Version 82.21 by Xiaoling on 2022/06/20 11:54

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4 **LT-22222-L LoRa IO Controller User Manual **
5
6
7 **Table of Contents:**
8
9 {{toc/}}
10
11
12
13
14
15
16
17 = 1.Introduction =
18
19 == 1.1 What is LT Series I/O Controller ==
20
21 (((
22
23
24 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 )))
26
27 (((
28 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
29 )))
30
31 (((
32 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
33 )))
34
35 (((
36 The use environment includes:
37 )))
38
39 (((
40 1) If user’s area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
41 )))
42
43 (((
44 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
45 )))
46
47 (((
48 [[image:1653295757274-912.png]]
49
50
51 )))
52
53
54 == 1.2  Specifications ==
55
56 (((
57
58
59 **Hardware System:**
60 )))
61
62 * (((
63 STM32L072CZT6 MCU
64 )))
65 * (((
66 SX1276/78 Wireless Chip 
67 )))
68 * (((
69 (((
70 Power Consumption:
71 )))
72
73 * (((
74 Idle: 4mA@12v
75 )))
76 * (((
77 20dB Transmit: 34mA@12v
78 )))
79 )))
80
81 (((
82
83
84 **Interface for Model: LT22222-L:**
85 )))
86
87 * (((
88 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
89 )))
90 * (((
91 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
92 )))
93 * (((
94 2 x Relay Output (5A@250VAC / 30VDC)
95 )))
96 * (((
97 2 x 0~~20mA Analog Input (res:0.01mA)
98 )))
99 * (((
100 2 x 0~~30V Analog Input (res:0.01v)
101 )))
102 * (((
103 Power Input 7~~ 24V DC. 
104 )))
105
106 (((
107
108
109 **LoRa Spec:**
110 )))
111
112 * (((
113 (((
114 Frequency Range:
115 )))
116
117 * (((
118 Band 1 (HF): 862 ~~ 1020 Mhz
119 )))
120 * (((
121 Band 2 (LF): 410 ~~ 528 Mhz
122 )))
123 )))
124 * (((
125 168 dB maximum link budget.
126 )))
127 * (((
128 +20 dBm - 100 mW constant RF output vs.
129 )))
130 * (((
131 +14 dBm high efficiency PA.
132 )))
133 * (((
134 Programmable bit rate up to 300 kbps.
135 )))
136 * (((
137 High sensitivity: down to -148 dBm.
138 )))
139 * (((
140 Bullet-proof front end: IIP3 = -12.5 dBm.
141 )))
142 * (((
143 Excellent blocking immunity.
144 )))
145 * (((
146 Low RX current of 10.3 mA, 200 nA register retention.
147 )))
148 * (((
149 Fully integrated synthesizer with a resolution of 61 Hz.
150 )))
151 * (((
152 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
153 )))
154 * (((
155 Built-in bit synchronizer for clock recovery.
156 )))
157 * (((
158 Preamble detection.
159 )))
160 * (((
161 127 dB Dynamic Range RSSI.
162 )))
163 * (((
164 Automatic RF Sense and CAD with ultra-fast AFC.
165 )))
166 * (((
167 Packet engine up to 256 bytes with CRC.
168
169
170
171
172 )))
173
174 == 1.3 Features ==
175
176 * LoRaWAN Class A & Class C protocol
177 * Optional Customized LoRa Protocol
178 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865
179 * AT Commands to change parameters
180 * Remote configure parameters via LoRa Downlink
181 * Firmware upgradable via program port
182 * Counting
183
184
185
186 == 1.4  Applications ==
187
188 * Smart Buildings & Home Automation
189 * Logistics and Supply Chain Management
190 * Smart Metering
191 * Smart Agriculture
192 * Smart Cities
193 * Smart Factory
194
195
196
197 == 1.5 Hardware Variants ==
198
199 (% border="1" style="background-color:#f7faff; width:500px" %)
200 |(% style="width:103px" %)**Model**|(% style="width:131px" %)**Photo**|(% style="width:334px" %)**Description**
201 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)[[image:1653296302983-697.png]]|(% style="width:334px" %)(((
202 * 2 x Digital Input (Bi-direction)
203 * 2 x Digital Output
204 * 2 x Relay Output (5A@250VAC / 30VDC)
205 * 2 x 0~~20mA Analog Input (res:0.01mA)
206 * 2 x 0~~30V Analog Input (res:0.01v)
207 * 1 x Counting Port
208 )))
209
210
211 = 2. Power ON Device =
212
213 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
214
215 (((
216 PWR will on when device is properly powered.
217 )))
218
219 [[image:1653297104069-180.png]]
220
221
222
223 = 3. Operation Mode =
224
225 == 3.1 How it works? ==
226
227 (((
228 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on **TX LED** will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. **TX LED** will be on for 5 seconds after joined in network. When there is message from server, the **RX LED** will be on for 1 second. 
229 )))
230
231 (((
232 In case user can’t set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
233 )))
234
235
236 == 3.2 Example to join LoRaWAN network ==
237
238 (((
239 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
240 )))
241
242 [[image:image-20220523172350-1.png||height="266" width="864"]]
243
244
245 (((
246 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
247 )))
248
249 (((
250 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
251 )))
252
253 (((
254 Each LT is shipped with a sticker with the default device EUI as below:
255 )))
256
257 [[image:1653297924498-393.png]]
258
259
260 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
261
262 Add APP EUI in the application.
263
264 [[image:1653297955910-247.png||height="321" width="716"]]
265
266
267 Add APP KEY and DEV EUI
268
269 [[image:1653298023685-319.png]]
270
271
272 (((
273 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
274 )))
275
276 [[image:1653298044601-602.png||height="405" width="709"]]
277
278
279
280 == 3.3 Uplink Payload ==
281
282 There are five working modes + one interrupt mode on LT for different type application:
283
284 * **MOD1**: (default setting): 2 x ACI + 2AVI + DI + DO + RO
285 * **MOD2**: Double DI Counting + DO + RO
286 * **MOD3**: Single DI Counting + 2 x ACI + DO + RO
287 * **MOD4**: Single DI Counting + 1 x Voltage Counting + DO + RO
288 * **MOD5**: Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
289 * **ADDMOD6**: Trigger Mode, Optional, used together with MOD1 ~~ MOD5
290
291
292
293 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
294
295 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default.
296
297 [[image:image-20220523174024-3.png]]
298
299 (((
300
301
302 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
303 )))
304
305 [[image:image-20220523174254-4.png]]
306
307 * RO is for relay. ROx=1 : close,ROx=0 always open.
308 * DI is for digital input. DIx=1: high or float, DIx=0: low.
309 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
310
311 (% style="color:red" %)Note: DI3 and DO3 bit are not valid for LT-22222-L
312
313 For example if payload is: [[image:image-20220523175847-2.png]]
314
315
316 **The value for the interface is:  **
317
318 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
319
320 AVI2 channel voltage is 0x04AC/1000=1.196V
321
322 ACI1 channel current is 0x1310/1000=4.880mA
323
324 ACI2 channel current is 0x1300/1000=4.864mA
325
326 The last byte 0xAA= 10101010(B) means
327
328 * [1] RO1 relay channel is close and the RO1 LED is ON.
329 * [0] RO2 relay channel is open and RO2 LED is OFF;
330
331 **LT22222-L:**
332
333 * [1] DI2 channel is high input and DI2 LED is ON;
334 * [0] DI1 channel is low input;
335
336 * [0] DO3 channel output state
337 ** DO3 is float in case no load between DO3 and V+.;
338 ** DO3 is high in case there is load between DO3 and V+.
339 ** DO3 LED is off in both case
340 * [1] DO2 channel output is low and DO2 LED is ON.
341 * [0] DO1 channel output state
342 ** DO1 is float in case no load between DO1 and V+.;
343 ** DO1 is high in case there is load between DO1 and V+.
344 ** DO1 LED is off in both case
345
346
347
348 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
349
350
351 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
352
353 (((
354 Total : 11 bytes payload
355 )))
356
357 [[image:image-20220523180452-3.png]]
358
359
360 (((
361 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
362 )))
363
364 [[image:image-20220523180506-4.png]]
365
366 * RO is for relay. ROx=1 : close,ROx=0 always open.
367 * FIRST: Indicate this is the first packet after join network.
368 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
369
370 (((
371 (% style="color:red" %)Note: DO3 bit is not valid for LT-22222-L.
372 )))
373
374 (((
375
376
377 **To use counting mode, please run:**
378 )))
379
380 (% class="box infomessage" %)
381 (((
382 (((
383 **AT+MOD=2**
384
385 **ATZ**
386 )))
387 )))
388
389 (((
390
391
392 (% style="color:#4f81bd" %)**AT Commands for counting:**
393 )))
394
395 (((
396 **For LT22222-L:**
397 )))
398
399 (% class="box infomessage" %)
400 (((
401 (((
402 **AT+TRIG1=0,100 (set DI1 port to trigger on low level, valid signal is 100ms) **
403
404 **AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms ) **
405
406 **AT+TRIG2=0,100 (set DI2 port to trigger on low level, valid signal is 100ms) **
407
408 **AT+TRIG2=1,100 (set DI2 port to trigger on high level, valid signal is 100ms ) **
409
410 **AT+SETCNT=1,60   (Set COUNT1 value to 60)**
411
412 **AT+SETCNT=2,60   (Set COUNT2 value to 60)**
413 )))
414 )))
415
416
417
418 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
419
420 **LT22222-L**: This mode the DI1 is used as a counting pin.
421
422 [[image:image-20220523181246-5.png]]
423
424 (((
425 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
426 )))
427
428 [[image:image-20220523181301-6.png]]
429
430 * RO is for relay. ROx=1 : close,ROx=0 always open.
431 * FIRST: Indicate this is the first packet after join network.
432 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
433
434 (((
435 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
436 )))
437
438 (((
439 **To use counting mode, please run:**
440 )))
441
442 (% class="box infomessage" %)
443 (((
444 (((
445 **AT+MOD=3**
446
447 **ATZ**
448 )))
449 )))
450
451 (((
452 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
453 )))
454
455
456
457 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
458
459
460 **LT22222-L**: This mode the DI1 is used as a counting pin.
461
462 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
463
464 [[image:image-20220523181903-8.png]]
465
466
467 (((
468 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
469 )))
470
471 [[image:image-20220523181727-7.png]]
472
473 * RO is for relay. ROx=1 : close,ROx=0 always open.
474 * FIRST: Indicate this is the first packet after join network.
475 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
476
477 (((
478 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
479 )))
480
481 (((
482
483
484 **To use this mode, please run:**
485 )))
486
487 (% class="box infomessage" %)
488 (((
489 (((
490 **AT+MOD=4**
491
492 **ATZ**
493 )))
494 )))
495
496
497
498 (((
499 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
500 )))
501
502 (((
503
504
505 **Plus below command for AVI1 Counting:**
506 )))
507
508 (% class="box infomessage" %)
509 (((
510 (((
511 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**   (set AVI Count to 60)**
512
513 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**   (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
514
515 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**   (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
516
517 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**   (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
518 )))
519 )))
520
521
522 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
523
524
525 **LT22222-L**: This mode the DI1 is used as a counting pin.
526
527 [[image:image-20220523182334-9.png]]
528
529 (((
530
531
532 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
533 )))
534
535 * RO is for relay. ROx=1 : close,ROx=0 always open.
536 * FIRST: Indicate this is the first packet after join network.
537 * (((
538 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
539 )))
540
541 (((
542 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
543 )))
544
545 (((
546
547
548 **To use this mode, please run:**
549 )))
550
551 (% class="box infomessage" %)
552 (((
553 (((
554 **AT+MOD=5**
555
556 **ATZ**
557 )))
558 )))
559
560 (((
561 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
562 )))
563
564
565
566 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
567
568
569 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
570
571 For example, if user has configured below commands:
572
573 * **AT+MOD=1 ** **~-~->** The normal working mode
574 * **AT+ADDMOD6=1**   **~-~->** Enable trigger
575
576 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
577
578 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
579 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
580
581 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
582
583 (% style="color:#4f81bd" %)**Trigger base on voltage**:
584
585 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
586
587 **Example:**
588
589 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
590
591 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
592
593
594
595 (% style="color:#4f81bd" %)**Trigger base on current**:
596
597 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
598
599 **Example:**
600
601 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
602
603
604
605 (% style="color:#4f81bd" %)**Trigger base on DI status**:
606
607 DI status trigger Flag.
608
609 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
610
611
612 **Example:**
613
614 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
615
616
617 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
618
619 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
620
621 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
622
623 AA: Code for this downlink Command:
624
625 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
626
627 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
628
629 yy2 yy2: AC1 or AV1 high limit.
630
631 yy3 yy3: AC2 or AV2 low limit.
632
633 Yy4 yy4: AC2 or AV2 high limit.
634
635
636 **Example1**: AA 00 13 88 00 00 00 00 00 00
637
638 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
639
640
641 **Example2**: AA 02 01 00
642
643 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
644
645
646
647 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
648
649 MOD6 Payload : total 11 bytes payload
650
651 [[image:image-20220524085923-1.png]]
652
653
654 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
655
656 [[image:image-20220524090106-2.png]]
657
658 * Each bits shows if the corresponding trigger has been configured.
659
660 **Example:**
661
662 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
663
664
665 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
666
667 [[image:image-20220524090249-3.png]]
668
669 * Each bits shows which status has been trigger on this uplink.
670
671 **Example:**
672
673 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
674
675
676 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
677
678 [[image:image-20220524090456-4.png]]
679
680 * Each bits shows which status has been trigger on this uplink.
681
682 **Example:**
683
684 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
685
686 00000101: Means both DI1 and DI2 trigger are enabled.
687
688
689 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
690
691 Downlink command to poll MOD6 status:
692
693 **AB 06**
694
695 When device got this command, it will send the MOD6 payload.
696
697
698
699 === 3.3.7 Payload Decoder ===
700
701 (((
702
703
704 **Decoder for TTN/loraserver/ChirpStack**: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/Payload_decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/Payload_decoder/]]
705
706
707 )))
708
709
710 == 3.4 ​Configure LT via AT or Downlink ==
711
712 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
713
714 (((
715 There are two kinds of Commands:
716 )))
717
718 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
719
720 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
721
722
723
724 === 3.4.1 Common Commands ===
725
726 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
727
728
729
730 === 3.4.2 Sensor related commands ===
731
732 ==== 3.4.2.1 Set Transmit Interval ====
733
734 Set device uplink interval.
735
736 * (% style="color:#037691" %)**AT Command:**
737
738 (% class="box infomessage" %)
739 (((
740 **AT+TDC=N **
741 )))
742
743 **Example: **AT+TDC=30000. Means set interval to 30 seconds
744
745
746 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
747
748 (% class="box infomessage" %)
749 (((
750 **0x01 aa bb cc     ~/~/ Same as AT+TDC=0x(aa bb cc)**
751 )))
752
753
754
755 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
756
757 Set work mode.
758
759 * (% style="color:#037691" %)**AT Command:**
760
761 (% class="box infomessage" %)
762 (((
763 **AT+MOD=N  **
764 )))
765
766 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
767
768
769 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
770
771 (% class="box infomessage" %)
772 (((
773 **0x0A aa     ~/~/ Same as AT+MOD=aa**
774 )))
775
776
777
778 ==== 3.4.2.3 Poll an uplink ====
779
780 * (% style="color:#037691" %)AT Command:
781
782 There is no AT Command to poll uplink
783
784
785 * (% style="color:#037691" %)Downlink Payload (prefix 0x08):
786
787 (% class="box infomessage" %)
788 (((
789 **0x08 FF     ~/~/ Poll an uplink,**
790 )))
791
792 **Example**: 0x08FF, ask device to send an Uplink
793
794
795
796 ==== 3.4.2.4 Enable Trigger Mode ====
797
798 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
799
800 * (% style="color:#037691" %)AT Command:
801
802 (% class="box infomessage" %)
803 (((
804 **AT+ADDMOD6=1 or 0**
805 )))
806
807 1: Enable Trigger Mode
808
809 0: Disable Trigger Mode
810
811
812 * (% style="color:#037691" %)Downlink Payload (prefix 0x0A 06):
813
814 (% class="box infomessage" %)
815 (((
816 **0x0A 06 aa     ~/~/ Same as AT+ADDMOD6=aa,**
817 )))
818
819
820
821 ==== 3.4.2.5 Poll trigger settings ====
822
823 Poll trigger settings,
824
825 * (% style="color:#037691" %)AT Command:
826
827 There is no AT Command for this feature.
828
829
830 * (% style="color:#037691" %)Downlink Payload (prefix 0x AB 06):
831
832 (% class="box infomessage" %)
833 (((
834 **0xAB 06  ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command**
835 )))
836
837
838
839 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
840
841 Enable Disable DI1/DI2/DI2 as trigger,
842
843 * (% style="color:#037691" %)AT Command:
844
845 **Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
846
847
848 **Example:**
849
850 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
851
852 * (% style="color:#037691" %)Downlink Payload (prefix 0xAA 02):
853
854 **0xAA 02 aa bb  **~/~/ Same as AT+DTRI=aa,bb
855
856
857
858
859 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
860
861 Set DI1 or DI3(for LT-33222-L) trigger.
862
863 * (% style="color:#037691" %)AT Command:
864
865 **AT+TRIG1=a,b**
866
867 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
868
869 b : delay timing.
870
871
872 **Example:**
873
874 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
875
876
877 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
878 * **0x09 01 aa bb cc  ** ~/~/ same as AT+TRIG1=aa,0x(bb cc)
879
880
881
882
883 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
884
885 Set DI2 trigger.
886
887 * (% style="color:#037691" %)**AT Command:**
888
889 **AT+TRIG2=a,b**
890
891
892 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
893
894 b : delay timing.
895
896
897 **Example:**
898
899 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
900
901
902 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
903
904 **0x09 02 aa bb cc  **~/~/ same as AT+TRIG1=aa,0x(bb cc)
905
906
907
908
909 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
910
911 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
912
913 * (% style="color:#037691" %)**AT Command**
914
915 **AT+ACLIM**
916
917
918 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
919
920 **0x AA 01 aa bb cc dd ee ff gg hh  ** ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
921
922
923
924
925 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
926
927 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
928
929 * (% style="color:#037691" %)**AT Command**
930
931 **AT+AVLIM  See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
932
933
934 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
935
936 **0x AA 00 aa bb cc dd ee ff gg hh  ** ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
937
938
939
940
941 ==== 3.4.2.11 Trigger – Set minimum interval ====
942
943 Set AV and AC trigger minimum interval, system won’t response to the second trigger within this set time after the first trigger.
944
945 * (% style="color:#037691" %)**AT Command**
946
947 **AT+ATDC=5. Device won’t response the second trigger within 5 minute after the first trigger.**
948
949
950 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
951
952 **0x AC aa bb  ** ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
953
954
955
956
957 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
958
959 * (% style="color:#037691" %)**AT Command**
960
961 There is no AT Command to control Digital Output
962
963
964 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
965 * **0x02 aa bb cc     **~/~/ Set DO1/DO2/DO3 output
966
967
968 (((
969 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
970 )))
971
972 (((
973 01: Low,  00: High ,  11: No action
974 )))
975
976 [[image:image-20220524092754-5.png]]
977
978 (((
979 (% style="color:red" %)Note: For LT-22222-L, there is no DO3, the last byte can use any value.
980 )))
981
982 (((
983 (% style="color:red" %)Device will upload a packet if downlink code executes successfully.
984 )))
985
986
987
988
989 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
990
991 * (% style="color:#037691" %)**AT Command**
992
993 There is no AT Command to control Digital Output
994
995
996 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
997
998 **0xA9 aa bb cc     **~/~/ Set DO1/DO2/DO3 output with time control
999
1000
1001 This is to control the digital output time of DO pin. Include four bytes:
1002
1003 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1004
1005 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1006
1007 01: DO pins will change back to original state after timeout.
1008
1009 00: DO pins will change to an inverter state after timeout 
1010
1011
1012 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1013
1014 [[image:image-20220524093238-6.png]]
1015
1016
1017 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1018
1019 [[image:image-20220524093328-7.png]]
1020
1021
1022 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1023
1024 [[image:image-20220524093351-8.png]]
1025
1026
1027 (% style="color:#4f81bd" %)**Sixth and Seventh Byte**:
1028
1029 Latching time. Unit: ms
1030
1031 Device will upload a packet if downlink code executes successfully.
1032
1033
1034 **Example payload:**
1035
1036 **~1. A9 01 01 01 01 07 D0**
1037
1038 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1039
1040 **2. A9 01 00 01 11 07 D0**
1041
1042 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1043
1044 **3. A9 00 00 00 00 07 D0**
1045
1046 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1047
1048 **4. A9 00 11 01 00 07 D0**
1049
1050 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1051
1052
1053
1054
1055 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1056
1057 * (% style="color:#037691" %)**AT Command:**
1058
1059 There is no AT Command to control Relay Output
1060
1061
1062 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1063
1064 **0x03 aa bb     **~/~/ Set RO1/RO2 output
1065
1066
1067 (((
1068 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1069 )))
1070
1071 (((
1072 01: Close ,  00: Open , 11: No action
1073 )))
1074
1075 (((
1076 [[image:image-20220524093724-9.png]]
1077 )))
1078
1079 Device will upload a packet if downlink code executes successfully.
1080
1081
1082
1083
1084 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1085
1086 * (% style="color:#037691" %)**AT Command:**
1087
1088 There is no AT Command to control Relay Output
1089
1090
1091 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1092
1093 **0x05 aa bb cc dd     **~/~/ Set RO1/RO2 relay with time control
1094
1095
1096 This is to control the relay output time of relay. Include four bytes:
1097
1098 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1099
1100 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1101
1102 01: Relays will change back to original state after timeout.
1103
1104 00: Relays will change to an inverter state after timeout
1105
1106
1107 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1108
1109 [[image:image-20220524093831-10.png]]
1110
1111
1112 (% style="color:#4f81bd" %)**Fourth/Fifth Bytes(cc)**(%%): Latching time. Unit: ms
1113
1114 Device will upload a packet if downlink code executes successfully.
1115
1116
1117 **Example payload:**
1118
1119 **~1. 05 01 11 07 D0**
1120
1121 Relay1 and Relay 2 will be set to NO , last 2 seconds, then change back to original state.
1122
1123 **2. 05 01 10 07 D0**
1124
1125 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then both change back to original state.
1126
1127 **3. 05 00 01 07 D0**
1128
1129 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then relay change to NO, Relay2 change to NC.
1130
1131 **4. 05 00 00 07 D0**
1132
1133 Relay 1 & relay2 will change to NC, last 2 seconds, then both change to NO.
1134
1135
1136
1137
1138 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1139
1140 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1141
1142 * (% style="color:#037691" %)**AT Command:**
1143
1144 (% style="color:#037691" %)**​​​​​​​​​​​​​​**(%%)**AT+VOLMAX   ** ~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1145
1146
1147 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1148
1149 **0xA5 aa bb cc   **~/~/ Same as AT+VOLMAX=(aa bb),cc
1150
1151
1152
1153
1154 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1155
1156 * (% style="color:#037691" %)**AT Command:**
1157
1158 (% style="color:#037691" %)**​​​​​​​​​​​​​​**(%%)**AT+SETCNT=aa,(bb cc dd ee) **
1159
1160 aa: 1: Set count1,
1161
1162 2: Set count2,
1163
1164 3: Set AV1 count
1165
1166 Bb cc dd ee: number to be set
1167
1168
1169 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1170
1171 **0x A8 aa bb cc dd ee     **~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1172
1173
1174
1175
1176 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1177
1178 Clear counting for counting mode
1179
1180 * (% style="color:#037691" %)**AT Command:**
1181
1182 (% style="color:#037691" %)​​​​​​​​​​​​​​(%%)**AT+CLRCOUNT ** ~/~/ clear all counting
1183
1184
1185 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1186
1187 **0x A6 01    ** ~/~/ clear all counting
1188
1189
1190
1191
1192 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1193
1194 * (% style="color:#037691" %)**AT Command:**
1195
1196 **AT+COUTIME=60  **~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1197
1198
1199 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1200
1201 **0x A7 aa bb cc     **~/~/ same as AT+COUTIME =aa bb cc,
1202
1203 (((
1204 range: aa bb cc:0 to 16777215,  (unit:second)
1205
1206
1207 )))
1208
1209
1210
1211 == 3.5 Integrate with Mydevice ==
1212
1213 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1214
1215 (((
1216 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1217 )))
1218
1219 (((
1220 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1221 )))
1222
1223 [[image:1653356737703-362.png||height="232" width="732"]]
1224
1225 [[image:image-20220524094641-11.png||height="390" width="723"]]
1226
1227
1228 [[image:image-20220524094641-12.png||height="402" width="718"]]
1229
1230
1231 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1232
1233 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1234
1235 Search under The things network
1236
1237 [[image:1653356838789-523.png||height="337" width="740"]]
1238
1239
1240
1241 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1242
1243 [[image:image-20220524094909-1.png||height="335" width="729"]]
1244
1245
1246 [[image:image-20220524094909-2.png||height="337" width="729"]]
1247
1248
1249 [[image:image-20220524094909-3.png||height="338" width="727"]]
1250
1251
1252 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1253
1254
1255 [[image:image-20220524094909-5.png||height="341" width="734"]]
1256
1257
1258
1259 == 3.6 Interface Detail ==
1260
1261 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1262
1263 Support NPN Type sensor
1264
1265 [[image:1653356991268-289.png]]
1266
1267
1268
1269 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1270
1271 (((
1272 The DI port of LT-22222-L can support NPN or PNP output sensor.
1273 )))
1274
1275 (((
1276 (((
1277 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high
1278 )))
1279 )))
1280
1281 [[image:1653357170703-587.png]]
1282
1283 (((
1284 (((
1285 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1286 )))
1287 )))
1288
1289 (((
1290
1291 )))
1292
1293 (((
1294 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1295 )))
1296
1297 (((
1298 This type of sensor will output a low signal GND when active.
1299 )))
1300
1301 * (((
1302 Connect sensor’s output to DI1-
1303 )))
1304 * (((
1305 Connect sensor’s VCC to DI1+.
1306 )))
1307
1308 (((
1309 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1310 )))
1311
1312 (((
1313 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1314 )))
1315
1316 (((
1317 If DI1+ = 12v, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1318 )))
1319
1320 (((
1321
1322 )))
1323
1324 (((
1325 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1326 )))
1327
1328 (((
1329 This type of sensor will output a high signal (example 24v) when active.
1330 )))
1331
1332 * (((
1333 Connect sensor’s output to DI1+
1334 )))
1335 * (((
1336 Connect sensor’s GND DI1-.
1337 )))
1338
1339 (((
1340 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1341 )))
1342
1343 (((
1344 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1345 )))
1346
1347 (((
1348 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1349 )))
1350
1351 (((
1352
1353 )))
1354
1355 (((
1356 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1357 )))
1358
1359 (((
1360 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1361 )))
1362
1363 * (((
1364 Connect sensor’s output to DI1+ with a serial 50K resistor
1365 )))
1366 * (((
1367 Connect sensor’s GND DI1-.
1368 )))
1369
1370 (((
1371 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1372 )))
1373
1374 (((
1375 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1376 )))
1377
1378 (((
1379 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1380 )))
1381
1382
1383
1384 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1385
1386 NPN output: GND or Float. Max voltage can apply to output pin is 36v.
1387
1388 [[image:1653357531600-905.png]]
1389
1390
1391
1392 === 3.6.4 Analog Input Interface ===
1393
1394 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1395
1396
1397 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1398
1399 [[image:1653357592296-182.png]]
1400
1401 Example to connect a 4~~20mA sensor
1402
1403 We take the wind speed sensor as an example for reference only.
1404
1405
1406 **Specifications of the wind speed sensor:**
1407
1408 Red:  12~~24v
1409
1410 Yellow:  4~~20mA
1411
1412 Black:  GND
1413
1414
1415 **Connection diagram:**
1416
1417 [[image:1653357640609-758.png]]
1418
1419 [[image:1653357648330-671.png||height="155" width="733"]]
1420
1421
1422
1423 === 3.6.5 Relay Output ===
1424
1425 (((
1426 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device’s Power Line to in serial of RO1_1 and RO_2. Such as below:
1427 )))
1428
1429 [[image:image-20220524100215-9.png]]
1430
1431 [[image:image-20220524100215-10.png||height="382" width="723"]]
1432
1433
1434
1435 == 3.7 LEDs Indicators ==
1436
1437 [[image:image-20220524100748-11.png]]
1438
1439
1440 = 4. Use AT Command =
1441
1442 == 4.1 Access AT Command ==
1443
1444 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1445
1446 [[image:1653358238933-385.png]]
1447
1448
1449 (((
1450 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1451 )))
1452
1453 [[image:1653358355238-883.png]]
1454
1455
1456 (((
1457 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1458 )))
1459
1460 (((
1461 AT+<CMD>?        : Help on <CMD>
1462 )))
1463
1464 (((
1465 AT+<CMD>         : Run <CMD>
1466 )))
1467
1468 (((
1469 AT+<CMD>=<value> : Set the value
1470 )))
1471
1472 (((
1473 AT+<CMD>=?       : Get the value
1474 )))
1475
1476 (((
1477 ATZ: Trig a reset of the MCU
1478 )))
1479
1480 (((
1481 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1482 )))
1483
1484 (((
1485 AT+DEUI: Get or Set the Device EUI
1486 )))
1487
1488 (((
1489 AT+DADDR: Get or Set the Device Address
1490 )))
1491
1492 (((
1493 AT+APPKEY: Get or Set the Application Key
1494 )))
1495
1496 (((
1497 AT+NWKSKEY: Get or Set the Network Session Key
1498 )))
1499
1500 (((
1501 AT+APPSKEY: Get or Set the Application Session Key
1502 )))
1503
1504 (((
1505 AT+APPEUI: Get or Set the Application EUI
1506 )))
1507
1508 (((
1509 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1510 )))
1511
1512 (((
1513 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1514 )))
1515
1516 (((
1517 AT+DR: Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1518 )))
1519
1520 (((
1521 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1522 )))
1523
1524 (((
1525 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1526 )))
1527
1528 (((
1529 AT+RX2FQ: Get or Set the Rx2 window frequency
1530 )))
1531
1532 (((
1533 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1534 )))
1535
1536 (((
1537 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1538 )))
1539
1540 (((
1541 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1542 )))
1543
1544 (((
1545 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1546 )))
1547
1548 (((
1549 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1550 )))
1551
1552 (((
1553 AT+NJM: Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1554 )))
1555
1556 (((
1557 AT+NWKID: Get or Set the Network ID
1558 )))
1559
1560 (((
1561 AT+FCU: Get or Set the Frame Counter Uplink
1562 )))
1563
1564 (((
1565 AT+FCD: Get or Set the Frame Counter Downlink
1566 )))
1567
1568 (((
1569 AT+CLASS: Get or Set the Device Class
1570 )))
1571
1572 (((
1573 AT+JOIN: Join network
1574 )))
1575
1576 (((
1577 AT+NJS: Get OTAA Join Status
1578 )))
1579
1580 (((
1581 AT+SENDB: Send hexadecimal data along with the application port
1582 )))
1583
1584 (((
1585 AT+SEND: Send text data along with the application port
1586 )))
1587
1588 (((
1589 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1590 )))
1591
1592 (((
1593 AT+RECV: Print last received data in raw format
1594 )))
1595
1596 (((
1597 AT+VER: Get current image version and Frequency Band
1598 )))
1599
1600 (((
1601 AT+CFM: Get or Set the confirmation mode (0-1)
1602 )))
1603
1604 (((
1605 AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1606 )))
1607
1608 (((
1609 AT+SNR: Get the SNR of the last received packet
1610 )))
1611
1612 (((
1613 AT+RSSI: Get the RSSI of the last received packet
1614 )))
1615
1616 (((
1617 AT+TDC: Get or set the application data transmission interval in ms
1618 )))
1619
1620 (((
1621 AT+PORT: Get or set the application port
1622 )))
1623
1624 (((
1625 AT+DISAT: Disable AT commands
1626 )))
1627
1628 (((
1629 AT+PWORD: Set password, max 9 digits
1630 )))
1631
1632 (((
1633 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1634 )))
1635
1636 (((
1637 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1638 )))
1639
1640 (((
1641 AT+CFG: Print all settings
1642
1643
1644 )))
1645
1646
1647
1648 == 4.2 Common AT Command Sequence ==
1649
1650 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1651
1652 (((
1653
1654
1655 **If device has not joined network yet:**
1656 )))
1657
1658 (((
1659 (% style="background-color:#dcdcdc" %)123456
1660 )))
1661
1662 (((
1663 (% style="background-color:#dcdcdc" %)AT+FDR
1664 )))
1665
1666 (((
1667 (% style="background-color:#dcdcdc" %)123456
1668 )))
1669
1670 (((
1671 (% style="background-color:#dcdcdc" %)AT+NJM=0
1672 )))
1673
1674 (((
1675 (% style="background-color:#dcdcdc" %)ATZ
1676 )))
1677
1678
1679 (((
1680 **If device already joined network:**
1681 )))
1682
1683 (((
1684 (% style="background-color:#dcdcdc" %)AT+NJM=0
1685 )))
1686
1687 (((
1688 (% style="background-color:#dcdcdc" %)ATZ
1689
1690
1691 )))
1692
1693
1694
1695 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1696
1697 (((
1698
1699
1700 (% style="background-color:#dcdcdc" %)123456(%%)  Enter Password to have AT access.
1701 )))
1702
1703 (((
1704 (% style="background-color:#dcdcdc" %) AT+FDR(%%)   Reset Parameters to Factory Default, Keys Reserve
1705 )))
1706
1707 (((
1708 (% style="background-color:#dcdcdc" %) 123456(%%)  Enter Password to have AT access.
1709 )))
1710
1711 (((
1712 (% style="background-color:#dcdcdc" %) AT+CLASS=C(%%) Set to work in CLASS C
1713 )))
1714
1715 (((
1716 (% style="background-color:#dcdcdc" %) AT+NJM=0(%%)  Set to ABP mode
1717 )))
1718
1719 (((
1720 (% style="background-color:#dcdcdc" %) AT+ADR=0(%%)  Set the Adaptive Data Rate Off
1721 )))
1722
1723 (((
1724 (% style="background-color:#dcdcdc" %) AT+DR=5(%%)  Set Data Rate
1725 )))
1726
1727 (((
1728 (% style="background-color:#dcdcdc" %) AT+TDC=60000(%%)  Set transmit interval to 60 seconds
1729 )))
1730
1731 (((
1732 (% style="background-color:#dcdcdc" %) AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1733 )))
1734
1735 (((
1736 (% style="background-color:#dcdcdc" %) AT+RX2FQ=868400000(%%)  Set RX2Frequency to 868.4Mhz (according to the result from server)
1737 )))
1738
1739 (((
1740 (% style="background-color:#dcdcdc" %) AT+RX2DR=5(%%)  Set RX2DR to match the downlink DR from server. see below
1741 )))
1742
1743 (((
1744 (% style="background-color:#dcdcdc" %) AT+DADDR=26 01 1A F1 (%%) Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1745 )))
1746
1747 (((
1748 (% style="background-color:#dcdcdc" %) ATZ         (%%) Reset MCU
1749
1750
1751 )))
1752
1753 (((
1754 (% style="color:red" %)**Note:**
1755 )))
1756
1757 (((
1758 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1759 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1760 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1761 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1762 )))
1763
1764 (((
1765 [[image:1653359097980-169.png||height="188" width="729"]]
1766 )))
1767
1768 (((
1769
1770 )))
1771
1772
1773 === 4.2.3 Change to Class A ===
1774
1775 If sensor JOINED
1776 (% style="background-color:#dcdcdc" %)AT+CLASS=A
1777 ATZ
1778
1779
1780 = 5. FAQ =
1781
1782 == 5.1 How to upgrade the image? ==
1783
1784
1785 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1786
1787 * Support new features
1788 * For bug fix
1789 * Change LoRaWAN bands.
1790
1791 Below shows the hardware connection for how to upload an image to the LT:
1792
1793 [[image:1653359603330-121.png]]
1794
1795
1796 (((
1797 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1798 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1799 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
1800
1801
1802 (% style="color:blue" %)**For LT-22222-L**(%%):
1803 Hold down the PRO button and then momentarily press the RST reset button and the **DO1 led** will change from OFF to ON. When **DO1 LED** is on, it means the device is in download mode.
1804 )))
1805
1806 [[image:image-20220524103407-12.png]]
1807
1808 [[image:image-20220524103429-13.png]]
1809
1810 [[image:image-20220524104033-15.png]]
1811
1812
1813 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1814
1815 [[image:1653360054704-518.png||height="186" width="745"]]
1816
1817
1818 (((
1819 (((
1820
1821
1822 == 5.2 How to change the LoRa Frequency Bands/Region? ==
1823 )))
1824 )))
1825
1826 (((
1827 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1828 )))
1829
1830 (((
1831
1832
1833 == 5.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
1834 )))
1835
1836 (((
1837 (((
1838 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
1839 )))
1840 )))
1841
1842 (((
1843 (((
1844 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
1845
1846
1847 )))
1848 )))
1849
1850 (((
1851 (% style="color:#4f81bd" %)**Step1**(%%): Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
1852 )))
1853
1854 (((
1855 [[image:1653360231087-571.png||height="401" width="727"]]
1856 )))
1857
1858 (((
1859 (% style="color:red" %)Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.
1860 )))
1861
1862
1863 (((
1864 (% style="color:#4f81bd" %)**Step2**(%%)**: **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
1865 )))
1866
1867 (((
1868 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
1869 (% style="background-color:#dcdcdc" %)AT+FDR(%%)  Reset Parameters to Factory Default, Keys Reserve
1870 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
1871 (% style="background-color:#dcdcdc" %)AT+NJM=0 (%%) Set to ABP mode
1872 (% style="background-color:#dcdcdc" %)AT+ADR=0 (%%) Set the Adaptive Data Rate Off
1873 (% style="background-color:#dcdcdc" %)AT+DR=5 (%%) Set Data Rate (Set AT+DR=3 for 915 band)
1874 (% style="background-color:#dcdcdc" %)AT+TDC=60000 (%%) Set transmit interval to 60 seconds
1875 (% style="background-color:#dcdcdc" %)AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1876 (% style="background-color:#dcdcdc" %)AT+DADDR=26 01 1A F1(%%)  Set Device Address to 26 01 1A F1
1877 (% style="background-color:#dcdcdc" %)ATZ        (%%) Reset MCU
1878 )))
1879
1880
1881 (((
1882 As shown in below:
1883 )))
1884
1885 [[image:1653360498588-932.png||height="485" width="726"]]
1886
1887
1888 == 5.4 Can I see counting event in Serial? ==
1889
1890 (((
1891 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn’t support AT+DEBUG. User can update to latest firmware first.
1892
1893
1894 == 5.5 Can i use point to point communication for LT-22222-L? ==
1895
1896 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]
1897 )))
1898
1899 (((
1900 == 5.6 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
1901
1902 If the device is not shut down, but directly powered off.
1903
1904 It will default that this is a power-off state.
1905
1906 In modes 2 to 5, DO RO status and pulse count are saved in flash.
1907
1908 After restart, the status before power failure will be read from flash.
1909
1910 = 6. Trouble Shooting =
1911 )))
1912
1913 (((
1914 (((
1915 == 6.1 Downlink doesn’t work, how to solve it? ==
1916 )))
1917 )))
1918
1919 (((
1920 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
1921 )))
1922
1923 (((
1924
1925
1926 == 6.2 Have trouble to upload image. ==
1927 )))
1928
1929 (((
1930 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
1931 )))
1932
1933 (((
1934
1935
1936 == 6.3 Why I can’t join TTN in US915 /AU915 bands? ==
1937 )))
1938
1939 (((
1940 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1941 )))
1942
1943
1944
1945 = 7. Order Info =
1946
1947
1948 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
1949
1950
1951 (% style="color:#4f81bd" %)**XXX:**
1952
1953 * (% style="color:#4f81bd" %)**EU433**(%%): LT with frequency bands EU433
1954 * (% style="color:#4f81bd" %)**EU868**(%%): LT with frequency bands EU868
1955 * (% style="color:#4f81bd" %)**KR920**(%%): LT with frequency bands KR920
1956 * (% style="color:#4f81bd" %)**CN470**(%%): LT with frequency bands CN470
1957 * (% style="color:#4f81bd" %)**AS923**(%%): LT with frequency bands AS923
1958 * (% style="color:#4f81bd" %)**AU915**(%%): LT with frequency bands AU915
1959 * (% style="color:#4f81bd" %)**US915**(%%): LT with frequency bands US915
1960 * (% style="color:#4f81bd" %)**IN865**(%%): LT with frequency bands IN865
1961 * (% style="color:#4f81bd" %)**CN779**(%%): LT with frequency bands CN779
1962
1963 = 8. Packing Info =
1964
1965
1966 **Package Includes**:
1967
1968 * LT-22222-L I/O Controller x 1
1969 * Stick Antenna for LoRa RF part x 1
1970 * Bracket for controller x1
1971 * Program cable x 1
1972
1973 **Dimension and weight**:
1974
1975 * Device Size: 13.5 x 7 x 3 cm
1976 * Device Weight: 105g
1977 * Package Size / pcs : 14.5 x 8 x 5 cm
1978 * Weight / pcs : 170g
1979
1980 = 9. Support =
1981
1982 * (((
1983 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1984 )))
1985 * (((
1986 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1987 )))
1988
1989 = 10. Reference​​​​​ =
1990
1991 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
1992 * [[Image Download>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]]
1993 * [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1994 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]