Version 82.20 by Xiaoling on 2022/06/20 11:54

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4 **LT-22222-L LoRa IO Controller User Manual **
5
6
7 **Table of Contents:**
8
9 {{toc/}}
10
11
12
13
14
15
16
17 = 1.Introduction =
18
19 == 1.1 What is LT Series I/O Controller ==
20
21 (((
22
23
24 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 )))
26
27 (((
28 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
29 )))
30
31 (((
32 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
33 )))
34
35 (((
36 The use environment includes:
37 )))
38
39 (((
40 1) If user’s area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
41 )))
42
43 (((
44 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
45 )))
46
47 (((
48 [[image:1653295757274-912.png]]
49
50
51 )))
52
53
54 == 1.2  Specifications ==
55
56 (((
57
58
59 **Hardware System:**
60 )))
61
62 * (((
63 STM32L072CZT6 MCU
64 )))
65 * (((
66 SX1276/78 Wireless Chip 
67 )))
68 * (((
69 (((
70 Power Consumption:
71 )))
72
73 * (((
74 Idle: 4mA@12v
75 )))
76 * (((
77 20dB Transmit: 34mA@12v
78 )))
79 )))
80
81 (((
82
83
84 **Interface for Model: LT22222-L:**
85 )))
86
87 * (((
88 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
89 )))
90 * (((
91 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
92 )))
93 * (((
94 2 x Relay Output (5A@250VAC / 30VDC)
95 )))
96 * (((
97 2 x 0~~20mA Analog Input (res:0.01mA)
98 )))
99 * (((
100 2 x 0~~30V Analog Input (res:0.01v)
101 )))
102 * (((
103 Power Input 7~~ 24V DC. 
104 )))
105
106 (((
107
108
109 **LoRa Spec:**
110 )))
111
112 * (((
113 (((
114 Frequency Range:
115 )))
116
117 * (((
118 Band 1 (HF): 862 ~~ 1020 Mhz
119 )))
120 * (((
121 Band 2 (LF): 410 ~~ 528 Mhz
122 )))
123 )))
124 * (((
125 168 dB maximum link budget.
126 )))
127 * (((
128 +20 dBm - 100 mW constant RF output vs.
129 )))
130 * (((
131 +14 dBm high efficiency PA.
132 )))
133 * (((
134 Programmable bit rate up to 300 kbps.
135 )))
136 * (((
137 High sensitivity: down to -148 dBm.
138 )))
139 * (((
140 Bullet-proof front end: IIP3 = -12.5 dBm.
141 )))
142 * (((
143 Excellent blocking immunity.
144 )))
145 * (((
146 Low RX current of 10.3 mA, 200 nA register retention.
147 )))
148 * (((
149 Fully integrated synthesizer with a resolution of 61 Hz.
150 )))
151 * (((
152 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
153 )))
154 * (((
155 Built-in bit synchronizer for clock recovery.
156 )))
157 * (((
158 Preamble detection.
159 )))
160 * (((
161 127 dB Dynamic Range RSSI.
162 )))
163 * (((
164 Automatic RF Sense and CAD with ultra-fast AFC.
165 )))
166 * (((
167 Packet engine up to 256 bytes with CRC.
168
169
170
171
172 )))
173
174 == 1.3 Features ==
175
176 * LoRaWAN Class A & Class C protocol
177 * Optional Customized LoRa Protocol
178 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865
179 * AT Commands to change parameters
180 * Remote configure parameters via LoRa Downlink
181 * Firmware upgradable via program port
182 * Counting
183
184
185
186 == 1.4  Applications ==
187
188 * Smart Buildings & Home Automation
189 * Logistics and Supply Chain Management
190 * Smart Metering
191 * Smart Agriculture
192 * Smart Cities
193 * Smart Factory
194
195
196
197 == 1.5 Hardware Variants ==
198
199 (% border="1" style="background-color:#f7faff; width:500px" %)
200 |(% style="width:103px" %)**Model**|(% style="width:131px" %)**Photo**|(% style="width:334px" %)**Description**
201 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)[[image:1653296302983-697.png]]|(% style="width:334px" %)(((
202 * 2 x Digital Input (Bi-direction)
203 * 2 x Digital Output
204 * 2 x Relay Output (5A@250VAC / 30VDC)
205 * 2 x 0~~20mA Analog Input (res:0.01mA)
206 * 2 x 0~~30V Analog Input (res:0.01v)
207 * 1 x Counting Port
208 )))
209
210
211 = 2. Power ON Device =
212
213 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
214
215 (((
216 PWR will on when device is properly powered.
217 )))
218
219 [[image:1653297104069-180.png]]
220
221
222
223 = 3. Operation Mode =
224
225 == 3.1 How it works? ==
226
227 (((
228 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on **TX LED** will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. **TX LED** will be on for 5 seconds after joined in network. When there is message from server, the **RX LED** will be on for 1 second. 
229 )))
230
231 (((
232 In case user can’t set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
233 )))
234
235
236 == 3.2 Example to join LoRaWAN network ==
237
238 (((
239 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
240 )))
241
242 [[image:image-20220523172350-1.png||height="266" width="864"]]
243
244
245 (((
246 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
247 )))
248
249 (((
250 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
251 )))
252
253 (((
254 Each LT is shipped with a sticker with the default device EUI as below:
255 )))
256
257 [[image:1653297924498-393.png]]
258
259
260 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
261
262 Add APP EUI in the application.
263
264 [[image:1653297955910-247.png||height="321" width="716"]]
265
266
267 Add APP KEY and DEV EUI
268
269 [[image:1653298023685-319.png]]
270
271
272 (((
273 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
274 )))
275
276 [[image:1653298044601-602.png||height="405" width="709"]]
277
278
279
280 == 3.3 Uplink Payload ==
281
282 There are five working modes + one interrupt mode on LT for different type application:
283
284 * **MOD1**: (default setting): 2 x ACI + 2AVI + DI + DO + RO
285 * **MOD2**: Double DI Counting + DO + RO
286 * **MOD3**: Single DI Counting + 2 x ACI + DO + RO
287 * **MOD4**: Single DI Counting + 1 x Voltage Counting + DO + RO
288 * **MOD5**: Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
289 * **ADDMOD6**: Trigger Mode, Optional, used together with MOD1 ~~ MOD5
290
291
292
293 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
294
295 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default.
296
297 [[image:image-20220523174024-3.png]]
298
299 (((
300
301
302 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
303 )))
304
305 [[image:image-20220523174254-4.png]]
306
307 * RO is for relay. ROx=1 : close,ROx=0 always open.
308 * DI is for digital input. DIx=1: high or float, DIx=0: low.
309 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
310
311 (% style="color:red" %)Note: DI3 and DO3 bit are not valid for LT-22222-L
312
313 For example if payload is: [[image:image-20220523175847-2.png]]
314
315
316 **The value for the interface is:  **
317
318 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
319
320 AVI2 channel voltage is 0x04AC/1000=1.196V
321
322 ACI1 channel current is 0x1310/1000=4.880mA
323
324 ACI2 channel current is 0x1300/1000=4.864mA
325
326 The last byte 0xAA= 10101010(B) means
327
328 * [1] RO1 relay channel is close and the RO1 LED is ON.
329 * [0] RO2 relay channel is open and RO2 LED is OFF;
330
331 **LT22222-L:**
332
333 * [1] DI2 channel is high input and DI2 LED is ON;
334 * [0] DI1 channel is low input;
335
336 * [0] DO3 channel output state
337 ** DO3 is float in case no load between DO3 and V+.;
338 ** DO3 is high in case there is load between DO3 and V+.
339 ** DO3 LED is off in both case
340 * [1] DO2 channel output is low and DO2 LED is ON.
341 * [0] DO1 channel output state
342 ** DO1 is float in case no load between DO1 and V+.;
343 ** DO1 is high in case there is load between DO1 and V+.
344 ** DO1 LED is off in both case
345
346
347
348 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
349
350
351 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
352
353 (((
354 Total : 11 bytes payload
355 )))
356
357 [[image:image-20220523180452-3.png]]
358
359
360 (((
361 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
362 )))
363
364 [[image:image-20220523180506-4.png]]
365
366 * RO is for relay. ROx=1 : close,ROx=0 always open.
367 * FIRST: Indicate this is the first packet after join network.
368 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
369
370 (((
371 (% style="color:red" %)Note: DO3 bit is not valid for LT-22222-L.
372 )))
373
374 (((
375
376
377 **To use counting mode, please run:**
378 )))
379
380 (% class="box infomessage" %)
381 (((
382 (((
383 **AT+MOD=2**
384
385 **ATZ**
386 )))
387 )))
388
389 (((
390
391
392 (% style="color:#4f81bd" %)**AT Commands for counting:**
393 )))
394
395 (((
396 **For LT22222-L:**
397 )))
398
399 (% class="box infomessage" %)
400 (((
401 (((
402 **AT+TRIG1=0,100 (set DI1 port to trigger on low level, valid signal is 100ms) **
403
404 **AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms ) **
405
406 **AT+TRIG2=0,100 (set DI2 port to trigger on low level, valid signal is 100ms) **
407
408 **AT+TRIG2=1,100 (set DI2 port to trigger on high level, valid signal is 100ms ) **
409
410 **AT+SETCNT=1,60   (Set COUNT1 value to 60)**
411
412 **AT+SETCNT=2,60   (Set COUNT2 value to 60)**
413 )))
414 )))
415
416
417
418 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
419
420 **LT22222-L**: This mode the DI1 is used as a counting pin.
421
422 [[image:image-20220523181246-5.png]]
423
424 (((
425 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
426 )))
427
428 [[image:image-20220523181301-6.png]]
429
430 * RO is for relay. ROx=1 : close,ROx=0 always open.
431 * FIRST: Indicate this is the first packet after join network.
432 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
433
434 (((
435 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
436 )))
437
438 (((
439 **To use counting mode, please run:**
440 )))
441
442 (% class="box infomessage" %)
443 (((
444 (((
445 **AT+MOD=3**
446
447 **ATZ**
448 )))
449 )))
450
451 (((
452 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
453 )))
454
455
456
457 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
458
459
460 **LT22222-L**: This mode the DI1 is used as a counting pin.
461
462 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
463
464 [[image:image-20220523181903-8.png]]
465
466
467 (((
468 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
469 )))
470
471 [[image:image-20220523181727-7.png]]
472
473 * RO is for relay. ROx=1 : close,ROx=0 always open.
474 * FIRST: Indicate this is the first packet after join network.
475 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
476
477 (((
478 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
479 )))
480
481 (((
482
483
484 **To use this mode, please run:**
485 )))
486
487 (% class="box infomessage" %)
488 (((
489 (((
490 **AT+MOD=4**
491
492 **ATZ**
493 )))
494 )))
495
496
497
498 (((
499 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
500 )))
501
502 (((
503
504
505 **Plus below command for AVI1 Counting:**
506 )))
507
508 (% class="box infomessage" %)
509 (((
510 (((
511 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**   (set AVI Count to 60)**
512
513 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**   (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
514
515 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**   (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
516
517 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**   (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
518 )))
519 )))
520
521
522 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
523
524
525 **LT22222-L**: This mode the DI1 is used as a counting pin.
526
527 [[image:image-20220523182334-9.png]]
528
529 (((
530
531
532 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
533 )))
534
535 * RO is for relay. ROx=1 : close,ROx=0 always open.
536 * FIRST: Indicate this is the first packet after join network.
537 * (((
538 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
539 )))
540
541 (((
542 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
543 )))
544
545 (((
546
547
548 **To use this mode, please run:**
549 )))
550
551 (% class="box infomessage" %)
552 (((
553 (((
554 **AT+MOD=5**
555
556 **ATZ**
557 )))
558 )))
559
560 (((
561 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
562 )))
563
564
565
566 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
567
568
569 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
570
571 For example, if user has configured below commands:
572
573 * **AT+MOD=1 ** **~-~->** The normal working mode
574 * **AT+ADDMOD6=1**   **~-~->** Enable trigger
575
576 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
577
578 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
579 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
580
581 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
582
583 (% style="color:#4f81bd" %)**Trigger base on voltage**:
584
585 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
586
587 **Example:**
588
589 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
590
591 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
592
593
594
595 (% style="color:#4f81bd" %)**Trigger base on current**:
596
597 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
598
599 **Example:**
600
601 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
602
603
604
605 (% style="color:#4f81bd" %)**Trigger base on DI status**:
606
607 DI status trigger Flag.
608
609 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
610
611
612 **Example:**
613
614 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
615
616
617 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
618
619 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
620
621 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
622
623 AA: Code for this downlink Command:
624
625 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
626
627 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
628
629 yy2 yy2: AC1 or AV1 high limit.
630
631 yy3 yy3: AC2 or AV2 low limit.
632
633 Yy4 yy4: AC2 or AV2 high limit.
634
635
636 **Example1**: AA 00 13 88 00 00 00 00 00 00
637
638 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
639
640
641 **Example2**: AA 02 01 00
642
643 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
644
645
646
647 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
648
649 MOD6 Payload : total 11 bytes payload
650
651 [[image:image-20220524085923-1.png]]
652
653
654 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
655
656 [[image:image-20220524090106-2.png]]
657
658 * Each bits shows if the corresponding trigger has been configured.
659
660 **Example:**
661
662 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
663
664
665 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
666
667 [[image:image-20220524090249-3.png]]
668
669 * Each bits shows which status has been trigger on this uplink.
670
671 **Example:**
672
673 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
674
675
676 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
677
678 [[image:image-20220524090456-4.png]]
679
680 * Each bits shows which status has been trigger on this uplink.
681
682 **Example:**
683
684 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
685
686 00000101: Means both DI1 and DI2 trigger are enabled.
687
688
689 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
690
691 Downlink command to poll MOD6 status:
692
693 **AB 06**
694
695 When device got this command, it will send the MOD6 payload.
696
697
698
699 === 3.3.7 Payload Decoder ===
700
701 (((
702
703
704 **Decoder for TTN/loraserver/ChirpStack**: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/Payload_decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/Payload_decoder/]]
705
706
707 )))
708
709
710 == 3.4 ​Configure LT via AT or Downlink ==
711
712 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
713
714 (((
715 There are two kinds of Commands:
716 )))
717
718 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
719
720 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
721
722
723
724 === 3.4.1 Common Commands ===
725
726 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
727
728
729
730 === 3.4.2 Sensor related commands ===
731
732 ==== 3.4.2.1 Set Transmit Interval ====
733
734 Set device uplink interval.
735
736 * (% style="color:#037691" %)**AT Command:**
737
738 (% class="box infomessage" %)
739 (((
740 **AT+TDC=N **
741 )))
742
743 **Example: **AT+TDC=30000. Means set interval to 30 seconds
744
745
746 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
747
748 (% class="box infomessage" %)
749 (((
750 **0x01 aa bb cc     ~/~/ Same as AT+TDC=0x(aa bb cc)**
751 )))
752
753
754
755 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
756
757 Set work mode.
758
759 * (% style="color:#037691" %)**AT Command:**
760
761 (% class="box infomessage" %)
762 (((
763 **AT+MOD=N  **
764 )))
765
766 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
767
768
769 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
770
771 (% class="box infomessage" %)
772 (((
773 **0x0A aa     ~/~/ Same as AT+MOD=aa**
774 )))
775
776
777
778 ==== 3.4.2.3 Poll an uplink ====
779
780 * (% style="color:#037691" %)AT Command:
781
782 There is no AT Command to poll uplink
783
784
785 * (% style="color:#037691" %)Downlink Payload (prefix 0x08):
786
787 (% class="box infomessage" %)
788 (((
789 **0x08 FF     ~/~/ Poll an uplink,**
790 )))
791
792 **Example**: 0x08FF, ask device to send an Uplink
793
794
795
796 ==== 3.4.2.4 Enable Trigger Mode ====
797
798 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
799
800 * (% style="color:#037691" %)AT Command:
801
802 (% class="box infomessage" %)
803 (((
804 **AT+ADDMOD6=1 or 0**
805 )))
806
807 1: Enable Trigger Mode
808
809 0: Disable Trigger Mode
810
811
812 * (% style="color:#037691" %)Downlink Payload (prefix 0x0A 06):
813
814 (% class="box infomessage" %)
815 (((
816 **0x0A 06 aa     ~/~/ Same as AT+ADDMOD6=aa,**
817 )))
818
819
820
821 ==== 3.4.2.5 Poll trigger settings ====
822
823 Poll trigger settings,
824
825 * (% style="color:#037691" %)AT Command:
826
827 There is no AT Command for this feature.
828
829
830 * (% style="color:#037691" %)Downlink Payload (prefix 0x AB 06):
831
832 (% class="box infomessage" %)
833 (((
834 **0xAB 06  ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command**
835 )))
836
837
838
839 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
840
841 Enable Disable DI1/DI2/DI2 as trigger,
842
843 * (% style="color:#037691" %)AT Command:
844
845 (% class="box infomessage" %)
846 (((
847 **Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
848 )))
849
850
851 **Example:**
852
853 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
854
855 * (% style="color:#037691" %)Downlink Payload (prefix 0xAA 02):
856
857 **0xAA 02 aa bb  **~/~/ Same as AT+DTRI=aa,bb
858
859
860
861
862 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
863
864 Set DI1 or DI3(for LT-33222-L) trigger.
865
866 * (% style="color:#037691" %)AT Command:
867
868 **AT+TRIG1=a,b**
869
870 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
871
872 b : delay timing.
873
874
875 **Example:**
876
877 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
878
879
880 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
881 * **0x09 01 aa bb cc  ** ~/~/ same as AT+TRIG1=aa,0x(bb cc)
882
883
884
885
886 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
887
888 Set DI2 trigger.
889
890 * (% style="color:#037691" %)**AT Command:**
891
892 **AT+TRIG2=a,b**
893
894
895 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
896
897 b : delay timing.
898
899
900 **Example:**
901
902 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
903
904
905 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
906
907 **0x09 02 aa bb cc  **~/~/ same as AT+TRIG1=aa,0x(bb cc)
908
909
910
911
912 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
913
914 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
915
916 * (% style="color:#037691" %)**AT Command**
917
918 **AT+ACLIM**
919
920
921 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
922
923 **0x AA 01 aa bb cc dd ee ff gg hh  ** ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
924
925
926
927
928 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
929
930 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
931
932 * (% style="color:#037691" %)**AT Command**
933
934 **AT+AVLIM  See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
935
936
937 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
938
939 **0x AA 00 aa bb cc dd ee ff gg hh  ** ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
940
941
942
943
944 ==== 3.4.2.11 Trigger – Set minimum interval ====
945
946 Set AV and AC trigger minimum interval, system won’t response to the second trigger within this set time after the first trigger.
947
948 * (% style="color:#037691" %)**AT Command**
949
950 **AT+ATDC=5. Device won’t response the second trigger within 5 minute after the first trigger.**
951
952
953 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
954
955 **0x AC aa bb  ** ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
956
957
958
959
960 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
961
962 * (% style="color:#037691" %)**AT Command**
963
964 There is no AT Command to control Digital Output
965
966
967 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
968 * **0x02 aa bb cc     **~/~/ Set DO1/DO2/DO3 output
969
970
971 (((
972 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
973 )))
974
975 (((
976 01: Low,  00: High ,  11: No action
977 )))
978
979 [[image:image-20220524092754-5.png]]
980
981 (((
982 (% style="color:red" %)Note: For LT-22222-L, there is no DO3, the last byte can use any value.
983 )))
984
985 (((
986 (% style="color:red" %)Device will upload a packet if downlink code executes successfully.
987 )))
988
989
990
991
992 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
993
994 * (% style="color:#037691" %)**AT Command**
995
996 There is no AT Command to control Digital Output
997
998
999 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1000
1001 **0xA9 aa bb cc     **~/~/ Set DO1/DO2/DO3 output with time control
1002
1003
1004 This is to control the digital output time of DO pin. Include four bytes:
1005
1006 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1007
1008 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1009
1010 01: DO pins will change back to original state after timeout.
1011
1012 00: DO pins will change to an inverter state after timeout 
1013
1014
1015 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1016
1017 [[image:image-20220524093238-6.png]]
1018
1019
1020 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1021
1022 [[image:image-20220524093328-7.png]]
1023
1024
1025 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1026
1027 [[image:image-20220524093351-8.png]]
1028
1029
1030 (% style="color:#4f81bd" %)**Sixth and Seventh Byte**:
1031
1032 Latching time. Unit: ms
1033
1034 Device will upload a packet if downlink code executes successfully.
1035
1036
1037 **Example payload:**
1038
1039 **~1. A9 01 01 01 01 07 D0**
1040
1041 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1042
1043 **2. A9 01 00 01 11 07 D0**
1044
1045 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1046
1047 **3. A9 00 00 00 00 07 D0**
1048
1049 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1050
1051 **4. A9 00 11 01 00 07 D0**
1052
1053 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1054
1055
1056
1057
1058 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1059
1060 * (% style="color:#037691" %)**AT Command:**
1061
1062 There is no AT Command to control Relay Output
1063
1064
1065 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1066
1067 **0x03 aa bb     **~/~/ Set RO1/RO2 output
1068
1069
1070 (((
1071 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1072 )))
1073
1074 (((
1075 01: Close ,  00: Open , 11: No action
1076 )))
1077
1078 (((
1079 [[image:image-20220524093724-9.png]]
1080 )))
1081
1082 Device will upload a packet if downlink code executes successfully.
1083
1084
1085
1086
1087 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1088
1089 * (% style="color:#037691" %)**AT Command:**
1090
1091 There is no AT Command to control Relay Output
1092
1093
1094 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1095
1096 **0x05 aa bb cc dd     **~/~/ Set RO1/RO2 relay with time control
1097
1098
1099 This is to control the relay output time of relay. Include four bytes:
1100
1101 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1102
1103 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1104
1105 01: Relays will change back to original state after timeout.
1106
1107 00: Relays will change to an inverter state after timeout
1108
1109
1110 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1111
1112 [[image:image-20220524093831-10.png]]
1113
1114
1115 (% style="color:#4f81bd" %)**Fourth/Fifth Bytes(cc)**(%%): Latching time. Unit: ms
1116
1117 Device will upload a packet if downlink code executes successfully.
1118
1119
1120 **Example payload:**
1121
1122 **~1. 05 01 11 07 D0**
1123
1124 Relay1 and Relay 2 will be set to NO , last 2 seconds, then change back to original state.
1125
1126 **2. 05 01 10 07 D0**
1127
1128 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then both change back to original state.
1129
1130 **3. 05 00 01 07 D0**
1131
1132 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then relay change to NO, Relay2 change to NC.
1133
1134 **4. 05 00 00 07 D0**
1135
1136 Relay 1 & relay2 will change to NC, last 2 seconds, then both change to NO.
1137
1138
1139
1140
1141 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1142
1143 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1144
1145 * (% style="color:#037691" %)**AT Command:**
1146
1147 (% style="color:#037691" %)**​​​​​​​**(%%)**AT+VOLMAX   ** ~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1148
1149
1150 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1151
1152 **0xA5 aa bb cc   **~/~/ Same as AT+VOLMAX=(aa bb),cc
1153
1154
1155
1156
1157 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1158
1159 * (% style="color:#037691" %)**AT Command:**
1160
1161 (% style="color:#037691" %)**​​​​​​​​​​​​​​**(%%)**AT+SETCNT=aa,(bb cc dd ee) **
1162
1163 aa: 1: Set count1,
1164
1165 2: Set count2,
1166
1167 3: Set AV1 count
1168
1169 Bb cc dd ee: number to be set
1170
1171
1172 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1173
1174 **0x A8 aa bb cc dd ee     **~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1175
1176
1177
1178
1179 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1180
1181 Clear counting for counting mode
1182
1183 * (% style="color:#037691" %)**AT Command:**
1184
1185 (% style="color:#037691" %)​​​​​​​​​​​​​​(%%)**AT+CLRCOUNT ** ~/~/ clear all counting
1186
1187
1188 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1189
1190 **0x A6 01    ** ~/~/ clear all counting
1191
1192
1193
1194
1195 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1196
1197 * (% style="color:#037691" %)**AT Command:**
1198
1199 **AT+COUTIME=60  **~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1200
1201
1202 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1203
1204 **0x A7 aa bb cc     **~/~/ same as AT+COUTIME =aa bb cc,
1205
1206 (((
1207 range: aa bb cc:0 to 16777215,  (unit:second)
1208
1209
1210 )))
1211
1212
1213
1214 == 3.5 Integrate with Mydevice ==
1215
1216 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1217
1218 (((
1219 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1220 )))
1221
1222 (((
1223 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1224 )))
1225
1226 [[image:1653356737703-362.png||height="232" width="732"]]
1227
1228 [[image:image-20220524094641-11.png||height="390" width="723"]]
1229
1230
1231 [[image:image-20220524094641-12.png||height="402" width="718"]]
1232
1233
1234 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1235
1236 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1237
1238 Search under The things network
1239
1240 [[image:1653356838789-523.png||height="337" width="740"]]
1241
1242
1243
1244 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1245
1246 [[image:image-20220524094909-1.png||height="335" width="729"]]
1247
1248
1249 [[image:image-20220524094909-2.png||height="337" width="729"]]
1250
1251
1252 [[image:image-20220524094909-3.png||height="338" width="727"]]
1253
1254
1255 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1256
1257
1258 [[image:image-20220524094909-5.png||height="341" width="734"]]
1259
1260
1261
1262 == 3.6 Interface Detail ==
1263
1264 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1265
1266 Support NPN Type sensor
1267
1268 [[image:1653356991268-289.png]]
1269
1270
1271
1272 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1273
1274 (((
1275 The DI port of LT-22222-L can support NPN or PNP output sensor.
1276 )))
1277
1278 (((
1279 (((
1280 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high
1281 )))
1282 )))
1283
1284 [[image:1653357170703-587.png]]
1285
1286 (((
1287 (((
1288 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1289 )))
1290 )))
1291
1292 (((
1293
1294 )))
1295
1296 (((
1297 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1298 )))
1299
1300 (((
1301 This type of sensor will output a low signal GND when active.
1302 )))
1303
1304 * (((
1305 Connect sensor’s output to DI1-
1306 )))
1307 * (((
1308 Connect sensor’s VCC to DI1+.
1309 )))
1310
1311 (((
1312 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1313 )))
1314
1315 (((
1316 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1317 )))
1318
1319 (((
1320 If DI1+ = 12v, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1321 )))
1322
1323 (((
1324
1325 )))
1326
1327 (((
1328 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1329 )))
1330
1331 (((
1332 This type of sensor will output a high signal (example 24v) when active.
1333 )))
1334
1335 * (((
1336 Connect sensor’s output to DI1+
1337 )))
1338 * (((
1339 Connect sensor’s GND DI1-.
1340 )))
1341
1342 (((
1343 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1344 )))
1345
1346 (((
1347 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1348 )))
1349
1350 (((
1351 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1352 )))
1353
1354 (((
1355
1356 )))
1357
1358 (((
1359 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1360 )))
1361
1362 (((
1363 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1364 )))
1365
1366 * (((
1367 Connect sensor’s output to DI1+ with a serial 50K resistor
1368 )))
1369 * (((
1370 Connect sensor’s GND DI1-.
1371 )))
1372
1373 (((
1374 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1375 )))
1376
1377 (((
1378 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1379 )))
1380
1381 (((
1382 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1383 )))
1384
1385
1386
1387 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1388
1389 NPN output: GND or Float. Max voltage can apply to output pin is 36v.
1390
1391 [[image:1653357531600-905.png]]
1392
1393
1394
1395 === 3.6.4 Analog Input Interface ===
1396
1397 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1398
1399
1400 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1401
1402 [[image:1653357592296-182.png]]
1403
1404 Example to connect a 4~~20mA sensor
1405
1406 We take the wind speed sensor as an example for reference only.
1407
1408
1409 **Specifications of the wind speed sensor:**
1410
1411 Red:  12~~24v
1412
1413 Yellow:  4~~20mA
1414
1415 Black:  GND
1416
1417
1418 **Connection diagram:**
1419
1420 [[image:1653357640609-758.png]]
1421
1422 [[image:1653357648330-671.png||height="155" width="733"]]
1423
1424
1425
1426 === 3.6.5 Relay Output ===
1427
1428 (((
1429 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device’s Power Line to in serial of RO1_1 and RO_2. Such as below:
1430 )))
1431
1432 [[image:image-20220524100215-9.png]]
1433
1434 [[image:image-20220524100215-10.png||height="382" width="723"]]
1435
1436
1437
1438 == 3.7 LEDs Indicators ==
1439
1440 [[image:image-20220524100748-11.png]]
1441
1442
1443 = 4. Use AT Command =
1444
1445 == 4.1 Access AT Command ==
1446
1447 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1448
1449 [[image:1653358238933-385.png]]
1450
1451
1452 (((
1453 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1454 )))
1455
1456 [[image:1653358355238-883.png]]
1457
1458
1459 (((
1460 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1461 )))
1462
1463 (((
1464 AT+<CMD>?        : Help on <CMD>
1465 )))
1466
1467 (((
1468 AT+<CMD>         : Run <CMD>
1469 )))
1470
1471 (((
1472 AT+<CMD>=<value> : Set the value
1473 )))
1474
1475 (((
1476 AT+<CMD>=?       : Get the value
1477 )))
1478
1479 (((
1480 ATZ: Trig a reset of the MCU
1481 )))
1482
1483 (((
1484 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1485 )))
1486
1487 (((
1488 AT+DEUI: Get or Set the Device EUI
1489 )))
1490
1491 (((
1492 AT+DADDR: Get or Set the Device Address
1493 )))
1494
1495 (((
1496 AT+APPKEY: Get or Set the Application Key
1497 )))
1498
1499 (((
1500 AT+NWKSKEY: Get or Set the Network Session Key
1501 )))
1502
1503 (((
1504 AT+APPSKEY: Get or Set the Application Session Key
1505 )))
1506
1507 (((
1508 AT+APPEUI: Get or Set the Application EUI
1509 )))
1510
1511 (((
1512 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1513 )))
1514
1515 (((
1516 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1517 )))
1518
1519 (((
1520 AT+DR: Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1521 )))
1522
1523 (((
1524 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1525 )))
1526
1527 (((
1528 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1529 )))
1530
1531 (((
1532 AT+RX2FQ: Get or Set the Rx2 window frequency
1533 )))
1534
1535 (((
1536 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1537 )))
1538
1539 (((
1540 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1541 )))
1542
1543 (((
1544 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1545 )))
1546
1547 (((
1548 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1549 )))
1550
1551 (((
1552 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1553 )))
1554
1555 (((
1556 AT+NJM: Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1557 )))
1558
1559 (((
1560 AT+NWKID: Get or Set the Network ID
1561 )))
1562
1563 (((
1564 AT+FCU: Get or Set the Frame Counter Uplink
1565 )))
1566
1567 (((
1568 AT+FCD: Get or Set the Frame Counter Downlink
1569 )))
1570
1571 (((
1572 AT+CLASS: Get or Set the Device Class
1573 )))
1574
1575 (((
1576 AT+JOIN: Join network
1577 )))
1578
1579 (((
1580 AT+NJS: Get OTAA Join Status
1581 )))
1582
1583 (((
1584 AT+SENDB: Send hexadecimal data along with the application port
1585 )))
1586
1587 (((
1588 AT+SEND: Send text data along with the application port
1589 )))
1590
1591 (((
1592 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1593 )))
1594
1595 (((
1596 AT+RECV: Print last received data in raw format
1597 )))
1598
1599 (((
1600 AT+VER: Get current image version and Frequency Band
1601 )))
1602
1603 (((
1604 AT+CFM: Get or Set the confirmation mode (0-1)
1605 )))
1606
1607 (((
1608 AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1609 )))
1610
1611 (((
1612 AT+SNR: Get the SNR of the last received packet
1613 )))
1614
1615 (((
1616 AT+RSSI: Get the RSSI of the last received packet
1617 )))
1618
1619 (((
1620 AT+TDC: Get or set the application data transmission interval in ms
1621 )))
1622
1623 (((
1624 AT+PORT: Get or set the application port
1625 )))
1626
1627 (((
1628 AT+DISAT: Disable AT commands
1629 )))
1630
1631 (((
1632 AT+PWORD: Set password, max 9 digits
1633 )))
1634
1635 (((
1636 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1637 )))
1638
1639 (((
1640 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1641 )))
1642
1643 (((
1644 AT+CFG: Print all settings
1645
1646
1647 )))
1648
1649
1650
1651 == 4.2 Common AT Command Sequence ==
1652
1653 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1654
1655 (((
1656
1657
1658 **If device has not joined network yet:**
1659 )))
1660
1661 (((
1662 (% style="background-color:#dcdcdc" %)123456
1663 )))
1664
1665 (((
1666 (% style="background-color:#dcdcdc" %)AT+FDR
1667 )))
1668
1669 (((
1670 (% style="background-color:#dcdcdc" %)123456
1671 )))
1672
1673 (((
1674 (% style="background-color:#dcdcdc" %)AT+NJM=0
1675 )))
1676
1677 (((
1678 (% style="background-color:#dcdcdc" %)ATZ
1679 )))
1680
1681
1682 (((
1683 **If device already joined network:**
1684 )))
1685
1686 (((
1687 (% style="background-color:#dcdcdc" %)AT+NJM=0
1688 )))
1689
1690 (((
1691 (% style="background-color:#dcdcdc" %)ATZ
1692
1693
1694 )))
1695
1696
1697
1698 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1699
1700 (((
1701
1702
1703 (% style="background-color:#dcdcdc" %)123456(%%)  Enter Password to have AT access.
1704 )))
1705
1706 (((
1707 (% style="background-color:#dcdcdc" %) AT+FDR(%%)   Reset Parameters to Factory Default, Keys Reserve
1708 )))
1709
1710 (((
1711 (% style="background-color:#dcdcdc" %) 123456(%%)  Enter Password to have AT access.
1712 )))
1713
1714 (((
1715 (% style="background-color:#dcdcdc" %) AT+CLASS=C(%%) Set to work in CLASS C
1716 )))
1717
1718 (((
1719 (% style="background-color:#dcdcdc" %) AT+NJM=0(%%)  Set to ABP mode
1720 )))
1721
1722 (((
1723 (% style="background-color:#dcdcdc" %) AT+ADR=0(%%)  Set the Adaptive Data Rate Off
1724 )))
1725
1726 (((
1727 (% style="background-color:#dcdcdc" %) AT+DR=5(%%)  Set Data Rate
1728 )))
1729
1730 (((
1731 (% style="background-color:#dcdcdc" %) AT+TDC=60000(%%)  Set transmit interval to 60 seconds
1732 )))
1733
1734 (((
1735 (% style="background-color:#dcdcdc" %) AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1736 )))
1737
1738 (((
1739 (% style="background-color:#dcdcdc" %) AT+RX2FQ=868400000(%%)  Set RX2Frequency to 868.4Mhz (according to the result from server)
1740 )))
1741
1742 (((
1743 (% style="background-color:#dcdcdc" %) AT+RX2DR=5(%%)  Set RX2DR to match the downlink DR from server. see below
1744 )))
1745
1746 (((
1747 (% style="background-color:#dcdcdc" %) AT+DADDR=26 01 1A F1 (%%) Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1748 )))
1749
1750 (((
1751 (% style="background-color:#dcdcdc" %) ATZ         (%%) Reset MCU
1752
1753
1754 )))
1755
1756 (((
1757 (% style="color:red" %)**Note:**
1758 )))
1759
1760 (((
1761 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1762 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1763 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1764 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1765 )))
1766
1767 (((
1768 [[image:1653359097980-169.png||height="188" width="729"]]
1769 )))
1770
1771 (((
1772
1773 )))
1774
1775
1776 === 4.2.3 Change to Class A ===
1777
1778 If sensor JOINED
1779 (% style="background-color:#dcdcdc" %)AT+CLASS=A
1780 ATZ
1781
1782
1783 = 5. FAQ =
1784
1785 == 5.1 How to upgrade the image? ==
1786
1787
1788 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1789
1790 * Support new features
1791 * For bug fix
1792 * Change LoRaWAN bands.
1793
1794 Below shows the hardware connection for how to upload an image to the LT:
1795
1796 [[image:1653359603330-121.png]]
1797
1798
1799 (((
1800 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1801 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1802 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
1803
1804
1805 (% style="color:blue" %)**For LT-22222-L**(%%):
1806 Hold down the PRO button and then momentarily press the RST reset button and the **DO1 led** will change from OFF to ON. When **DO1 LED** is on, it means the device is in download mode.
1807 )))
1808
1809 [[image:image-20220524103407-12.png]]
1810
1811 [[image:image-20220524103429-13.png]]
1812
1813 [[image:image-20220524104033-15.png]]
1814
1815
1816 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1817
1818 [[image:1653360054704-518.png||height="186" width="745"]]
1819
1820
1821 (((
1822 (((
1823
1824
1825 == 5.2 How to change the LoRa Frequency Bands/Region? ==
1826 )))
1827 )))
1828
1829 (((
1830 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1831 )))
1832
1833 (((
1834
1835
1836 == 5.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
1837 )))
1838
1839 (((
1840 (((
1841 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
1842 )))
1843 )))
1844
1845 (((
1846 (((
1847 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
1848
1849
1850 )))
1851 )))
1852
1853 (((
1854 (% style="color:#4f81bd" %)**Step1**(%%): Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
1855 )))
1856
1857 (((
1858 [[image:1653360231087-571.png||height="401" width="727"]]
1859 )))
1860
1861 (((
1862 (% style="color:red" %)Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.
1863 )))
1864
1865
1866 (((
1867 (% style="color:#4f81bd" %)**Step2**(%%)**: **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
1868 )))
1869
1870 (((
1871 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
1872 (% style="background-color:#dcdcdc" %)AT+FDR(%%)  Reset Parameters to Factory Default, Keys Reserve
1873 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
1874 (% style="background-color:#dcdcdc" %)AT+NJM=0 (%%) Set to ABP mode
1875 (% style="background-color:#dcdcdc" %)AT+ADR=0 (%%) Set the Adaptive Data Rate Off
1876 (% style="background-color:#dcdcdc" %)AT+DR=5 (%%) Set Data Rate (Set AT+DR=3 for 915 band)
1877 (% style="background-color:#dcdcdc" %)AT+TDC=60000 (%%) Set transmit interval to 60 seconds
1878 (% style="background-color:#dcdcdc" %)AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1879 (% style="background-color:#dcdcdc" %)AT+DADDR=26 01 1A F1(%%)  Set Device Address to 26 01 1A F1
1880 (% style="background-color:#dcdcdc" %)ATZ        (%%) Reset MCU
1881 )))
1882
1883
1884 (((
1885 As shown in below:
1886 )))
1887
1888 [[image:1653360498588-932.png||height="485" width="726"]]
1889
1890
1891 == 5.4 Can I see counting event in Serial? ==
1892
1893 (((
1894 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn’t support AT+DEBUG. User can update to latest firmware first.
1895
1896
1897 == 5.5 Can i use point to point communication for LT-22222-L? ==
1898
1899 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]
1900 )))
1901
1902 (((
1903 == 5.6 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
1904
1905 If the device is not shut down, but directly powered off.
1906
1907 It will default that this is a power-off state.
1908
1909 In modes 2 to 5, DO RO status and pulse count are saved in flash.
1910
1911 After restart, the status before power failure will be read from flash.
1912
1913 = 6. Trouble Shooting =
1914 )))
1915
1916 (((
1917 (((
1918 == 6.1 Downlink doesn’t work, how to solve it? ==
1919 )))
1920 )))
1921
1922 (((
1923 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
1924 )))
1925
1926 (((
1927
1928
1929 == 6.2 Have trouble to upload image. ==
1930 )))
1931
1932 (((
1933 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
1934 )))
1935
1936 (((
1937
1938
1939 == 6.3 Why I can’t join TTN in US915 /AU915 bands? ==
1940 )))
1941
1942 (((
1943 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1944 )))
1945
1946
1947
1948 = 7. Order Info =
1949
1950
1951 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
1952
1953
1954 (% style="color:#4f81bd" %)**XXX:**
1955
1956 * (% style="color:#4f81bd" %)**EU433**(%%): LT with frequency bands EU433
1957 * (% style="color:#4f81bd" %)**EU868**(%%): LT with frequency bands EU868
1958 * (% style="color:#4f81bd" %)**KR920**(%%): LT with frequency bands KR920
1959 * (% style="color:#4f81bd" %)**CN470**(%%): LT with frequency bands CN470
1960 * (% style="color:#4f81bd" %)**AS923**(%%): LT with frequency bands AS923
1961 * (% style="color:#4f81bd" %)**AU915**(%%): LT with frequency bands AU915
1962 * (% style="color:#4f81bd" %)**US915**(%%): LT with frequency bands US915
1963 * (% style="color:#4f81bd" %)**IN865**(%%): LT with frequency bands IN865
1964 * (% style="color:#4f81bd" %)**CN779**(%%): LT with frequency bands CN779
1965
1966 = 8. Packing Info =
1967
1968
1969 **Package Includes**:
1970
1971 * LT-22222-L I/O Controller x 1
1972 * Stick Antenna for LoRa RF part x 1
1973 * Bracket for controller x1
1974 * Program cable x 1
1975
1976 **Dimension and weight**:
1977
1978 * Device Size: 13.5 x 7 x 3 cm
1979 * Device Weight: 105g
1980 * Package Size / pcs : 14.5 x 8 x 5 cm
1981 * Weight / pcs : 170g
1982
1983 = 9. Support =
1984
1985 * (((
1986 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1987 )))
1988 * (((
1989 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1990 )))
1991
1992 = 10. Reference​​​​​ =
1993
1994 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
1995 * [[Image Download>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]]
1996 * [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1997 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]