Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19
20 = 1. Introduction =
21
22 == 1.1 What is the LT-22222-L I/O Controller? ==
23
24
25 (((
26 (((
27 {{info}}
28 **This manual is also applicable to the LT-33222-L.**
29 {{/info}}
30
31 The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN end device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
32
33 The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
34 )))
35 )))
36
37 (((
38 With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
39 )))
40
41 (((
42 You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
43
44 * If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Stack Community Network), you can select a network and register the LT-22222-L I/O controller with it.
45 * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
46 * Setup your own private LoRaWAN network.
47 )))
48
49 (((
50
51
52 The network diagram below illustrates how the LT-22222-L communicates with a typical LoRaWAN network.
53 )))
54
55 (% class="wikigeneratedid" %)
56 [[image:lorawan-nw.jpg||height="354" width="900"]]
57
58
59 == 1.2 Specifications ==
60
61
62 (% style="color:#037691" %)**Hardware System:**
63
64 * STM32L072xxxx MCU
65 * SX1276/78 Wireless Chip 
66 * Power Consumption:
67 ** Idle: 4mA@12V
68 ** 20dB Transmit: 34mA@12V
69 * Operating Temperature: -40 ~~ 85 Degrees, No Dew
70
71 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
72
73 * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50V, or 220V with optional external resistor)
74 * 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
75 * 2 x Relay Output (5A@250VAC / 30VDC)
76 * 2 x 0~~20mA Analog Input (res:0.01mA)
77 * 2 x 0~~30V Analog Input (res:0.01V)
78 * Power Input 7~~ 24V DC. 
79
80 (% style="color:#037691" %)**LoRa Spec:**
81
82 * Frequency Range:
83 ** Band 1 (HF): 862 ~~ 1020 MHz
84 ** Band 2 (LF): 410 ~~ 528 MHz
85 * 168 dB maximum link budget.
86 * +20 dBm - 100 mW constant RF output vs.
87 * +14 dBm high-efficiency PA.
88 * Programmable bit rate up to 300 kbps.
89 * High sensitivity: down to -148 dBm.
90 * Bullet-proof front end: IIP3 = -12.5 dBm.
91 * Excellent blocking immunity.
92 * Low RX current of 10.3 mA, 200 nA register retention.
93 * Fully integrated synthesizer with a resolution of 61 Hz.
94 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
95 * Built-in bit synchronizer for clock recovery.
96 * Preamble detection.
97 * 127 dB Dynamic Range RSSI.
98 * Automatic RF Sense and CAD with ultra-fast AFC.
99 * Packet engine up to 256 bytes with CRC.
100
101 == 1.3 Features ==
102
103
104 * LoRaWAN Class A & Class C modes
105 * Optional Customized LoRa Protocol
106 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
107 * AT Commands to change parameters
108 * Remotely configure parameters via LoRaWAN Downlink
109 * Firmware upgradable via program port
110 * Counting
111
112 == 1.4 Applications ==
113
114
115 * Smart buildings & home automation
116 * Logistics and supply chain management
117 * Smart metering
118 * Smart agriculture
119 * Smart cities
120 * Smart factory
121
122 == 1.5 Hardware Variants ==
123
124
125 (% border="1" cellspacing="3" style="width:510px" %)
126 |(% style="background-color:#4f81bd; color:white; width:94px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:172px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:244px" %)**Description**
127 |(% style="width:94px" %)**LT-33222-L**|(% style="width:172px" %)(((
128 (% style="text-align:center" %)
129 [[image:lt33222-l.jpg||height="110" width="95"]]
130 )))|(% style="width:256px" %)(((
131 * 3 x Digital Input (Bi-direction)
132 * 3 x Digital Output
133 * 2 x Relay Output (5A@250VAC / 30VDC)
134 * 2 x 0~~20mA Analog Input (res:0.01mA)
135 * 2 x 0~~30V Analog Input (res:0.01v)
136 * 1 x Counting Port
137 )))
138
139 = 2. Assembling the device =
140
141 == 2.1 Connecting the antenna ==
142
143
144 Connect the LoRa antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper screw terminal block. Secure the antenna by tightening it clockwise.
145
146 {{warning}}
147 **Warning! Do not power on the device without connecting the antenna.**
148 {{/warning}}
149
150
151 == 2.2 Terminals ==
152
153
154 The  LT-22222-L has two screw terminal blocks. The upper screw terminal block has 6 screw terminals and the lower screw terminal block has 10 screw terminals.
155
156 **Upper screw terminal block (from left to right):**
157
158 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:381px" %)
159 |=(% style="width: 139px;background-color:#4f81bd;color:white" %)Screw Terminal|=(% style="width: 242px;background-color:#4f81bd;color:white" %)Function
160 |(% style="width:139px" %)GND|(% style="width:242px" %)Ground
161 |(% style="width:139px" %)VIN|(% style="width:242px" %)Input Voltage
162 |(% style="width:139px" %)AVI2|(% style="width:242px" %)Analog Voltage Input Terminal 2
163 |(% style="width:139px" %)AVI1|(% style="width:242px" %)Analog Voltage Input Terminal 1
164 |(% style="width:139px" %)ACI2|(% style="width:242px" %)Analog Current Input Terminal 2
165 |(% style="width:139px" %)ACI1|(% style="width:242px" %)Analog Current Input Terminal 1
166
167 **Lower screw terminal block (from left to right):**
168
169 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:253px" %)
170 |=(% style="width: 125px;background-color:#4f81bd;color:white" %)Screw Terminal|=(% style="width: 128px;background-color:#4f81bd;color:white" %)Function
171 |(% style="width:125px" %)RO1-2|(% style="width:128px" %)Relay Output 1
172 |(% style="width:125px" %)RO1-1|(% style="width:128px" %)Relay Output 1
173 |(% style="width:125px" %)RO2-2|(% style="width:128px" %)Relay Output 2
174 |(% style="width:125px" %)RO2-1|(% style="width:128px" %)Relay Output 2
175 |(% style="width:125px" %)DI2+|(% style="width:128px" %)Digital Input 2
176 |(% style="width:125px" %)DI2-|(% style="width:128px" %)Digital Input 2
177 |(% style="width:125px" %)DI1+|(% style="width:128px" %)Digital Input 1
178 |(% style="width:125px" %)DI1-|(% style="width:128px" %)Digital Input 1
179 |(% style="width:125px" %)DO2|(% style="width:128px" %)Digital Output 2
180 |(% style="width:125px" %)DO1|(% style="width:128px" %)Digital Output 1
181
182 == 2.3 Connecting LT-22222-L to a Power Source ==
183
184
185 The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect your power supply’s **positive wire** to the **VIN** and the **negative wire** to the **GND** screw terminals. The power indicator **(PWR) LED** will turn on when the device is properly powered.
186
187 {{warning}}
188 **We recommend that you power on the LT-22222-L after adding its registration information to the LoRaWAN network server. Otherwise, the device will continuously send join-request messages to attempt to join a LoRaWAN network but will fail.**
189 {{/warning}}
190
191
192 [[image:1653297104069-180.png]]
193
194
195 = 3. Registering LT-22222-L with a LoRaWAN Network Server =
196
197
198 The LT-22222-L supports both OTAA (Over-the-Air Activation) and ABP (Activation By Personalization) methods to activate with a LoRaWAN Network Server. However, OTAA is the most secure method for activating a device with a LoRaWAN Network Server. OTAA regenerates session keys upon initial registration and regenerates new session keys after any subsequent reboots. By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode.
199
200
201 == 3.1 Prerequisites ==
202
203
204 The LT-22222-L comes with device registration information such as DevEUI, AppEUI, and AppKey which allows you to register it with a LoRaWAN network. This registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
205
206 [[image:image-20230425173427-2.png||height="246" width="530"]]
207
208 {{info}}
209 If you are unable to set the provided root key and other identifiers in the network server, you must generate new keys and identifiers with the network server and configure the device with them using AT commands.
210 {{/info}}
211
212 The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
213
214
215 == 3.2 The Things Stack ==
216
217
218 This section guides you through how to register your LT-22222-L with The Things Stack Sandbox.
219
220 {{info}}
221 The Things Stack Sandbox was formally called The Things Stack Community Edition.
222 {{/info}}
223
224
225 The network diagram below illustrates the connection between the LT-22222-L and The Things Stack, as well as how the data can be integrated with the ThingsEye IoT platform.
226
227
228 [[image:dragino-lorawan-nw-lt-22222-n.jpg||height="374" width="1400"]]
229
230 {{info}}
231 You can use a LoRaWAN gateway, such as the [[Dragino LPS8N>>https://www.dragino.com/products/lora-lorawan-gateway/item/200-lps8n.html]], to expand or create LoRaWAN coverage in your area.
232 {{/info}}
233
234
235 === 3.2.1 Setting up ===
236
237
238 * Sign up for a free account with [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] if you do not have one yet.
239 * Log in to your The Things Stack Sandbox account.
240 * Create an **application** with The Things Stack if you do not have one yet (E.g., dragino-docs).
241 * Go to your application's page and click on the **End devices** in the left menu.
242 * On the End devices page, click on **+ Register end device**. Two registration options are available:
243
244 ==== 3.2.1.1 Using the LoRaWAN Device Repository ====
245
246
247 * On the **Register end device** page:
248 ** Select the option **Select the end device in the LoRaWAN Device Repository **under **Input method**.
249 ** Select the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)** from the respective dropdown lists.
250 *** **End device brand**: Dragino Technology Co., Limited
251 *** **Model**: LT22222-L I/O Controller
252 *** **Hardware ver**: Unknown
253 *** **Firmware ver**: 1.6.0
254 *** **Profile (Region)**: Select the region that matches your device.
255 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
256
257 [[image:lt-22222-l-dev-repo-reg-p1.png]]
258
259
260 * Register end device page continued...
261 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'.
262 ** In the **DevEUI** field, enter the **DevEUI**.
263 ** In the **AppKey** field, enter the **AppKey.**
264 ** In the **End device ID** field, enter a unique name for your LT-22222-L within this application.
265 ** Under **After registration**, select the **View registered end device** option.
266 ** Click **Register end device** button.
267
268 [[image:lt-22222-l-dev-repo-reg-p2.png]]
269
270
271 * You will be navigated to the **Device overview** page.
272
273 [[image:lt-22222-device-overview.png]]
274
275
276 ==== 3.2.1.2 Adding device manually ====
277
278
279 * On the **Register end device** page:
280 ** Select the option **Enter end device specifies manually** under **Input method**.
281 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
282 ** Select the **LoRaWAN version** as **LoRaWAN Specification 1.0.3**
283 ** Select the **Regional Parameters version** as** RP001 Regional Parameters 1.0.3 revision A**
284 ** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the hidden section.
285 ** Select the option **Over the air activation (OTAA)** under the **Activation mode.**
286 ** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities** dropdown list.
287
288 [[image:lt-22222-l-manually-p1.png]]
289
290
291 * Register end device page continued...
292 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message '//**This end device can be registered on the network**//'
293 ** In the **DevEUI** field, enter the **DevEUI**.
294 ** In the **AppKey** field, enter the **AppKey**.
295 ** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
296 ** Under **After registration**, select the **View registered end device** option.
297 ** Click the **Register end device** button.
298
299 [[image:lt-22222-l-manually-p2.png]]
300
301
302 You will be navigated to the **Device overview** page.
303
304
305 [[image:lt-22222-device-overview.png]]
306
307
308 === 3.2.2 Joining ===
309
310
311 On the end device's page (in this case, lt-22222-l), click on **Live data** tab. The Live data panel for your device will display. Initially, it is blank.
312
313 Now power on your LT-22222-L. The **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** The Things Stack network server. The **TX LED** will be on for **5 seconds** after joining the network. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server.
314
315
316 [[image:lt-22222-l-joining.png]]
317
318
319 === 3.2.3 Uplinks ===
320
321
322 After successfully joining, the device will send its first **uplink data message** to The Things Stack application it belongs to (in this example, it is **dragino-docs**). When the LT-22222-L sends an uplink message to the server, the **TX LED** turns on for **1 second**. By default, you will receive an uplink data message from the device every 10 minutes.
323
324 Click on one of the **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the **decode_payload {}** JSON object.
325
326 [[image:lt-22222-ul-payload-decoded.png]]
327
328
329 If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **Applications > [your application] > End devices** > [**your end device]** > **Payload formatters** > **Uplink**. Then select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
330
331 {{info}}
332 The Things Stack provides two levels of payload formatters: application level and device level. The device-level payload formatters **override **the application-level payload formatters.
333 {{/info}}
334
335 [[image:lt-22222-ul-payload-fmt.png]]
336
337
338 We have written a payload formatter that resolves some decoding issues present in The Things Stack Device Repository payload formatter. You can add it under the **Custom JavaScript formatter**. It can be found [[here>>https://github.com/dragino/dragino-end-node-decoder/blob/main/LT22222-L/v1.6_decoder_ttn%20.txt]]:
339
340 (% class="wikigeneratedid" %)
341 [[image:lt-22222-l-js-custom-payload-formatter.png]]
342
343
344 === 3.2.4 Downlinks ===
345
346
347 When the LT-22222-L receives a downlink message from the LoRaWAN Network Server, the **RX LED** turns on for **1 second**.
348
349
350 == 3.3 Working Modes and Uplink Payload formats ==
351
352
353 The LT-22222-L has 5 **working modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
354
355 * (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
356
357 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
358
359 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
360
361 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
362
363 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
364
365 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
366
367 The uplink messages are sent over LoRaWAN FPort=2. By default, an uplink message is sent every 10 minutes.
368
369
370 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
371
372
373 (((
374 This is the default mode.
375
376 The uplink payload is 11 bytes long.
377
378 (% style="color:red" %)**Note:The maximum count depends on the bytes number of bytes.
379 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
380 It starts counting again when it reaches the maximum value.**(% style="display:none" wfd-invisible="true" %)
381
382 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
383 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
384 |Value|(((
385 AVI1 voltage
386 )))|(((
387 AVI2 voltage
388 )))|(((
389 ACI1 Current
390 )))|(((
391 ACI2 Current
392 )))|**DIDORO***|(((
393 Reserve
394 )))|MOD
395 )))
396
397 (((
398 (% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
399
400 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
401 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
402 |RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
403 )))
404
405 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
406 * DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
407 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
408
409 (% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
410
411 For example, if the payload is: [[image:image-20220523175847-2.png]]
412
413
414 **The interface values can be calculated as follows:  **
415
416 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
417
418 AVI2 channel voltage is 0x04AC/1000=1.196V
419
420 ACI1 channel current is 0x1310/1000=4.880mA
421
422 ACI2 channel current is 0x1300/1000=4.864mA
423
424 The last byte 0xAA= **10101010**(b) means,
425
426 * [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
427 * [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
428 * **[1] DI3 - not used for LT-22222-L.**
429 * [0] DI2 channel input is LOW, and the DI2 LED is OFF.
430 * [1] DI1 channel input state:
431 ** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
432 ** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
433 ** DI1 LED is ON in both cases.
434 * **[0] DO3 - not used for LT-22222-L.**
435 * [1] DO2 channel output is LOW, and the DO2 LED is ON.
436 * [0] DO1 channel output state:
437 ** DO1 is FLOATING when there is no load between DO1 and V+.
438 ** DO1 is HIGH and there is a load between DO1 and V+.
439 ** DO1 LED is OFF in both cases.
440
441 Reserve = 0
442
443 MOD = 1
444
445
446 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
447
448
449 (((
450 **For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
451 )))
452
453 (((
454 The uplink payload is 11 bytes long.
455
456 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
457 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
458 It starts counting again when it reaches the maximum value.**
459
460 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
461 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
462 |Value|COUNT1|COUNT2 |DIDORO*|(((
463 Reserve
464 )))|MOD
465 )))
466
467 (((
468 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
469
470 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
471 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
472 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
473
474 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
475 )))
476
477 * FIRST: Indicates that this is the first packet after joining the network.
478 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
479
480 (((
481 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
482
483
484 )))
485
486 (((
487 **To activate this mode, run the following AT commands:**
488 )))
489
490 (((
491 (% class="box infomessage" %)
492 (((
493 **AT+MOD=2**
494
495 **ATZ**
496 )))
497 )))
498
499 (((
500
501
502 (% style="color:#4f81bd" %)**AT Commands for counting:**
503 )))
504
505 (((
506 **For LT22222-L:**
507
508 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
509
510 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
511
512 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
513
514 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
515
516 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
517
518 (% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
519 )))
520
521
522 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
523
524
525 (% style="color:red" %)**Note: The maximum count depends on the bytes it is.
526 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
527 It starts counting again when it reaches the maximum value.**
528
529 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
530
531 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
532 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
533 |Value|COUNT1|(((
534 ACI1 Current
535 )))|(((
536 ACI2 Current
537 )))|DIDORO*|Reserve|MOD
538
539 (((
540 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
541
542 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
543 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
544 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
545 )))
546
547 * RO is for the relay. ROx=1: closed, ROx=0 always open.
548 * FIRST: Indicates that this is the first packet after joining the network.
549 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
550
551 (((
552 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
553 )))
554
555
556 (((
557 **To activate this mode, run the following AT commands:**
558 )))
559
560 (((
561 (% class="box infomessage" %)
562 (((
563 **AT+MOD=3**
564
565 **ATZ**
566 )))
567 )))
568
569 (((
570 AT Commands for counting:
571
572 The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
573 )))
574
575
576 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
577
578
579 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
580 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
581 It starts counting again when it reaches the maximum value.**
582
583
584 (((
585 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
586 )))
587
588 (((
589 The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
590
591 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
592 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
593 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
594 Reserve
595 )))|MOD
596 )))
597
598 (((
599 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
600
601 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
602 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
603 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
604 )))
605
606 * RO is for the relay. ROx=1: closed, ROx=0 always open.
607 * FIRST: Indicates that this is the first packet after joining the network.
608 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
609
610 (((
611 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
612
613
614 )))
615
616 (((
617 **To activate this mode, run the following AT commands:**
618 )))
619
620 (((
621 (% class="box infomessage" %)
622 (((
623 **AT+MOD=4**
624
625 **ATZ**
626 )))
627 )))
628
629 (((
630 AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
631 )))
632
633 (((
634 **In addition to that, below are the commands for AVI1 Counting:**
635
636 (% style="color:blue" %)**AT+SETCNT=3,60 **(%%)**(Sets AVI1 Count to 60)**
637
638 (% style="color:blue" %)**AT+VOLMAX=20000 **(%%)**(If the AVI1 voltage is higher than VOLMAX (20000mV =20V), the counter increases by 1)**
639
640 (% style="color:blue" %)**AT+VOLMAX=20000,0 **(%%)**(If the AVI1 voltage is lower than VOLMAX (20000mV =20V), counter increases by 1)**
641
642 (% style="color:blue" %)**AT+VOLMAX=20000,1 **(%%)**(If the AVI1 voltage is higher than VOLMAX (20000mV =20V), counter increases by 1)**
643 )))
644
645
646 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
647
648
649 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
650 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
651 It starts counting again when it reaches the maximum value.**
652
653
654 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
655
656 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
657 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
658 |Value|(((
659 AVI1 voltage
660 )))|(((
661 AVI2 voltage
662 )))|(((
663 ACI1 Current
664 )))|COUNT1|DIDORO*|(((
665 Reserve
666 )))|MOD
667
668 (((
669 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
670
671 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
672 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
673 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
674 )))
675
676 * RO is for the relay. ROx=1: closed, ROx=0 always open.
677 * FIRST: Indicates that this is the first packet after joining the network.
678 * (((
679 DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
680 )))
681
682 (((
683 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
684 )))
685
686 (((
687 **To activate this mode, run the following AT commands:**
688 )))
689
690 (((
691 (% class="box infomessage" %)
692 (((
693 **AT+MOD=5**
694
695 **ATZ**
696 )))
697 )))
698
699 (((
700 Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
701 )))
702
703
704 === 3.3.6 AT+ADDMOD~=6 (Trigger Mode, Optional) ===
705
706
707 (% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate __alongside__ with other modes.**
708
709 For example, if you configure the following commands:
710
711 * **AT+MOD=1 ** **~-~->**  Sets the default working mode
712 * **AT+ADDMOD6=1**   **~-~->**  Enables trigger mode
713
714 The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. It will send uplink packets in two cases:
715
716 1. Periodic uplink: Based on TDC time. The payload is the same as in normal mode (MOD=1 as set above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
717 1. (((
718 Trigger uplink: sent when a trigger condition is met. In this case, LT will send two packets
719
720 * The first uplink uses the payload specified in trigger mode (MOD=6).
721 * The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**confirmed uplinks.**
722 )))
723
724 (% style="color:#037691" %)**AT Commands to set Trigger Conditions**:
725
726 (% style="color:#4f81bd" %)**Trigger based on voltage**:
727
728 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
729
730
731 **Example:**
732
733 AT+AVLIM=3000,6000,0,2000 (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
734
735 AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0 for parameters that are not in use)
736
737
738 (% style="color:#4f81bd" %)**Trigger based on current**:
739
740 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
741
742
743 **Example:**
744
745 AT+ACLIM=10000,15000,0,0 (triggers an uplink if AC1 current is lower than 10mA or higher than 15mA)
746
747
748 (% style="color:#4f81bd" %)**Trigger based on DI status**:
749
750 DI status triggers Flag.
751
752 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
753
754
755 **Example:**
756
757 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
758
759
760 (% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
761
762 **Type Code**: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
763
764 **Format**: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
765
766 AA: Type Code for this downlink Command:
767
768 xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
769
770 yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
771
772 yy2 yy2: AC1 or AV1 HIGH limit.
773
774 yy3 yy3: AC2 or AV2 LOW limit.
775
776 Yy4 yy4: AC2 or AV2 HIGH limit.
777
778
779 **Example 1**: AA 00 13 88 00 00 00 00 00 00
780
781 Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
782
783
784 **Example 2**: AA 02 01 00
785
786 Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
787
788
789 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
790
791 MOD6 Payload: a total of 11 bytes
792
793 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
794 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
795 |Value|(((
796 TRI_A FLAG
797 )))|(((
798 TRI_A Status
799 )))|(((
800 TRI_DI FLAG+STA
801 )))|Reserve|Enable/Disable MOD6|(((
802 MOD(6)
803 )))
804
805 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Total 1 byte as below.
806
807 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
808 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
809 |(((
810 AV1_LOW
811 )))|(((
812 AV1_HIGH
813 )))|(((
814 AV2_LOW
815 )))|(((
816 AV2_HIGH
817 )))|(((
818 AC1_LOW
819 )))|(((
820 AC1_HIGH
821 )))|(((
822 AC2_LOW
823 )))|(((
824 AC2_HIGH
825 )))
826
827 * Each bit shows if the corresponding trigger has been configured.
828
829 **Example:**
830
831 10100000: This means the system is configured to use the triggers AV1_LOW and AV2_LOW.
832
833
834 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is triggered. Total 1 byte as below.
835
836 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
837 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
838 |(((
839 AV1_LOW
840 )))|(((
841 AV1_HIGH
842 )))|(((
843 AV2_LOW
844 )))|(((
845 AV2_HIGH
846 )))|(((
847 AC1_LOW
848 )))|(((
849 AC1_HIGH
850 )))|(((
851 AC2_LOW
852 )))|(((
853 AC2_HIGH
854 )))
855
856 * Each bit shows which status has been triggered on this uplink.
857
858 **Example:**
859
860 10000000: The uplink is triggered by AV1_LOW, indicating that the voltage is too low.
861
862
863 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is triggered. Total 1 byte as below.
864
865 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
866 |(% style="width:50px" %)**bit 7**|(% style="width:50px" %)**bit 6**|(% style="width:50px" %)**bit 5**|(% style="width:50px" %)**bit 4**|(% style="width:90px" %)**bit 3**|(% style="width:80px" %)**bit 2**|(% style="width:90px" %)**bit 1**|(% style="width:95px" %)**bit 0**
867 |(% style="width:49px" %)N/A|(% style="width:53px" %)N/A|(% style="width:53px" %)N/A|(% style="width:55px" %)N/A|(% style="width:99px" %)DI2_STATUS|(% style="width:83px" %)DI2_FLAG|(% style="width:98px" %)DI1_STATUS|(% style="width:85px" %)DI1_FLAG
868
869 * Each bit shows which status has been triggered on this uplink.
870
871 **Example:**
872
873 00000111: This means both DI1 and DI2 triggers are enabled, and this packet is triggered by DI1.
874
875 00000101: This means both DI1 and DI2 triggers are enabled.
876
877
878 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enabled. 0x00: MOD6 is disabled.
879
880 Downlink command to poll/request MOD6 status:
881
882 **AB 06**
883
884 When the device receives this command, it will send the MOD6 payload.
885
886
887 === 3.3.7 Payload Decoder ===
888
889 (((
890
891
892 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
893 )))
894
895
896 == 3.4 ​Configure LT-22222-L via AT Commands or Downlinks ==
897
898
899 (((
900 You can configure LT-22222-L I/O Controller via AT Commands or LoRaWAN Downlinks.
901 )))
902
903 (((
904 (((
905 There are two types of commands:
906 )))
907 )))
908
909 * (% style="color:blue" %)**Common commands**(%%):
910
911 * (% style="color:blue" %)**Sensor-related commands**(%%):
912
913 === 3.4.1 Common commands ===
914
915
916 (((
917 These are available for each sensor and include actions such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]s.
918
919
920 )))
921
922 === 3.4.2 Sensor-related commands ===
923
924
925 These commands are specially designed for the LT-22222-L. Commands can be sent to the device using options such as an AT command or a LoRaWAN downlink payload.
926
927
928 ==== 3.4.2.1 Set Transmit/Uplink Interval ====
929
930
931 Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
932
933 (% style="color:#037691" %)**AT command**
934
935 (% border="2" style="width:500px" %)
936 |**Command**|AT+TDC=<time>
937 |**Parameters**|**time **: uplink interval in milliseconds
938 |**Get**|AT+TDC=?
939 |**Response**|(((
940 current uplink interval
941
942 OK
943 )))
944 |**Set**|AT+TDC=<time>
945 |**Response**|OK
946 |**Example**|(((
947 AT+TDC=30000
948
949 Sets the uplink interval to **30 seconds** (30000 milliseconds)
950 )))
951
952 (% style="color:#037691" %)**Downlink payload**
953
954 (% border="2" style="width:500px" %)
955 |**Payload**|(((
956 <prefix><time>
957 )))
958 |**Parameters**|(((
959 **prefix** : 0x01
960
961 **time** : uplink interval in **seconds**, represented by **3  bytes** in **hexadecimal**.
962 )))
963 |**Example**|(((
964 01 **00 00 1E**
965
966 Sets the uplink interval to **30 seconds**
967
968 Conversion: 30 (dec) = 00 00 1E (hex)
969
970 See [[RapidTables>>https://www.rapidtables.com/convert/number/decimal-to-hex.html?x=30]]
971
972 [[image:Screenshot 2024-11-23 at 18.27.11.png]]
973 )))
974
975 ==== 3.4.2.2 Set the Working Mode (AT+MOD) ====
976
977
978 Sets the working mode.
979
980 (% style="color:#037691" %)**AT command**
981
982 (% border="2" style="width:500px" %)
983 |(% style="width:97px" %)**Command**|(% style="width:413px" %)AT+MOD=<working_mode>
984 |(% style="width:97px" %)**Parameters**|(% style="width:413px" %)(((
985 **working_mode** :
986
987 1 = (Default mode/factory set):  2ACI + 2AVI + DI + DO + RO
988
989 2 = Double DI Counting + DO + RO
990
991 3 = Single DI Counting + 2 x ACI + DO + RO
992
993 4 = Single DI Counting + 1 x Voltage Counting + DO + RO
994
995 5 = Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
996
997 6 = Trigger Mode, Optional, used together with MOD1 ~~ MOD5
998 )))
999 |(% style="width:97px" %)**Get**|(% style="width:413px" %)AT+MOD=?
1000 |(% style="width:97px" %)**Response**|(% style="width:413px" %)(((
1001 Current working mode
1002
1003 OK
1004 )))
1005 |(% style="width:97px" %)**Set**|(% style="width:413px" %)AT+MOD=<working_mode>
1006 |(% style="width:97px" %)**Response**|(% style="width:413px" %)(((
1007 Attention:Take effect after ATZ
1008
1009 OK
1010 )))
1011 |(% style="width:97px" %)**Example**|(% style="width:413px" %)(((
1012 AT+MOD=2
1013
1014 Sets the device to working mode 2 (Double DI Counting + DO + RO)
1015 )))
1016
1017 (% class="wikigeneratedid" %)
1018 (% style="color:#037691" %)**Downlink payload**
1019
1020 (% border="2" style="width:500px" %)
1021 |(% style="width:98px" %)**Payload**|(% style="width:400px" %)<prefix><working_mode>
1022 |(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
1023 **prefix** : 0x0A
1024
1025 **working_mode** : Working mode, represented by 1 byte in hexadecimal.
1026 )))
1027 |(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
1028 0A **02**
1029
1030 Sets the device to working mode 2 (Double DI Counting + DO + RO)
1031 )))
1032
1033 ==== 3.4.2.3 Request an uplink from the device ====
1034
1035
1036 Requests an uplink from LT-22222-L. The content of the uplink payload varies based on the device's current working mode.
1037
1038 (% style="color:#037691" %)**AT command**
1039
1040 There is no AT Command available for this feature.
1041
1042 (% style="color:#037691" %)**Downlink payload**
1043
1044 (% border="2" style="width:500px" %)
1045 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix>FF
1046 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)**prefix** : 0x08
1047 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1048 08 **FF**
1049
1050 Requests an uplink from LT-22222-L.
1051 )))
1052
1053 ==== 3.4.2.4 Enable/Disable Trigger Mode ====
1054
1055
1056 Enable or disable the trigger mode for the current working mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
1057
1058 (% style="color:#037691" %)**AT Command**
1059
1060 (% border="2" style="width:500px" %)
1061 |(% style="width:95px" %)**Command**|(% style="width:403px" %)AT+ADDMOD6=<enable/disable trigger_mode>
1062 |(% style="width:95px" %)**Response**|(% style="width:403px" %)
1063 |(% style="width:95px" %)**Parameters**|(% style="width:403px" %)(((
1064 **enable/disable trigger_mode** :
1065
1066 1 = enable trigger mode
1067
1068 0 = disable trigger mode
1069 )))
1070 |(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1071 AT+ADDMOD6=1
1072
1073 Enable trigger mode for the current working mode
1074 )))
1075
1076 (% style="color:#037691" %)**Downlink payload**
1077
1078 (% border="2" style="width:500px" %)
1079 |(% style="width:97px" %)**Payload**|(% style="width:401px" %)<prefix><enable/disable trigger_mode>
1080 |(% style="width:97px" %)**Parameters**|(% style="width:401px" %)(((
1081 **prefix** : 0x0A 06 (two bytes in hexadecimal)
1082
1083 **enable/disable trigger_mode** : enable (1) or disable (0), represented by 1 byte in hexadecimal.
1084 )))
1085 |(% style="width:97px" %)**Example**|(% style="width:401px" %)(((
1086 0A 06 **01**
1087
1088 Enable trigger mode for the current working mode
1089 )))
1090
1091 ==== 3.4.2.5 Request trigger settings ====
1092
1093
1094 Requests the trigger settings.
1095
1096 (% style="color:#037691" %)**AT Command:**
1097
1098 There is no AT Command available for this feature.
1099
1100 (% style="color:#037691" %)**Downlink Payload**
1101
1102 (% border="2" style="width:500px" %)
1103 |(% style="width:95px" %)**Payload**|(% style="width:403px" %)<prefix>
1104 |(% style="width:95px" %)**Parameters**|(% style="width:403px" %)**prefix **: AB 06 (two bytes in hexadecimal)
1105 |(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1106 AB 06
1107
1108 Uplink the trigger settings.
1109 )))
1110
1111 ==== 3.4.2.6 Enable/Disable DI1/DI2/DI3 as a trigger ====
1112
1113
1114 Enable or disable DI1/DI2/DI3 as a trigger.
1115
1116 (% style="color:#037691" %)**AT Command**
1117
1118 (% border="2" style="width:500px" %)
1119 |(% style="width:98px" %)**Command**|(% style="width:400px" %)AT+DTRI=<DI1_trigger>,<DI2_trigger>
1120 |(% style="width:98px" %)**Response**|(% style="width:400px" %)
1121 |(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
1122 **DI1_trigger:**
1123
1124 1 = enable DI1 trigger
1125
1126 0 = disable DI1 trigger
1127
1128 **DI2 _trigger**
1129
1130 1 = enable DI2 trigger
1131
1132 0 = disable DI2 trigger
1133 )))
1134 |(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
1135 AT+DTRI=1,0
1136
1137 Enable DI1 trigger, disable DI2 trigger
1138 )))
1139
1140 (% class="wikigeneratedid" %)
1141 (% style="color:#037691" %)**Downlink Payload**
1142
1143 (% border="2" style="width:500px" %)
1144 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><DI1_trigger><DI2_trigger>
1145 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1146 **prefix :** AA 02 (two bytes in hexadecimal)
1147
1148 **DI1_trigger:**
1149
1150 1 = enable DI1 trigger, represented by 1 byte in hexadecimal.
1151
1152 0 = disable DI1 trigger, represented by 1 byte in hexadecimal.
1153
1154 **DI2 _trigger**
1155
1156 1 = enable DI2 trigger, represented by 1 byte in hexadecimal.
1157
1158 0 = disable DI2 trigger, represented by 1 byte in hexadecimal.
1159 )))
1160 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1161 AA 02 **01 00**
1162
1163 Enable DI1 trigger, disable DI2 trigger
1164 )))
1165
1166 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as a trigger ====
1167
1168
1169 Sets DI1 or DI3 (for LT-33222-L) as a trigger.
1170
1171 (% style="color:#037691" %)**AT Command**
1172
1173 (% border="2" style="width:500px" %)
1174 |(% style="width:101px" %)**Command**|(% style="width:397px" %)AT+TRIG1=<interrupt_mode>,<minimum_signal_duration>
1175 |(% style="width:101px" %)**Response**|(% style="width:397px" %)
1176 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1177 **interrupt_mode** :  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1178
1179 **minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1180 )))
1181 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1182 AT+TRIG1=1,100
1183
1184 Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1185 )))
1186
1187 (% class="wikigeneratedid" %)
1188 (% style="color:#037691" %)**Downlink Payload**
1189
1190 (% border="2" style="width:500px" %)
1191 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><interrupt_mode><minimum_signal_duration>
1192 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1193 **prefix** : 09 01 (hexadecimal)
1194
1195 **interrupt_mode** : 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1196
1197 **minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal.
1198 )))
1199 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1200 09 01 **01 00 64**
1201
1202 Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1203 )))
1204
1205 ==== 3.4.2.8 Trigger2 – Set DI2 as a trigger ====
1206
1207
1208 Sets DI2 as a trigger.
1209
1210 (% style="color:#037691" %)**AT Command**
1211
1212 (% border="2" style="width:500px" %)
1213 |(% style="width:94px" %)**Command**|(% style="width:404px" %)AT+TRIG2=<interrupt_mode>,<minimum_signal_duration>
1214 |(% style="width:94px" %)**Response**|(% style="width:404px" %)
1215 |(% style="width:94px" %)**Parameters**|(% style="width:404px" %)(((
1216 **interrupt_mode **:  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1217
1218 **minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1219 )))
1220 |(% style="width:94px" %)**Example**|(% style="width:404px" %)(((
1221 AT+TRIG2=0,100
1222
1223 Set the DI1 port to trigger on a falling edge; the valid signal duration is 100 ms.
1224 )))
1225
1226 (% style="color:#037691" %)**Downlink Payload**
1227
1228 (% border="2" style="width:500px" %)
1229 |(% style="width:96px" %)**Payload**|(% style="width:402px" %)<prefix><interrupt_mode><minimum_signal_duration>
1230 |(% style="width:96px" %)**Parameters**|(% style="width:402px" %)(((
1231 **prefix** : 09 02 (hexadecimal)
1232
1233 **interrupt_mode **: 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1234
1235 **minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal
1236 )))
1237 |(% style="width:96px" %)**Example**|(% style="width:402px" %)09 02 **00 00 64**
1238
1239 ==== 3.4.2.9 Trigger – Set AC (current) as a trigger ====
1240
1241
1242 Sets the current trigger based on the AC port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1243
1244 (% style="color:#037691" %)**AT Command**
1245
1246 (% border="2" style="width:500px" %)
1247 |(% style="width:104px" %)**Command**|(% style="width:394px" %)(((
1248 AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1249 )))
1250 |(% style="width:104px" %)**Response**|(% style="width:394px" %)
1251 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1252 **AC1_LIMIT_LOW** : lower limit of the current to be checked
1253
1254 **AC1_LIMIT_HIGH **: higher limit of the current to be checked
1255
1256 **AC2_LIMIT_HIGH **: lower limit of the current to be checked
1257
1258 **AC2_LIMIT_LOW** : higher limit of the current to be checked
1259 )))
1260 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1261 AT+ACLIM=10000,15000,0,0
1262
1263 Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA
1264 )))
1265 |(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1266
1267 (% style="color:#037691" %)**Downlink Payload**
1268
1269 (% border="2" style="width:500px" %)
1270 |(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1271 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1272 **prefix **: AA 01 (hexadecimal)
1273
1274 **AC1_LIMIT_LOW** : lower limit of the current to be checked, two bytes in hexadecimal
1275
1276 **AC1_LIMIT_HIGH **: higher limit of the current to be checked, two bytes in hexadecimal
1277
1278 **AC2_LIMIT_HIGH **: lower limit of the current to be checked, two bytes in hexadecimal
1279
1280 **AC2_LIMIT_LOW** : higher limit of the current to be checked, two bytes in hexadecimal
1281 )))
1282 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1283 AA 01 **27** **10 3A** **98** 00 00 00 00
1284
1285 Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA. Set all values to zero for AC2 limits because we are only checking AC1 limits.
1286 )))
1287 |(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1288
1289 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
1290
1291
1292 Sets the current trigger based on the AV port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1293
1294 (% style="color:#037691" %)**AT Command**
1295
1296 (% border="2" style="width:500px" %)
1297 |(% style="width:104px" %)**Command**|(% style="width:387px" %)AT+AVLIM= AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1298 |(% style="width:104px" %)**Response**|(% style="width:387px" %)
1299 |(% style="width:104px" %)**Parameters**|(% style="width:387px" %)(((
1300 **AC1_LIMIT_LOW** : lower limit of the current to be checked
1301
1302 **AC1_LIMIT_HIGH **: higher limit of the current to be checked
1303
1304 **AC2_LIMIT_HIGH **: lower limit of the current to be checked
1305
1306 **AC2_LIMIT_LOW** : higher limit of the current to be checked
1307 )))
1308 |(% style="width:104px" %)**Example**|(% style="width:387px" %)(((
1309 AT+AVLIM=3000,6000,0,2000
1310
1311 Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V
1312 )))
1313 |(% style="width:104px" %)**Note**|(% style="width:387px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1314
1315 (% style="color:#037691" %)**Downlink Payload**
1316
1317 (% border="2" style="width:500px" %)
1318 |(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1319 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1320 **prefix **: AA 00 (hexadecimal)
1321
1322 **AV1_LIMIT_LOW** : lower limit of the voltage to be checked, two bytes in hexadecimal
1323
1324 **AV1_LIMIT_HIGH **: higher limit of the voltage to be checked, two bytes in hexadecimal
1325
1326 **AV2_LIMIT_HIGH **: lower limit of the voltage to be checked, two bytes in hexadecimal
1327
1328 **AV2_LIMIT_LOW** : higher limit of the voltage to be checked, two bytes in hexadecimal
1329 )))
1330 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1331 AA 00 **0B B8 17 70 00 00 07 D0**
1332
1333 Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V.
1334 )))
1335 |(% style="width:104px" %)**Note**|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1336
1337 ==== 3.4.2.11 Trigger – Set the minimum interval ====
1338
1339
1340 Sets the AV and AC trigger minimum interval. The device won't respond to a second trigger within this set time after the first trigger.
1341
1342 (% style="color:#037691" %)**AT Command**
1343
1344 (% border="2" style="width:500px" %)
1345 |(% style="width:113px" %)**Command**|(% style="width:385px" %)AT+ATDC=<time>
1346 |(% style="width:113px" %)**Response**|(% style="width:385px" %)
1347 |(% style="width:113px" %)**Parameters**|(% style="width:385px" %)(((
1348 **time** : in minutes
1349 )))
1350 |(% style="width:113px" %)**Example**|(% style="width:385px" %)(((
1351 AT+ATDC=5
1352
1353 The device won't respond to the second trigger within 5 minutes after the first trigger.
1354 )))
1355 |(% style="width:113px" %)Note|(% style="width:385px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1356
1357 (% style="color:#037691" %)**Downlink Payload**
1358
1359 (% border="2" style="width:500px" %)
1360 |(% style="width:112px" %)**Payload**|(% style="width:386px" %)<prefix><time>
1361 |(% style="width:112px" %)**Parameters**|(% style="width:386px" %)(((
1362 **prefix** : AC (hexadecimal)
1363
1364 **time **: in minutes (two bytes in hexadecimal)
1365 )))
1366 |(% style="width:112px" %)**Example**|(% style="width:386px" %)(((
1367 AC **00 05**
1368
1369 The device won't respond to the second trigger within 5 minutes after the first trigger.
1370 )))
1371 |(% style="width:112px" %)Note|(% style="width:386px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1372
1373 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1374
1375
1376 Controls the digital outputs DO1, DO2, and DO3
1377
1378 (% style="color:#037691" %)**AT Command**
1379
1380 There is no AT Command to control the Digital Output.
1381
1382
1383 (% style="color:#037691" %)**Downlink Payload**
1384
1385 (% border="2" style="width:500px" %)
1386 |(% style="width:115px" %)**Payload**|(% style="width:383px" %)<prefix><DO1><DO2><DO3>
1387 |(% style="width:115px" %)**Parameters**|(% style="width:383px" %)(((
1388 **prefix** : 02 (hexadecimal)
1389
1390 **DOI** : 01: Low,  00: High, 11: No action (1 byte in hex)
1391
1392 **DO2** : 01: Low,  00: High, 11: No action (1 byte in hex)
1393
1394 **DO3 **: 01: Low,  00: High, 11: No action (1 byte in hex)
1395 )))
1396 |(% style="width:115px" %)**Examples**|(% style="width:383px" %)(((
1397 02 **01 00 01**
1398
1399 If there is a load between V+ and DOx, it means DO1 is set to low, DO2 is set to high, and DO3 is set to low.
1400
1401 **More examples:**
1402
1403 (((
1404 01: Low,  00: High,  11: No action
1405
1406 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:383px" %)
1407 |(% style="background-color:#4f81bd; color:white; width:126px" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white; width:85px" %)**DO1**|(% style="background-color:#4f81bd; color:white; width:86px" %)**DO2**|(% style="background-color:#4f81bd; color:white; width:86px" %)**DO3**
1408 |(% style="width:126px" %)02  01  00  11|(% style="width:85px" %)Low|(% style="width:86px" %)High|(% style="width:86px" %)No Action
1409 |(% style="width:126px" %)02  00  11  01|(% style="width:85px" %)High|(% style="width:86px" %)No Action|(% style="width:86px" %)Low
1410 |(% style="width:126px" %)02  11  01  00|(% style="width:85px" %)No Action|(% style="width:86px" %)Low|(% style="width:86px" %)High
1411 )))
1412
1413 (((
1414 (((
1415 (% style="color:red" %)**Note: For the LT-22222-L, there is no DO3; the last byte can have any value.**
1416 )))
1417
1418 (((
1419 (% style="color:red" %)**The device will upload a packet if downlink code executes successfully.**
1420 )))
1421 )))
1422 )))
1423
1424 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1425
1426
1427 (% style="color:#037691" %)**AT command**
1428
1429 There is no AT command to control the digital output.
1430
1431
1432 (% style="color:#037691" %)**Downlink payload**
1433
1434
1435 (% border="2" style="width:500px" %)
1436 |(% style="width:116px" %)**Prefix**|(% style="width:382px" %)0xA9
1437 |(% style="width:116px" %)**Parameters**|(% style="width:382px" %)(((
1438 **inverter_mode**: 1 byte in hex.
1439
1440 **01:** DO pins revert to their original state after the timeout.
1441 **00:** DO pins switch to an inverted state after the timeout.
1442
1443
1444 **DO1_control_method_and_port_status **- 1 byte in hex
1445
1446 0x01 : DO1 set to low
1447
1448 0x00 : DO1 set to high
1449
1450 0x11 : DO1 NO action
1451
1452
1453 **DO2_control_method_and_port_status** - 1 byte in hex
1454
1455 0x01 : DO2 set to low
1456
1457 0x00 : DO2 set to high
1458
1459 0x11 : DO2 NO action
1460
1461
1462 **DO3_control_method_and_port_status **- 1 byte in hex
1463
1464 0x01 : DO3 set to low
1465
1466 0x00 : DO3 set to high
1467
1468 0x11 : DO3 NO action
1469
1470
1471 **latching_time** : 4 bytes in hex
1472
1473 (% style="color:red" %)**Note: **
1474
1475 Since firmware v1.6.0, the latch time supports 4 bytes or 2 bytes
1476
1477 Before firmware v1.6.0, the latch time only supported 2 bytes.
1478
1479 (% style="color:red" %)**The device will uplink a packet if the downlink code executes successfully.**
1480 )))
1481 |(% style="width:116px" %)**Payload format**|(% style="width:382px" %)<prefix><inverter_mode><DO1_control_method_and_port_status><DO2_control_method_and_port_status><DO2_control_method_and_port_status><latching_time>
1482 |(% style="width:116px" %)**Example**|(% style="width:382px" %)(((
1483 **A9 01 01 01 01 07 D0**
1484
1485 DO1 pin, DO2 pin, and DO3 pin will be set to low, last for 2 seconds, and then revert to their original state.
1486
1487
1488 **A9 01 00 01 11 07 D0**
1489
1490 DO1 pin is set to high, DO2 pin is set to low, and DO3 pin takes no action. This lasts for 2 seconds and then reverts to the original state.
1491
1492
1493 **A9 00 00 00 00 07 D0**
1494
1495 DO1 pin, DO2 pin, and DO3 pin will be set to high, last for 2 seconds, and then all change to low.
1496
1497
1498 **A9 00 11 01 00 07 D0**
1499
1500 DO1 pin takes no action, DO2 pin is set to low, and DO3 pin is set to high. This lasts for 2 seconds, after which the DO1 pin takes no action, the DO2 pin is set to high, and the DO3 pin is set to low.
1501 )))
1502
1503 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1504
1505
1506 (% style="color:#037691" %)**AT Command:**
1507
1508 There is no AT Command to control the Relay Output.
1509
1510
1511 (% style="color:#037691" %)**Downlink Payload**
1512
1513 (% border="2" style="width:500px" %)
1514 |(% style="width:113px" %)**Prefix**|(% style="width:384px" %)0x03
1515 |(% style="width:113px" %)**Parameters**|(% style="width:384px" %)(((
1516 **RO1_status** : 1 byte in hex
1517
1518 00: Close
1519
1520 01: Open
1521
1522 11: No action
1523
1524
1525 **RO2_status** : 1 byte in hex
1526
1527 00: Close
1528
1529 01: Open
1530
1531 11: No action
1532 )))
1533 |(% style="width:113px" %)**Payload format**|(% style="width:384px" %)<prefix><RO1_status><RO2_status>
1534 |(% style="width:113px" %)**Example**|(% style="width:384px" %)(((
1535 (% border="2" %)
1536 |=Payload|=RO1|=RO2
1537 |03  00  11|Open|No action
1538 |03  01  11|Close|No action
1539 |03 11  00|No action|Open
1540 |03 11 10|No action|Close
1541 |03 00 00|Open|Open
1542 |03 01 01|Close|Close
1543 |03 01 00|Close|Open
1544 |03 00 01|Open|Close
1545
1546 (% style="color:red" %)**The device will transmit an uplink packet if the downlink payload is executed successfully.**
1547 )))
1548
1549 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1550
1551
1552 Controls the relay output time.
1553
1554
1555 (% style="color:#037691" %)**AT Command:**
1556
1557 There is no AT Command to control the Relay Output
1558
1559
1560 (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1561
1562 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Sets RO1/RO2 relays with time control
1563
1564
1565 This controls the relay output time and includes 4 bytes:
1566
1567 (% style="color:#4f81bd" %)**First byte **(%%)**:** Type code (0x05)
1568
1569 (% style="color:#4f81bd" %)**Second byte (aa)**(%%): Inverter Mode
1570
1571 01: Relays will change back to their original state after a timeout.
1572
1573 00: Relays will change to the inverter state after a timeout.
1574
1575
1576 (% style="color:#4f81bd" %)**Third byte (bb)**(%%): Control Method and Ports status:
1577
1578 [[image:image-20221008095908-1.png||height="364" width="564"]]
1579
1580
1581 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh bytes (cc)**(%%): Latching time. Unit: ms
1582
1583
1584 (% style="color:red" %)**Note:**
1585
1586 Since firmware v1.6.0, the latch time supports both 4 bytes and 2 bytes.
1587
1588 Before firmware v1.6.0, the latch time only supported 2 bytes.
1589
1590
1591 (% style="color:red" %)**The device will uplink a packet if the downlink code executes successfully.**
1592
1593
1594 **Example payload:**
1595
1596 **~1. 05 01 11 07 D0**
1597
1598 Relay1 and Relay2 will be set to NC, lasting 2 seconds, then revert to their original state
1599
1600 **2. 05 01 10 07 D0**
1601
1602 Relay1 will change to NC, Relay2 will change to NO, lasting 2 seconds, and then both will revert to their original state.
1603
1604 **3. 05 00 01 07 D0**
1605
1606 Relay1 will change to NO, Relay2 will change to NC, lasting 2 seconds, then Relay1 will change to NC, and Relay2 will change to NO.
1607
1608 **4. 05 00 00 07 D0**
1609
1610 Relay1 and Relay2 will change to NO, lasting 2 seconds, then both will change to NC.
1611
1612
1613
1614 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1615
1616
1617 When the voltage exceeds the threshold, counting begins. For details, see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1618
1619 (% style="color:#037691" %)**AT Command**
1620
1621 (% border="2" style="width:500px" %)
1622 |(% style="width:137px" %)**Command**|(% style="width:361px" %)AT+VOLMAX=<voltage>,<logic>
1623 |(% style="width:137px" %)**Response**|(% style="width:361px" %)
1624 |(% style="width:137px" %)**Parameters**|(% style="width:361px" %)(((
1625 **voltage** : voltage threshold in mV
1626
1627 **logic**:
1628
1629 **0** : lower than
1630
1631 **1**: higher than
1632
1633 if you leave the logic parameter blank, it is considered 0
1634 )))
1635 |(% style="width:137px" %)**Examples**|(% style="width:361px" %)(((
1636 AT+VOLMAX=20000
1637
1638 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1639
1640 AT+VOLMAX=20000,0
1641
1642 If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1643
1644 AT+VOLMAX=20000,1
1645
1646 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1647 )))
1648
1649 (% style="color:#037691" %)**Downlink Payload**
1650
1651 (% border="2" style="width:500px" %)
1652 |(% style="width:140px" %)**Payload**|(% style="width:358px" %)<prefix><voltage><logic>
1653 |(% style="width:140px" %)**Parameters**|(% style="width:358px" %)(((
1654 **prefix** : A5 (hex)
1655
1656 **voltage** : voltage threshold in mV (2 bytes in hex)
1657
1658 **logic**: (1 byte in hexadecimal)
1659
1660 **0** : lower than
1661
1662 **1**: higher than
1663
1664 if you leave the logic parameter blank, it is considered 1 (higher than)
1665 )))
1666 |(% style="width:140px" %)**Example**|(% style="width:358px" %)(((
1667 A5 **4E 20**
1668
1669 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1670
1671 A5 **4E 20 00**
1672
1673 If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1674
1675 A5 **4E 20 01**
1676
1677 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1678 )))
1679
1680 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1681
1682 This command allows users to pre-configure specific count numbers for various counting parameters such as Count1, Count2, or AVI1 Count. Use the AT command to set the desired count number for each configuration.
1683
1684 (% style="color:#037691" %)**AT Command**
1685
1686 (% border="2" style="width:500px" %)
1687 |(% style="width:134px" %)**Command**|(% style="width:364px" %)AT+SETCNT=<counting_parameter>,<number>
1688 |(% style="width:134px" %)**Response**|(% style="width:364px" %)
1689 |(% style="width:134px" %)**Parameters**|(% style="width:364px" %)(((
1690 **counting_parameter** :
1691
1692 1: COUNT1
1693
1694 2: COUNT2
1695
1696 3: AVI1 Count
1697
1698 **number** : Start number
1699 )))
1700 |(% style="width:134px" %)**Example**|(% style="width:364px" %)(((
1701 AT+SETCNT=1,10
1702
1703 Sets the COUNT1 to 10.
1704 )))
1705
1706 (% style="color:#037691" %)**Downlink Payload**
1707
1708 (% border="2" style="width:500px" %)
1709 |(% style="width:135px" %)**Payload**|(% style="width:363px" %)<prefix><counting_parameter><number>
1710 |(% style="width:135px" %)**Parameters**|(% style="width:363px" %)(((
1711 prefix : A8 (hex)
1712
1713 **counting_parameter** : (1 byte in hexadecimal)
1714
1715 1: COUNT1
1716
1717 2: COUNT2
1718
1719 3: AVI1 Count
1720
1721 **number** : Start number, 4 bytes in hexadecimal
1722 )))
1723 |(% style="width:135px" %)**Example**|(% style="width:363px" %)(((
1724 A8 **01 00 00 00 0A**
1725
1726 Sets the COUNT1 to 10.
1727 )))
1728
1729 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1730
1731 This command clears the counting in counting mode.
1732
1733 (% style="color:#037691" %)**AT Command**
1734
1735 (% border="2" style="width:500px" %)
1736 |(% style="width:142px" %)**Command**|(% style="width:356px" %)AT+CLRCOUNT
1737 |(% style="width:142px" %)**Response**|(% style="width:356px" %)-
1738
1739 (% style="color:#037691" %)**Downlink Payload**
1740
1741 (% border="2" style="width:500px" %)
1742 |(% style="width:141px" %)**Payload**|(% style="width:357px" %)<prefix><clear?>
1743 |(% style="width:141px" %)**Parameters**|(% style="width:357px" %)(((
1744 prefix : A6 (hex)
1745
1746 clear? : 01 (hex)
1747 )))
1748 |(% style="width:141px" %)**Example**|(% style="width:357px" %)A6 **01**
1749
1750 ==== 3.4.2.19 Counting ~-~- Set Saving Interval for 'Counting Result' ====
1751
1752
1753 This command allows you to configure the device to save its counting result to internal flash memory at specified intervals. By setting a save time, the device will periodically store the counting data to prevent loss in case of power failure. The save interval can be adjusted to suit your requirements, with a minimum value of 30 seconds.
1754
1755 (% style="color:#037691" %)**AT Command**
1756
1757 (% border="2" style="width:500px" %)
1758 |(% style="width:124px" %)**Command**|(% style="width:374px" %)AT+COUTIME=<time>
1759 |(% style="width:124px" %)**Response**|(% style="width:374px" %)
1760 |(% style="width:124px" %)**Parameters**|(% style="width:374px" %)time : seconds (0 to 16777215)
1761 |(% style="width:124px" %)**Example**|(% style="width:374px" %)(((
1762 AT+COUTIME=60
1763
1764 Sets the device to save its counting results to the memory every 60 seconds.
1765 )))
1766
1767 (% style="color:#037691" %)**Downlink Payload**
1768
1769 (% border="2" style="width:500px" %)
1770 |(% style="width:123px" %)**Payload**|(% style="width:375px" %)<prefix><time>
1771 |(% style="width:123px" %)**Parameters**|(% style="width:375px" %)(((
1772 prefix : A7
1773
1774 time : seconds, 3 bytes in hexadecimal
1775 )))
1776 |(% style="width:123px" %)**Example**|(% style="width:375px" %)(((
1777 A7 **00 00 3C**
1778
1779 Sets the device to save its counting results to the memory every 60 seconds.
1780 )))
1781
1782 ==== 3.4.2.20 Reset saved RO and DO states ====
1783
1784
1785 This command allows you to reset the saved relay output (RO) and digital output (DO) states when the device joins the network. By configuring this setting, you can control whether the device should retain or reset the relay states after a reset and rejoin to the network.
1786
1787 (% style="color:#037691" %)**AT Command**
1788
1789 (% border="2" style="width:500px" %)
1790 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+RODORESET=<state>
1791 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1792 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1793 **state** :
1794
1795 **0** : RODO will close when the device joins the network. (default)
1796
1797 **1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1798 )))
1799 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1800 (% style="color:blue" %)**AT+RODORESET=1 **
1801
1802 RODO will close when the device joins the network. (default)
1803
1804 (% style="color:blue" %)**AT+RODORESET=0 **
1805
1806 After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1807 )))
1808
1809 (% style="color:#037691" %)**Downlink Payload**
1810
1811 (% border="2" style="width:500px" %)
1812 |(% style="width:127px" %)**Payload**|(% style="width:371px" %)<prefix><state>
1813 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1814 **prefix** : AD
1815
1816 **state** :
1817
1818 **0** : RODO will close when the device joins the network. (default), represents as 1 byte in hexadecimal.
1819
1820 **1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network. - represents as 1 byte in hexadecimal
1821 )))
1822 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1823 AD **01**
1824
1825 RODO will close when the device joins the network. (default)
1826
1827 AD **00**
1828
1829 After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1830 )))
1831
1832 ==== 3.4.2.21 Encrypted payload ====
1833
1834
1835 This command allows you to configure whether the device should upload data in an encrypted format or in plaintext. By default, the device encrypts the payload before uploading. You can toggle this setting to either upload encrypted data or transmit it without encryption.
1836
1837 (% style="color:#037691" %)**AT Command:**
1838
1839 (% border="2" style="width:500px" %)
1840 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DECRYPT=<state>
1841 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1842 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1843 **state** :
1844
1845 **1** : The payload is uploaded without encryption
1846
1847 **0** : The payload is encrypted when uploaded (default)
1848 )))
1849 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1850 AT+DECRYPT=1
1851
1852 The payload is uploaded without encryption
1853
1854 AT+DECRYPT=0
1855
1856 The payload is encrypted when uploaded (default)
1857 )))
1858
1859 There is no downlink payload for this configuration.
1860
1861
1862 ==== 3.4.2.22 Get sensor value ====
1863
1864
1865 This command allows you to retrieve and optionally uplink sensor readings through the serial port.
1866
1867 (% style="color:#037691" %)**AT Command**
1868
1869 (% border="2" style="width:500px" %)
1870 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+GETSENSORVALUE=<state>
1871 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1872 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1873 **state** :
1874
1875 **0 **: Retrieves the current sensor reading via the serial port.
1876
1877 **1 **: Retrieves and uploads the current sensor reading via the serial port.
1878 )))
1879 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1880 AT+GETSENSORVALUE=0
1881
1882 Retrieves the current sensor reading via the serial port.
1883
1884 AT+GETSENSORVALUE=1
1885
1886 Retrieves and uplinks the current sensor reading via the serial port.
1887 )))
1888
1889 There is no downlink payload for this configuration.
1890
1891
1892 ==== 3.4.2.23 Resetting the downlink packet count ====
1893
1894
1895 This command manages how the node handles mismatched downlink packet counts. It offers two modes: one disables the reception of further downlink packets if discrepancies occur, while the other resets the downlink packet count to align with the server, ensuring continued communication.
1896
1897 (% style="color:#037691" %)**AT Command**
1898
1899 (% border="2" style="width:500px" %)
1900 |(% style="width:130px" %)**Command**|(% style="width:368px" %)AT+DISFCNTCHECK=<state>
1901 |(% style="width:130px" %)**Response**|(% style="width:368px" %)(((
1902
1903 )))
1904 |(% style="width:130px" %)**Parameters**|(% style="width:368px" %)(((
1905 **state **:
1906
1907 **0** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default).
1908
1909
1910 **1** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency.
1911 )))
1912 |(% style="width:130px" %)**Example**|(% style="width:368px" %)(((
1913 AT+DISFCNTCHECK=0
1914
1915 When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default).
1916
1917 AT+DISFCNTCHECK=1
1918
1919 When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency.
1920 )))
1921
1922 There is no downlink payload for this configuration.
1923
1924
1925 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1926
1927
1928 This command controls the behavior of the node when the combined size of the MAC commands (MACANS) from the server and the payload exceed the allowed byte limit for the current data rate (DR). The command provides two modes: one enables splitting the data into batches to ensure compliance with the byte limit, while the other prioritizes the payload and ignores the MACANS in cases of overflow.
1929
1930 (% style="color:#037691" %)**AT Command**
1931
1932 (% border="2" style="width:500px" %)
1933 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DISMACANS=<state>
1934 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1935 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1936 **state** :
1937
1938 **0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1939
1940 **1** : When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1941 )))
1942 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1943 AT+DISMACANS=0
1944
1945 When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1946
1947 AT+DISMACANS=1
1948
1949 When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1950 )))
1951
1952 (% style="color:#037691" %)**Downlink Payload**
1953
1954 (% border="2" style="width:500px" %)
1955 |(% style="width:126px" %)**Payload**|(% style="width:372px" %)<prefix><state>
1956 |(% style="width:126px" %)**Parameters**|(% style="width:372px" %)(((
1957 **prefix** : 21
1958
1959 **state** : (2 bytes in hexadecimal)
1960
1961 **0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1962
1963 **1 **: When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1964 )))
1965 |(% style="width:126px" %)**Example**|(% style="width:372px" %)(((
1966 21 **00 01**
1967
1968 Set DISMACANS=1
1969 )))
1970
1971 ==== 3.4.2.25 Copy downlink to uplink ====
1972
1973
1974 This command enables the device to immediately uplink the payload of a received downlink packet back to the server. The command allows for quick data replication from downlink to uplink, with a fixed port number of 100.
1975
1976 (% style="color:#037691" %)**AT Command**(%%)**:**
1977
1978 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving a downlink payload from the server, the device will immediately uplink the payload back to the server using port number 100.
1979
1980 Example:**aa xx xx xx xx**         ~/~/ **aa** indicates whether the configuration has changed: **00** means YES, and **01** means NO. **xx xx xx xx** are the bytes uplinked back.
1981
1982
1983 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1984
1985 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1986
1987 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1988
1989 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1990
1991
1992 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1993
1994 There is no downlink option available for this feature.
1995
1996
1997 ==== 3.4.2.26 Query firmware version, frequency band, subband, and TDC time ====
1998
1999
2000 This command is used to query key information about the device, including its firmware version, frequency band, subband, and TDC time. By sending the specified payload as a downlink, the server can retrieve this essential data from the device.
2001
2002 * (((
2003 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
2004
2005 (% style="color:blue" %)**26 01  ** (%%) ~/~/  The downlink payload 26 01 is used to query the device's firmware version, frequency band, subband, and TDC time.
2006
2007
2008
2009 )))
2010
2011 **Example:**
2012
2013 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
2014
2015
2016 == 3.5 Integrating with ThingsEye.io ==
2017
2018
2019 The Things Stack application supports integration with ThingsEye.io. Once integrated, ThingsEye.io acts as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
2020
2021
2022 === 3.5.1 Configuring The Things Stack ===
2023
2024
2025 We use The Things Stack Sandbox in this example:
2026
2027 * In **The Things Stack Sandbox**, go to the **Application **for the LT-22222-L you added.
2028 * Select **MQTT** under **Integrations** in the left menu.
2029 * In the **Connection information **section, under **Connection credentials**, The Things Stack displays an auto-generated **username**. You can use it or provide a new one.
2030 * Click the **Generate new API key** button to generate a password. You can view it by clicking on the **visibility toggle/eye** icon. The API key works as the password.
2031
2032 {{info}}
2033 The username and  password (API key) you created here are required in the next section.
2034 {{/info}}
2035
2036 [[image:tts-mqtt-integration.png]]
2037
2038
2039 === 3.5.2 Configuring ThingsEye.io ===
2040
2041
2042 The ThingsEye.io IoT platform is not open for self-registration at the moment. If you are interested in testing the platform, please send your project information to admin@thingseye.io, and we will create an account for you.
2043
2044 * Login to your [[ThingsEye.io >>https://thingseye.io]]account.
2045 * Under the **Integrations center**, click **Integrations**.
2046 * Click the **Add integration** button (the button with the **+** symbol).
2047
2048 [[image:thingseye-io-step-1.png]]
2049
2050
2051 On the **Add integration** window, configure the following:
2052
2053 **Basic settings:**
2054
2055 * Select **The Things Stack Community** from the **Integration type** list.
2056 * Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
2057 * Ensure the following options are turned on.
2058 ** Enable integration
2059 ** Debug mode
2060 ** Allow creating devices or assets
2061 * Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
2062
2063 [[image:thingseye-io-step-2.png]]
2064
2065
2066 **Uplink data converter:**
2067
2068 * Click the **Create new** button if it is not selected by default.
2069 * Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
2070 * Click the **JavaScript** button.
2071 * Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
2072 * Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
2073
2074 [[image:thingseye-io-step-3.png]]
2075
2076
2077 **Downlink data converter (this is an optional step):**
2078
2079 * Click the **Create new** button if it is not selected by default.
2080 * Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name.
2081 * Click the **JavaScript** button.
2082 * Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Downlink_Converter.js]].
2083 * Click the **Next** button. You will be navigated to the **Connection** tab.
2084
2085 [[image:thingseye-io-step-4.png]]
2086
2087
2088 **Connection:**
2089
2090 * Choose **Region** from the **Host type**.
2091 * Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
2092 * Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The **username **and **password **can be found on the MQTT integration page of your The Things Stack account (see **3.5.1 Configuring The Things Stack**).
2093 * Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
2094
2095 [[image:message-1.png]]
2096
2097
2098 * Click the **Add** button.
2099
2100 [[image:thingseye-io-step-5.png]]
2101
2102
2103 Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings and correct any errors.
2104
2105
2106 [[image:thingseye.io_integrationsCenter_integrations.png]]
2107
2108
2109 ==== 3.5.2.1 Viewing integration details ====
2110
2111
2112 Click on your integration from the list. The **Integration details** window will appear with the **Details **tab selected. The **Details **tab shows all the settings you have provided for this integration.
2113
2114 [[image:integration-details.png]]
2115
2116
2117 If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
2118
2119 {{info}}
2120 See also [[ThingsEye documentation>>https://wiki.thingseye.io/xwiki/bin/view/Main/]].
2121 {{/info}}
2122
2123
2124 ==== 3.5.2.2 Viewing events ====
2125
2126
2127 The **Events **tab displays all the uplink messages from the LT-22222-L.
2128
2129 * Select **Debug **from the **Event type** dropdown.
2130 * Select the** time frame** from the **time window**.
2131
2132 [[image:thingseye-events.png]]
2133
2134
2135 * To view the **JSON payload** of a message, click on the **three dots (...)** in the **Message** column of the desired message.
2136
2137 [[image:thingseye-json.png]]
2138
2139
2140 ==== 3.5.2.3 Deleting an integration ====
2141
2142
2143 If you want to delete an integration, click the **Delete integratio**n button on the Integrations page.
2144
2145
2146 ==== 3.5.2.4 Viewing sensor data on a dashboard ====
2147
2148
2149 You can create a dashboard with ThingsEye to visualize the sensor data coming from the LT-22222-L. The following image shows a dashboard created for the LT-22222-L. See **Creating a dashboard** in ThingsEye documentation for more information.
2150
2151
2152
2153 [[image:lt-22222-l-dashboard.png]]
2154
2155
2156 == 3.6 Interface Details ==
2157
2158 === 3.6.1 Digital Input Ports: DI1/DI2/DI3 (For LT-33222-L, Low Active) ===
2159
2160
2161 Supports** NPN-type **sensors.
2162
2163 [[image:1653356991268-289.png]]
2164
2165
2166 === 3.6.2 Digital Input Ports: DI1/DI2 ===
2167
2168
2169 (((
2170 The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
2171 )))
2172
2173 (((
2174 (((
2175 The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
2176
2177
2178 )))
2179 )))
2180
2181 [[image:1653357170703-587.png]]
2182
2183 (((
2184 (((
2185 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
2186 )))
2187 )))
2188
2189 (((
2190
2191 )))
2192
2193 (((
2194 (% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
2195 )))
2196
2197 (((
2198 This type of sensor outputs a low (GND) signal when active.
2199 )))
2200
2201 * (((
2202 Connect the sensor's output to DI1-
2203 )))
2204 * (((
2205 Connect the sensor's VCC to DI1+.
2206 )))
2207
2208 (((
2209 When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be:
2210 )))
2211
2212 (((
2213 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
2214 )))
2215
2216 (((
2217 For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
2218 )))
2219
2220 (((
2221
2222 )))
2223
2224 (((
2225 (% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
2226 )))
2227
2228 (((
2229 This type of sensor outputs a high signal (e.g., 24V) when active.
2230 )))
2231
2232 * (((
2233 Connect the sensor's output to DI1+
2234 )))
2235 * (((
2236 Connect the sensor's GND DI1-.
2237 )))
2238
2239 (((
2240 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
2241 )))
2242
2243 (((
2244 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
2245 )))
2246
2247 (((
2248 If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
2249 )))
2250
2251 (((
2252
2253 )))
2254
2255 (((
2256 (% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
2257 )))
2258
2259 (((
2260 Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
2261 )))
2262
2263 * (((
2264 Connect the sensor's output to DI1+ with a 50K resistor in series.
2265 )))
2266 * (((
2267 Connect the sensor's GND DI1-.
2268 )))
2269
2270 (((
2271 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
2272 )))
2273
2274 (((
2275 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
2276 )))
2277
2278 (((
2279 If the sensor output is 220V, then [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
2280 )))
2281
2282
2283 (% style="color:blue" %)**Example 4**(%%): Connecting to a Dry Contact sensor
2284
2285 From the DI port circuit above, activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference on its own.
2286
2287 To detect a Dry Contact, you can supply a power source to one of the pins of the Dry Contact. A reference circuit diagram is shown below.
2288
2289 [[image:image-20230616235145-1.png]]
2290
2291 (% style="color:blue" %)**Example 5**(%%): Connecting to an Open Collector
2292
2293 [[image:image-20240219115718-1.png]]
2294
2295
2296 === 3.6.3 Digital Output Ports: DO1/DO2 ===
2297
2298
2299 (% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
2300
2301 (% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
2302
2303 [[image:1653357531600-905.png]]
2304
2305
2306 === 3.6.4 Analog Input Interfaces ===
2307
2308
2309 The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
2310
2311
2312 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
2313
2314 [[image:1653357592296-182.png]]
2315
2316 Example: Connecting a 4~~20mA sensor
2317
2318 We will use the wind speed sensor as an example for reference only.
2319
2320
2321 (% style="color:blue" %)**Specifications of the wind speed sensor:**
2322
2323 (% style="color:red" %)**Red:  12~~24V**
2324
2325 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
2326
2327 **Black:  GND**
2328
2329 **Connection diagram:**
2330
2331 [[image:1653357640609-758.png]]
2332
2333 [[image:1653357648330-671.png||height="155" width="733"]]
2334
2335
2336 Example: Connecting to a regulated power supply to measure voltage
2337
2338 [[image:image-20230608101532-1.png||height="606" width="447"]]
2339
2340 [[image:image-20230608101608-2.jpeg||height="379" width="284"]]
2341
2342 [[image:image-20230608101722-3.png||height="102" width="1139"]]
2343
2344
2345 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
2346
2347 (% style="color:red" %)**Red:  12~~24v**
2348
2349 **Black:  GND**
2350
2351
2352 === 3.6.5 Relay Output ===
2353
2354
2355 (((
2356 The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
2357
2358 **Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
2359 )))
2360
2361 [[image:image-20220524100215-9.png]]
2362
2363
2364 [[image:image-20220524100215-10.png||height="382" width="723"]]
2365
2366
2367 == 3.7 LED Indicators ==
2368
2369
2370 The table below lists the behaviour of LED indicators for each port function.
2371
2372 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
2373 |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
2374 |**PWR**|Always on when there is power
2375 |**TX**|(((
2376 (((
2377 Device booting: TX blinks 5 times.
2378 )))
2379
2380 (((
2381 Successful network joins: TX remains ON for 5 seconds.
2382 )))
2383
2384 (((
2385 Transmit a LoRa packet: TX blinks once
2386 )))
2387 )))
2388 |**RX**|RX blinks once when a packet is received.
2389 |**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
2390 |**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
2391 |**DI1**|(((
2392 For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
2393 )))
2394 |**DI2**|(((
2395 For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
2396 )))
2397 |**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
2398 |**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
2399
2400 = 4. Using AT Commands =
2401
2402
2403 The LT-22222-L supports programming using AT Commands.
2404
2405
2406 == 4.1 Connecting the LT-22222-L to a PC ==
2407
2408
2409 (((
2410 You can use a USB-to-TTL adapter/converter along with a 3.5mm Program Cable to connect the LT-22222-L to a PC, as shown below.
2411
2412 [[image:usb-ttl-audio-jack-connection.jpg]]
2413
2414
2415 )))
2416
2417
2418 (((
2419 On the PC, you need to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate of (% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-L. Access to AT commands is disabled by default, and a password (default: (% style="color:green" %)**123456**)(%%) must be entered to enable AT command access, as shown below:
2420 )))
2421
2422 [[image:1653358355238-883.png]]
2423
2424
2425 (((
2426 You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
2427
2428
2429 == 4.2 LT-22222-L related AT commands ==
2430
2431
2432 )))
2433
2434 (((
2435 The following is the list of all the AT commands related to the LT-22222-L, except for those used for switching between working modes.
2436
2437 * **##AT##+<CMD>?** : Help on <CMD>
2438 * **##AT##+<CMD>** : Run <CMD>
2439 * **##AT##+<CMD>=<value>** : Set the value
2440 * **##AT##+<CMD>=?** : Get the value
2441 * ##**ATZ**##: Trigger a reset of the MCU
2442 * ##**AT+FDR**##: Reset Parameters to factory default, reserve keys 
2443 * **##AT+DEUI##**: Get or set the Device EUI (DevEUI)
2444 * **##AT+DADDR##**: Get or set the Device Address (DevAddr)
2445 * **##AT+APPKEY##**: Get or set the Application Key (AppKey)
2446 * ##**AT+NWKSKEY**##: Get or set the Network Session Key (NwkSKey)
2447 * **##AT+APPSKEY##**: Get or set the Application Session Key (AppSKey)
2448 * **##AT+APPEUI##**: Get or set the Application EUI (AppEUI)
2449 * **##AT+ADR##**: Get or set the Adaptive Data Rate setting. (0: OFF, 1: ON)
2450 * ##**AT+TXP**##: Get or set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Specification)
2451 * **##AT+DR##**:  Get or set the Data Rate. (0-7 corresponding to DR_X)  
2452 * **##AT+DCS##**: Get or set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
2453 * ##**AT+PNM**##: Get or set the public network mode. (0: off, 1: on)
2454 * ##**AT+RX2FQ**##: Get or set the Rx2 window frequency
2455 * ##**AT+RX2DR**##: Get or set the Rx2 window data rate (0-7 corresponding to DR_X)
2456 * ##**AT+RX1DL**##: Get or set the delay between the end of the Tx and the Rx Window 1 in ms
2457 * ##**AT+RX2DL**##: Get or set the delay between the end of the Tx and the Rx Window 2 in ms
2458 * ##**AT+JN1DL**##: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
2459 * ##**AT+JN2DL**##: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
2460 * ##**AT+NJM**##: Get or set the Network Join Mode. (0: ABP, 1: OTAA)
2461 * ##**AT+NWKID**##: Get or set the Network ID
2462 * ##**AT+FCU**##: Get or set the Frame Counter Uplink (FCntUp)
2463 * ##**AT+FCD**##: Get or set the Frame Counter Downlink (FCntDown)
2464 * ##**AT+CLASS**##: Get or set the Device Class
2465 * ##**AT+JOIN**##: Join Network
2466 * ##**AT+NJS**##: Get OTAA Join Status
2467 * ##**AT+SENDB**##: Send hexadecimal data along with the application port
2468 * ##**AT+SEND**##: Send text data along with the application port
2469 * ##**AT+RECVB**##: Print the last received data in binary format (with hexadecimal values)
2470 * ##**AT+RECV**##: Print the last received data in raw format
2471 * ##**AT+VER**##: Get the current image version and Frequency Band
2472 * ##**AT+CFM**##: Get or Set the confirmation mode (0-1)
2473 * ##**AT+CFS**##: Get confirmation status of the last AT+SEND (0-1)
2474 * ##**AT+SNR**##: Get the SNR of the last received packet
2475 * ##**AT+RSSI**##: Get the RSSI of the last received packet
2476 * ##**AT+TDC**##: Get or set the application data transmission interval in ms
2477 * ##**AT+PORT**##: Get or set the application port
2478 * ##**AT+DISAT**##: Disable AT commands
2479 * ##**AT+PWORD**##: Set password, max 9 digits
2480 * ##**AT+CHS**##: Get or set the Frequency (Unit: Hz) for Single Channel Mode
2481 * ##**AT+CHE**##: Get or set eight channels mode, Only for US915, AU915, CN470
2482 * ##**AT+CFG**##: Print all settings
2483 )))
2484
2485
2486 == 4.2 Common AT Command Sequence ==
2487
2488 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
2489
2490 (((
2491
2492
2493 (((
2494 (% style="color:blue" %)**If the device has not yet joined the network:**
2495 )))
2496 )))
2497
2498 (((
2499 (% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT command access**##
2500 )))
2501
2502 (((
2503 (% style="background-color:#dcdcdc" %)##**AT+FDR ~/~/Reset parameters to factory default, Reserve keys**##
2504 )))
2505
2506 (((
2507 (% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT command access**##
2508 )))
2509
2510 (((
2511 (% style="background-color:#dcdcdc" %)##**AT+NJM=0 ~/~/Set to ABP mode**##
2512 )))
2513
2514 (((
2515 (% style="background-color:#dcdcdc" %)##**ATZ ~/~/Reset MCU**##
2516 )))
2517
2518
2519 (((
2520 (% style="color:blue" %)**If the device has already joined the network:**
2521 )))
2522
2523 (((
2524 (% style="background-color:#dcdcdc" %)##**AT+NJM=0**##
2525 )))
2526
2527 (((
2528 (% style="background-color:#dcdcdc" %)##**ATZ**##
2529 )))
2530
2531
2532 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
2533
2534 (((
2535
2536
2537 (((
2538 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter the password to enable AT commands access
2539 )))
2540 )))
2541
2542 (((
2543 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset parameters to Factory Default, Reserve keys
2544 )))
2545
2546 (((
2547 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter the password to enable AT command access
2548 )))
2549
2550 (((
2551 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to CLASS C mode
2552 )))
2553
2554 (((
2555 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
2556 )))
2557
2558 (((
2559 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
2560 )))
2561
2562 (((
2563 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
2564 )))
2565
2566 (((
2567 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
2568 )))
2569
2570 (((
2571 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4 MHz
2572 )))
2573
2574 (((
2575 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2 frequency to 868.4 MHz (according to the result from the server)
2576 )))
2577
2578 (((
2579 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2 DR to match the downlink DR from the server. See below.
2580 )))
2581
2582 (((
2583 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address. The Device Address can be found in the application on the LoRaWAN NS.
2584 )))
2585
2586 (((
2587 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
2588
2589
2590 )))
2591
2592 (((
2593 (% style="color:red" %)**Note:**
2594 )))
2595
2596 (((
2597 **~1. Ensure that the device is set to ABP mode in the LoRaWAN Network Server.**
2598
2599 **2. Verify that the LG01/02 gateway RX frequency matches the AT+CHS setting exactly.**
2600
2601 **3. Make sure the SF/bandwidth settings in the LG01/LG02 match the settings of AT+DR. Refer to [[this link>>url:http://www.dragino.com/downloads/index.php?
2602 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
2603
2604 **4. The commands AT+RX2FQ and AT+RX2DR enable downlink functionality. To set the correct parameters, you can check the actual downlink parameters to be used as shown below. Here, RX2FQ should be set to 868400000 and RX2DR should be set to 5.**
2605 )))
2606
2607 (((
2608 [[image:1653359097980-169.png||height="188" width="729"]]
2609 )))
2610
2611
2612 === 4.2.3 Change to Class A ===
2613
2614
2615 (((
2616 (% style="color:blue" %)**If the sensor has JOINED:**
2617
2618 (% style="background-color:#dcdcdc" %)**AT+CLASS=A**
2619
2620 (% style="background-color:#dcdcdc" %)**ATZ**
2621 )))
2622
2623
2624 = 5. Case Study =
2625
2626 == 5.1 Counting how many objects pass through the flow line ==
2627
2628
2629 See [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]].
2630
2631
2632 = 6. FAQ =
2633
2634
2635 This section contains some frequently asked questions, which can help you resolve common issues and find solutions quickly.
2636
2637
2638 == 6.1 How to update the firmware? ==
2639
2640
2641 Dragino frequently releases firmware updates for the LT-22222-L. Updating your LT-22222-L with the latest firmware version helps to:
2642
2643 * Support new features
2644 * Fix bugs
2645 * Change LoRaWAN frequency bands
2646
2647 You will need the following things before proceeding:
2648
2649 * 3.5mm programming cable (included with the LT-22222-L as an additional accessory)
2650 * USB to TTL adapter/converter
2651 * Download and install the [[STM32 Flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. (replaced by STM32CubeProgrammer)
2652 * Download the latest firmware image from [[LT-22222-L firmware image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. Check the file name of the firmware to find the correct region.
2653
2654 {{info}}
2655 As of this writing, the latest firmware version available for the LT-22222-L is v1.6.1.
2656 {{/info}}
2657
2658 Below is the hardware setup for uploading a firmware image to the LT-22222-L:
2659
2660 [[image:usb-ttl-audio-jack-connection.jpg]]
2661
2662
2663
2664 Start the STM32 Flash Loader and choose the correct COM port to update.
2665
2666 (((
2667 (((
2668 (% style="color:blue" %)**For LT-22222-L**(%%):
2669
2670 Hold down the **PRO** button, then briefly press the **RST** button. The **DO1** LED will change from OFF to ON. When the **DO1** LED is ON, it indicates that the device is in firmware download mode.
2671 )))
2672
2673
2674 )))
2675
2676 [[image:image-20220524103407-12.png]]
2677
2678
2679 [[image:image-20220524103429-13.png]]
2680
2681
2682 [[image:image-20220524104033-15.png]]
2683
2684
2685 (% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5 mm cable. The pin mapping is as follows:
2686
2687 [[image:1653360054704-518.png||height="186" width="745"]]
2688
2689
2690 (((
2691 (((
2692 == 6.2 How to change the LoRaWAN frequency band/region? ==
2693
2694
2695 )))
2696 )))
2697
2698 (((
2699 You can follow the introductions on [[how to upgrade the image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2700 )))
2701
2702 (((
2703
2704
2705 == 6.3 How to set up LT-22222-L to work with a Single Channel Gateway, such as LG01/LG02? ==
2706
2707
2708 )))
2709
2710 (((
2711 (((
2712 In this case, you need to set the LT-22222-L to work in ABP mode and transmit on only one frequency.
2713 )))
2714 )))
2715
2716 (((
2717 (((
2718 We assume you have an LG01/LG02 working on the frequency 868400000. Below are the steps.
2719
2720
2721 )))
2722 )))
2723
2724 (((
2725 (% style="color:#0000ff" %)**Step 1**(%%): Log in to The Things Stack Sandbox account and create an ABP device in the application. To do this, use the manual registration option as explained in section 3.2.2.2, //Adding a Device Manually//. Select //Activation by Personalization (ABP)// under Activation Mode. Enter the DevEUI exactly as shown on the registration information sticker, then generate the Device Address, Application Session Key (AppSKey), and Network Session Key (NwkSKey).
2726
2727 [[image:lt-22222-l-abp.png||height="686" width="1000"]]
2728 )))
2729
2730 (((
2731
2732 )))
2733
2734 {{warning}}
2735 Ensure that the Device Address (DevAddr) and the two keys match between the LT-22222-L and The Things Stack. You can modify them either in The Things Stack or on the LT-22222-L to make them align. In The Things Stack, you can configure the NwkSKey and AppSKey on the settings page, but note that the Device Address is generated by The Things Stack.
2736 {{/warning}}
2737
2738
2739 (((
2740 (% style="color:blue" %)**Step 2**(%%)**:  **(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)Run AT commands to configure the LT-22222-L to operate in single-frequency and ABP mode. The AT commands are as follows:
2741
2742
2743 )))
2744
2745 (((
2746 (% style="background-color:#dcdcdc" %)**123456** (%%) : Enter the password to enable AT access.
2747
2748 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Reset parameters to factory default, keeping keys reserved.
2749
2750 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) : Set to ABP mode.
2751
2752 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) : Disable the Adaptive Data Rate (ADR).
2753
2754 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) : Set Data Rate (Use AT+DR=3 for the 915 MHz band).
2755
2756 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) : Set transmit interval to 60 seconds.
2757
2758 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4 MHz.
2759
2760 (% style="background-color:#dcdcdc" %)**AT+DADDR=xxxx**(%%) : Set the Device Address (DevAddr)
2761
2762 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:700; text-decoration:none; white-space:pre-wrap" %)**AT+APPKEY=xxxx**(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %): Get or set the Application Key (AppKey)
2763
2764 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+NWKSKEY=xxxx**: Get or set the Network Session Key (NwkSKey)
2765
2766 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+APPSKEY=xxxx**: Get or set the Application Session Key (AppSKey)
2767
2768 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) : Reset MCU.
2769 )))
2770
2771
2772 (((
2773 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)The following figure shows the screenshot of the command set above, issued using a serial tool:
2774 )))
2775
2776 [[image:1653360498588-932.png||height="485" width="726"]]
2777
2778
2779 == 6.4 How to change the uplink interval? ==
2780
2781
2782 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2783
2784
2785 == 6.5 Can I see the counting event in the serial output? ==
2786
2787
2788 (((
2789 You can run the AT command **AT+DEBUG** to view the counting event in the serial output. If the firmware is too old and doesn’t support AT+DEBUG, update to the latest firmware first.
2790
2791
2792 == 6.6 Can I use point-to-point communication with LT-22222-L? ==
2793
2794
2795 Yes, you can. Please refer to the [[Point-to-Point Communication of LT-22222-L>>https://wiki.dragino.com/xwiki/bin/view/Main/%20Point%20to%20Point%20Communication%20of%20LT-22222-L/]] page. The firmware that supports point-to-point communication can be found [[here>>https://github.com/dragino/LT-22222-L/releases]].
2796
2797
2798 )))
2799
2800 (((
2801 == 6.7 Why does the relay output default to an open relay after the LT-22222-L is powered off? ==
2802
2803
2804 * If the device is not properly shut down and is directly powered off.
2805 * It will default to a power-off state.
2806 * In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2807 * After a restart, the status before the power failure will be read from Flash.
2808
2809 == 6.8 Can I set up LT-22222-L as an NC (Normally Closed) relay? ==
2810
2811
2812 The LT-22222-L's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
2813
2814
2815 [[image:image-20221006170630-1.png||height="610" width="945"]]
2816
2817
2818 == 6.9 Can the LT-22222-L save the RO state? ==
2819
2820
2821 To enable this feature, the firmware version must be 1.6.0 or higher.
2822
2823
2824 == 6.10 Why does the LT-22222-L always report 15.585V when measuring the AVI? ==
2825
2826
2827 It is likely that the GND is not connected during the measurement, or that the wire connected to the GND is loose.
2828
2829
2830 = 7. Troubleshooting =
2831
2832
2833 This section provides some known troubleshooting tips.
2834
2835
2836 )))
2837
2838 (((
2839 (((
2840 == 7.1 Downlink isn't working. How can I solve this? ==
2841
2842
2843 )))
2844 )))
2845
2846 (((
2847 Please refer to this link for debugging instructions: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2848 )))
2849
2850 (((
2851
2852
2853 == 7.2 Having trouble uploading an image? ==
2854
2855
2856 )))
2857
2858 (((
2859 Please refer to this link for troubleshooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2860 )))
2861
2862 (((
2863
2864
2865 == 7.3 Why can't I join TTN in the US915 /AU915 bands? ==
2866
2867
2868 )))
2869
2870 (((
2871 It might be related to the channel mapping. [[Please refer to this link for details.>>https://github.com/dragino/LT-22222-L/releases]]
2872 )))
2873
2874
2875 == 7.4 Why can the LT-22222-L perform uplink normally, but cannot receive downlink? ==
2876
2877
2878 The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue.
2879 Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2880
2881
2882 = 8. Ordering information =
2883
2884
2885 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2886
2887 (% style="color:#4f81bd" %)**XXX:**
2888
2889 * (% style="color:red" %)**EU433**(%%): LT with frequency bands EU433
2890 * (% style="color:red" %)**EU868**(%%): LT with frequency bands EU868
2891 * (% style="color:red" %)**KR920**(%%): LT with frequency bands KR920
2892 * (% style="color:red" %)**CN470**(%%): LT with frequency bands CN470
2893 * (% style="color:red" %)**AS923**(%%): LT with frequency bands AS923
2894 * (% style="color:red" %)**AU915**(%%): LT with frequency bands AU915
2895 * (% style="color:red" %)**US915**(%%): LT with frequency bands US915
2896 * (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2897 * (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2898
2899 = 9. Package information =
2900
2901
2902 **Package includes**:
2903
2904 * 1 x LT-22222-L I/O Controller
2905 * 1 x LoRa antenna matched to the frequency of the LT-22222-L
2906 * 1 x bracket for DIN rail mounting
2907 * 1 x 3.5 mm programming cable
2908
2909 **Dimension and weight**:
2910
2911 * Device Size: 13.5 x 7 x 3 cm
2912 * Device Weight: 105 g
2913 * Package Size / pcs : 14.5 x 8 x 5 cm
2914 * Weight / pcs : 170 g
2915
2916 = 10. Support =
2917
2918
2919 * (((
2920 Support is available Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule.
2921 )))
2922 * (((
2923 Please provide as much information as possible regarding your inquiry (e.g., product models, a detailed description of the problem, steps to replicate it, etc.) and send an email to [[support@dragino.cc>>mailto:support@dragino.cc]]
2924
2925
2926 )))
2927
2928 = 11. Reference​​​​​ =
2929
2930
2931 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2932 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2933 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0