Version 82.16 by Xiaoling on 2022/06/20 11:48

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4 **LT-22222-L LoRa IO Controller User Manual **
5
6
7 **Table of Contents:**
8
9 {{toc/}}
10
11
12
13
14
15
16
17 = 1.Introduction =
18
19 == 1.1 What is LT Series I/O Controller ==
20
21 (((
22
23
24 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 )))
26
27 (((
28 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
29 )))
30
31 (((
32 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
33 )))
34
35 (((
36 The use environment includes:
37 )))
38
39 (((
40 1) If user’s area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
41 )))
42
43 (((
44 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
45 )))
46
47 (((
48 [[image:1653295757274-912.png]]
49
50
51 )))
52
53
54 == 1.2  Specifications ==
55
56 (((
57
58
59 **Hardware System:**
60 )))
61
62 * (((
63 STM32L072CZT6 MCU
64 )))
65 * (((
66 SX1276/78 Wireless Chip 
67 )))
68 * (((
69 (((
70 Power Consumption:
71 )))
72
73 * (((
74 Idle: 4mA@12v
75 )))
76 * (((
77 20dB Transmit: 34mA@12v
78 )))
79 )))
80
81 (((
82
83
84 **Interface for Model: LT22222-L:**
85 )))
86
87 * (((
88 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
89 )))
90 * (((
91 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
92 )))
93 * (((
94 2 x Relay Output (5A@250VAC / 30VDC)
95 )))
96 * (((
97 2 x 0~~20mA Analog Input (res:0.01mA)
98 )))
99 * (((
100 2 x 0~~30V Analog Input (res:0.01v)
101 )))
102 * (((
103 Power Input 7~~ 24V DC. 
104 )))
105
106 (((
107
108
109 **LoRa Spec:**
110 )))
111
112 * (((
113 (((
114 Frequency Range:
115 )))
116
117 * (((
118 Band 1 (HF): 862 ~~ 1020 Mhz
119 )))
120 * (((
121 Band 2 (LF): 410 ~~ 528 Mhz
122 )))
123 )))
124 * (((
125 168 dB maximum link budget.
126 )))
127 * (((
128 +20 dBm - 100 mW constant RF output vs.
129 )))
130 * (((
131 +14 dBm high efficiency PA.
132 )))
133 * (((
134 Programmable bit rate up to 300 kbps.
135 )))
136 * (((
137 High sensitivity: down to -148 dBm.
138 )))
139 * (((
140 Bullet-proof front end: IIP3 = -12.5 dBm.
141 )))
142 * (((
143 Excellent blocking immunity.
144 )))
145 * (((
146 Low RX current of 10.3 mA, 200 nA register retention.
147 )))
148 * (((
149 Fully integrated synthesizer with a resolution of 61 Hz.
150 )))
151 * (((
152 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
153 )))
154 * (((
155 Built-in bit synchronizer for clock recovery.
156 )))
157 * (((
158 Preamble detection.
159 )))
160 * (((
161 127 dB Dynamic Range RSSI.
162 )))
163 * (((
164 Automatic RF Sense and CAD with ultra-fast AFC.
165 )))
166 * (((
167 Packet engine up to 256 bytes with CRC.
168
169
170
171
172 )))
173
174 == 1.3 Features ==
175
176 * LoRaWAN Class A & Class C protocol
177 * Optional Customized LoRa Protocol
178 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865
179 * AT Commands to change parameters
180 * Remote configure parameters via LoRa Downlink
181 * Firmware upgradable via program port
182 * Counting
183
184
185
186 == 1.4  Applications ==
187
188 * Smart Buildings & Home Automation
189 * Logistics and Supply Chain Management
190 * Smart Metering
191 * Smart Agriculture
192 * Smart Cities
193 * Smart Factory
194
195
196
197 == 1.5 Hardware Variants ==
198
199 (% border="1" style="background-color:#f7faff; width:500px" %)
200 |(% style="width:103px" %)**Model**|(% style="width:131px" %)**Photo**|(% style="width:334px" %)**Description**
201 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)[[image:1653296302983-697.png]]|(% style="width:334px" %)(((
202 * 2 x Digital Input (Bi-direction)
203 * 2 x Digital Output
204 * 2 x Relay Output (5A@250VAC / 30VDC)
205 * 2 x 0~~20mA Analog Input (res:0.01mA)
206 * 2 x 0~~30V Analog Input (res:0.01v)
207 * 1 x Counting Port
208 )))
209
210
211 = 2. Power ON Device =
212
213 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
214
215 (((
216 PWR will on when device is properly powered.
217 )))
218
219 [[image:1653297104069-180.png]]
220
221
222
223 = 3. Operation Mode =
224
225 == 3.1 How it works? ==
226
227 (((
228 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on **TX LED** will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. **TX LED** will be on for 5 seconds after joined in network. When there is message from server, the **RX LED** will be on for 1 second. 
229 )))
230
231 (((
232 In case user can’t set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
233 )))
234
235
236 == 3.2 Example to join LoRaWAN network ==
237
238 (((
239 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
240 )))
241
242 [[image:image-20220523172350-1.png||height="266" width="864"]]
243
244
245 (((
246 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
247 )))
248
249 (((
250 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
251 )))
252
253 (((
254 Each LT is shipped with a sticker with the default device EUI as below:
255 )))
256
257 [[image:1653297924498-393.png]]
258
259
260 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
261
262 Add APP EUI in the application.
263
264 [[image:1653297955910-247.png||height="321" width="716"]]
265
266
267 Add APP KEY and DEV EUI
268
269 [[image:1653298023685-319.png]]
270
271
272 (((
273 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
274 )))
275
276 [[image:1653298044601-602.png||height="405" width="709"]]
277
278
279
280 == 3.3 Uplink Payload ==
281
282 There are five working modes + one interrupt mode on LT for different type application:
283
284 * **MOD1**: (default setting): 2 x ACI + 2AVI + DI + DO + RO
285 * **MOD2**: Double DI Counting + DO + RO
286 * **MOD3**: Single DI Counting + 2 x ACI + DO + RO
287 * **MOD4**: Single DI Counting + 1 x Voltage Counting + DO + RO
288 * **MOD5**: Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
289 * **ADDMOD6**: Trigger Mode, Optional, used together with MOD1 ~~ MOD5
290
291
292
293 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
294
295 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default.
296
297 [[image:image-20220523174024-3.png]]
298
299 (((
300
301
302 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
303 )))
304
305 [[image:image-20220523174254-4.png]]
306
307 * RO is for relay. ROx=1 : close,ROx=0 always open.
308 * DI is for digital input. DIx=1: high or float, DIx=0: low.
309 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
310
311 (% style="color:red" %)Note: DI3 and DO3 bit are not valid for LT-22222-L
312
313 For example if payload is: [[image:image-20220523175847-2.png]]
314
315
316 **The value for the interface is:  **
317
318 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
319
320 AVI2 channel voltage is 0x04AC/1000=1.196V
321
322 ACI1 channel current is 0x1310/1000=4.880mA
323
324 ACI2 channel current is 0x1300/1000=4.864mA
325
326 The last byte 0xAA= 10101010(B) means
327
328 * [1] RO1 relay channel is close and the RO1 LED is ON.
329 * [0] RO2 relay channel is open and RO2 LED is OFF;
330
331 **LT22222-L:**
332
333 * [1] DI2 channel is high input and DI2 LED is ON;
334 * [0] DI1 channel is low input;
335
336 * [0] DO3 channel output state
337 ** DO3 is float in case no load between DO3 and V+.;
338 ** DO3 is high in case there is load between DO3 and V+.
339 ** DO3 LED is off in both case
340 * [1] DO2 channel output is low and DO2 LED is ON.
341 * [0] DO1 channel output state
342 ** DO1 is float in case no load between DO1 and V+.;
343 ** DO1 is high in case there is load between DO1 and V+.
344 ** DO1 LED is off in both case
345
346
347
348 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
349
350
351 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
352
353 (((
354 Total : 11 bytes payload
355 )))
356
357 [[image:image-20220523180452-3.png]]
358
359
360 (((
361 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
362 )))
363
364 [[image:image-20220523180506-4.png]]
365
366 * RO is for relay. ROx=1 : close,ROx=0 always open.
367 * FIRST: Indicate this is the first packet after join network.
368 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
369
370 (((
371 (% style="color:red" %)Note: DO3 bit is not valid for LT-22222-L.
372 )))
373
374 (((
375
376
377 **To use counting mode, please run:**
378 )))
379
380 (% class="box infomessage" %)
381 (((
382 (((
383 **AT+MOD=2**
384
385 **ATZ**
386 )))
387 )))
388
389 (((
390
391
392 (% style="color:#4f81bd" %)**AT Commands for counting:**
393 )))
394
395 (((
396 **For LT22222-L:**
397 )))
398
399 (% class="box infomessage" %)
400 (((
401 (((
402 **AT+TRIG1=0,100 (set DI1 port to trigger on low level, valid signal is 100ms) **
403
404 **AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms ) **
405
406 **AT+TRIG2=0,100 (set DI2 port to trigger on low level, valid signal is 100ms) **
407
408 **AT+TRIG2=1,100 (set DI2 port to trigger on high level, valid signal is 100ms ) **
409
410 **AT+SETCNT=1,60   (Set COUNT1 value to 60)**
411
412 **AT+SETCNT=2,60   (Set COUNT2 value to 60)**
413 )))
414 )))
415
416
417
418 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
419
420 **LT22222-L**: This mode the DI1 is used as a counting pin.
421
422 [[image:image-20220523181246-5.png]]
423
424 (((
425 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
426 )))
427
428 [[image:image-20220523181301-6.png]]
429
430 * RO is for relay. ROx=1 : close,ROx=0 always open.
431 * FIRST: Indicate this is the first packet after join network.
432 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
433
434 (((
435 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
436 )))
437
438 (((
439 **To use counting mode, please run:**
440 )))
441
442 (% class="box infomessage" %)
443 (((
444 (((
445 **AT+MOD=3**
446
447 **ATZ**
448 )))
449 )))
450
451 (((
452 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
453 )))
454
455
456
457 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
458
459
460 **LT22222-L**: This mode the DI1 is used as a counting pin.
461
462 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
463
464 [[image:image-20220523181903-8.png]]
465
466
467 (((
468 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
469 )))
470
471 [[image:image-20220523181727-7.png]]
472
473 * RO is for relay. ROx=1 : close,ROx=0 always open.
474 * FIRST: Indicate this is the first packet after join network.
475 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
476
477 (((
478 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
479 )))
480
481 (((
482
483
484 **To use this mode, please run:**
485 )))
486
487 (% class="box infomessage" %)
488 (((
489 (((
490 **AT+MOD=4**
491
492 **ATZ**
493 )))
494 )))
495
496
497
498 (((
499 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
500 )))
501
502 (((
503
504
505 **Plus below command for AVI1 Counting:**
506 )))
507
508 (% class="box infomessage" %)
509 (((
510 (((
511 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**   (set AVI Count to 60)**
512
513 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**   (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
514
515 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**   (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
516
517 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**   (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
518 )))
519 )))
520
521
522 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
523
524
525 **LT22222-L**: This mode the DI1 is used as a counting pin.
526
527 [[image:image-20220523182334-9.png]]
528
529 (((
530
531
532 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
533 )))
534
535 * RO is for relay. ROx=1 : close,ROx=0 always open.
536 * FIRST: Indicate this is the first packet after join network.
537 * (((
538 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
539 )))
540
541 (((
542 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
543 )))
544
545 (((
546
547
548 **To use this mode, please run:**
549 )))
550
551 (% class="box infomessage" %)
552 (((
553 (((
554 **AT+MOD=5**
555
556 **ATZ**
557 )))
558 )))
559
560 (((
561 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
562 )))
563
564
565
566 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
567
568
569 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
570
571 For example, if user has configured below commands:
572
573 * **AT+MOD=1 ** **~-~->** The normal working mode
574 * **AT+ADDMOD6=1**   **~-~->** Enable trigger
575
576 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
577
578 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
579 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
580
581 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
582
583 (% style="color:#4f81bd" %)**Trigger base on voltage**:
584
585 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
586
587 **Example:**
588
589 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
590
591 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
592
593
594
595 (% style="color:#4f81bd" %)**Trigger base on current**:
596
597 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
598
599 **Example:**
600
601 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
602
603
604
605 (% style="color:#4f81bd" %)**Trigger base on DI status**:
606
607 DI status trigger Flag.
608
609 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
610
611
612 **Example:**
613
614 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
615
616
617 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
618
619 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
620
621 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
622
623 AA: Code for this downlink Command:
624
625 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
626
627 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
628
629 yy2 yy2: AC1 or AV1 high limit.
630
631 yy3 yy3: AC2 or AV2 low limit.
632
633 Yy4 yy4: AC2 or AV2 high limit.
634
635
636 **Example1**: AA 00 13 88 00 00 00 00 00 00
637
638 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
639
640
641 **Example2**: AA 02 01 00
642
643 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
644
645
646
647 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
648
649 MOD6 Payload : total 11 bytes payload
650
651 [[image:image-20220524085923-1.png]]
652
653
654 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
655
656 [[image:image-20220524090106-2.png]]
657
658 * Each bits shows if the corresponding trigger has been configured.
659
660 **Example:**
661
662 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
663
664
665 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
666
667 [[image:image-20220524090249-3.png]]
668
669 * Each bits shows which status has been trigger on this uplink.
670
671 **Example:**
672
673 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
674
675
676 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
677
678 [[image:image-20220524090456-4.png]]
679
680 * Each bits shows which status has been trigger on this uplink.
681
682 **Example:**
683
684 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
685
686 00000101: Means both DI1 and DI2 trigger are enabled.
687
688
689 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
690
691 Downlink command to poll MOD6 status:
692
693 **AB 06**
694
695 When device got this command, it will send the MOD6 payload.
696
697
698
699 === 3.3.7 Payload Decoder ===
700
701 (((
702
703
704 **Decoder for TTN/loraserver/ChirpStack**: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/Payload_decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/Payload_decoder/]]
705
706
707 )))
708
709
710 == 3.4 ​Configure LT via AT or Downlink ==
711
712 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
713
714 (((
715 There are two kinds of Commands:
716 )))
717
718 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
719
720 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
721
722
723
724 === 3.4.1 Common Commands ===
725
726 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
727
728
729
730 === 3.4.2 Sensor related commands ===
731
732 ==== 3.4.2.1 Set Transmit Interval ====
733
734 Set device uplink interval.
735
736 * (% style="color:#037691" %)**AT Command:**
737
738 (% class="box infomessage" %)
739 (((
740 **AT+TDC=N **
741 )))
742
743 **Example: **AT+TDC=30000. Means set interval to 30 seconds
744
745
746 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
747
748 (% class="box infomessage" %)
749 (((
750 **0x01 aa bb cc     ~/~/ Same as AT+TDC=0x(aa bb cc)**
751 )))
752
753
754
755 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
756
757 Set work mode.
758
759 * (% style="color:#037691" %)**AT Command:**
760
761 (% class="box infomessage" %)
762 (((
763 **AT+MOD=N  **
764 )))
765
766 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
767
768
769 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
770
771 (% class="box infomessage" %)
772 (((
773 **0x0A aa     ~/~/ Same as AT+MOD=aa**
774 )))
775
776
777
778 ==== 3.4.2.3 Poll an uplink ====
779
780 * (% style="color:#037691" %)AT Command:
781
782 There is no AT Command to poll uplink
783
784
785 * (% style="color:#037691" %)Downlink Payload (prefix 0x08):
786
787 (% class="box infomessage" %)
788 (((
789 **0x08 FF     ~/~/ Poll an uplink,**
790 )))
791
792 **Example**: 0x08FF, ask device to send an Uplink
793
794
795
796 ==== 3.4.2.4 Enable Trigger Mode ====
797
798 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
799
800 * (% style="color:#037691" %)AT Command:
801
802 (% class="box infomessage" %)
803 (((
804 **AT+ADDMOD6=1 or 0**
805 )))
806
807 1: Enable Trigger Mode
808
809 0: Disable Trigger Mode
810
811
812 * (% style="color:#037691" %)Downlink Payload (prefix 0x0A 06):
813
814 (% class="box infomessage" %)
815 (((
816 **0x0A 06 aa     ~/~/ Same as AT+ADDMOD6=aa,**
817 )))
818
819
820
821 ==== 3.4.2.5 Poll trigger settings ====
822
823 Poll trigger settings,
824
825 * (% style="color:#037691" %)AT Command:
826
827 There is no AT Command for this feature.
828
829
830 * (% style="color:#037691" %)Downlink Payload (prefix 0x AB 06):
831
832 (% class="box infomessage" %)
833 (((
834 **0xAB 06  ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command**
835 )))
836
837
838
839 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
840
841 Enable Disable DI1/DI2/DI2 as trigger,
842
843 * (% style="color:#037691" %)AT Command:
844
845 (% class="box infomessage" %)
846 (((
847 **Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
848 )))
849
850
851 **Example:**
852
853 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
854
855 * (% style="color:#037691" %)Downlink Payload (prefix 0xAA 02):
856
857 (% class="box infomessage" %)
858 (((
859 **0xAA 02 aa bb  ~/~/ Same as AT+DTRI=aa,bb**
860 )))
861
862
863
864 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
865
866 Set DI1 or DI3(for LT-33222-L) trigger.
867
868 * (% style="color:#037691" %)AT Command:
869
870 (% class="box infomessage" %)
871 (((
872 **AT+TRIG1=a,b**
873 )))
874
875 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
876
877 b : delay timing.
878
879
880 **Example:**
881
882 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
883
884
885 * (% style="color:#037691" %)Downlink Payload (prefix 0x09 01 ):
886
887 (% class="box infomessage" %)
888 (((
889 **0x09 01 aa bb cc ~/~/ same as AT+TRIG1=aa,0x(bb cc)**
890 )))
891
892
893
894 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
895
896 Set DI2 trigger.
897
898 * (% style="color:#037691" %)AT Command:
899
900 (% class="box infomessage" %)
901 (((
902 **AT+TRIG2=a,b**
903 )))
904
905 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
906
907 b : delay timing.
908
909
910 **Example:**
911
912 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
913
914
915 * (% style="color:#037691" %)Downlink Payload (prefix 0x09 02 ):
916
917 (% class="box infomessage" %)
918 (((
919 **0x09 02 aa bb cc ~/~/ same as AT+TRIG1=aa,0x(bb cc)**
920 )))
921
922
923
924 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
925
926 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
927
928 * (% style="color:#037691" %)AT Command:
929
930 (% class="box infomessage" %)
931 (((
932 **AT+ACLIM. **
933 )))
934
935
936 * (% style="color:#037691" %)Downlink Payload (prefix 0xAA 01 ):
937
938 (% class="box infomessage" %)
939 (((
940 **0x AA 01 aa bb cc dd ee ff gg hh ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
941 )))
942
943
944
945 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
946
947 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
948
949 * (% style="color:#037691" %)AT Command:
950
951 (% class="box infomessage" %)
952 (((
953 **AT+AVLIM. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
954 )))
955
956
957 * (% style="color:#037691" %)Downlink Payload (prefix 0xAA 00 ):
958
959 (% class="box infomessage" %)
960 (((
961 **0x AA 00 aa bb cc dd ee ff gg hh ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]] **
962 )))
963
964
965
966 ==== 3.4.2.11 Trigger – Set minimum interval ====
967
968 Set AV and AC trigger minimum interval, system won’t response to the second trigger within this set time after the first trigger.
969
970 * (% style="color:#037691" %)AT Command:
971
972 (% class="box infomessage" %)
973 (((
974 **AT+ATDC=5. Device won’t response the second trigger within 5 minute after the first trigger.**
975 )))
976
977
978 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC ):**
979
980 (% class="box infomessage" %)
981 (((
982 **0x AC aa bb ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)**
983 )))
984
985
986
987 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
988
989 * (% style="color:#037691" %)**AT Command:**
990
991 There is no AT Command to control Digital Output
992
993
994 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02):**
995 * **0x02 aa bb cc     **~/~/ Set DO1/DO2/DO3 output
996
997
998 (((
999 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1000 )))
1001
1002 (((
1003 01: Low,  00: High ,  11: No action
1004 )))
1005
1006 [[image:image-20220524092754-5.png]]
1007
1008 (((
1009 (% style="color:red" %)Note: For LT-22222-L, there is no DO3, the last byte can use any value.
1010 )))
1011
1012 (((
1013 (% style="color:red" %)Device will upload a packet if downlink code executes successfully.
1014 )))
1015
1016
1017
1018
1019 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1020
1021 * (% style="color:#037691" %)**AT Command:**
1022
1023 There is no AT Command to control Digital Output
1024
1025
1026 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9):**
1027
1028 **0xA9 aa bb cc     **~/~/ Set DO1/DO2/DO3 output with time control
1029
1030
1031 This is to control the digital output time of DO pin. Include four bytes:
1032
1033 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1034
1035 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1036
1037 01: DO pins will change back to original state after timeout.
1038
1039 00: DO pins will change to an inverter state after timeout 
1040
1041
1042 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1043
1044 [[image:image-20220524093238-6.png]]
1045
1046
1047 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1048
1049 [[image:image-20220524093328-7.png]]
1050
1051
1052 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1053
1054 [[image:image-20220524093351-8.png]]
1055
1056
1057 (% style="color:#4f81bd" %)**Sixth and Seventh Byte**:
1058
1059 Latching time. Unit: ms
1060
1061 Device will upload a packet if downlink code executes successfully.
1062
1063
1064 **Example payload:**
1065
1066 **~1. A9 01 01 01 01 07 D0**
1067
1068 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1069
1070 **2. A9 01 00 01 11 07 D0**
1071
1072 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1073
1074 **3. A9 00 00 00 00 07 D0**
1075
1076 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1077
1078 **4. A9 00 11 01 00 07 D0**
1079
1080 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1081
1082
1083
1084
1085 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1086
1087 * (% style="color:#037691" %)**AT Command:**
1088
1089 There is no AT Command to control Relay Output
1090
1091
1092 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1093
1094 **0x03 aa bb     **~/~/ Set RO1/RO2 output
1095
1096
1097 (((
1098 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1099 )))
1100
1101 (((
1102 01: Close ,  00: Open , 11: No action
1103 )))
1104
1105 (((
1106 [[image:image-20220524093724-9.png]]
1107 )))
1108
1109 Device will upload a packet if downlink code executes successfully.
1110
1111
1112
1113
1114 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1115
1116 * (% style="color:#037691" %)**AT Command:**
1117
1118 There is no AT Command to control Relay Output
1119
1120
1121 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1122
1123 **0x05 aa bb cc dd     **~/~/ Set RO1/RO2 relay with time control
1124
1125
1126 This is to control the relay output time of relay. Include four bytes:
1127
1128 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1129
1130 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1131
1132 01: Relays will change back to original state after timeout.
1133
1134 00: Relays will change to an inverter state after timeout
1135
1136
1137 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1138
1139 [[image:image-20220524093831-10.png]]
1140
1141
1142 (% style="color:#4f81bd" %)**Fourth/Fifth Bytes(cc)**(%%): Latching time. Unit: ms
1143
1144 Device will upload a packet if downlink code executes successfully.
1145
1146
1147 **Example payload:**
1148
1149 **~1. 05 01 11 07 D0**
1150
1151 Relay1 and Relay 2 will be set to NO , last 2 seconds, then change back to original state.
1152
1153 **2. 05 01 10 07 D0**
1154
1155 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then both change back to original state.
1156
1157 **3. 05 00 01 07 D0**
1158
1159 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then relay change to NO, Relay2 change to NC.
1160
1161 **4. 05 00 00 07 D0**
1162
1163 Relay 1 & relay2 will change to NC, last 2 seconds, then both change to NO.
1164
1165
1166
1167
1168 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1169
1170 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1171
1172 * (% style="color:#037691" %)**AT Command:**
1173
1174 (% style="color:#037691" %)**​​​​​​​**(%%)**AT+VOLMAX   ** ~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1175
1176
1177 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1178
1179 **0xA5 aa bb cc   **~/~/ Same as AT+VOLMAX=(aa bb),cc
1180
1181
1182
1183
1184 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1185
1186 * (% style="color:#037691" %)**AT Command:**
1187
1188 (% style="color:#037691" %)**​​​​​​​​​​​​​​**(%%)**AT+SETCNT=aa,(bb cc dd ee) **
1189
1190 aa: 1: Set count1,
1191
1192 2: Set count2,
1193
1194 3: Set AV1 count
1195
1196 Bb cc dd ee: number to be set
1197
1198
1199 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1200
1201 **0x A8 aa bb cc dd ee     **~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1202
1203
1204
1205
1206 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1207
1208 Clear counting for counting mode
1209
1210 * (% style="color:#037691" %)**AT Command:**
1211
1212 (% style="color:#037691" %)​​​​​​​​​​​​​​(%%)**AT+CLRCOUNT ** ~/~/ clear all counting
1213
1214
1215 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1216
1217 **0x A6 01    ** ~/~/ clear all counting
1218
1219
1220
1221
1222 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1223
1224 * (% style="color:#037691" %)**AT Command:**
1225
1226 **AT+COUTIME=60  **~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1227
1228
1229 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1230
1231 **0x A7 aa bb cc     **~/~/ same as AT+COUTIME =aa bb cc,
1232
1233 (((
1234 range: aa bb cc:0 to 16777215,  (unit:second)
1235
1236
1237 )))
1238
1239
1240
1241 == 3.5 Integrate with Mydevice ==
1242
1243 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1244
1245 (((
1246 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1247 )))
1248
1249 (((
1250 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1251 )))
1252
1253 [[image:1653356737703-362.png||height="232" width="732"]]
1254
1255 [[image:image-20220524094641-11.png||height="390" width="723"]]
1256
1257
1258 [[image:image-20220524094641-12.png||height="402" width="718"]]
1259
1260
1261 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1262
1263 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1264
1265 Search under The things network
1266
1267 [[image:1653356838789-523.png||height="337" width="740"]]
1268
1269
1270
1271 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1272
1273 [[image:image-20220524094909-1.png||height="335" width="729"]]
1274
1275
1276 [[image:image-20220524094909-2.png||height="337" width="729"]]
1277
1278
1279 [[image:image-20220524094909-3.png||height="338" width="727"]]
1280
1281
1282 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1283
1284
1285 [[image:image-20220524094909-5.png||height="341" width="734"]]
1286
1287
1288
1289 == 3.6 Interface Detail ==
1290
1291 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1292
1293 Support NPN Type sensor
1294
1295 [[image:1653356991268-289.png]]
1296
1297
1298
1299 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1300
1301 (((
1302 The DI port of LT-22222-L can support NPN or PNP output sensor.
1303 )))
1304
1305 (((
1306 (((
1307 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high
1308 )))
1309 )))
1310
1311 [[image:1653357170703-587.png]]
1312
1313 (((
1314 (((
1315 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1316 )))
1317 )))
1318
1319 (((
1320
1321 )))
1322
1323 (((
1324 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1325 )))
1326
1327 (((
1328 This type of sensor will output a low signal GND when active.
1329 )))
1330
1331 * (((
1332 Connect sensor’s output to DI1-
1333 )))
1334 * (((
1335 Connect sensor’s VCC to DI1+.
1336 )))
1337
1338 (((
1339 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1340 )))
1341
1342 (((
1343 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1344 )))
1345
1346 (((
1347 If DI1+ = 12v, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1348 )))
1349
1350 (((
1351
1352 )))
1353
1354 (((
1355 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1356 )))
1357
1358 (((
1359 This type of sensor will output a high signal (example 24v) when active.
1360 )))
1361
1362 * (((
1363 Connect sensor’s output to DI1+
1364 )))
1365 * (((
1366 Connect sensor’s GND DI1-.
1367 )))
1368
1369 (((
1370 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1371 )))
1372
1373 (((
1374 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1375 )))
1376
1377 (((
1378 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1379 )))
1380
1381 (((
1382
1383 )))
1384
1385 (((
1386 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1387 )))
1388
1389 (((
1390 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1391 )))
1392
1393 * (((
1394 Connect sensor’s output to DI1+ with a serial 50K resistor
1395 )))
1396 * (((
1397 Connect sensor’s GND DI1-.
1398 )))
1399
1400 (((
1401 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1402 )))
1403
1404 (((
1405 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1406 )))
1407
1408 (((
1409 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1410 )))
1411
1412
1413
1414 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1415
1416 NPN output: GND or Float. Max voltage can apply to output pin is 36v.
1417
1418 [[image:1653357531600-905.png]]
1419
1420
1421
1422 === 3.6.4 Analog Input Interface ===
1423
1424 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1425
1426
1427 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1428
1429 [[image:1653357592296-182.png]]
1430
1431 Example to connect a 4~~20mA sensor
1432
1433 We take the wind speed sensor as an example for reference only.
1434
1435
1436 **Specifications of the wind speed sensor:**
1437
1438 Red:  12~~24v
1439
1440 Yellow:  4~~20mA
1441
1442 Black:  GND
1443
1444
1445 **Connection diagram:**
1446
1447 [[image:1653357640609-758.png]]
1448
1449 [[image:1653357648330-671.png||height="155" width="733"]]
1450
1451
1452
1453 === 3.6.5 Relay Output ===
1454
1455 (((
1456 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device’s Power Line to in serial of RO1_1 and RO_2. Such as below:
1457 )))
1458
1459 [[image:image-20220524100215-9.png]]
1460
1461 [[image:image-20220524100215-10.png||height="382" width="723"]]
1462
1463
1464
1465 == 3.7 LEDs Indicators ==
1466
1467 [[image:image-20220524100748-11.png]]
1468
1469
1470 = 4. Use AT Command =
1471
1472 == 4.1 Access AT Command ==
1473
1474 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1475
1476 [[image:1653358238933-385.png]]
1477
1478
1479 (((
1480 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1481 )))
1482
1483 [[image:1653358355238-883.png]]
1484
1485
1486 (((
1487 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1488 )))
1489
1490 (((
1491 AT+<CMD>?        : Help on <CMD>
1492 )))
1493
1494 (((
1495 AT+<CMD>         : Run <CMD>
1496 )))
1497
1498 (((
1499 AT+<CMD>=<value> : Set the value
1500 )))
1501
1502 (((
1503 AT+<CMD>=?       : Get the value
1504 )))
1505
1506 (((
1507 ATZ: Trig a reset of the MCU
1508 )))
1509
1510 (((
1511 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1512 )))
1513
1514 (((
1515 AT+DEUI: Get or Set the Device EUI
1516 )))
1517
1518 (((
1519 AT+DADDR: Get or Set the Device Address
1520 )))
1521
1522 (((
1523 AT+APPKEY: Get or Set the Application Key
1524 )))
1525
1526 (((
1527 AT+NWKSKEY: Get or Set the Network Session Key
1528 )))
1529
1530 (((
1531 AT+APPSKEY: Get or Set the Application Session Key
1532 )))
1533
1534 (((
1535 AT+APPEUI: Get or Set the Application EUI
1536 )))
1537
1538 (((
1539 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1540 )))
1541
1542 (((
1543 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1544 )))
1545
1546 (((
1547 AT+DR: Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1548 )))
1549
1550 (((
1551 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1552 )))
1553
1554 (((
1555 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1556 )))
1557
1558 (((
1559 AT+RX2FQ: Get or Set the Rx2 window frequency
1560 )))
1561
1562 (((
1563 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1564 )))
1565
1566 (((
1567 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1568 )))
1569
1570 (((
1571 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1572 )))
1573
1574 (((
1575 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1576 )))
1577
1578 (((
1579 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1580 )))
1581
1582 (((
1583 AT+NJM: Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1584 )))
1585
1586 (((
1587 AT+NWKID: Get or Set the Network ID
1588 )))
1589
1590 (((
1591 AT+FCU: Get or Set the Frame Counter Uplink
1592 )))
1593
1594 (((
1595 AT+FCD: Get or Set the Frame Counter Downlink
1596 )))
1597
1598 (((
1599 AT+CLASS: Get or Set the Device Class
1600 )))
1601
1602 (((
1603 AT+JOIN: Join network
1604 )))
1605
1606 (((
1607 AT+NJS: Get OTAA Join Status
1608 )))
1609
1610 (((
1611 AT+SENDB: Send hexadecimal data along with the application port
1612 )))
1613
1614 (((
1615 AT+SEND: Send text data along with the application port
1616 )))
1617
1618 (((
1619 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1620 )))
1621
1622 (((
1623 AT+RECV: Print last received data in raw format
1624 )))
1625
1626 (((
1627 AT+VER: Get current image version and Frequency Band
1628 )))
1629
1630 (((
1631 AT+CFM: Get or Set the confirmation mode (0-1)
1632 )))
1633
1634 (((
1635 AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1636 )))
1637
1638 (((
1639 AT+SNR: Get the SNR of the last received packet
1640 )))
1641
1642 (((
1643 AT+RSSI: Get the RSSI of the last received packet
1644 )))
1645
1646 (((
1647 AT+TDC: Get or set the application data transmission interval in ms
1648 )))
1649
1650 (((
1651 AT+PORT: Get or set the application port
1652 )))
1653
1654 (((
1655 AT+DISAT: Disable AT commands
1656 )))
1657
1658 (((
1659 AT+PWORD: Set password, max 9 digits
1660 )))
1661
1662 (((
1663 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1664 )))
1665
1666 (((
1667 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1668 )))
1669
1670 (((
1671 AT+CFG: Print all settings
1672
1673
1674 )))
1675
1676
1677
1678 == 4.2 Common AT Command Sequence ==
1679
1680 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1681
1682 (((
1683
1684
1685 **If device has not joined network yet:**
1686 )))
1687
1688 (((
1689 (% style="background-color:#dcdcdc" %)123456
1690 )))
1691
1692 (((
1693 (% style="background-color:#dcdcdc" %)AT+FDR
1694 )))
1695
1696 (((
1697 (% style="background-color:#dcdcdc" %)123456
1698 )))
1699
1700 (((
1701 (% style="background-color:#dcdcdc" %)AT+NJM=0
1702 )))
1703
1704 (((
1705 (% style="background-color:#dcdcdc" %)ATZ
1706 )))
1707
1708
1709 (((
1710 **If device already joined network:**
1711 )))
1712
1713 (((
1714 (% style="background-color:#dcdcdc" %)AT+NJM=0
1715 )))
1716
1717 (((
1718 (% style="background-color:#dcdcdc" %)ATZ
1719
1720
1721 )))
1722
1723
1724
1725 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1726
1727 (((
1728
1729
1730 (% style="background-color:#dcdcdc" %)123456(%%)  Enter Password to have AT access.
1731 )))
1732
1733 (((
1734 (% style="background-color:#dcdcdc" %) AT+FDR(%%)   Reset Parameters to Factory Default, Keys Reserve
1735 )))
1736
1737 (((
1738 (% style="background-color:#dcdcdc" %) 123456(%%)  Enter Password to have AT access.
1739 )))
1740
1741 (((
1742 (% style="background-color:#dcdcdc" %) AT+CLASS=C(%%) Set to work in CLASS C
1743 )))
1744
1745 (((
1746 (% style="background-color:#dcdcdc" %) AT+NJM=0(%%)  Set to ABP mode
1747 )))
1748
1749 (((
1750 (% style="background-color:#dcdcdc" %) AT+ADR=0(%%)  Set the Adaptive Data Rate Off
1751 )))
1752
1753 (((
1754 (% style="background-color:#dcdcdc" %) AT+DR=5(%%)  Set Data Rate
1755 )))
1756
1757 (((
1758 (% style="background-color:#dcdcdc" %) AT+TDC=60000(%%)  Set transmit interval to 60 seconds
1759 )))
1760
1761 (((
1762 (% style="background-color:#dcdcdc" %) AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1763 )))
1764
1765 (((
1766 (% style="background-color:#dcdcdc" %) AT+RX2FQ=868400000(%%)  Set RX2Frequency to 868.4Mhz (according to the result from server)
1767 )))
1768
1769 (((
1770 (% style="background-color:#dcdcdc" %) AT+RX2DR=5(%%)  Set RX2DR to match the downlink DR from server. see below
1771 )))
1772
1773 (((
1774 (% style="background-color:#dcdcdc" %) AT+DADDR=26 01 1A F1 (%%) Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1775 )))
1776
1777 (((
1778 (% style="background-color:#dcdcdc" %) ATZ         (%%) Reset MCU
1779
1780
1781 )))
1782
1783 (((
1784 (% style="color:red" %)**Note:**
1785 )))
1786
1787 (((
1788 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1789 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1790 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1791 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1792 )))
1793
1794 (((
1795 [[image:1653359097980-169.png||height="188" width="729"]]
1796 )))
1797
1798 (((
1799
1800 )))
1801
1802
1803 === 4.2.3 Change to Class A ===
1804
1805 If sensor JOINED
1806 (% style="background-color:#dcdcdc" %)AT+CLASS=A
1807 ATZ
1808
1809
1810 = 5. FAQ =
1811
1812 == 5.1 How to upgrade the image? ==
1813
1814
1815 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1816
1817 * Support new features
1818 * For bug fix
1819 * Change LoRaWAN bands.
1820
1821 Below shows the hardware connection for how to upload an image to the LT:
1822
1823 [[image:1653359603330-121.png]]
1824
1825
1826 (((
1827 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1828 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1829 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
1830
1831
1832 (% style="color:blue" %)**For LT-22222-L**(%%):
1833 Hold down the PRO button and then momentarily press the RST reset button and the **DO1 led** will change from OFF to ON. When **DO1 LED** is on, it means the device is in download mode.
1834 )))
1835
1836 [[image:image-20220524103407-12.png]]
1837
1838 [[image:image-20220524103429-13.png]]
1839
1840 [[image:image-20220524104033-15.png]]
1841
1842
1843 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1844
1845 [[image:1653360054704-518.png||height="186" width="745"]]
1846
1847
1848 (((
1849 (((
1850
1851
1852 == 5.2 How to change the LoRa Frequency Bands/Region? ==
1853 )))
1854 )))
1855
1856 (((
1857 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1858 )))
1859
1860 (((
1861
1862
1863 == 5.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
1864 )))
1865
1866 (((
1867 (((
1868 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
1869 )))
1870 )))
1871
1872 (((
1873 (((
1874 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
1875
1876
1877 )))
1878 )))
1879
1880 (((
1881 (% style="color:#4f81bd" %)**Step1**(%%): Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
1882 )))
1883
1884 (((
1885 [[image:1653360231087-571.png||height="401" width="727"]]
1886 )))
1887
1888 (((
1889 (% style="color:red" %)Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.
1890 )))
1891
1892
1893 (((
1894 (% style="color:#4f81bd" %)**Step2**(%%)**: **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
1895 )))
1896
1897 (((
1898 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
1899 (% style="background-color:#dcdcdc" %)AT+FDR(%%)  Reset Parameters to Factory Default, Keys Reserve
1900 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
1901 (% style="background-color:#dcdcdc" %)AT+NJM=0 (%%) Set to ABP mode
1902 (% style="background-color:#dcdcdc" %)AT+ADR=0 (%%) Set the Adaptive Data Rate Off
1903 (% style="background-color:#dcdcdc" %)AT+DR=5 (%%) Set Data Rate (Set AT+DR=3 for 915 band)
1904 (% style="background-color:#dcdcdc" %)AT+TDC=60000 (%%) Set transmit interval to 60 seconds
1905 (% style="background-color:#dcdcdc" %)AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1906 (% style="background-color:#dcdcdc" %)AT+DADDR=26 01 1A F1(%%)  Set Device Address to 26 01 1A F1
1907 (% style="background-color:#dcdcdc" %)ATZ        (%%) Reset MCU
1908 )))
1909
1910
1911 (((
1912 As shown in below:
1913 )))
1914
1915 [[image:1653360498588-932.png||height="485" width="726"]]
1916
1917
1918 == 5.4 Can I see counting event in Serial? ==
1919
1920 (((
1921 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn’t support AT+DEBUG. User can update to latest firmware first.
1922
1923
1924 == 5.5 Can i use point to point communication for LT-22222-L? ==
1925
1926 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]
1927 )))
1928
1929 (((
1930 == 5.6 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
1931
1932 If the device is not shut down, but directly powered off.
1933
1934 It will default that this is a power-off state.
1935
1936 In modes 2 to 5, DO RO status and pulse count are saved in flash.
1937
1938 After restart, the status before power failure will be read from flash.
1939
1940 = 6. Trouble Shooting =
1941 )))
1942
1943 (((
1944 (((
1945 == 6.1 Downlink doesn’t work, how to solve it? ==
1946 )))
1947 )))
1948
1949 (((
1950 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
1951 )))
1952
1953 (((
1954
1955
1956 == 6.2 Have trouble to upload image. ==
1957 )))
1958
1959 (((
1960 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
1961 )))
1962
1963 (((
1964
1965
1966 == 6.3 Why I can’t join TTN in US915 /AU915 bands? ==
1967 )))
1968
1969 (((
1970 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1971 )))
1972
1973
1974
1975 = 7. Order Info =
1976
1977
1978 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
1979
1980
1981 (% style="color:#4f81bd" %)**XXX:**
1982
1983 * (% style="color:#4f81bd" %)**EU433**(%%): LT with frequency bands EU433
1984 * (% style="color:#4f81bd" %)**EU868**(%%): LT with frequency bands EU868
1985 * (% style="color:#4f81bd" %)**KR920**(%%): LT with frequency bands KR920
1986 * (% style="color:#4f81bd" %)**CN470**(%%): LT with frequency bands CN470
1987 * (% style="color:#4f81bd" %)**AS923**(%%): LT with frequency bands AS923
1988 * (% style="color:#4f81bd" %)**AU915**(%%): LT with frequency bands AU915
1989 * (% style="color:#4f81bd" %)**US915**(%%): LT with frequency bands US915
1990 * (% style="color:#4f81bd" %)**IN865**(%%): LT with frequency bands IN865
1991 * (% style="color:#4f81bd" %)**CN779**(%%): LT with frequency bands CN779
1992
1993 = 8. Packing Info =
1994
1995
1996 **Package Includes**:
1997
1998 * LT-22222-L I/O Controller x 1
1999 * Stick Antenna for LoRa RF part x 1
2000 * Bracket for controller x1
2001 * Program cable x 1
2002
2003 **Dimension and weight**:
2004
2005 * Device Size: 13.5 x 7 x 3 cm
2006 * Device Weight: 105g
2007 * Package Size / pcs : 14.5 x 8 x 5 cm
2008 * Weight / pcs : 170g
2009
2010 = 9. Support =
2011
2012 * (((
2013 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2014 )))
2015 * (((
2016 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2017 )))
2018
2019 = 10. Reference​​​​​ =
2020
2021 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2022 * [[Image Download>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]]
2023 * [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
2024 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]