Version 82.18 by Xiaoling on 2022/06/20 11:52

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4 **LT-22222-L LoRa IO Controller User Manual **
5
6
7 **Table of Contents:**
8
9 {{toc/}}
10
11
12
13
14
15
16
17 = 1.Introduction =
18
19 == 1.1 What is LT Series I/O Controller ==
20
21 (((
22
23
24 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 )))
26
27 (((
28 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
29 )))
30
31 (((
32 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
33 )))
34
35 (((
36 The use environment includes:
37 )))
38
39 (((
40 1) If user’s area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
41 )))
42
43 (((
44 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
45 )))
46
47 (((
48 [[image:1653295757274-912.png]]
49
50
51 )))
52
53
54 == 1.2  Specifications ==
55
56 (((
57
58
59 **Hardware System:**
60 )))
61
62 * (((
63 STM32L072CZT6 MCU
64 )))
65 * (((
66 SX1276/78 Wireless Chip 
67 )))
68 * (((
69 (((
70 Power Consumption:
71 )))
72
73 * (((
74 Idle: 4mA@12v
75 )))
76 * (((
77 20dB Transmit: 34mA@12v
78 )))
79 )))
80
81 (((
82
83
84 **Interface for Model: LT22222-L:**
85 )))
86
87 * (((
88 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
89 )))
90 * (((
91 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
92 )))
93 * (((
94 2 x Relay Output (5A@250VAC / 30VDC)
95 )))
96 * (((
97 2 x 0~~20mA Analog Input (res:0.01mA)
98 )))
99 * (((
100 2 x 0~~30V Analog Input (res:0.01v)
101 )))
102 * (((
103 Power Input 7~~ 24V DC. 
104 )))
105
106 (((
107
108
109 **LoRa Spec:**
110 )))
111
112 * (((
113 (((
114 Frequency Range:
115 )))
116
117 * (((
118 Band 1 (HF): 862 ~~ 1020 Mhz
119 )))
120 * (((
121 Band 2 (LF): 410 ~~ 528 Mhz
122 )))
123 )))
124 * (((
125 168 dB maximum link budget.
126 )))
127 * (((
128 +20 dBm - 100 mW constant RF output vs.
129 )))
130 * (((
131 +14 dBm high efficiency PA.
132 )))
133 * (((
134 Programmable bit rate up to 300 kbps.
135 )))
136 * (((
137 High sensitivity: down to -148 dBm.
138 )))
139 * (((
140 Bullet-proof front end: IIP3 = -12.5 dBm.
141 )))
142 * (((
143 Excellent blocking immunity.
144 )))
145 * (((
146 Low RX current of 10.3 mA, 200 nA register retention.
147 )))
148 * (((
149 Fully integrated synthesizer with a resolution of 61 Hz.
150 )))
151 * (((
152 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
153 )))
154 * (((
155 Built-in bit synchronizer for clock recovery.
156 )))
157 * (((
158 Preamble detection.
159 )))
160 * (((
161 127 dB Dynamic Range RSSI.
162 )))
163 * (((
164 Automatic RF Sense and CAD with ultra-fast AFC.
165 )))
166 * (((
167 Packet engine up to 256 bytes with CRC.
168
169
170
171
172 )))
173
174 == 1.3 Features ==
175
176 * LoRaWAN Class A & Class C protocol
177 * Optional Customized LoRa Protocol
178 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865
179 * AT Commands to change parameters
180 * Remote configure parameters via LoRa Downlink
181 * Firmware upgradable via program port
182 * Counting
183
184
185
186 == 1.4  Applications ==
187
188 * Smart Buildings & Home Automation
189 * Logistics and Supply Chain Management
190 * Smart Metering
191 * Smart Agriculture
192 * Smart Cities
193 * Smart Factory
194
195
196
197 == 1.5 Hardware Variants ==
198
199 (% border="1" style="background-color:#f7faff; width:500px" %)
200 |(% style="width:103px" %)**Model**|(% style="width:131px" %)**Photo**|(% style="width:334px" %)**Description**
201 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)[[image:1653296302983-697.png]]|(% style="width:334px" %)(((
202 * 2 x Digital Input (Bi-direction)
203 * 2 x Digital Output
204 * 2 x Relay Output (5A@250VAC / 30VDC)
205 * 2 x 0~~20mA Analog Input (res:0.01mA)
206 * 2 x 0~~30V Analog Input (res:0.01v)
207 * 1 x Counting Port
208 )))
209
210
211 = 2. Power ON Device =
212
213 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
214
215 (((
216 PWR will on when device is properly powered.
217 )))
218
219 [[image:1653297104069-180.png]]
220
221
222
223 = 3. Operation Mode =
224
225 == 3.1 How it works? ==
226
227 (((
228 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on **TX LED** will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. **TX LED** will be on for 5 seconds after joined in network. When there is message from server, the **RX LED** will be on for 1 second. 
229 )))
230
231 (((
232 In case user can’t set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
233 )))
234
235
236 == 3.2 Example to join LoRaWAN network ==
237
238 (((
239 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
240 )))
241
242 [[image:image-20220523172350-1.png||height="266" width="864"]]
243
244
245 (((
246 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
247 )))
248
249 (((
250 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
251 )))
252
253 (((
254 Each LT is shipped with a sticker with the default device EUI as below:
255 )))
256
257 [[image:1653297924498-393.png]]
258
259
260 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
261
262 Add APP EUI in the application.
263
264 [[image:1653297955910-247.png||height="321" width="716"]]
265
266
267 Add APP KEY and DEV EUI
268
269 [[image:1653298023685-319.png]]
270
271
272 (((
273 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
274 )))
275
276 [[image:1653298044601-602.png||height="405" width="709"]]
277
278
279
280 == 3.3 Uplink Payload ==
281
282 There are five working modes + one interrupt mode on LT for different type application:
283
284 * **MOD1**: (default setting): 2 x ACI + 2AVI + DI + DO + RO
285 * **MOD2**: Double DI Counting + DO + RO
286 * **MOD3**: Single DI Counting + 2 x ACI + DO + RO
287 * **MOD4**: Single DI Counting + 1 x Voltage Counting + DO + RO
288 * **MOD5**: Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
289 * **ADDMOD6**: Trigger Mode, Optional, used together with MOD1 ~~ MOD5
290
291
292
293 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
294
295 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default.
296
297 [[image:image-20220523174024-3.png]]
298
299 (((
300
301
302 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
303 )))
304
305 [[image:image-20220523174254-4.png]]
306
307 * RO is for relay. ROx=1 : close,ROx=0 always open.
308 * DI is for digital input. DIx=1: high or float, DIx=0: low.
309 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
310
311 (% style="color:red" %)Note: DI3 and DO3 bit are not valid for LT-22222-L
312
313 For example if payload is: [[image:image-20220523175847-2.png]]
314
315
316 **The value for the interface is:  **
317
318 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
319
320 AVI2 channel voltage is 0x04AC/1000=1.196V
321
322 ACI1 channel current is 0x1310/1000=4.880mA
323
324 ACI2 channel current is 0x1300/1000=4.864mA
325
326 The last byte 0xAA= 10101010(B) means
327
328 * [1] RO1 relay channel is close and the RO1 LED is ON.
329 * [0] RO2 relay channel is open and RO2 LED is OFF;
330
331 **LT22222-L:**
332
333 * [1] DI2 channel is high input and DI2 LED is ON;
334 * [0] DI1 channel is low input;
335
336 * [0] DO3 channel output state
337 ** DO3 is float in case no load between DO3 and V+.;
338 ** DO3 is high in case there is load between DO3 and V+.
339 ** DO3 LED is off in both case
340 * [1] DO2 channel output is low and DO2 LED is ON.
341 * [0] DO1 channel output state
342 ** DO1 is float in case no load between DO1 and V+.;
343 ** DO1 is high in case there is load between DO1 and V+.
344 ** DO1 LED is off in both case
345
346
347
348 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
349
350
351 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
352
353 (((
354 Total : 11 bytes payload
355 )))
356
357 [[image:image-20220523180452-3.png]]
358
359
360 (((
361 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
362 )))
363
364 [[image:image-20220523180506-4.png]]
365
366 * RO is for relay. ROx=1 : close,ROx=0 always open.
367 * FIRST: Indicate this is the first packet after join network.
368 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
369
370 (((
371 (% style="color:red" %)Note: DO3 bit is not valid for LT-22222-L.
372 )))
373
374 (((
375
376
377 **To use counting mode, please run:**
378 )))
379
380 (% class="box infomessage" %)
381 (((
382 (((
383 **AT+MOD=2**
384
385 **ATZ**
386 )))
387 )))
388
389 (((
390
391
392 (% style="color:#4f81bd" %)**AT Commands for counting:**
393 )))
394
395 (((
396 **For LT22222-L:**
397 )))
398
399 (% class="box infomessage" %)
400 (((
401 (((
402 **AT+TRIG1=0,100 (set DI1 port to trigger on low level, valid signal is 100ms) **
403
404 **AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms ) **
405
406 **AT+TRIG2=0,100 (set DI2 port to trigger on low level, valid signal is 100ms) **
407
408 **AT+TRIG2=1,100 (set DI2 port to trigger on high level, valid signal is 100ms ) **
409
410 **AT+SETCNT=1,60   (Set COUNT1 value to 60)**
411
412 **AT+SETCNT=2,60   (Set COUNT2 value to 60)**
413 )))
414 )))
415
416
417
418 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
419
420 **LT22222-L**: This mode the DI1 is used as a counting pin.
421
422 [[image:image-20220523181246-5.png]]
423
424 (((
425 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
426 )))
427
428 [[image:image-20220523181301-6.png]]
429
430 * RO is for relay. ROx=1 : close,ROx=0 always open.
431 * FIRST: Indicate this is the first packet after join network.
432 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
433
434 (((
435 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
436 )))
437
438 (((
439 **To use counting mode, please run:**
440 )))
441
442 (% class="box infomessage" %)
443 (((
444 (((
445 **AT+MOD=3**
446
447 **ATZ**
448 )))
449 )))
450
451 (((
452 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
453 )))
454
455
456
457 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
458
459
460 **LT22222-L**: This mode the DI1 is used as a counting pin.
461
462 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
463
464 [[image:image-20220523181903-8.png]]
465
466
467 (((
468 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
469 )))
470
471 [[image:image-20220523181727-7.png]]
472
473 * RO is for relay. ROx=1 : close,ROx=0 always open.
474 * FIRST: Indicate this is the first packet after join network.
475 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
476
477 (((
478 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
479 )))
480
481 (((
482
483
484 **To use this mode, please run:**
485 )))
486
487 (% class="box infomessage" %)
488 (((
489 (((
490 **AT+MOD=4**
491
492 **ATZ**
493 )))
494 )))
495
496
497
498 (((
499 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
500 )))
501
502 (((
503
504
505 **Plus below command for AVI1 Counting:**
506 )))
507
508 (% class="box infomessage" %)
509 (((
510 (((
511 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**   (set AVI Count to 60)**
512
513 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**   (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
514
515 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**   (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
516
517 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**   (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
518 )))
519 )))
520
521
522 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
523
524
525 **LT22222-L**: This mode the DI1 is used as a counting pin.
526
527 [[image:image-20220523182334-9.png]]
528
529 (((
530
531
532 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
533 )))
534
535 * RO is for relay. ROx=1 : close,ROx=0 always open.
536 * FIRST: Indicate this is the first packet after join network.
537 * (((
538 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
539 )))
540
541 (((
542 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
543 )))
544
545 (((
546
547
548 **To use this mode, please run:**
549 )))
550
551 (% class="box infomessage" %)
552 (((
553 (((
554 **AT+MOD=5**
555
556 **ATZ**
557 )))
558 )))
559
560 (((
561 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
562 )))
563
564
565
566 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
567
568
569 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
570
571 For example, if user has configured below commands:
572
573 * **AT+MOD=1 ** **~-~->** The normal working mode
574 * **AT+ADDMOD6=1**   **~-~->** Enable trigger
575
576 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
577
578 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
579 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
580
581 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
582
583 (% style="color:#4f81bd" %)**Trigger base on voltage**:
584
585 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
586
587 **Example:**
588
589 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
590
591 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
592
593
594
595 (% style="color:#4f81bd" %)**Trigger base on current**:
596
597 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
598
599 **Example:**
600
601 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
602
603
604
605 (% style="color:#4f81bd" %)**Trigger base on DI status**:
606
607 DI status trigger Flag.
608
609 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
610
611
612 **Example:**
613
614 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
615
616
617 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
618
619 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
620
621 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
622
623 AA: Code for this downlink Command:
624
625 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
626
627 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
628
629 yy2 yy2: AC1 or AV1 high limit.
630
631 yy3 yy3: AC2 or AV2 low limit.
632
633 Yy4 yy4: AC2 or AV2 high limit.
634
635
636 **Example1**: AA 00 13 88 00 00 00 00 00 00
637
638 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
639
640
641 **Example2**: AA 02 01 00
642
643 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
644
645
646
647 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
648
649 MOD6 Payload : total 11 bytes payload
650
651 [[image:image-20220524085923-1.png]]
652
653
654 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
655
656 [[image:image-20220524090106-2.png]]
657
658 * Each bits shows if the corresponding trigger has been configured.
659
660 **Example:**
661
662 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
663
664
665 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
666
667 [[image:image-20220524090249-3.png]]
668
669 * Each bits shows which status has been trigger on this uplink.
670
671 **Example:**
672
673 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
674
675
676 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
677
678 [[image:image-20220524090456-4.png]]
679
680 * Each bits shows which status has been trigger on this uplink.
681
682 **Example:**
683
684 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
685
686 00000101: Means both DI1 and DI2 trigger are enabled.
687
688
689 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
690
691 Downlink command to poll MOD6 status:
692
693 **AB 06**
694
695 When device got this command, it will send the MOD6 payload.
696
697
698
699 === 3.3.7 Payload Decoder ===
700
701 (((
702
703
704 **Decoder for TTN/loraserver/ChirpStack**: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/Payload_decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/Payload_decoder/]]
705
706
707 )))
708
709
710 == 3.4 ​Configure LT via AT or Downlink ==
711
712 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
713
714 (((
715 There are two kinds of Commands:
716 )))
717
718 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
719
720 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
721
722
723
724 === 3.4.1 Common Commands ===
725
726 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
727
728
729
730 === 3.4.2 Sensor related commands ===
731
732 ==== 3.4.2.1 Set Transmit Interval ====
733
734 Set device uplink interval.
735
736 * (% style="color:#037691" %)**AT Command:**
737
738 (% class="box infomessage" %)
739 (((
740 **AT+TDC=N **
741 )))
742
743 **Example: **AT+TDC=30000. Means set interval to 30 seconds
744
745
746 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
747
748 (% class="box infomessage" %)
749 (((
750 **0x01 aa bb cc     ~/~/ Same as AT+TDC=0x(aa bb cc)**
751 )))
752
753
754
755 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
756
757 Set work mode.
758
759 * (% style="color:#037691" %)**AT Command:**
760
761 (% class="box infomessage" %)
762 (((
763 **AT+MOD=N  **
764 )))
765
766 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
767
768
769 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
770
771 (% class="box infomessage" %)
772 (((
773 **0x0A aa     ~/~/ Same as AT+MOD=aa**
774 )))
775
776
777
778 ==== 3.4.2.3 Poll an uplink ====
779
780 * (% style="color:#037691" %)AT Command:
781
782 There is no AT Command to poll uplink
783
784
785 * (% style="color:#037691" %)Downlink Payload (prefix 0x08):
786
787 (% class="box infomessage" %)
788 (((
789 **0x08 FF     ~/~/ Poll an uplink,**
790 )))
791
792 **Example**: 0x08FF, ask device to send an Uplink
793
794
795
796 ==== 3.4.2.4 Enable Trigger Mode ====
797
798 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
799
800 * (% style="color:#037691" %)AT Command:
801
802 (% class="box infomessage" %)
803 (((
804 **AT+ADDMOD6=1 or 0**
805 )))
806
807 1: Enable Trigger Mode
808
809 0: Disable Trigger Mode
810
811
812 * (% style="color:#037691" %)Downlink Payload (prefix 0x0A 06):
813
814 (% class="box infomessage" %)
815 (((
816 **0x0A 06 aa     ~/~/ Same as AT+ADDMOD6=aa,**
817 )))
818
819
820
821 ==== 3.4.2.5 Poll trigger settings ====
822
823 Poll trigger settings,
824
825 * (% style="color:#037691" %)AT Command:
826
827 There is no AT Command for this feature.
828
829
830 * (% style="color:#037691" %)Downlink Payload (prefix 0x AB 06):
831
832 (% class="box infomessage" %)
833 (((
834 **0xAB 06  ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command**
835 )))
836
837
838
839 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
840
841 Enable Disable DI1/DI2/DI2 as trigger,
842
843 * (% style="color:#037691" %)AT Command:
844
845 (% class="box infomessage" %)
846 (((
847 **Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
848 )))
849
850
851 **Example:**
852
853 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
854
855 * (% style="color:#037691" %)Downlink Payload (prefix 0xAA 02):
856
857 (% class="box infomessage" %)
858 (((
859 **0xAA 02 aa bb  ~/~/ Same as AT+DTRI=aa,bb**
860 )))
861
862
863
864 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
865
866 Set DI1 or DI3(for LT-33222-L) trigger.
867
868 * (% style="color:#037691" %)AT Command:
869
870 (% class="box infomessage" %)
871 (((
872 **AT+TRIG1=a,b**
873 )))
874
875 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
876
877 b : delay timing.
878
879
880 **Example:**
881
882 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
883
884
885 * (% style="color:#037691" %)Downlink Payload (prefix 0x09 01 ):
886
887 (% class="box infomessage" %)
888 (((
889 **0x09 01 aa bb cc ~/~/ same as AT+TRIG1=aa,0x(bb cc)**
890 )))
891
892
893
894 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
895
896 Set DI2 trigger.
897
898 * (% style="color:#037691" %)**AT Command:**
899
900 **AT+TRIG2=a,b**
901
902
903 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
904
905 b : delay timing.
906
907
908 **Example:**
909
910 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
911
912
913 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
914
915 **0x09 02 aa bb cc ~/~/ same as AT+TRIG1=aa,0x(bb cc)**
916
917
918
919
920 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
921
922 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
923
924 * (% style="color:#037691" %)**AT Command**
925
926 **AT+ACLIM**
927
928
929 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
930
931 **0x AA 01 aa bb cc dd ee ff gg hh  ** ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
932
933
934
935
936 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
937
938 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
939
940 * (% style="color:#037691" %)**AT Command**
941
942 **AT+AVLIM  See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
943
944
945 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
946
947 **0x AA 00 aa bb cc dd ee ff gg hh  ** ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
948
949
950
951
952 ==== 3.4.2.11 Trigger – Set minimum interval ====
953
954 Set AV and AC trigger minimum interval, system won’t response to the second trigger within this set time after the first trigger.
955
956 * (% style="color:#037691" %)**AT Command**
957
958 **AT+ATDC=5. Device won’t response the second trigger within 5 minute after the first trigger.**
959
960
961 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
962
963 **0x AC aa bb  ** ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
964
965
966
967
968 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
969
970 * (% style="color:#037691" %)**AT Command**
971
972 There is no AT Command to control Digital Output
973
974
975 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
976 * **0x02 aa bb cc     **~/~/ Set DO1/DO2/DO3 output
977
978
979 (((
980 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
981 )))
982
983 (((
984 01: Low,  00: High ,  11: No action
985 )))
986
987 [[image:image-20220524092754-5.png]]
988
989 (((
990 (% style="color:red" %)Note: For LT-22222-L, there is no DO3, the last byte can use any value.
991 )))
992
993 (((
994 (% style="color:red" %)Device will upload a packet if downlink code executes successfully.
995 )))
996
997
998
999
1000 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1001
1002 * (% style="color:#037691" %)**AT Command**
1003
1004 There is no AT Command to control Digital Output
1005
1006
1007 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1008
1009 **0xA9 aa bb cc     **~/~/ Set DO1/DO2/DO3 output with time control
1010
1011
1012 This is to control the digital output time of DO pin. Include four bytes:
1013
1014 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1015
1016 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1017
1018 01: DO pins will change back to original state after timeout.
1019
1020 00: DO pins will change to an inverter state after timeout 
1021
1022
1023 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1024
1025 [[image:image-20220524093238-6.png]]
1026
1027
1028 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1029
1030 [[image:image-20220524093328-7.png]]
1031
1032
1033 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1034
1035 [[image:image-20220524093351-8.png]]
1036
1037
1038 (% style="color:#4f81bd" %)**Sixth and Seventh Byte**:
1039
1040 Latching time. Unit: ms
1041
1042 Device will upload a packet if downlink code executes successfully.
1043
1044
1045 **Example payload:**
1046
1047 **~1. A9 01 01 01 01 07 D0**
1048
1049 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1050
1051 **2. A9 01 00 01 11 07 D0**
1052
1053 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1054
1055 **3. A9 00 00 00 00 07 D0**
1056
1057 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1058
1059 **4. A9 00 11 01 00 07 D0**
1060
1061 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1062
1063
1064
1065
1066 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1067
1068 * (% style="color:#037691" %)**AT Command:**
1069
1070 There is no AT Command to control Relay Output
1071
1072
1073 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1074
1075 **0x03 aa bb     **~/~/ Set RO1/RO2 output
1076
1077
1078 (((
1079 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1080 )))
1081
1082 (((
1083 01: Close ,  00: Open , 11: No action
1084 )))
1085
1086 (((
1087 [[image:image-20220524093724-9.png]]
1088 )))
1089
1090 Device will upload a packet if downlink code executes successfully.
1091
1092
1093
1094
1095 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1096
1097 * (% style="color:#037691" %)**AT Command:**
1098
1099 There is no AT Command to control Relay Output
1100
1101
1102 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1103
1104 **0x05 aa bb cc dd     **~/~/ Set RO1/RO2 relay with time control
1105
1106
1107 This is to control the relay output time of relay. Include four bytes:
1108
1109 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1110
1111 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1112
1113 01: Relays will change back to original state after timeout.
1114
1115 00: Relays will change to an inverter state after timeout
1116
1117
1118 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1119
1120 [[image:image-20220524093831-10.png]]
1121
1122
1123 (% style="color:#4f81bd" %)**Fourth/Fifth Bytes(cc)**(%%): Latching time. Unit: ms
1124
1125 Device will upload a packet if downlink code executes successfully.
1126
1127
1128 **Example payload:**
1129
1130 **~1. 05 01 11 07 D0**
1131
1132 Relay1 and Relay 2 will be set to NO , last 2 seconds, then change back to original state.
1133
1134 **2. 05 01 10 07 D0**
1135
1136 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then both change back to original state.
1137
1138 **3. 05 00 01 07 D0**
1139
1140 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then relay change to NO, Relay2 change to NC.
1141
1142 **4. 05 00 00 07 D0**
1143
1144 Relay 1 & relay2 will change to NC, last 2 seconds, then both change to NO.
1145
1146
1147
1148
1149 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1150
1151 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1152
1153 * (% style="color:#037691" %)**AT Command:**
1154
1155 (% style="color:#037691" %)**​​​​​​​**(%%)**AT+VOLMAX   ** ~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1156
1157
1158 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1159
1160 **0xA5 aa bb cc   **~/~/ Same as AT+VOLMAX=(aa bb),cc
1161
1162
1163
1164
1165 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1166
1167 * (% style="color:#037691" %)**AT Command:**
1168
1169 (% style="color:#037691" %)**​​​​​​​​​​​​​​**(%%)**AT+SETCNT=aa,(bb cc dd ee) **
1170
1171 aa: 1: Set count1,
1172
1173 2: Set count2,
1174
1175 3: Set AV1 count
1176
1177 Bb cc dd ee: number to be set
1178
1179
1180 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1181
1182 **0x A8 aa bb cc dd ee     **~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1183
1184
1185
1186
1187 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1188
1189 Clear counting for counting mode
1190
1191 * (% style="color:#037691" %)**AT Command:**
1192
1193 (% style="color:#037691" %)​​​​​​​​​​​​​​(%%)**AT+CLRCOUNT ** ~/~/ clear all counting
1194
1195
1196 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1197
1198 **0x A6 01    ** ~/~/ clear all counting
1199
1200
1201
1202
1203 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1204
1205 * (% style="color:#037691" %)**AT Command:**
1206
1207 **AT+COUTIME=60  **~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1208
1209
1210 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1211
1212 **0x A7 aa bb cc     **~/~/ same as AT+COUTIME =aa bb cc,
1213
1214 (((
1215 range: aa bb cc:0 to 16777215,  (unit:second)
1216
1217
1218 )))
1219
1220
1221
1222 == 3.5 Integrate with Mydevice ==
1223
1224 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1225
1226 (((
1227 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1228 )))
1229
1230 (((
1231 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1232 )))
1233
1234 [[image:1653356737703-362.png||height="232" width="732"]]
1235
1236 [[image:image-20220524094641-11.png||height="390" width="723"]]
1237
1238
1239 [[image:image-20220524094641-12.png||height="402" width="718"]]
1240
1241
1242 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1243
1244 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1245
1246 Search under The things network
1247
1248 [[image:1653356838789-523.png||height="337" width="740"]]
1249
1250
1251
1252 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1253
1254 [[image:image-20220524094909-1.png||height="335" width="729"]]
1255
1256
1257 [[image:image-20220524094909-2.png||height="337" width="729"]]
1258
1259
1260 [[image:image-20220524094909-3.png||height="338" width="727"]]
1261
1262
1263 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1264
1265
1266 [[image:image-20220524094909-5.png||height="341" width="734"]]
1267
1268
1269
1270 == 3.6 Interface Detail ==
1271
1272 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1273
1274 Support NPN Type sensor
1275
1276 [[image:1653356991268-289.png]]
1277
1278
1279
1280 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1281
1282 (((
1283 The DI port of LT-22222-L can support NPN or PNP output sensor.
1284 )))
1285
1286 (((
1287 (((
1288 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high
1289 )))
1290 )))
1291
1292 [[image:1653357170703-587.png]]
1293
1294 (((
1295 (((
1296 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1297 )))
1298 )))
1299
1300 (((
1301
1302 )))
1303
1304 (((
1305 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1306 )))
1307
1308 (((
1309 This type of sensor will output a low signal GND when active.
1310 )))
1311
1312 * (((
1313 Connect sensor’s output to DI1-
1314 )))
1315 * (((
1316 Connect sensor’s VCC to DI1+.
1317 )))
1318
1319 (((
1320 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1321 )))
1322
1323 (((
1324 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1325 )))
1326
1327 (((
1328 If DI1+ = 12v, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1329 )))
1330
1331 (((
1332
1333 )))
1334
1335 (((
1336 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1337 )))
1338
1339 (((
1340 This type of sensor will output a high signal (example 24v) when active.
1341 )))
1342
1343 * (((
1344 Connect sensor’s output to DI1+
1345 )))
1346 * (((
1347 Connect sensor’s GND DI1-.
1348 )))
1349
1350 (((
1351 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1352 )))
1353
1354 (((
1355 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1356 )))
1357
1358 (((
1359 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1360 )))
1361
1362 (((
1363
1364 )))
1365
1366 (((
1367 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1368 )))
1369
1370 (((
1371 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1372 )))
1373
1374 * (((
1375 Connect sensor’s output to DI1+ with a serial 50K resistor
1376 )))
1377 * (((
1378 Connect sensor’s GND DI1-.
1379 )))
1380
1381 (((
1382 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1383 )))
1384
1385 (((
1386 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1387 )))
1388
1389 (((
1390 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1391 )))
1392
1393
1394
1395 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1396
1397 NPN output: GND or Float. Max voltage can apply to output pin is 36v.
1398
1399 [[image:1653357531600-905.png]]
1400
1401
1402
1403 === 3.6.4 Analog Input Interface ===
1404
1405 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1406
1407
1408 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1409
1410 [[image:1653357592296-182.png]]
1411
1412 Example to connect a 4~~20mA sensor
1413
1414 We take the wind speed sensor as an example for reference only.
1415
1416
1417 **Specifications of the wind speed sensor:**
1418
1419 Red:  12~~24v
1420
1421 Yellow:  4~~20mA
1422
1423 Black:  GND
1424
1425
1426 **Connection diagram:**
1427
1428 [[image:1653357640609-758.png]]
1429
1430 [[image:1653357648330-671.png||height="155" width="733"]]
1431
1432
1433
1434 === 3.6.5 Relay Output ===
1435
1436 (((
1437 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device’s Power Line to in serial of RO1_1 and RO_2. Such as below:
1438 )))
1439
1440 [[image:image-20220524100215-9.png]]
1441
1442 [[image:image-20220524100215-10.png||height="382" width="723"]]
1443
1444
1445
1446 == 3.7 LEDs Indicators ==
1447
1448 [[image:image-20220524100748-11.png]]
1449
1450
1451 = 4. Use AT Command =
1452
1453 == 4.1 Access AT Command ==
1454
1455 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1456
1457 [[image:1653358238933-385.png]]
1458
1459
1460 (((
1461 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1462 )))
1463
1464 [[image:1653358355238-883.png]]
1465
1466
1467 (((
1468 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1469 )))
1470
1471 (((
1472 AT+<CMD>?        : Help on <CMD>
1473 )))
1474
1475 (((
1476 AT+<CMD>         : Run <CMD>
1477 )))
1478
1479 (((
1480 AT+<CMD>=<value> : Set the value
1481 )))
1482
1483 (((
1484 AT+<CMD>=?       : Get the value
1485 )))
1486
1487 (((
1488 ATZ: Trig a reset of the MCU
1489 )))
1490
1491 (((
1492 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1493 )))
1494
1495 (((
1496 AT+DEUI: Get or Set the Device EUI
1497 )))
1498
1499 (((
1500 AT+DADDR: Get or Set the Device Address
1501 )))
1502
1503 (((
1504 AT+APPKEY: Get or Set the Application Key
1505 )))
1506
1507 (((
1508 AT+NWKSKEY: Get or Set the Network Session Key
1509 )))
1510
1511 (((
1512 AT+APPSKEY: Get or Set the Application Session Key
1513 )))
1514
1515 (((
1516 AT+APPEUI: Get or Set the Application EUI
1517 )))
1518
1519 (((
1520 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1521 )))
1522
1523 (((
1524 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1525 )))
1526
1527 (((
1528 AT+DR: Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1529 )))
1530
1531 (((
1532 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1533 )))
1534
1535 (((
1536 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1537 )))
1538
1539 (((
1540 AT+RX2FQ: Get or Set the Rx2 window frequency
1541 )))
1542
1543 (((
1544 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1545 )))
1546
1547 (((
1548 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1549 )))
1550
1551 (((
1552 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1553 )))
1554
1555 (((
1556 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1557 )))
1558
1559 (((
1560 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1561 )))
1562
1563 (((
1564 AT+NJM: Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1565 )))
1566
1567 (((
1568 AT+NWKID: Get or Set the Network ID
1569 )))
1570
1571 (((
1572 AT+FCU: Get or Set the Frame Counter Uplink
1573 )))
1574
1575 (((
1576 AT+FCD: Get or Set the Frame Counter Downlink
1577 )))
1578
1579 (((
1580 AT+CLASS: Get or Set the Device Class
1581 )))
1582
1583 (((
1584 AT+JOIN: Join network
1585 )))
1586
1587 (((
1588 AT+NJS: Get OTAA Join Status
1589 )))
1590
1591 (((
1592 AT+SENDB: Send hexadecimal data along with the application port
1593 )))
1594
1595 (((
1596 AT+SEND: Send text data along with the application port
1597 )))
1598
1599 (((
1600 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1601 )))
1602
1603 (((
1604 AT+RECV: Print last received data in raw format
1605 )))
1606
1607 (((
1608 AT+VER: Get current image version and Frequency Band
1609 )))
1610
1611 (((
1612 AT+CFM: Get or Set the confirmation mode (0-1)
1613 )))
1614
1615 (((
1616 AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1617 )))
1618
1619 (((
1620 AT+SNR: Get the SNR of the last received packet
1621 )))
1622
1623 (((
1624 AT+RSSI: Get the RSSI of the last received packet
1625 )))
1626
1627 (((
1628 AT+TDC: Get or set the application data transmission interval in ms
1629 )))
1630
1631 (((
1632 AT+PORT: Get or set the application port
1633 )))
1634
1635 (((
1636 AT+DISAT: Disable AT commands
1637 )))
1638
1639 (((
1640 AT+PWORD: Set password, max 9 digits
1641 )))
1642
1643 (((
1644 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1645 )))
1646
1647 (((
1648 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1649 )))
1650
1651 (((
1652 AT+CFG: Print all settings
1653
1654
1655 )))
1656
1657
1658
1659 == 4.2 Common AT Command Sequence ==
1660
1661 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1662
1663 (((
1664
1665
1666 **If device has not joined network yet:**
1667 )))
1668
1669 (((
1670 (% style="background-color:#dcdcdc" %)123456
1671 )))
1672
1673 (((
1674 (% style="background-color:#dcdcdc" %)AT+FDR
1675 )))
1676
1677 (((
1678 (% style="background-color:#dcdcdc" %)123456
1679 )))
1680
1681 (((
1682 (% style="background-color:#dcdcdc" %)AT+NJM=0
1683 )))
1684
1685 (((
1686 (% style="background-color:#dcdcdc" %)ATZ
1687 )))
1688
1689
1690 (((
1691 **If device already joined network:**
1692 )))
1693
1694 (((
1695 (% style="background-color:#dcdcdc" %)AT+NJM=0
1696 )))
1697
1698 (((
1699 (% style="background-color:#dcdcdc" %)ATZ
1700
1701
1702 )))
1703
1704
1705
1706 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1707
1708 (((
1709
1710
1711 (% style="background-color:#dcdcdc" %)123456(%%)  Enter Password to have AT access.
1712 )))
1713
1714 (((
1715 (% style="background-color:#dcdcdc" %) AT+FDR(%%)   Reset Parameters to Factory Default, Keys Reserve
1716 )))
1717
1718 (((
1719 (% style="background-color:#dcdcdc" %) 123456(%%)  Enter Password to have AT access.
1720 )))
1721
1722 (((
1723 (% style="background-color:#dcdcdc" %) AT+CLASS=C(%%) Set to work in CLASS C
1724 )))
1725
1726 (((
1727 (% style="background-color:#dcdcdc" %) AT+NJM=0(%%)  Set to ABP mode
1728 )))
1729
1730 (((
1731 (% style="background-color:#dcdcdc" %) AT+ADR=0(%%)  Set the Adaptive Data Rate Off
1732 )))
1733
1734 (((
1735 (% style="background-color:#dcdcdc" %) AT+DR=5(%%)  Set Data Rate
1736 )))
1737
1738 (((
1739 (% style="background-color:#dcdcdc" %) AT+TDC=60000(%%)  Set transmit interval to 60 seconds
1740 )))
1741
1742 (((
1743 (% style="background-color:#dcdcdc" %) AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1744 )))
1745
1746 (((
1747 (% style="background-color:#dcdcdc" %) AT+RX2FQ=868400000(%%)  Set RX2Frequency to 868.4Mhz (according to the result from server)
1748 )))
1749
1750 (((
1751 (% style="background-color:#dcdcdc" %) AT+RX2DR=5(%%)  Set RX2DR to match the downlink DR from server. see below
1752 )))
1753
1754 (((
1755 (% style="background-color:#dcdcdc" %) AT+DADDR=26 01 1A F1 (%%) Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1756 )))
1757
1758 (((
1759 (% style="background-color:#dcdcdc" %) ATZ         (%%) Reset MCU
1760
1761
1762 )))
1763
1764 (((
1765 (% style="color:red" %)**Note:**
1766 )))
1767
1768 (((
1769 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1770 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1771 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1772 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1773 )))
1774
1775 (((
1776 [[image:1653359097980-169.png||height="188" width="729"]]
1777 )))
1778
1779 (((
1780
1781 )))
1782
1783
1784 === 4.2.3 Change to Class A ===
1785
1786 If sensor JOINED
1787 (% style="background-color:#dcdcdc" %)AT+CLASS=A
1788 ATZ
1789
1790
1791 = 5. FAQ =
1792
1793 == 5.1 How to upgrade the image? ==
1794
1795
1796 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1797
1798 * Support new features
1799 * For bug fix
1800 * Change LoRaWAN bands.
1801
1802 Below shows the hardware connection for how to upload an image to the LT:
1803
1804 [[image:1653359603330-121.png]]
1805
1806
1807 (((
1808 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1809 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1810 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
1811
1812
1813 (% style="color:blue" %)**For LT-22222-L**(%%):
1814 Hold down the PRO button and then momentarily press the RST reset button and the **DO1 led** will change from OFF to ON. When **DO1 LED** is on, it means the device is in download mode.
1815 )))
1816
1817 [[image:image-20220524103407-12.png]]
1818
1819 [[image:image-20220524103429-13.png]]
1820
1821 [[image:image-20220524104033-15.png]]
1822
1823
1824 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1825
1826 [[image:1653360054704-518.png||height="186" width="745"]]
1827
1828
1829 (((
1830 (((
1831
1832
1833 == 5.2 How to change the LoRa Frequency Bands/Region? ==
1834 )))
1835 )))
1836
1837 (((
1838 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1839 )))
1840
1841 (((
1842
1843
1844 == 5.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
1845 )))
1846
1847 (((
1848 (((
1849 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
1850 )))
1851 )))
1852
1853 (((
1854 (((
1855 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
1856
1857
1858 )))
1859 )))
1860
1861 (((
1862 (% style="color:#4f81bd" %)**Step1**(%%): Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
1863 )))
1864
1865 (((
1866 [[image:1653360231087-571.png||height="401" width="727"]]
1867 )))
1868
1869 (((
1870 (% style="color:red" %)Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.
1871 )))
1872
1873
1874 (((
1875 (% style="color:#4f81bd" %)**Step2**(%%)**: **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
1876 )))
1877
1878 (((
1879 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
1880 (% style="background-color:#dcdcdc" %)AT+FDR(%%)  Reset Parameters to Factory Default, Keys Reserve
1881 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
1882 (% style="background-color:#dcdcdc" %)AT+NJM=0 (%%) Set to ABP mode
1883 (% style="background-color:#dcdcdc" %)AT+ADR=0 (%%) Set the Adaptive Data Rate Off
1884 (% style="background-color:#dcdcdc" %)AT+DR=5 (%%) Set Data Rate (Set AT+DR=3 for 915 band)
1885 (% style="background-color:#dcdcdc" %)AT+TDC=60000 (%%) Set transmit interval to 60 seconds
1886 (% style="background-color:#dcdcdc" %)AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1887 (% style="background-color:#dcdcdc" %)AT+DADDR=26 01 1A F1(%%)  Set Device Address to 26 01 1A F1
1888 (% style="background-color:#dcdcdc" %)ATZ        (%%) Reset MCU
1889 )))
1890
1891
1892 (((
1893 As shown in below:
1894 )))
1895
1896 [[image:1653360498588-932.png||height="485" width="726"]]
1897
1898
1899 == 5.4 Can I see counting event in Serial? ==
1900
1901 (((
1902 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn’t support AT+DEBUG. User can update to latest firmware first.
1903
1904
1905 == 5.5 Can i use point to point communication for LT-22222-L? ==
1906
1907 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]
1908 )))
1909
1910 (((
1911 == 5.6 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
1912
1913 If the device is not shut down, but directly powered off.
1914
1915 It will default that this is a power-off state.
1916
1917 In modes 2 to 5, DO RO status and pulse count are saved in flash.
1918
1919 After restart, the status before power failure will be read from flash.
1920
1921 = 6. Trouble Shooting =
1922 )))
1923
1924 (((
1925 (((
1926 == 6.1 Downlink doesn’t work, how to solve it? ==
1927 )))
1928 )))
1929
1930 (((
1931 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
1932 )))
1933
1934 (((
1935
1936
1937 == 6.2 Have trouble to upload image. ==
1938 )))
1939
1940 (((
1941 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
1942 )))
1943
1944 (((
1945
1946
1947 == 6.3 Why I can’t join TTN in US915 /AU915 bands? ==
1948 )))
1949
1950 (((
1951 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1952 )))
1953
1954
1955
1956 = 7. Order Info =
1957
1958
1959 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
1960
1961
1962 (% style="color:#4f81bd" %)**XXX:**
1963
1964 * (% style="color:#4f81bd" %)**EU433**(%%): LT with frequency bands EU433
1965 * (% style="color:#4f81bd" %)**EU868**(%%): LT with frequency bands EU868
1966 * (% style="color:#4f81bd" %)**KR920**(%%): LT with frequency bands KR920
1967 * (% style="color:#4f81bd" %)**CN470**(%%): LT with frequency bands CN470
1968 * (% style="color:#4f81bd" %)**AS923**(%%): LT with frequency bands AS923
1969 * (% style="color:#4f81bd" %)**AU915**(%%): LT with frequency bands AU915
1970 * (% style="color:#4f81bd" %)**US915**(%%): LT with frequency bands US915
1971 * (% style="color:#4f81bd" %)**IN865**(%%): LT with frequency bands IN865
1972 * (% style="color:#4f81bd" %)**CN779**(%%): LT with frequency bands CN779
1973
1974 = 8. Packing Info =
1975
1976
1977 **Package Includes**:
1978
1979 * LT-22222-L I/O Controller x 1
1980 * Stick Antenna for LoRa RF part x 1
1981 * Bracket for controller x1
1982 * Program cable x 1
1983
1984 **Dimension and weight**:
1985
1986 * Device Size: 13.5 x 7 x 3 cm
1987 * Device Weight: 105g
1988 * Package Size / pcs : 14.5 x 8 x 5 cm
1989 * Weight / pcs : 170g
1990
1991 = 9. Support =
1992
1993 * (((
1994 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1995 )))
1996 * (((
1997 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1998 )))
1999
2000 = 10. Reference​​​​​ =
2001
2002 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2003 * [[Image Download>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]]
2004 * [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
2005 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]