Version 82.24 by Xiaoling on 2022/06/20 11:59

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4 **LT-22222-L LoRa IO Controller User Manual **
5
6
7 **Table of Contents:**
8
9 {{toc/}}
10
11
12
13
14
15
16
17 = 1.Introduction =
18
19 == 1.1 What is LT Series I/O Controller ==
20
21 (((
22
23
24 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 )))
26
27 (((
28 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
29 )))
30
31 (((
32 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
33 )))
34
35 (((
36 The use environment includes:
37 )))
38
39 (((
40 1) If user’s area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
41 )))
42
43 (((
44 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
45 )))
46
47 (((
48 [[image:1653295757274-912.png]]
49
50
51 )))
52
53
54 == 1.2  Specifications ==
55
56 (((
57
58
59 **Hardware System:**
60 )))
61
62 * (((
63 STM32L072CZT6 MCU
64 )))
65 * (((
66 SX1276/78 Wireless Chip 
67 )))
68 * (((
69 (((
70 Power Consumption:
71 )))
72
73 * (((
74 Idle: 4mA@12v
75 )))
76 * (((
77 20dB Transmit: 34mA@12v
78 )))
79 )))
80
81 (((
82
83
84 **Interface for Model: LT22222-L:**
85 )))
86
87 * (((
88 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
89 )))
90 * (((
91 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
92 )))
93 * (((
94 2 x Relay Output (5A@250VAC / 30VDC)
95 )))
96 * (((
97 2 x 0~~20mA Analog Input (res:0.01mA)
98 )))
99 * (((
100 2 x 0~~30V Analog Input (res:0.01v)
101 )))
102 * (((
103 Power Input 7~~ 24V DC. 
104 )))
105
106 (((
107
108
109 **LoRa Spec:**
110 )))
111
112 * (((
113 (((
114 Frequency Range:
115 )))
116
117 * (((
118 Band 1 (HF): 862 ~~ 1020 Mhz
119 )))
120 * (((
121 Band 2 (LF): 410 ~~ 528 Mhz
122 )))
123 )))
124 * (((
125 168 dB maximum link budget.
126 )))
127 * (((
128 +20 dBm - 100 mW constant RF output vs.
129 )))
130 * (((
131 +14 dBm high efficiency PA.
132 )))
133 * (((
134 Programmable bit rate up to 300 kbps.
135 )))
136 * (((
137 High sensitivity: down to -148 dBm.
138 )))
139 * (((
140 Bullet-proof front end: IIP3 = -12.5 dBm.
141 )))
142 * (((
143 Excellent blocking immunity.
144 )))
145 * (((
146 Low RX current of 10.3 mA, 200 nA register retention.
147 )))
148 * (((
149 Fully integrated synthesizer with a resolution of 61 Hz.
150 )))
151 * (((
152 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
153 )))
154 * (((
155 Built-in bit synchronizer for clock recovery.
156 )))
157 * (((
158 Preamble detection.
159 )))
160 * (((
161 127 dB Dynamic Range RSSI.
162 )))
163 * (((
164 Automatic RF Sense and CAD with ultra-fast AFC.
165 )))
166 * (((
167 Packet engine up to 256 bytes with CRC.
168
169
170
171
172 )))
173
174 == 1.3 Features ==
175
176 * LoRaWAN Class A & Class C protocol
177 * Optional Customized LoRa Protocol
178 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865
179 * AT Commands to change parameters
180 * Remote configure parameters via LoRa Downlink
181 * Firmware upgradable via program port
182 * Counting
183
184
185 == 1.4  Applications ==
186
187 * Smart Buildings & Home Automation
188 * Logistics and Supply Chain Management
189 * Smart Metering
190 * Smart Agriculture
191 * Smart Cities
192 * Smart Factory
193
194
195 == 1.5 Hardware Variants ==
196
197 (% border="1" style="background-color:#f7faff; width:500px" %)
198 |(% style="width:103px" %)**Model**|(% style="width:131px" %)**Photo**|(% style="width:334px" %)**Description**
199 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)[[image:1653296302983-697.png]]|(% style="width:334px" %)(((
200 * 2 x Digital Input (Bi-direction)
201 * 2 x Digital Output
202 * 2 x Relay Output (5A@250VAC / 30VDC)
203 * 2 x 0~~20mA Analog Input (res:0.01mA)
204 * 2 x 0~~30V Analog Input (res:0.01v)
205 * 1 x Counting Port
206 )))
207
208
209
210
211 = 2. Power ON Device =
212
213 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
214
215 (((
216 PWR will on when device is properly powered.
217 )))
218
219 [[image:1653297104069-180.png]]
220
221
222
223 = 3. Operation Mode =
224
225 == 3.1 How it works? ==
226
227 (((
228 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on **TX LED** will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. **TX LED** will be on for 5 seconds after joined in network. When there is message from server, the **RX LED** will be on for 1 second. 
229 )))
230
231 (((
232 In case user can’t set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
233 )))
234
235
236 == 3.2 Example to join LoRaWAN network ==
237
238 (((
239 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
240 )))
241
242 [[image:image-20220523172350-1.png||height="266" width="864"]]
243
244
245 (((
246 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
247 )))
248
249 (((
250 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
251 )))
252
253 (((
254 Each LT is shipped with a sticker with the default device EUI as below:
255 )))
256
257 [[image:1653297924498-393.png]]
258
259
260 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
261
262 Add APP EUI in the application.
263
264 [[image:1653297955910-247.png||height="321" width="716"]]
265
266
267 Add APP KEY and DEV EUI
268
269 [[image:1653298023685-319.png]]
270
271
272 (((
273 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
274 )))
275
276 [[image:1653298044601-602.png||height="405" width="709"]]
277
278
279
280 == 3.3 Uplink Payload ==
281
282 There are five working modes + one interrupt mode on LT for different type application:
283
284 * **MOD1**: (default setting): 2 x ACI + 2AVI + DI + DO + RO
285 * **MOD2**: Double DI Counting + DO + RO
286 * **MOD3**: Single DI Counting + 2 x ACI + DO + RO
287 * **MOD4**: Single DI Counting + 1 x Voltage Counting + DO + RO
288 * **MOD5**: Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
289 * **ADDMOD6**: Trigger Mode, Optional, used together with MOD1 ~~ MOD5
290
291
292 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
293
294 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default.
295
296 [[image:image-20220523174024-3.png]]
297
298 (((
299
300
301 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
302 )))
303
304 [[image:image-20220523174254-4.png]]
305
306 * RO is for relay. ROx=1 : close,ROx=0 always open.
307 * DI is for digital input. DIx=1: high or float, DIx=0: low.
308 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
309
310 (% style="color:red" %)Note: DI3 and DO3 bit are not valid for LT-22222-L
311
312 For example if payload is: [[image:image-20220523175847-2.png]]
313
314
315 **The value for the interface is:  **
316
317 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
318
319 AVI2 channel voltage is 0x04AC/1000=1.196V
320
321 ACI1 channel current is 0x1310/1000=4.880mA
322
323 ACI2 channel current is 0x1300/1000=4.864mA
324
325 The last byte 0xAA= 10101010(B) means
326
327 * [1] RO1 relay channel is close and the RO1 LED is ON.
328 * [0] RO2 relay channel is open and RO2 LED is OFF;
329
330 **LT22222-L:**
331
332 * [1] DI2 channel is high input and DI2 LED is ON;
333 * [0] DI1 channel is low input;
334
335 * [0] DO3 channel output state
336 ** DO3 is float in case no load between DO3 and V+.;
337 ** DO3 is high in case there is load between DO3 and V+.
338 ** DO3 LED is off in both case
339 * [1] DO2 channel output is low and DO2 LED is ON.
340 * [0] DO1 channel output state
341 ** DO1 is float in case no load between DO1 and V+.;
342 ** DO1 is high in case there is load between DO1 and V+.
343 ** DO1 LED is off in both case
344
345
346 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
347
348
349 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
350
351 (((
352 Total : 11 bytes payload
353 )))
354
355 [[image:image-20220523180452-3.png]]
356
357
358 (((
359 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
360 )))
361
362 [[image:image-20220523180506-4.png]]
363
364 * RO is for relay. ROx=1 : close,ROx=0 always open.
365 * FIRST: Indicate this is the first packet after join network.
366 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
367
368 (((
369 (% style="color:red" %)Note: DO3 bit is not valid for LT-22222-L.
370 )))
371
372 (((
373
374
375 **To use counting mode, please run:**
376 )))
377
378 (% class="box infomessage" %)
379 (((
380 (((
381 **AT+MOD=2**
382
383 **ATZ**
384 )))
385 )))
386
387 (((
388
389
390 (% style="color:#4f81bd" %)**AT Commands for counting:**
391 )))
392
393 (((
394 **For LT22222-L:**
395 )))
396
397 (% class="box infomessage" %)
398 (((
399 (((
400 **AT+TRIG1=0,100  (set DI1 port to trigger on low level, valid signal is 100ms) **
401
402 **AT+TRIG1=1,100  (set DI1 port to trigger on high level, valid signal is 100ms ) **
403
404 **AT+TRIG2=0,100  (set DI2 port to trigger on low level, valid signal is 100ms) **
405
406 **AT+TRIG2=1,100  (set DI2 port to trigger on high level, valid signal is 100ms ) **
407
408 **AT+SETCNT=1,60   (Set COUNT1 value to 60)**
409
410 **AT+SETCNT=2,60   (Set COUNT2 value to 60)**
411 )))
412 )))
413
414
415
416 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
417
418 **LT22222-L**: This mode the DI1 is used as a counting pin.
419
420 [[image:image-20220523181246-5.png]]
421
422 (((
423 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
424 )))
425
426 [[image:image-20220523181301-6.png]]
427
428 * RO is for relay. ROx=1 : close,ROx=0 always open.
429 * FIRST: Indicate this is the first packet after join network.
430 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
431
432 (((
433 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
434 )))
435
436 (((
437 **To use counting mode, please run:**
438 )))
439
440 (% class="box infomessage" %)
441 (((
442 (((
443 **AT+MOD=3**
444
445 **ATZ**
446 )))
447 )))
448
449 (((
450 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
451 )))
452
453
454
455 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
456
457
458 **LT22222-L**: This mode the DI1 is used as a counting pin.
459
460 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
461
462 [[image:image-20220523181903-8.png]]
463
464
465 (((
466 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
467 )))
468
469 [[image:image-20220523181727-7.png]]
470
471 * RO is for relay. ROx=1 : close,ROx=0 always open.
472 * FIRST: Indicate this is the first packet after join network.
473 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
474
475 (((
476 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
477 )))
478
479 (((
480
481
482 **To use this mode, please run:**
483 )))
484
485 (% class="box infomessage" %)
486 (((
487 (((
488 **AT+MOD=4**
489
490 **ATZ**
491 )))
492 )))
493
494
495
496 (((
497 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
498 )))
499
500 (((
501
502
503 **Plus below command for AVI1 Counting:**
504 )))
505
506 (% class="box infomessage" %)
507 (((
508 (((
509 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
510
511 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
512
513 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
514
515 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
516 )))
517 )))
518
519
520 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
521
522
523 **LT22222-L**: This mode the DI1 is used as a counting pin.
524
525 [[image:image-20220523182334-9.png]]
526
527 (((
528
529
530 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
531 )))
532
533 * RO is for relay. ROx=1 : close,ROx=0 always open.
534 * FIRST: Indicate this is the first packet after join network.
535 * (((
536 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
537 )))
538
539 (((
540 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
541 )))
542
543 (((
544
545
546 **To use this mode, please run:**
547 )))
548
549 (% class="box infomessage" %)
550 (((
551 (((
552 **AT+MOD=5**
553
554 **ATZ**
555 )))
556 )))
557
558 (((
559 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
560 )))
561
562
563
564 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
565
566
567 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
568
569 For example, if user has configured below commands:
570
571 * **AT+MOD=1 ** **~-~->** The normal working mode
572 * **AT+ADDMOD6=1**   **~-~->** Enable trigger
573
574 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
575
576 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
577 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
578
579
580 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
581
582 (% style="color:#4f81bd" %)**Trigger base on voltage**:
583
584 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
585
586 **Example:**
587
588 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
589
590 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
591
592
593
594 (% style="color:#4f81bd" %)**Trigger base on current**:
595
596 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
597
598 **Example:**
599
600 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
601
602
603
604 (% style="color:#4f81bd" %)**Trigger base on DI status**:
605
606 DI status trigger Flag.
607
608 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
609
610
611 **Example:**
612
613 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
614
615
616 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
617
618 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
619
620 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
621
622 AA: Code for this downlink Command:
623
624 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
625
626 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
627
628 yy2 yy2: AC1 or AV1 high limit.
629
630 yy3 yy3: AC2 or AV2 low limit.
631
632 Yy4 yy4: AC2 or AV2 high limit.
633
634
635 **Example1**: AA 00 13 88 00 00 00 00 00 00
636
637 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
638
639
640 **Example2**: AA 02 01 00
641
642 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
643
644
645
646 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
647
648 MOD6 Payload : total 11 bytes payload
649
650 [[image:image-20220524085923-1.png]]
651
652
653 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
654
655 [[image:image-20220524090106-2.png]]
656
657 * Each bits shows if the corresponding trigger has been configured.
658
659 **Example:**
660
661 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
662
663
664 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
665
666 [[image:image-20220524090249-3.png]]
667
668 * Each bits shows which status has been trigger on this uplink.
669
670 **Example:**
671
672 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
673
674
675 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
676
677 [[image:image-20220524090456-4.png]]
678
679 * Each bits shows which status has been trigger on this uplink.
680
681 **Example:**
682
683 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
684
685 00000101: Means both DI1 and DI2 trigger are enabled.
686
687
688 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
689
690 Downlink command to poll MOD6 status:
691
692 **AB 06**
693
694 When device got this command, it will send the MOD6 payload.
695
696
697
698 === 3.3.7 Payload Decoder ===
699
700 (((
701
702
703 **Decoder for TTN/loraserver/ChirpStack**: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/Payload_decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/Payload_decoder/]]
704
705
706 )))
707
708
709 == 3.4 ​Configure LT via AT or Downlink ==
710
711 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
712
713 (((
714 There are two kinds of Commands:
715 )))
716
717 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
718
719 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
720
721
722 === 3.4.1 Common Commands ===
723
724 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
725
726
727
728 === 3.4.2 Sensor related commands ===
729
730 ==== 3.4.2.1 Set Transmit Interval ====
731
732 Set device uplink interval.
733
734 * (% style="color:#037691" %)**AT Command:**
735
736 (% class="box infomessage" %)
737 (((
738 **AT+TDC=N **
739 )))
740
741 **Example: **AT+TDC=30000. Means set interval to 30 seconds
742
743
744 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
745
746 (% class="box infomessage" %)
747 (((
748 **0x01 aa bb cc     ~/~/ Same as AT+TDC=0x(aa bb cc)**
749 )))
750
751
752
753 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
754
755 Set work mode.
756
757 * (% style="color:#037691" %)**AT Command:**
758
759 (% class="box infomessage" %)
760 (((
761 **AT+MOD=N  **
762 )))
763
764 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
765
766
767 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
768
769 (% class="box infomessage" %)
770 (((
771 **0x0A aa     ~/~/ Same as AT+MOD=aa**
772 )))
773
774
775
776 ==== 3.4.2.3 Poll an uplink ====
777
778 * (% style="color:#037691" %)AT Command:
779
780 There is no AT Command to poll uplink
781
782
783 * (% style="color:#037691" %)Downlink Payload (prefix 0x08):
784
785 (% class="box infomessage" %)
786 (((
787 **0x08 FF     ~/~/ Poll an uplink,**
788 )))
789
790 **Example**: 0x08FF, ask device to send an Uplink
791
792
793
794 ==== 3.4.2.4 Enable Trigger Mode ====
795
796 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
797
798 * (% style="color:#037691" %)AT Command:
799
800 (% class="box infomessage" %)
801 (((
802 **AT+ADDMOD6=1 or 0**
803 )))
804
805 1: Enable Trigger Mode
806
807 0: Disable Trigger Mode
808
809
810 * (% style="color:#037691" %)Downlink Payload (prefix 0x0A 06):
811
812 (% class="box infomessage" %)
813 (((
814 **0x0A 06 aa     ~/~/ Same as AT+ADDMOD6=aa,**
815 )))
816
817
818
819 ==== 3.4.2.5 Poll trigger settings ====
820
821 Poll trigger settings,
822
823 * (% style="color:#037691" %)AT Command:
824
825 There is no AT Command for this feature.
826
827
828 * (% style="color:#037691" %)Downlink Payload (prefix 0x AB 06):
829
830 (% class="box infomessage" %)
831 (((
832 **0xAB 06  ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command**
833 )))
834
835
836
837 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
838
839 Enable Disable DI1/DI2/DI2 as trigger,
840
841 * (% style="color:#037691" %)AT Command:
842
843 **Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
844
845
846 **Example:**
847
848 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
849
850 * (% style="color:#037691" %)Downlink Payload (prefix 0xAA 02):
851
852 **0xAA 02 aa bb        **~/~/ Same as AT+DTRI=aa,bb
853
854
855
856
857 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
858
859 Set DI1 or DI3(for LT-33222-L) trigger.
860
861 * (% style="color:#037691" %)AT Command:
862
863 **AT+TRIG1=a,b**
864
865 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
866
867 b : delay timing.
868
869
870 **Example:**
871
872 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
873
874
875 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
876 * **0x09 01 aa bb cc    ** ~/~/ same as AT+TRIG1=aa,0x(bb cc)
877
878
879
880 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
881
882 Set DI2 trigger.
883
884 * (% style="color:#037691" %)**AT Command:**
885
886 **AT+TRIG2=a,b**
887
888
889 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
890
891 b : delay timing.
892
893
894 **Example:**
895
896 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
897
898
899 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
900
901 **0x09 02 aa bb cc           **~/~/ same as AT+TRIG1=aa,0x(bb cc)
902
903
904
905
906 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
907
908 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
909
910 * (% style="color:#037691" %)**AT Command**
911
912 **AT+ACLIM**
913
914
915 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
916
917 **0x AA 01 aa bb cc dd ee ff gg hh        ** ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
918
919
920
921
922 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
923
924 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
925
926 * (% style="color:#037691" %)**AT Command**
927
928 **AT+AVLIM  See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
929
930
931 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
932
933 **0x AA 00 aa bb cc dd ee ff gg hh    ** ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
934
935
936
937
938 ==== 3.4.2.11 Trigger – Set minimum interval ====
939
940 Set AV and AC trigger minimum interval, system won’t response to the second trigger within this set time after the first trigger.
941
942 * (% style="color:#037691" %)**AT Command**
943
944 **AT+ATDC=5. Device won’t response the second trigger within 5 minute after the first trigger.**
945
946
947 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
948
949 **0x AC aa bb   ** ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
950
951
952
953
954 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
955
956 * (% style="color:#037691" %)**AT Command**
957
958 There is no AT Command to control Digital Output
959
960
961 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
962 * **0x02 aa bb cc     **~/~/ Set DO1/DO2/DO3 output
963
964 (((
965 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
966 )))
967
968 (((
969 01: Low,  00: High ,  11: No action
970 )))
971
972 [[image:image-20220524092754-5.png]]
973
974 (((
975 (% style="color:red" %)Note: For LT-22222-L, there is no DO3, the last byte can use any value.
976 )))
977
978 (((
979 (% style="color:red" %)Device will upload a packet if downlink code executes successfully.
980 )))
981
982
983
984
985 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
986
987 * (% style="color:#037691" %)**AT Command**
988
989 There is no AT Command to control Digital Output
990
991
992 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
993
994 **0xA9 aa bb cc     **~/~/ Set DO1/DO2/DO3 output with time control
995
996
997 This is to control the digital output time of DO pin. Include four bytes:
998
999 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1000
1001 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1002
1003 01: DO pins will change back to original state after timeout.
1004
1005 00: DO pins will change to an inverter state after timeout 
1006
1007
1008 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1009
1010 [[image:image-20220524093238-6.png]]
1011
1012
1013 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1014
1015 [[image:image-20220524093328-7.png]]
1016
1017
1018 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1019
1020 [[image:image-20220524093351-8.png]]
1021
1022
1023 (% style="color:#4f81bd" %)**Sixth and Seventh Byte**:
1024
1025 Latching time. Unit: ms
1026
1027 Device will upload a packet if downlink code executes successfully.
1028
1029
1030 **Example payload:**
1031
1032 **~1. A9 01 01 01 01 07 D0**
1033
1034 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1035
1036 **2. A9 01 00 01 11 07 D0**
1037
1038 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1039
1040 **3. A9 00 00 00 00 07 D0**
1041
1042 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1043
1044 **4. A9 00 11 01 00 07 D0**
1045
1046 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1047
1048
1049
1050
1051 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1052
1053 * (% style="color:#037691" %)**AT Command:**
1054
1055 There is no AT Command to control Relay Output
1056
1057
1058 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1059
1060 **0x03 aa bb     **~/~/ Set RO1/RO2 output
1061
1062
1063 (((
1064 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1065 )))
1066
1067 (((
1068 01: Close ,  00: Open , 11: No action
1069 )))
1070
1071 (((
1072 [[image:image-20220524093724-9.png]]
1073 )))
1074
1075 Device will upload a packet if downlink code executes successfully.
1076
1077
1078
1079
1080 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1081
1082 * (% style="color:#037691" %)**AT Command:**
1083
1084 There is no AT Command to control Relay Output
1085
1086
1087 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1088
1089 **0x05 aa bb cc dd     **~/~/ Set RO1/RO2 relay with time control
1090
1091
1092 This is to control the relay output time of relay. Include four bytes:
1093
1094 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1095
1096 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1097
1098 01: Relays will change back to original state after timeout.
1099
1100 00: Relays will change to an inverter state after timeout
1101
1102
1103 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1104
1105 [[image:image-20220524093831-10.png]]
1106
1107
1108 (% style="color:#4f81bd" %)**Fourth/Fifth Bytes(cc)**(%%): Latching time. Unit: ms
1109
1110 Device will upload a packet if downlink code executes successfully.
1111
1112
1113 **Example payload:**
1114
1115 **~1. 05 01 11 07 D0**
1116
1117 Relay1 and Relay 2 will be set to NO , last 2 seconds, then change back to original state.
1118
1119 **2. 05 01 10 07 D0**
1120
1121 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then both change back to original state.
1122
1123 **3. 05 00 01 07 D0**
1124
1125 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then relay change to NO, Relay2 change to NC.
1126
1127 **4. 05 00 00 07 D0**
1128
1129 Relay 1 & relay2 will change to NC, last 2 seconds, then both change to NO.
1130
1131
1132
1133
1134 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1135
1136 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1137
1138 * (% style="color:#037691" %)**AT Command:**
1139
1140 (% style="color:#037691" %)**​​​​​​​**(%%)**AT+VOLMAX   ** ~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1141
1142
1143 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1144
1145 **0xA5 aa bb cc   **~/~/ Same as AT+VOLMAX=(aa bb),cc
1146
1147
1148
1149
1150 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1151
1152 * (% style="color:#037691" %)**AT Command:**
1153
1154 (% style="color:#037691" %)**​​​​​​​​​​​​​​**(%%)**AT+SETCNT=aa,(bb cc dd ee) **
1155
1156 aa: 1: Set count1,
1157
1158 2: Set count2,
1159
1160 3: Set AV1 count
1161
1162 Bb cc dd ee: number to be set
1163
1164
1165 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1166
1167 **0x A8 aa bb cc dd ee     **~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1168
1169
1170
1171
1172 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1173
1174 Clear counting for counting mode
1175
1176 * (% style="color:#037691" %)**AT Command:**
1177
1178 (% style="color:#037691" %)​​​​​​​​​​​​​​(%%)**AT+CLRCOUNT ** ~/~/ clear all counting
1179
1180
1181 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1182
1183 **0x A6 01    ** ~/~/ clear all counting
1184
1185
1186
1187
1188 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1189
1190 * (% style="color:#037691" %)**AT Command:**
1191
1192 **AT+COUTIME=60  **~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1193
1194
1195 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1196
1197 **0x A7 aa bb cc     **~/~/ same as AT+COUTIME =aa bb cc,
1198
1199 (((
1200 range: aa bb cc:0 to 16777215,  (unit:second)
1201
1202
1203 )))
1204
1205
1206
1207 == 3.5 Integrate with Mydevice ==
1208
1209 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1210
1211 (((
1212 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1213 )))
1214
1215 (((
1216 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1217 )))
1218
1219 [[image:1653356737703-362.png||height="232" width="732"]]
1220
1221 [[image:image-20220524094641-11.png||height="390" width="723"]]
1222
1223
1224 [[image:image-20220524094641-12.png||height="402" width="718"]]
1225
1226
1227 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1228
1229 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1230
1231 Search under The things network
1232
1233 [[image:1653356838789-523.png||height="337" width="740"]]
1234
1235
1236
1237 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1238
1239 [[image:image-20220524094909-1.png||height="335" width="729"]]
1240
1241
1242 [[image:image-20220524094909-2.png||height="337" width="729"]]
1243
1244
1245 [[image:image-20220524094909-3.png||height="338" width="727"]]
1246
1247
1248 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1249
1250
1251 [[image:image-20220524094909-5.png||height="341" width="734"]]
1252
1253
1254
1255 == 3.6 Interface Detail ==
1256
1257 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1258
1259 Support NPN Type sensor
1260
1261 [[image:1653356991268-289.png]]
1262
1263
1264
1265 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1266
1267 (((
1268 The DI port of LT-22222-L can support NPN or PNP output sensor.
1269 )))
1270
1271 (((
1272 (((
1273 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high
1274 )))
1275 )))
1276
1277 [[image:1653357170703-587.png]]
1278
1279 (((
1280 (((
1281 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1282 )))
1283 )))
1284
1285 (((
1286
1287 )))
1288
1289 (((
1290 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1291 )))
1292
1293 (((
1294 This type of sensor will output a low signal GND when active.
1295 )))
1296
1297 * (((
1298 Connect sensor’s output to DI1-
1299 )))
1300 * (((
1301 Connect sensor’s VCC to DI1+.
1302 )))
1303
1304 (((
1305 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1306 )))
1307
1308 (((
1309 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1310 )))
1311
1312 (((
1313 If DI1+ = 12v, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1314 )))
1315
1316 (((
1317
1318 )))
1319
1320 (((
1321 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1322 )))
1323
1324 (((
1325 This type of sensor will output a high signal (example 24v) when active.
1326 )))
1327
1328 * (((
1329 Connect sensor’s output to DI1+
1330 )))
1331 * (((
1332 Connect sensor’s GND DI1-.
1333 )))
1334
1335 (((
1336 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1337 )))
1338
1339 (((
1340 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1341 )))
1342
1343 (((
1344 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1345 )))
1346
1347 (((
1348
1349 )))
1350
1351 (((
1352 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1353 )))
1354
1355 (((
1356 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1357 )))
1358
1359 * (((
1360 Connect sensor’s output to DI1+ with a serial 50K resistor
1361 )))
1362 * (((
1363 Connect sensor’s GND DI1-.
1364 )))
1365
1366 (((
1367 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1368 )))
1369
1370 (((
1371 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1372 )))
1373
1374 (((
1375 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1376 )))
1377
1378
1379
1380 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1381
1382 NPN output: GND or Float. Max voltage can apply to output pin is 36v.
1383
1384 [[image:1653357531600-905.png]]
1385
1386
1387
1388 === 3.6.4 Analog Input Interface ===
1389
1390 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1391
1392
1393 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1394
1395 [[image:1653357592296-182.png]]
1396
1397 Example to connect a 4~~20mA sensor
1398
1399 We take the wind speed sensor as an example for reference only.
1400
1401
1402 **Specifications of the wind speed sensor:**
1403
1404 Red:  12~~24v
1405
1406 Yellow:  4~~20mA
1407
1408 Black:  GND
1409
1410
1411 **Connection diagram:**
1412
1413 [[image:1653357640609-758.png]]
1414
1415 [[image:1653357648330-671.png||height="155" width="733"]]
1416
1417
1418
1419 === 3.6.5 Relay Output ===
1420
1421 (((
1422 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device’s Power Line to in serial of RO1_1 and RO_2. Such as below:
1423 )))
1424
1425 [[image:image-20220524100215-9.png]]
1426
1427 [[image:image-20220524100215-10.png||height="382" width="723"]]
1428
1429
1430
1431 == 3.7 LEDs Indicators ==
1432
1433 [[image:image-20220524100748-11.png]]
1434
1435
1436 = 4. Use AT Command =
1437
1438 == 4.1 Access AT Command ==
1439
1440 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1441
1442 [[image:1653358238933-385.png]]
1443
1444
1445 (((
1446 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1447 )))
1448
1449 [[image:1653358355238-883.png]]
1450
1451
1452 (((
1453 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1454 )))
1455
1456 (((
1457 AT+<CMD>?        : Help on <CMD>
1458 )))
1459
1460 (((
1461 AT+<CMD>         : Run <CMD>
1462 )))
1463
1464 (((
1465 AT+<CMD>=<value> : Set the value
1466 )))
1467
1468 (((
1469 AT+<CMD>=?       : Get the value
1470 )))
1471
1472 (((
1473 ATZ: Trig a reset of the MCU
1474 )))
1475
1476 (((
1477 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1478 )))
1479
1480 (((
1481 AT+DEUI: Get or Set the Device EUI
1482 )))
1483
1484 (((
1485 AT+DADDR: Get or Set the Device Address
1486 )))
1487
1488 (((
1489 AT+APPKEY: Get or Set the Application Key
1490 )))
1491
1492 (((
1493 AT+NWKSKEY: Get or Set the Network Session Key
1494 )))
1495
1496 (((
1497 AT+APPSKEY: Get or Set the Application Session Key
1498 )))
1499
1500 (((
1501 AT+APPEUI: Get or Set the Application EUI
1502 )))
1503
1504 (((
1505 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1506 )))
1507
1508 (((
1509 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1510 )))
1511
1512 (((
1513 AT+DR: Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1514 )))
1515
1516 (((
1517 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1518 )))
1519
1520 (((
1521 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1522 )))
1523
1524 (((
1525 AT+RX2FQ: Get or Set the Rx2 window frequency
1526 )))
1527
1528 (((
1529 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1530 )))
1531
1532 (((
1533 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1534 )))
1535
1536 (((
1537 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1538 )))
1539
1540 (((
1541 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1542 )))
1543
1544 (((
1545 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1546 )))
1547
1548 (((
1549 AT+NJM: Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1550 )))
1551
1552 (((
1553 AT+NWKID: Get or Set the Network ID
1554 )))
1555
1556 (((
1557 AT+FCU: Get or Set the Frame Counter Uplink
1558 )))
1559
1560 (((
1561 AT+FCD: Get or Set the Frame Counter Downlink
1562 )))
1563
1564 (((
1565 AT+CLASS: Get or Set the Device Class
1566 )))
1567
1568 (((
1569 AT+JOIN: Join network
1570 )))
1571
1572 (((
1573 AT+NJS: Get OTAA Join Status
1574 )))
1575
1576 (((
1577 AT+SENDB: Send hexadecimal data along with the application port
1578 )))
1579
1580 (((
1581 AT+SEND: Send text data along with the application port
1582 )))
1583
1584 (((
1585 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1586 )))
1587
1588 (((
1589 AT+RECV: Print last received data in raw format
1590 )))
1591
1592 (((
1593 AT+VER: Get current image version and Frequency Band
1594 )))
1595
1596 (((
1597 AT+CFM: Get or Set the confirmation mode (0-1)
1598 )))
1599
1600 (((
1601 AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1602 )))
1603
1604 (((
1605 AT+SNR: Get the SNR of the last received packet
1606 )))
1607
1608 (((
1609 AT+RSSI: Get the RSSI of the last received packet
1610 )))
1611
1612 (((
1613 AT+TDC: Get or set the application data transmission interval in ms
1614 )))
1615
1616 (((
1617 AT+PORT: Get or set the application port
1618 )))
1619
1620 (((
1621 AT+DISAT: Disable AT commands
1622 )))
1623
1624 (((
1625 AT+PWORD: Set password, max 9 digits
1626 )))
1627
1628 (((
1629 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1630 )))
1631
1632 (((
1633 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1634 )))
1635
1636 (((
1637 AT+CFG: Print all settings
1638
1639
1640 )))
1641
1642
1643
1644 == 4.2 Common AT Command Sequence ==
1645
1646 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1647
1648 (((
1649
1650
1651 **If device has not joined network yet:**
1652 )))
1653
1654 (((
1655 (% style="background-color:#dcdcdc" %)123456
1656 )))
1657
1658 (((
1659 (% style="background-color:#dcdcdc" %)AT+FDR
1660 )))
1661
1662 (((
1663 (% style="background-color:#dcdcdc" %)123456
1664 )))
1665
1666 (((
1667 (% style="background-color:#dcdcdc" %)AT+NJM=0
1668 )))
1669
1670 (((
1671 (% style="background-color:#dcdcdc" %)ATZ
1672 )))
1673
1674
1675 (((
1676 **If device already joined network:**
1677 )))
1678
1679 (((
1680 (% style="background-color:#dcdcdc" %)AT+NJM=0
1681 )))
1682
1683 (((
1684 (% style="background-color:#dcdcdc" %)ATZ
1685
1686
1687 )))
1688
1689
1690
1691 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1692
1693 (((
1694
1695
1696 (% style="background-color:#dcdcdc" %)123456(%%)  Enter Password to have AT access.
1697 )))
1698
1699 (((
1700 (% style="background-color:#dcdcdc" %) AT+FDR(%%)   Reset Parameters to Factory Default, Keys Reserve
1701 )))
1702
1703 (((
1704 (% style="background-color:#dcdcdc" %) 123456(%%)  Enter Password to have AT access.
1705 )))
1706
1707 (((
1708 (% style="background-color:#dcdcdc" %) AT+CLASS=C(%%) Set to work in CLASS C
1709 )))
1710
1711 (((
1712 (% style="background-color:#dcdcdc" %) AT+NJM=0(%%)  Set to ABP mode
1713 )))
1714
1715 (((
1716 (% style="background-color:#dcdcdc" %) AT+ADR=0(%%)  Set the Adaptive Data Rate Off
1717 )))
1718
1719 (((
1720 (% style="background-color:#dcdcdc" %) AT+DR=5(%%)  Set Data Rate
1721 )))
1722
1723 (((
1724 (% style="background-color:#dcdcdc" %) AT+TDC=60000(%%)  Set transmit interval to 60 seconds
1725 )))
1726
1727 (((
1728 (% style="background-color:#dcdcdc" %) AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1729 )))
1730
1731 (((
1732 (% style="background-color:#dcdcdc" %) AT+RX2FQ=868400000(%%)  Set RX2Frequency to 868.4Mhz (according to the result from server)
1733 )))
1734
1735 (((
1736 (% style="background-color:#dcdcdc" %) AT+RX2DR=5(%%)  Set RX2DR to match the downlink DR from server. see below
1737 )))
1738
1739 (((
1740 (% style="background-color:#dcdcdc" %) AT+DADDR=26 01 1A F1 (%%) Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1741 )))
1742
1743 (((
1744 (% style="background-color:#dcdcdc" %) ATZ         (%%) Reset MCU
1745
1746
1747 )))
1748
1749 (((
1750 (% style="color:red" %)**Note:**
1751 )))
1752
1753 (((
1754 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1755 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1756 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1757 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1758 )))
1759
1760 (((
1761 [[image:1653359097980-169.png||height="188" width="729"]]
1762 )))
1763
1764 (((
1765
1766 )))
1767
1768
1769 === 4.2.3 Change to Class A ===
1770
1771 If sensor JOINED
1772 (% style="background-color:#dcdcdc" %)AT+CLASS=A
1773 ATZ
1774
1775
1776 = 5. FAQ =
1777
1778 == 5.1 How to upgrade the image? ==
1779
1780
1781 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1782
1783 * Support new features
1784 * For bug fix
1785 * Change LoRaWAN bands.
1786
1787 Below shows the hardware connection for how to upload an image to the LT:
1788
1789 [[image:1653359603330-121.png]]
1790
1791
1792 (((
1793 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1794 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1795 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
1796
1797
1798 (% style="color:blue" %)**For LT-22222-L**(%%):
1799 Hold down the PRO button and then momentarily press the RST reset button and the **DO1 led** will change from OFF to ON. When **DO1 LED** is on, it means the device is in download mode.
1800 )))
1801
1802 [[image:image-20220524103407-12.png]]
1803
1804 [[image:image-20220524103429-13.png]]
1805
1806 [[image:image-20220524104033-15.png]]
1807
1808
1809 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1810
1811 [[image:1653360054704-518.png||height="186" width="745"]]
1812
1813
1814 (((
1815 (((
1816
1817
1818 == 5.2 How to change the LoRa Frequency Bands/Region? ==
1819 )))
1820 )))
1821
1822 (((
1823 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1824 )))
1825
1826 (((
1827
1828
1829 == 5.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
1830 )))
1831
1832 (((
1833 (((
1834 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
1835 )))
1836 )))
1837
1838 (((
1839 (((
1840 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
1841
1842
1843 )))
1844 )))
1845
1846 (((
1847 (% style="color:#4f81bd" %)**Step1**(%%): Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
1848 )))
1849
1850 (((
1851 [[image:1653360231087-571.png||height="401" width="727"]]
1852 )))
1853
1854 (((
1855 (% style="color:red" %)Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.
1856 )))
1857
1858
1859 (((
1860 (% style="color:#4f81bd" %)**Step2**(%%)**: **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
1861 )))
1862
1863 (((
1864 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
1865 (% style="background-color:#dcdcdc" %)AT+FDR(%%)  Reset Parameters to Factory Default, Keys Reserve
1866 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
1867 (% style="background-color:#dcdcdc" %)AT+NJM=0 (%%) Set to ABP mode
1868 (% style="background-color:#dcdcdc" %)AT+ADR=0 (%%) Set the Adaptive Data Rate Off
1869 (% style="background-color:#dcdcdc" %)AT+DR=5 (%%) Set Data Rate (Set AT+DR=3 for 915 band)
1870 (% style="background-color:#dcdcdc" %)AT+TDC=60000 (%%) Set transmit interval to 60 seconds
1871 (% style="background-color:#dcdcdc" %)AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1872 (% style="background-color:#dcdcdc" %)AT+DADDR=26 01 1A F1(%%)  Set Device Address to 26 01 1A F1
1873 (% style="background-color:#dcdcdc" %)ATZ        (%%) Reset MCU
1874 )))
1875
1876
1877 (((
1878 As shown in below:
1879 )))
1880
1881 [[image:1653360498588-932.png||height="485" width="726"]]
1882
1883
1884 == 5.4 Can I see counting event in Serial? ==
1885
1886 (((
1887 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn’t support AT+DEBUG. User can update to latest firmware first.
1888
1889
1890 == 5.5 Can i use point to point communication for LT-22222-L? ==
1891
1892 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]
1893 )))
1894
1895 (((
1896 == 5.6 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
1897
1898 If the device is not shut down, but directly powered off.
1899
1900 It will default that this is a power-off state.
1901
1902 In modes 2 to 5, DO RO status and pulse count are saved in flash.
1903
1904 After restart, the status before power failure will be read from flash.
1905
1906 = 6. Trouble Shooting =
1907 )))
1908
1909 (((
1910 (((
1911 == 6.1 Downlink doesn’t work, how to solve it? ==
1912 )))
1913 )))
1914
1915 (((
1916 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
1917 )))
1918
1919 (((
1920
1921
1922 == 6.2 Have trouble to upload image. ==
1923 )))
1924
1925 (((
1926 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
1927 )))
1928
1929 (((
1930
1931
1932 == 6.3 Why I can’t join TTN in US915 /AU915 bands? ==
1933 )))
1934
1935 (((
1936 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1937 )))
1938
1939
1940
1941 = 7. Order Info =
1942
1943
1944 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
1945
1946
1947 (% style="color:#4f81bd" %)**XXX:**
1948
1949 * (% style="color:#4f81bd" %)**EU433**(%%): LT with frequency bands EU433
1950 * (% style="color:#4f81bd" %)**EU868**(%%): LT with frequency bands EU868
1951 * (% style="color:#4f81bd" %)**KR920**(%%): LT with frequency bands KR920
1952 * (% style="color:#4f81bd" %)**CN470**(%%): LT with frequency bands CN470
1953 * (% style="color:#4f81bd" %)**AS923**(%%): LT with frequency bands AS923
1954 * (% style="color:#4f81bd" %)**AU915**(%%): LT with frequency bands AU915
1955 * (% style="color:#4f81bd" %)**US915**(%%): LT with frequency bands US915
1956 * (% style="color:#4f81bd" %)**IN865**(%%): LT with frequency bands IN865
1957 * (% style="color:#4f81bd" %)**CN779**(%%): LT with frequency bands CN779
1958
1959 = 8. Packing Info =
1960
1961
1962 **Package Includes**:
1963
1964 * LT-22222-L I/O Controller x 1
1965 * Stick Antenna for LoRa RF part x 1
1966 * Bracket for controller x1
1967 * Program cable x 1
1968
1969 **Dimension and weight**:
1970
1971 * Device Size: 13.5 x 7 x 3 cm
1972 * Device Weight: 105g
1973 * Package Size / pcs : 14.5 x 8 x 5 cm
1974 * Weight / pcs : 170g
1975
1976 = 9. Support =
1977
1978 * (((
1979 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1980 )))
1981 * (((
1982 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1983 )))
1984
1985 = 10. Reference​​​​​ =
1986
1987 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
1988 * [[Image Download>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]]
1989 * [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1990 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]