
720
721 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
722
723
724
725 === 3.4.2 Sensor related commands ===
726
727 ==== 3.4.2.1 Set Transmit Interval ====
728
729 Set device uplink interval.
730
731 * (% style="color:#037691" %)**AT Command:**
732
733 (% class="box infomessage" %)
734 (((
735 **AT+TDC=N **
736 )))
737
738 **Example: **AT+TDC=30000. Means set interval to 30 seconds
739
740
741 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
742
743 (% class="box infomessage" %)
744 (((
745 **0x01 aa bb cc     ~/~/ Same as AT+TDC=0x(aa bb cc)**
746 )))
747
748
749
750 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
751
752 Set work mode.
753
754 * (% style="color:#037691" %)**AT Command:**
755
756 (% class="box infomessage" %)
757 (((
758 **AT+MOD=N  **
759 )))
760
761 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
762
763
764 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
765
766 (% class="box infomessage" %)
767 (((
768 **0x0A aa     ~/~/ Same as AT+MOD=aa**
769 )))
770
771
772
773 ==== 3.4.2.3 Poll an uplink ====
774
775 * (% style="color:#037691" %)AT Command:
776
777 There is no AT Command to poll uplink
778
779
780 * (% style="color:#037691" %)Downlink Payload (prefix 0x08):
781
782 (% class="box infomessage" %)
783 (((
784 **0x08 FF     ~/~/ Poll an uplink,**
785 )))
786
787 **Example**: 0x08FF, ask device to send an Uplink
788
789
790
791 ==== 3.4.2.4 Enable Trigger Mode ====
792
793 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
794
795 * (% style="color:#037691" %)AT Command:
796
797 (% class="box infomessage" %)
798 (((
799 **AT+ADDMOD6=1 or 0**
800 )))
801
802 1: Enable Trigger Mode
803
804 0: Disable Trigger Mode
805
806
807 * (% style="color:#037691" %)Downlink Payload (prefix 0x0A 06):
808
809 (% class="box infomessage" %)
810 (((
811 **0x0A 06 aa     ~/~/ Same as AT+ADDMOD6=aa,**
812 )))
813
814
815
816 ==== 3.4.2.5 Poll trigger settings ====
817
818 Poll trigger settings,
819
820 * (% style="color:#037691" %)AT Command:
821
822 There is no AT Command for this feature.
823
824
825 * (% style="color:#037691" %)Downlink Payload (prefix 0x AB 06):
826
827 (% class="box infomessage" %)
828 (((
829 **0xAB 06  ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command**
830 )))
831
832
833
834 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
835
836 Enable Disable DI1/DI2/DI2 as trigger,
837
838 * (% style="color:#037691" %)AT Command:
839
840 **Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
841
842
843 **Example:**
844
845 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
846
847 * (% style="color:#037691" %)Downlink Payload (prefix 0xAA 02):
848
849 **0xAA 02 aa bb        **~/~/ Same as AT+DTRI=aa,bb
850
851
852
853
854 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
855
856 Set DI1 or DI3(for LT-33222-L) trigger.
857
858 * (% style="color:#037691" %)AT Command:
859
860 **AT+TRIG1=a,b**
861
862 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
863
864 b : delay timing.
865
866
867 **Example:**
868
869 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
870
871
872 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
873 * **0x09 01 aa bb cc    ** ~/~/ same as AT+TRIG1=aa,0x(bb cc)
874
875
876
877 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
878
879 Set DI2 trigger.
880
881 * (% style="color:#037691" %)**AT Command:**
882
883 **AT+TRIG2=a,b**
884
885
886 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
887
888 b : delay timing.
889
890
891 **Example:**
892
893 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
894
895
896 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
897
898 **0x09 02 aa bb cc           **~/~/ same as AT+TRIG1=aa,0x(bb cc)
899
900
901
902
903 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
904
905 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
906
907 * (% style="color:#037691" %)**AT Command**
908
909 **AT+ACLIM**
910
911
912 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
913
914 **0x AA 01 aa bb cc dd ee ff gg hh        ** ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
915
916
917
918
919 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
920
921 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
922
923 * (% style="color:#037691" %)**AT Command**
924
925 **AT+AVLIM  See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
926
927
928 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
929
930 **0x AA 00 aa bb cc dd ee ff gg hh    ** ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
931
932
933
934
935 ==== 3.4.2.11 Trigger – Set minimum interval ====
936
937 Set AV and AC trigger minimum interval, system won’t response to the second trigger within this set time after the first trigger.
938
939 * (% style="color:#037691" %)**AT Command**
940
941 **AT+ATDC=5. Device won’t response the second trigger within 5 minute after the first trigger.**
942
943
944 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
945
946 **0x AC aa bb   ** ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
947
948
949
950
951 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
952
953 * (% style="color:#037691" %)**AT Command**
954
955 There is no AT Command to control Digital Output
956
957
958 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
959 * **0x02 aa bb cc     **~/~/ Set DO1/DO2/DO3 output
960
961 (((
962 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
963 )))
964
965 (((
966 01: Low,  00: High ,  11: No action
967 )))
968
969 [[image:image-20220524092754-5.png]]
970
971 (((
972 (% style="color:red" %)Note: For LT-22222-L, there is no DO3, the last byte can use any value.
973 )))
974
975 (((
976 (% style="color:red" %)Device will upload a packet if downlink code executes successfully.
977 )))
978
979
980
981
982 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
983
984 * (% style="color:#037691" %)**AT Command**
985
986 There is no AT Command to control Digital Output
987
988
989 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
990
991 **0xA9 aa bb cc     **~/~/ Set DO1/DO2/DO3 output with time control
992
993
994 This is to control the digital output time of DO pin. Include four bytes:
995
996 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
997
998 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
999
1000 01: DO pins will change back to original state after timeout.
1001
1002 00: DO pins will change to an inverter state after timeout 
1003
1004
1005 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1006
1007 [[image:image-20220524093238-6.png]]
1008
1009
1010 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1011
1012 [[image:image-20220524093328-7.png]]
1013
1014
1015 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1016
1017 [[image:image-20220524093351-8.png]]
1018
1019
1020 (% style="color:#4f81bd" %)**Sixth and Seventh Byte**:
1021
1022 Latching time. Unit: ms
1023
1024 Device will upload a packet if downlink code executes successfully.
1025
1026
1027 **Example payload:**
1028
1029 **~1. A9 01 01 01 01 07 D0**
1030
1031 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1032
1033 **2. A9 01 00 01 11 07 D0**
1034
1035 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1036
1037 **3. A9 00 00 00 00 07 D0**
1038
1039 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1040
1041 **4. A9 00 11 01 00 07 D0**
1042
1043 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1044
1045
1046
1047
1048 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1049
1050 * (% style="color:#037691" %)**AT Command:**
1051
1052 There is no AT Command to control Relay Output
1053
1054
1055 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1056
1057 **0x03 aa bb     **~/~/ Set RO1/RO2 output
1058
1059
1060 (((
1061 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1062 )))
1063
1064 (((
1065 01: Close ,  00: Open , 11: No action
1066 )))
1067
1068 (((
1069 [[image:image-20220524093724-9.png]]
1070 )))
1071
1072 Device will upload a packet if downlink code executes successfully.
1073
1074
1075
1076
1077 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1078
1079 * (% style="color:#037691" %)**AT Command:**
1080
1081 There is no AT Command to control Relay Output
1082
1083
1084 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1085
1086 **0x05 aa bb cc dd     **~/~/ Set RO1/RO2 relay with time control
1087
1088
1089 This is to control the relay output time of relay. Include four bytes:
1090
1091 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1092
1093 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1094
1095 01: Relays will change back to original state after timeout.
1096
1097 00: Relays will change to an inverter state after timeout
1098
1099
1100 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1101
1102 [[image:image-20220524093831-10.png]]
1103
1104
1105 (% style="color:#4f81bd" %)**Fourth/Fifth Bytes(cc)**(%%): Latching time. Unit: ms
1106
1107 Device will upload a packet if downlink code executes successfully.
1108
1109
1110 **Example payload:**
1111
1112 **~1. 05 01 11 07 D0**
1113
1114 Relay1 and Relay 2 will be set to NO , last 2 seconds, then change back to original state.
1115
1116 **2. 05 01 10 07 D0**
1117
1118 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then both change back to original state.
1119
1120 **3. 05 00 01 07 D0**
1121
1122 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then relay change to NO, Relay2 change to NC.
1123
1124 **4. 05 00 00 07 D0**
1125
1126 Relay 1 & relay2 will change to NC, last 2 seconds, then both change to NO.
1127
1128
1129
1130
1131 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1132
1133 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1134
1135 * (% style="color:#037691" %)**AT Command:**
1136
1137 **AT+VOLMAX   ** ~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1138
1139
1140 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1141
1142 **0xA5 aa bb cc   **~/~/ Same as AT+VOLMAX=(aa bb),cc
1143
1144
1145
1146
1147 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1148
1149 * (% style="color:#037691" %)**AT Command:**
1150
1151 (% style="color:#037691" %)**​​​​​​​​​​​​​​**(%%)**AT+SETCNT=aa,(bb cc dd ee) **
1152
1153 aa: 1: Set count1,
1154
1155 2: Set count2,
1156
1157 3: Set AV1 count
1158
1159 Bb cc dd ee: number to be set
1160
1161
1162 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1163
1164 **0x A8 aa bb cc dd ee     **~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1165
1166
1167
1168
1169 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1170
1171 Clear counting for counting mode
1172
1173 * (% style="color:#037691" %)**AT Command:**
1174
1175 (% style="color:#037691" %)​​​​​​​​​​​​​​(%%)**AT+CLRCOUNT ** ~/~/ clear all counting
1176
1177
1178 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1179
1180 **0x A6 01    ** ~/~/ clear all counting
1181
1182
1183
1184
1185 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1186
1187 * (% style="color:#037691" %)**AT Command:**
1188
1189 **AT+COUTIME=60  **~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1190
1191
1192 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1193
1194 **0x A7 aa bb cc     **~/~/ same as AT+COUTIME =aa bb cc,
1195
1196 (((
1197 range: aa bb cc:0 to 16777215,  (unit:second)
1198
1199
1200 )))
1201
1202
1203
1204 == 3.5 Integrate with Mydevice ==
1205
1206 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1207
1208 (((
1209 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1210 )))
1211
1212 (((
1213 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1214 )))
1215
1216 [[image:1653356737703-362.png||height="232" width="732"]]
1217
1218 [[image:image-20220524094641-11.png||height="390" width="723"]]
1219
1220
1221 [[image:image-20220524094641-12.png||height="402" width="718"]]
1222
1223
1224 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1225
1226 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1227
1228 Search under The things network
1229
1230 [[image:1653356838789-523.png||height="337" width="740"]]
1231
1232
1233
1234 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1235
1236 [[image:image-20220524094909-1.png||height="335" width="729"]]
1237
1238
1239 [[image:image-20220524094909-2.png||height="337" width="729"]]
1240
1241
1242 [[image:image-20220524094909-3.png||height="338" width="727"]]
1243
1244
1245 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1246
1247
1248 [[image:image-20220524094909-5.png||height="341" width="734"]]
1249
1250
1251
1252 == 3.6 Interface Detail ==
1253
1254 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1255
1256 Support NPN Type sensor
1257
1258 [[image:1653356991268-289.png]]
1259
1260
1261
1262 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1263
1264 (((
1265 The DI port of LT-22222-L can support NPN or PNP output sensor.
1266 )))
1267
1268 (((
1269 (((
1270 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high
1271 )))
1272 )))
1273
1274 [[image:1653357170703-587.png]]
1275
1276 (((
1277 (((
1278 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1279 )))
1280 )))
1281
1282 (((
1283
1284 )))
1285
1286 (((
1287 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1288 )))
1289
1290 (((
1291 This type of sensor will output a low signal GND when active.
1292 )))
1293
1294 * (((
1295 Connect sensor’s output to DI1-
1296 )))
1297 * (((
1298 Connect sensor’s VCC to DI1+.
1299 )))
1300
1301 (((
1302 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1303 )))
1304
1305 (((
1306 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1307 )))
1308
1309 (((
1310 If DI1+ = 12v, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1311 )))
1312
1313 (((
1314
1315 )))
1316
1317 (((
1318 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1319 )))
1320
1321 (((
1322 This type of sensor will output a high signal (example 24v) when active.
1323 )))
1324
1325 * (((
1326 Connect sensor’s output to DI1+
1327 )))
1328 * (((
1329 Connect sensor’s GND DI1-.
1330 )))
1331
1332 (((
1333 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1334 )))
1335
1336 (((
1337 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1338 )))
1339
1340 (((
1341 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1342 )))
1343
1344 (((
1345
1346 )))
1347
1348 (((
1349 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1350 )))
1351
1352 (((
1353 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1354 )))
1355
1356 * (((
1357 Connect sensor’s output to DI1+ with a serial 50K resistor
1358 )))
1359 * (((
1360 Connect sensor’s GND DI1-.
1361 )))
1362
1363 (((
1364 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1365 )))
1366
1367 (((
1368 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1369 )))
1370
1371 (((
1372 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1373 )))
1374
1375
1376
1377 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1378
1379 NPN output: GND or Float. Max voltage can apply to output pin is 36v.
1380
1381 [[image:1653357531600-905.png]]
1382
1383
1384
1385 === 3.6.4 Analog Input Interface ===
1386
1387 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1388
1389
1390 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1391
1392 [[image:1653357592296-182.png]]
1393
1394 Example to connect a 4~~20mA sensor
1395
1396 We take the wind speed sensor as an example for reference only.
1397
1398
1399 **Specifications of the wind speed sensor:**
1400
1401 Red:  12~~24v
1402
1403 Yellow:  4~~20mA
1404
1405 Black:  GND
1406
1407
1408 **Connection diagram:**
1409
1410 [[image:1653357640609-758.png]]
1411
1412 [[image:1653357648330-671.png||height="155" width="733"]]
1413
1414
1415
1416 === 3.6.5 Relay Output ===
1417
1418 (((
1419 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device’s Power Line to in serial of RO1_1 and RO_2. Such as below:
1420 )))
1421
1422 [[image:image-20220524100215-9.png]]
1423
1424 [[image:image-20220524100215-10.png||height="382" width="723"]]
1425
1426
1427
1428 == 3.7 LEDs Indicators ==
1429
1430 [[image:image-20220524100748-11.png]]
1431
1432
1433 = 4. Use AT Command =
1434
1435 == 4.1 Access AT Command ==
1436
1437 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1438
1439 [[image:1653358238933-385.png]]
1440
1441
1442 (((
1443 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1444 )))
1445
1446 [[image:1653358355238-883.png]]
1447
1448
1449 (((
1450 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1451 )))
1452
1453 (((
1454 AT+<CMD>?        : Help on <CMD>
1455 )))
1456
1457 (((
1458 AT+<CMD>         : Run <CMD>
1459 )))
1460
1461 (((
1462 AT+<CMD>=<value> : Set the value
1463 )))
1464
1465 (((
1466 AT+<CMD>=?       : Get the value
1467 )))
1468
1469 (((
1470 ATZ: Trig a reset of the MCU
1471 )))
1472
1473 (((
1474 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1475 )))
1476
1477 (((
1478 AT+DEUI: Get or Set the Device EUI
1479 )))
1480
1481 (((
1482 AT+DADDR: Get or Set the Device Address
1483 )))
1484
1485 (((
1486 AT+APPKEY: Get or Set the Application Key
1487 )))
1488
1489 (((
1490 AT+NWKSKEY: Get or Set the Network Session Key
1491 )))
1492
1493 (((
1494 AT+APPSKEY: Get or Set the Application Session Key
1495 )))
1496
1497 (((
1498 AT+APPEUI: Get or Set the Application EUI
1499 )))
1500
1501 (((
1502 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1503 )))
1504
1505 (((
1506 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1507 )))
1508
1509 (((
1510 AT+DR: Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1511 )))
1512
1513 (((
1514 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1515 )))
1516
1517 (((
1518 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1519 )))
1520
1521 (((
1522 AT+RX2FQ: Get or Set the Rx2 window frequency
1523 )))
1524
1525 (((
1526 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1527 )))
1528
1529 (((
1530 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1531 )))
1532
1533 (((
1534 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1535 )))
1536
1537 (((
1538 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1539 )))
1540
1541 (((
1542 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1543 )))
1544
1545 (((
1546 AT+NJM: Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1547 )))
1548
1549 (((
1550 AT+NWKID: Get or Set the Network ID
1551 )))
1552
1553 (((
1554 AT+FCU: Get or Set the Frame Counter Uplink
1555 )))
1556
1557 (((
1558 AT+FCD: Get or Set the Frame Counter Downlink
1559 )))
1560
1561 (((
1562 AT+CLASS: Get or Set the Device Class
1563 )))
1564
1565 (((
1566 AT+JOIN: Join network
1567 )))
1568
1569 (((
1570 AT+NJS: Get OTAA Join Status
1571 )))
1572
1573 (((
1574 AT+SENDB: Send hexadecimal data along with the application port
1575 )))
1576
1577 (((
1578 AT+SEND: Send text data along with the application port
1579 )))
1580
1581 (((
1582 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1583 )))
1584
1585 (((
1586 AT+RECV: Print last received data in raw format
1587 )))
1588
1589 (((
1590 AT+VER: Get current image version and Frequency Band
1591 )))
1592
1593 (((
1594 AT+CFM: Get or Set the confirmation mode (0-1)
1595 )))
1596
1597 (((
1598 AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1599 )))
1600
1601 (((
1602 AT+SNR: Get the SNR of the last received packet
1603 )))
1604
1605 (((
1606 AT+RSSI: Get the RSSI of the last received packet
1607 )))
1608
1609 (((
1610 AT+TDC: Get or set the application data transmission interval in ms
1611 )))
1612
1613 (((
1614 AT+PORT: Get or set the application port
1615 )))
1616
1617 (((
1618 AT+DISAT: Disable AT commands
1619 )))
1620
1621 (((
1622 AT+PWORD: Set password, max 9 digits
1623 )))
1624
1625 (((
1626 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1627 )))
1628
1629 (((
1630 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1631 )))
1632
1633 (((
1634 AT+CFG: Print all settings
1635
1636
1637 )))
1638
1639
1640
1641 == 4.2 Common AT Command Sequence ==
1642
1643 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1644
1645 (((
1646
1647
1648 **If device has not joined network yet:**
1649 )))
1650
1651 (((
1652 (% style="background-color:#dcdcdc" %)123456
1653 )))
1654
1655 (((
1656 (% style="background-color:#dcdcdc" %)AT+FDR
1657 )))
1658
1659 (((
1660 (% style="background-color:#dcdcdc" %)123456
1661 )))
1662
1663 (((
1664 (% style="background-color:#dcdcdc" %)AT+NJM=0
1665 )))
1666
1667 (((
1668 (% style="background-color:#dcdcdc" %)ATZ
1669 )))
1670
1671
1672 (((
1673 **If device already joined network:**
1674 )))
1675
1676 (((
1677 (% style="background-color:#dcdcdc" %)AT+NJM=0
1678 )))
1679
1680 (((
1681 (% style="background-color:#dcdcdc" %)ATZ
1682
1683
1684 )))
1685
1686
1687
1688 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1689
1690 (((
1691
1692
1693 (% style="background-color:#dcdcdc" %)123456(%%)  Enter Password to have AT access.
1694 )))
1695
1696 (((
1697 (% style="background-color:#dcdcdc" %) AT+FDR(%%)   Reset Parameters to Factory Default, Keys Reserve
1698 )))
1699
1700 (((
1701 (% style="background-color:#dcdcdc" %) 123456(%%)  Enter Password to have AT access.
1702 )))
1703
1704 (((
1705 (% style="background-color:#dcdcdc" %) AT+CLASS=C(%%) Set to work in CLASS C
1706 )))
1707
1708 (((
1709 (% style="background-color:#dcdcdc" %) AT+NJM=0(%%)  Set to ABP mode
1710 )))
1711
1712 (((
1713 (% style="background-color:#dcdcdc" %) AT+ADR=0(%%)  Set the Adaptive Data Rate Off
1714 )))
1715
1716 (((
1717 (% style="background-color:#dcdcdc" %) AT+DR=5(%%)  Set Data Rate
1718 )))
1719
1720 (((
1721 (% style="background-color:#dcdcdc" %) AT+TDC=60000(%%)  Set transmit interval to 60 seconds
1722 )))
1723
1724 (((
1725 (% style="background-color:#dcdcdc" %) AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1726 )))
1727
1728 (((
1729 (% style="background-color:#dcdcdc" %) AT+RX2FQ=868400000(%%)  Set RX2Frequency to 868.4Mhz (according to the result from server)
1730 )))
1731
1732 (((
1733 (% style="background-color:#dcdcdc" %) AT+RX2DR=5(%%)  Set RX2DR to match the downlink DR from server. see below
1734 )))
1735
1736 (((
1737 (% style="background-color:#dcdcdc" %) AT+DADDR=26 01 1A F1 (%%) Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1738 )))
1739
1740 (((
1741 (% style="background-color:#dcdcdc" %) ATZ         (%%) Reset MCU
1742
1743
1744 )))
1745
1746 (((
1747 (% style="color:red" %)**Note:**
1748 )))
1749
1750 (((
1751 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1752 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1753 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1754 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1755 )))
1756
1757 (((
1758 [[image:1653359097980-169.png||height="188" width="729"]]
1759 )))
1760
1761 (((
1762
1763 )))
1764
1765
1766 === 4.2.3 Change to Class A ===
1767
1768 If sensor JOINED
1769 (% style="background-color:#dcdcdc" %)AT+CLASS=A
1770 ATZ
1771
1772
1773 = 5. FAQ =
1774
1775 == 5.1 How to upgrade the image? ==
1776
1777
1778 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1779
1780 * Support new features
1781 * For bug fix
1782 * Change LoRaWAN bands.
1783
1784 Below shows the hardware connection for how to upload an image to the LT:
1785
1786 [[image:1653359603330-121.png]]
1787
1788
1789 (((
1790 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1791 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1792 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
1793
1794
1795 (% style="color:blue" %)**For LT-22222-L**(%%):
1796 Hold down the PRO button and then momentarily press the RST reset button and the **DO1 led** will change from OFF to ON. When **DO1 LED** is on, it means the device is in download mode.
1797 )))
1798
1799 [[image:image-20220524103407-12.png]]
1800
1801 [[image:image-20220524103429-13.png]]
1802
1803 [[image:image-20220524104033-15.png]]
1804
1805
1806 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1807
1808 [[image:1653360054704-518.png||height="186" width="745"]]
1809
1810
1811 (((
1812 (((
1813
1814
1815 == 5.2 How to change the LoRa Frequency Bands/Region? ==
1816 )))
1817 )))
1818
1819 (((
1820 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1821 )))
1822
1823 (((
1824
1825
1826 == 5.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
1827 )))
1828
1829 (((
1830 (((
1831 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
1832 )))
1833 )))
1834
1835 (((
1836 (((
1837 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
1838
1839
1840 )))
1841 )))
1842
1843 (((
1844 (% style="color:#4f81bd" %)**Step1**(%%): Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
1845 )))
1846
1847 (((
1848 [[image:1653360231087-571.png||height="401" width="727"]]
1849 )))
1850
1851 (((
1852 (% style="color:red" %)Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.
1853 )))
1854
1855
1856 (((
1857 (% style="color:#4f81bd" %)**Step2**(%%)**: **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
1858 )))
1859
1860 (((
1861 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
1862 (% style="background-color:#dcdcdc" %)AT+FDR(%%)  Reset Parameters to Factory Default, Keys Reserve
1863 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
1864 (% style="background-color:#dcdcdc" %)AT+NJM=0 (%%) Set to ABP mode
1865 (% style="background-color:#dcdcdc" %)AT+ADR=0 (%%) Set the Adaptive Data Rate Off
1866 (% style="background-color:#dcdcdc" %)AT+DR=5 (%%) Set Data Rate (Set AT+DR=3 for 915 band)
1867 (% style="background-color:#dcdcdc" %)AT+TDC=60000 (%%) Set transmit interval to 60 seconds
1868 (% style="background-color:#dcdcdc" %)AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1869 (% style="background-color:#dcdcdc" %)AT+DADDR=26 01 1A F1(%%)  Set Device Address to 26 01 1A F1
1870 (% style="background-color:#dcdcdc" %)ATZ        (%%) Reset MCU
1871 )))
1872
1873
1874 (((
1875 As shown in below:
1876 )))
1877
1878 [[image:1653360498588-932.png||height="485" width="726"]]
1879
1880
1881 == 5.4 Can I see counting event in Serial? ==
1882
1883 (((
1884 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn’t support AT+DEBUG. User can update to latest firmware first.
1885
1886
1887 == 5.5 Can i use point to point communication for LT-22222-L? ==
1888
1889 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]
1890 )))
1891
1892 (((
1893 == 5.6 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
1894
1895 If the device is not shut down, but directly powered off.
1896
1897 It will default that this is a power-off state.
1898
1899 In modes 2 to 5, DO RO status and pulse count are saved in flash.
1900
1901 After restart, the status before power failure will be read from flash.
1902
1903 = 6. Trouble Shooting =
1904 )))
1905
1906 (((
1907 (((
1908 == 6.1 Downlink doesn’t work, how to solve it? ==
1909 )))
1910 )))
1911
1912 (((
1913 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
1914 )))
1915
1916 (((
1917
1918
1919 == 6.2 Have trouble to upload image. ==
1920 )))
1921
1922 (((
1923 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
1924 )))
1925
1926 (((
1927
1928
1929 == 6.3 Why I can’t join TTN in US915 /AU915 bands? ==
1930 )))
1931
1932 (((
1933 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1934 )))
1935
1936
1937
1938 = 7. Order Info =
1939
1940
1941 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
1942
1943
1944 (% style="color:#4f81bd" %)**XXX:**
1945
1946 * (% style="color:#4f81bd" %)**EU433**(%%): LT with frequency bands EU433
1947 * (% style="color:#4f81bd" %)**EU868**(%%): LT with frequency bands EU868
1948 * (% style="color:#4f81bd" %)**KR920**(%%): LT with frequency bands KR920
1949 * (% style="color:#4f81bd" %)**CN470**(%%): LT with frequency bands CN470
1950 * (% style="color:#4f81bd" %)**AS923**(%%): LT with frequency bands AS923
1951 * (% style="color:#4f81bd" %)**AU915**(%%): LT with frequency bands AU915
1952 * (% style="color:#4f81bd" %)**US915**(%%): LT with frequency bands US915
1953 * (% style="color:#4f81bd" %)**IN865**(%%): LT with frequency bands IN865
1954 * (% style="color:#4f81bd" %)**CN779**(%%): LT with frequency bands CN779
1955
1956 = 8. Packing Info =
1957
1958
1959 **Package Includes**:
1960
1961 * LT-22222-L I/O Controller x 1
1962 * Stick Antenna for LoRa RF part x 1
1963 * Bracket for controller x1
1964 * Program cable x 1
1965
1966 **Dimension and weight**:
1967
1968 * Device Size: 13.5 x 7 x 3 cm
1969 * Device Weight: 105g
1970 * Package Size / pcs : 14.5 x 8 x 5 cm
1971 * Weight / pcs : 170g
1972
1973 = 9. Support =
1974
1975 * (((
1976 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1977 )))
1978 * (((
1979 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1980 )))
1981
1982 = 10. Reference​​​​​ =
1983
1984 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
1985 * [[Image Download>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]]
1986 * [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1987 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]