Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19
20 = 1. Introduction =
21
22 == 1.1 What is the LT-22222-L I/O Controller? ==
23
24
25 (((
26 (((
27 {{info}}
28 **This manual is also applicable to the LT-33222-L.**
29 {{/info}}
30
31 The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN end device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
32
33 The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
34 )))
35 )))
36
37 (((
38 With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
39 )))
40
41 (((
42 You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
43
44 * If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Stack Community Network), you can select a network and register the LT-22222-L I/O controller with it.
45 * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
46 * Setup your own private LoRaWAN network.
47 )))
48
49 (((
50
51
52 The network diagram below illustrates how the LT-22222-L communicates with a typical LoRaWAN network.
53 )))
54
55 (% class="wikigeneratedid" %)
56 [[image:lorawan-nw.jpg||height="354" width="900"]]
57
58
59 == 1.2 Specifications ==
60
61
62 (% style="color:#037691" %)**Hardware System:**
63
64 * STM32L072xxxx MCU
65 * SX1276/78 Wireless Chip 
66 * Power Consumption:
67 ** Idle: 4mA@12V
68 ** 20dB Transmit: 34mA@12V
69 * Operating Temperature: -40 ~~ 85 Degrees, No Dew
70
71 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
72
73 * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50V, or 220V with optional external resistor)
74 * 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
75 * 2 x Relay Output (5A@250VAC / 30VDC)
76 * 2 x 0~~20mA Analog Input (res:0.01mA)
77 * 2 x 0~~30V Analog Input (res:0.01V)
78 * Power Input 7~~ 24V DC. 
79
80 (% style="color:#037691" %)**LoRa Spec:**
81
82 * Frequency Range:
83 ** Band 1 (HF): 862 ~~ 1020 MHz
84 ** Band 2 (LF): 410 ~~ 528 MHz
85 * 168 dB maximum link budget.
86 * +20 dBm - 100 mW constant RF output vs.
87 * +14 dBm high-efficiency PA.
88 * Programmable bit rate up to 300 kbps.
89 * High sensitivity: down to -148 dBm.
90 * Bullet-proof front end: IIP3 = -12.5 dBm.
91 * Excellent blocking immunity.
92 * Low RX current of 10.3 mA, 200 nA register retention.
93 * Fully integrated synthesizer with a resolution of 61 Hz.
94 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
95 * Built-in bit synchronizer for clock recovery.
96 * Preamble detection.
97 * 127 dB Dynamic Range RSSI.
98 * Automatic RF Sense and CAD with ultra-fast AFC.
99 * Packet engine up to 256 bytes with CRC.
100
101 == 1.3 Features ==
102
103
104 * LoRaWAN Class A & Class C modes
105 * Optional Customized LoRa Protocol
106 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
107 * AT Commands to change parameters
108 * Remotely configure parameters via LoRaWAN Downlink
109 * Firmware upgradable via program port
110 * Counting
111
112 == 1.4 Applications ==
113
114
115 * Smart buildings & home automation
116 * Logistics and supply chain management
117 * Smart metering
118 * Smart agriculture
119 * Smart cities
120 * Smart factory
121
122 == 1.5 Hardware Variants ==
123
124
125 (% border="1" cellspacing="3" style="width:510px" %)
126 |(% style="background-color:#4f81bd; color:white; width:94px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:172px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:244px" %)**Description**
127 |(% style="width:94px" %)**LT-33222-L**|(% style="width:172px" %)(((
128 (% style="text-align:center" %)
129 [[image:lt33222-l.jpg||height="110" width="95"]]
130 )))|(% style="width:256px" %)(((
131 * 3 x Digital Input (Bi-direction)
132 * 3 x Digital Output
133 * 2 x Relay Output (5A@250VAC / 30VDC)
134 * 2 x 0~~20mA Analog Input (res:0.01mA)
135 * 2 x 0~~30V Analog Input (res:0.01v)
136 * 1 x Counting Port
137 )))
138
139 = 2. Assembling the device =
140
141 == 2.1 Connecting the antenna ==
142
143
144 Connect the LoRa antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper screw terminal block. Secure the antenna by tightening it clockwise.
145
146 {{warning}}
147 **Warning! Do not power on the device without connecting the antenna.**
148 {{/warning}}
149
150
151 == 2.2 Terminals ==
152
153
154 The  LT-22222-L has two screw terminal blocks. The upper screw terminal block has 6 screw terminals and the lower screw terminal block has 10 screw terminals.
155
156 **Upper screw terminal block (from left to right):**
157
158 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:381px" %)
159 |=(% style="width: 139px;background-color:#4f81bd;color:white" %)Screw Terminal|=(% style="width: 242px;background-color:#4f81bd;color:white" %)Function
160 |(% style="width:139px" %)GND|(% style="width:242px" %)Ground
161 |(% style="width:139px" %)VIN|(% style="width:242px" %)Input Voltage
162 |(% style="width:139px" %)AVI2|(% style="width:242px" %)Analog Voltage Input Terminal 2
163 |(% style="width:139px" %)AVI1|(% style="width:242px" %)Analog Voltage Input Terminal 1
164 |(% style="width:139px" %)ACI2|(% style="width:242px" %)Analog Current Input Terminal 2
165 |(% style="width:139px" %)ACI1|(% style="width:242px" %)Analog Current Input Terminal 1
166
167 **Lower screw terminal block (from left to right):**
168
169 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:253px" %)
170 |=(% style="width: 125px;background-color:#4f81bd;color:white" %)Screw Terminal|=(% style="width: 128px;background-color:#4f81bd;color:white" %)Function
171 |(% style="width:125px" %)RO1-2|(% style="width:128px" %)Relay Output 1
172 |(% style="width:125px" %)RO1-1|(% style="width:128px" %)Relay Output 1
173 |(% style="width:125px" %)RO2-2|(% style="width:128px" %)Relay Output 2
174 |(% style="width:125px" %)RO2-1|(% style="width:128px" %)Relay Output 2
175 |(% style="width:125px" %)DI2+|(% style="width:128px" %)Digital Input 2
176 |(% style="width:125px" %)DI2-|(% style="width:128px" %)Digital Input 2
177 |(% style="width:125px" %)DI1+|(% style="width:128px" %)Digital Input 1
178 |(% style="width:125px" %)DI1-|(% style="width:128px" %)Digital Input 1
179 |(% style="width:125px" %)DO2|(% style="width:128px" %)Digital Output 2
180 |(% style="width:125px" %)DO1|(% style="width:128px" %)Digital Output 1
181
182 == 2.3 Connecting LT-22222-L to a Power Source ==
183
184
185 The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect your power supply’s **positive wire** to the **VIN** and the **negative wire** to the **GND** screw terminals. The power indicator **(PWR) LED** will turn on when the device is properly powered.
186
187 {{warning}}
188 **We recommend that you power on the LT-22222-L after adding its registration information to the LoRaWAN network server. Otherwise, the device will continuously send join-request messages to attempt to join a LoRaWAN network but will fail.**
189 {{/warning}}
190
191
192 [[image:1653297104069-180.png]]
193
194
195 = 3. Registering LT-22222-L with a LoRaWAN Network Server =
196
197
198 The LT-22222-L supports both OTAA (Over-the-Air Activation) and ABP (Activation By Personalization) methods to activate with a LoRaWAN Network Server. However, OTAA is the most secure method for activating a device with a LoRaWAN Network Server. OTAA regenerates session keys upon initial registration and regenerates new session keys after any subsequent reboots. By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode.
199
200
201 == 3.1 Prerequisites ==
202
203
204 The LT-22222-L comes with device registration information such as DevEUI, AppEUI, and AppKey which allows you to register it with a LoRaWAN network. This registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
205
206 [[image:image-20230425173427-2.png||height="246" width="530"]]
207
208 {{info}}
209 If you are unable to set the provided root key and other identifiers in the network server, you must generate new keys and identifiers with the network server and configure the device with them using AT commands.
210 {{/info}}
211
212 The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
213
214
215 == 3.2 The Things Stack ==
216
217
218 This section guides you through how to register your LT-22222-L with The Things Stack Sandbox.
219
220 {{info}}
221 The Things Stack Sandbox was formally called The Things Stack Community Edition.
222 {{/info}}
223
224
225 The network diagram below illustrates the connection between the LT-22222-L and The Things Stack, as well as how the data can be integrated with the ThingsEye IoT platform.
226
227
228 [[image:dragino-lorawan-nw-lt-22222-n.jpg||height="374" width="1400"]]
229
230 {{info}}
231 You can use a LoRaWAN gateway, such as the [[Dragino LPS8N>>https://www.dragino.com/products/lora-lorawan-gateway/item/200-lps8n.html]], to expand or create LoRaWAN coverage in your area.
232 {{/info}}
233
234
235 === 3.2.1 Setting up ===
236
237
238 * Sign up for a free account with [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] if you do not have one yet.
239 * Log in to your The Things Stack Sandbox account.
240 * Create an **application** with The Things Stack if you do not have one yet (E.g., dragino-docs).
241 * Go to your application's page and click on the **End devices** in the left menu.
242 * On the End devices page, click on **+ Register end device**. Two registration options are available:
243
244 ==== 3.2.1.1 Using the LoRaWAN Device Repository ====
245
246
247 * On the **Register end device** page:
248 ** Select the option **Select the end device in the LoRaWAN Device Repository **under **Input method**.
249 ** Select the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)** from the respective dropdown lists.
250 *** **End device brand**: Dragino Technology Co., Limited
251 *** **Model**: LT22222-L I/O Controller
252 *** **Hardware ver**: Unknown
253 *** **Firmware ver**: 1.6.0
254 *** **Profile (Region)**: Select the region that matches your device.
255 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
256
257 [[image:lt-22222-l-dev-repo-reg-p1.png]]
258
259
260 * Register end device page continued...
261 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'.
262 ** In the **DevEUI** field, enter the **DevEUI**.
263 ** In the **AppKey** field, enter the **AppKey.**
264 ** In the **End device ID** field, enter a unique name for your LT-22222-L within this application.
265 ** Under **After registration**, select the **View registered end device** option.
266 ** Click **Register end device** button.
267
268 [[image:lt-22222-l-dev-repo-reg-p2.png]]
269
270
271 * You will be navigated to the **Device overview** page.
272
273
274 [[image:lt-22222-device-overview.png]]
275
276
277 ==== 3.2.1.2 Adding device manually ====
278
279
280 * On the **Register end device** page:
281 ** Select the option **Enter end device specifies manually** under **Input method**.
282 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
283 ** Select the **LoRaWAN version** as **LoRaWAN Specification 1.0.3**
284 ** Select the **Regional Parameters version** as** RP001 Regional Parameters 1.0.3 revision A**
285 ** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the hidden section.
286 ** Select the option **Over the air activation (OTAA)** under the **Activation mode.**
287 ** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities** dropdown list.
288
289 [[image:lt-22222-l-manually-p1.png]]
290
291
292 * Register end device page continued...
293 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message '//**This end device can be registered on the network**//'
294 ** In the **DevEUI** field, enter the **DevEUI**.
295 ** In the **AppKey** field, enter the **AppKey**.
296 ** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
297 ** Under **After registration**, select the **View registered end device** option.
298 ** Click the **Register end device** button.
299
300 [[image:lt-22222-l-manually-p2.png]]
301
302
303 You will be navigated to the **Device overview** page.
304
305
306 [[image:lt-22222-device-overview.png]]
307
308
309 === 3.2.2 Joining ===
310
311
312 On the end device's page (in this case, lt-22222-l), click on **Live data** tab. The Live data panel for your device will display. Initially, it is blank.
313
314 Now power on your LT-22222-L. The **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** The Things Stack network server. The **TX LED** will be on for **5 seconds** after joining the network. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server.
315
316
317 [[image:lt-22222-l-joining.png]]
318
319
320 === 3.2.3 Uplinks ===
321
322
323 After successfully joining, the device will send its first **uplink data message** to The Things Stack application it belongs to (in this example, it is **dragino-docs**). When the LT-22222-L sends an uplink message to the server, the **TX LED** turns on for **1 second**. By default, you will receive an uplink data message from the device every 10 minutes.
324
325 Click on one of the **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the **decode_payload {}** JSON object.
326
327 [[image:lt-22222-ul-payload-decoded.png]]
328
329
330 If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **Applications > [your application] > End devices** > [**your end device]** > **Payload formatters** > **Uplink**. Then select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
331
332 {{info}}
333 The Things Stack provides two levels of payload formatters: application level and device level. The device-level payload formatters **override **the application-level payload formatters.
334 {{/info}}
335
336 [[image:lt-22222-ul-payload-fmt.png]]
337
338
339 We have written a payload formatter that resolves some decoding issues present in The Things Stack Device Repository payload formatter. You can add it under the **Custom JavaScript formatter**. It can be found [[here>>https://github.com/dragino/dragino-end-node-decoder/blob/main/LT22222-L/v1.6_decoder_ttn%20.txt]]:
340
341 (% class="wikigeneratedid" %)
342 [[image:lt-22222-l-js-custom-payload-formatter.png]]
343
344
345 === 3.2.4 Downlinks ===
346
347
348 When the LT-22222-L receives a downlink message from the LoRaWAN Network Server, the **RX LED** turns on for **1 second**.
349
350
351 == 3.3 Working Modes and Uplink Payload formats ==
352
353
354 The LT-22222-L has 5 **working modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
355
356 * (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
357
358 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
359
360 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
361
362 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
363
364 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
365
366 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
367
368 The uplink messages are sent over LoRaWAN FPort=2. By default, an uplink message is sent every 10 minutes.
369
370
371 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
372
373
374 (((
375 This is the default mode.
376
377 The uplink payload is 11 bytes long.
378
379 (% style="color:red" %)**Note:The maximum count depends on the bytes number of bytes.
380 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
381 It starts counting again when it reaches the maximum value.**(% style="display:none" wfd-invisible="true" %)
382
383 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
384 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
385 |Value|(((
386 AVI1 voltage
387 )))|(((
388 AVI2 voltage
389 )))|(((
390 ACI1 Current
391 )))|(((
392 ACI2 Current
393 )))|**DIDORO***|(((
394 Reserve
395 )))|MOD
396 )))
397
398 (((
399 (% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
400
401 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
402 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
403 |RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
404 )))
405
406 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
407 * DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
408 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
409
410 (% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
411
412 For example, if the payload is: [[image:image-20220523175847-2.png]]
413
414
415 **The interface values can be calculated as follows:  **
416
417 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
418
419 AVI2 channel voltage is 0x04AC/1000=1.196V
420
421 ACI1 channel current is 0x1310/1000=4.880mA
422
423 ACI2 channel current is 0x1300/1000=4.864mA
424
425 The last byte 0xAA= **10101010**(b) means,
426
427 * [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
428 * [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
429 * **[1] DI3 - not used for LT-22222-L.**
430 * [0] DI2 channel input is LOW, and the DI2 LED is OFF.
431 * [1] DI1 channel input state:
432 ** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
433 ** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
434 ** DI1 LED is ON in both cases.
435 * **[0] DO3 - not used for LT-22222-L.**
436 * [1] DO2 channel output is LOW, and the DO2 LED is ON.
437 * [0] DO1 channel output state:
438 ** DO1 is FLOATING when there is no load between DO1 and V+.
439 ** DO1 is HIGH and there is a load between DO1 and V+.
440 ** DO1 LED is OFF in both cases.
441
442 Reserve = 0
443
444 MOD = 1
445
446
447 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
448
449
450 (((
451 **For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
452 )))
453
454 (((
455 The uplink payload is 11 bytes long.
456
457 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
458 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
459 It starts counting again when it reaches the maximum value.**
460
461 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
462 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
463 |Value|COUNT1|COUNT2 |DIDORO*|(((
464 Reserve
465 )))|MOD
466 )))
467
468 (((
469 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
470
471 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
472 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
473 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
474
475 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
476 )))
477
478 * FIRST: Indicates that this is the first packet after joining the network.
479 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
480
481 (((
482 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
483
484
485 )))
486
487 (((
488 **To activate this mode, run the following AT commands:**
489 )))
490
491 (((
492 (% class="box infomessage" %)
493 (((
494 **AT+MOD=2**
495
496 **ATZ**
497 )))
498 )))
499
500 (((
501
502
503 (% style="color:#4f81bd" %)**AT Commands for counting:**
504 )))
505
506 (((
507 **For LT22222-L:**
508
509 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
510
511 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
512
513 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
514
515 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
516
517 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
518
519 (% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
520 )))
521
522
523 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
524
525
526 (% style="color:red" %)**Note: The maximum count depends on the bytes it is.
527 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
528 It starts counting again when it reaches the maximum value.**
529
530 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
531
532 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
533 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
534 |Value|COUNT1|(((
535 ACI1 Current
536 )))|(((
537 ACI2 Current
538 )))|DIDORO*|Reserve|MOD
539
540 (((
541 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
542
543 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
544 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
545 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
546 )))
547
548 * RO is for the relay. ROx=1: closed, ROx=0 always open.
549 * FIRST: Indicates that this is the first packet after joining the network.
550 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
551
552 (((
553 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
554 )))
555
556
557 (((
558 **To activate this mode, run the following AT commands:**
559 )))
560
561 (((
562 (% class="box infomessage" %)
563 (((
564 **AT+MOD=3**
565
566 **ATZ**
567 )))
568 )))
569
570 (((
571 AT Commands for counting:
572
573 The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
574 )))
575
576
577 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
578
579
580 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
581 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
582 It starts counting again when it reaches the maximum value.**
583
584
585 (((
586 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
587 )))
588
589 (((
590 The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
591
592 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
593 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
594 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
595 Reserve
596 )))|MOD
597 )))
598
599 (((
600 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
601
602 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
603 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
604 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
605 )))
606
607 * RO is for the relay. ROx=1: closed, ROx=0 always open.
608 * FIRST: Indicates that this is the first packet after joining the network.
609 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
610
611 (((
612 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
613
614
615 )))
616
617 (((
618 **To activate this mode, run the following AT commands:**
619 )))
620
621 (((
622 (% class="box infomessage" %)
623 (((
624 **AT+MOD=4**
625
626 **ATZ**
627 )))
628 )))
629
630 (((
631 AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
632 )))
633
634 (((
635 **In addition to that, below are the commands for AVI1 Counting:**
636
637 (% style="color:blue" %)**AT+SETCNT=3,60 **(%%)**(Sets AVI1 Count to 60)**
638
639 (% style="color:blue" %)**AT+VOLMAX=20000 **(%%)**(If the AVI1 voltage is higher than VOLMAX (20000mV =20V), the counter increases by 1)**
640
641 (% style="color:blue" %)**AT+VOLMAX=20000,0 **(%%)**(If the AVI1 voltage is lower than VOLMAX (20000mV =20V), counter increases by 1)**
642
643 (% style="color:blue" %)**AT+VOLMAX=20000,1 **(%%)**(If the AVI1 voltage is higher than VOLMAX (20000mV =20V), counter increases by 1)**
644 )))
645
646
647 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
648
649
650 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
651 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
652 It starts counting again when it reaches the maximum value.**
653
654
655 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
656
657 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
658 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
659 |Value|(((
660 AVI1 voltage
661 )))|(((
662 AVI2 voltage
663 )))|(((
664 ACI1 Current
665 )))|COUNT1|DIDORO*|(((
666 Reserve
667 )))|MOD
668
669 (((
670 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
671
672 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
673 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
674 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
675 )))
676
677 * RO is for the relay. ROx=1: closed, ROx=0 always open.
678 * FIRST: Indicates that this is the first packet after joining the network.
679 * (((
680 DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
681 )))
682
683 (((
684 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
685 )))
686
687 (((
688 **To activate this mode, run the following AT commands:**
689 )))
690
691 (((
692 (% class="box infomessage" %)
693 (((
694 **AT+MOD=5**
695
696 **ATZ**
697 )))
698 )))
699
700 (((
701 Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
702 )))
703
704
705 === 3.3.6 AT+ADDMOD~=6 (Trigger Mode, Optional) ===
706
707
708 (% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate __alongside__ with other modes.**
709
710 For example, if you configure the following commands:
711
712 * **AT+MOD=1 ** **~-~->**  Sets the default working mode
713 * **AT+ADDMOD6=1**   **~-~->**  Enables trigger mode
714
715 The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. It will send uplink packets in two cases:
716
717 1. Periodic uplink: Based on TDC time. The payload is the same as in normal mode (MOD=1 as set above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
718 1. (((
719 Trigger uplink: sent when a trigger condition is met. In this case, LT will send two packets
720
721 * The first uplink uses the payload specified in trigger mode (MOD=6).
722 * The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**confirmed uplinks.**
723 )))
724
725 (% style="color:#037691" %)**AT Commands to set Trigger Conditions**:
726
727 (% style="color:#4f81bd" %)**Trigger based on voltage**:
728
729 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
730
731
732 **Example:**
733
734 AT+AVLIM=3000,6000,0,2000 (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
735
736 AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0 for parameters that are not in use)
737
738
739 (% style="color:#4f81bd" %)**Trigger based on current**:
740
741 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
742
743
744 **Example:**
745
746 AT+ACLIM=10000,15000,0,0 (triggers an uplink if AC1 current is lower than 10mA or higher than 15mA)
747
748
749 (% style="color:#4f81bd" %)**Trigger based on DI status**:
750
751 DI status triggers Flag.
752
753 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
754
755
756 **Example:**
757
758 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
759
760
761 (% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
762
763 **Type Code**: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
764
765 **Format**: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
766
767 AA: Type Code for this downlink Command:
768
769 xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
770
771 yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
772
773 yy2 yy2: AC1 or AV1 HIGH limit.
774
775 yy3 yy3: AC2 or AV2 LOW limit.
776
777 Yy4 yy4: AC2 or AV2 HIGH limit.
778
779
780 **Example 1**: AA 00 13 88 00 00 00 00 00 00
781
782 Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
783
784
785 **Example 2**: AA 02 01 00
786
787 Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
788
789
790 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
791
792 MOD6 Payload: a total of 11 bytes
793
794 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
795 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
796 |Value|(((
797 TRI_A FLAG
798 )))|(((
799 TRI_A Status
800 )))|(((
801 TRI_DI FLAG+STA
802 )))|Reserve|Enable/Disable MOD6|(((
803 MOD(6)
804 )))
805
806 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Total 1 byte as below.
807
808 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
809 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
810 |(((
811 AV1_LOW
812 )))|(((
813 AV1_HIGH
814 )))|(((
815 AV2_LOW
816 )))|(((
817 AV2_HIGH
818 )))|(((
819 AC1_LOW
820 )))|(((
821 AC1_HIGH
822 )))|(((
823 AC2_LOW
824 )))|(((
825 AC2_HIGH
826 )))
827
828 * Each bit shows if the corresponding trigger has been configured.
829
830 **Example:**
831
832 10100000: This means the system is configured to use the triggers AV1_LOW and AV2_LOW.
833
834
835 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is triggered. Total 1 byte as below.
836
837 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
838 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
839 |(((
840 AV1_LOW
841 )))|(((
842 AV1_HIGH
843 )))|(((
844 AV2_LOW
845 )))|(((
846 AV2_HIGH
847 )))|(((
848 AC1_LOW
849 )))|(((
850 AC1_HIGH
851 )))|(((
852 AC2_LOW
853 )))|(((
854 AC2_HIGH
855 )))
856
857 * Each bit shows which status has been triggered on this uplink.
858
859 **Example:**
860
861 10000000: The uplink is triggered by AV1_LOW, indicating that the voltage is too low.
862
863
864 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is triggered. Total 1 byte as below.
865
866 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
867 |(% style="width:50px" %)**bit 7**|(% style="width:50px" %)**bit 6**|(% style="width:50px" %)**bit 5**|(% style="width:50px" %)**bit 4**|(% style="width:90px" %)**bit 3**|(% style="width:80px" %)**bit 2**|(% style="width:90px" %)**bit 1**|(% style="width:95px" %)**bit 0**
868 |(% style="width:49px" %)N/A|(% style="width:53px" %)N/A|(% style="width:53px" %)N/A|(% style="width:55px" %)N/A|(% style="width:99px" %)DI2_STATUS|(% style="width:83px" %)DI2_FLAG|(% style="width:98px" %)DI1_STATUS|(% style="width:85px" %)DI1_FLAG
869
870 * Each bit shows which status has been triggered on this uplink.
871
872 **Example:**
873
874 00000111: This means both DI1 and DI2 triggers are enabled, and this packet is triggered by DI1.
875
876 00000101: This means both DI1 and DI2 triggers are enabled.
877
878
879 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enabled. 0x00: MOD6 is disabled.
880
881 Downlink command to poll/request MOD6 status:
882
883 **AB 06**
884
885 When the device receives this command, it will send the MOD6 payload.
886
887
888 === 3.3.7 Payload Decoder ===
889
890 (((
891
892
893 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
894 )))
895
896
897 == 3.4 ​Configure LT-22222-L via AT Commands or Downlinks ==
898
899
900 (((
901 You can configure LT-22222-L I/O Controller via AT Commands or LoRaWAN Downlinks.
902 )))
903
904 (((
905 (((
906 There are two types of commands:
907 )))
908 )))
909
910 * (% style="color:blue" %)**Common commands**(%%):
911
912 * (% style="color:blue" %)**Sensor-related commands**(%%):
913
914 === 3.4.1 Common commands ===
915
916
917 (((
918 These are available for each sensor and include actions such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]s.
919
920
921 )))
922
923 === 3.4.2 Sensor-related commands ===
924
925
926 These commands are specially designed for the LT-22222-L. Commands can be sent to the device using options such as an AT command or a LoRaWAN downlink payload.
927
928
929 ==== 3.4.2.1 Set Transmit/Uplink Interval ====
930
931
932 Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
933
934 (% style="color:#037691" %)**AT command**
935
936 (% border="2" style="width:500px" %)
937 |**Command**|AT+TDC=<time>
938 |**Parameters**|**time **: uplink interval in milliseconds
939 |**Get**|AT+TDC=?
940 |**Response**|(((
941 current uplink interval
942
943 OK
944 )))
945 |**Set**|AT+TDC=<time>
946 |**Response**|OK
947 |**Example**|(((
948 AT+TDC=30000
949
950 Sets the uplink interval to **30 seconds** (30000 milliseconds)
951 )))
952
953 (% style="color:#037691" %)**Downlink payload**
954
955 (% border="2" style="width:500px" %)
956 |**Payload**|(((
957 <prefix><time>
958 )))
959 |**Parameters**|(((
960 **prefix** : 0x01
961
962 **time** : uplink interval in **seconds**, represented by **3  bytes** in **hexadecimal**.
963 )))
964 |**Example**|(((
965 01 **00 00 1E**
966
967 Sets the uplink interval to **30 seconds**
968
969 Conversion: 30 (dec) = 00 00 1E (hex)
970
971 See [[RapidTables>>https://www.rapidtables.com/convert/number/decimal-to-hex.html?x=30]]
972
973 [[image:Screenshot 2024-11-23 at 18.27.11.png]]
974 )))
975
976 ==== 3.4.2.2 Set the Working Mode (AT+MOD) ====
977
978
979 Sets the working mode.
980
981 (% style="color:#037691" %)**AT command**
982
983 (% border="2" style="width:500px" %)
984 |(% style="width:97px" %)**Command**|(% style="width:413px" %)AT+MOD=<working_mode>
985 |(% style="width:97px" %)**Parameters**|(% style="width:413px" %)(((
986 **working_mode** :
987
988 1 = (Default mode/factory set):  2ACI + 2AVI + DI + DO + RO
989
990 2 = Double DI Counting + DO + RO
991
992 3 = Single DI Counting + 2 x ACI + DO + RO
993
994 4 = Single DI Counting + 1 x Voltage Counting + DO + RO
995
996 5 = Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
997
998 6 = Trigger Mode, Optional, used together with MOD1 ~~ MOD5
999 )))
1000 |(% style="width:97px" %)**Get**|(% style="width:413px" %)AT+MOD=?
1001 |(% style="width:97px" %)**Response**|(% style="width:413px" %)(((
1002 Current working mode
1003
1004 OK
1005 )))
1006 |(% style="width:97px" %)**Set**|(% style="width:413px" %)AT+MOD=<working_mode>
1007 |(% style="width:97px" %)**Response**|(% style="width:413px" %)(((
1008 Attention:Take effect after ATZ
1009
1010 OK
1011 )))
1012 |(% style="width:97px" %)**Example**|(% style="width:413px" %)(((
1013 AT+MOD=2
1014
1015 Sets the device to working mode 2 (Double DI Counting + DO + RO)
1016 )))
1017
1018 (% class="wikigeneratedid" %)
1019 (% style="color:#037691" %)**Downlink payload**
1020
1021 (% border="2" style="width:500px" %)
1022 |(% style="width:98px" %)**Payload**|(% style="width:400px" %)<prefix><working_mode>
1023 |(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
1024 **prefix** : 0x0A
1025
1026 **working_mode** : Working mode, represented by 1 byte in hexadecimal.
1027 )))
1028 |(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
1029 0A **02**
1030
1031 Sets the device to working mode 2 (Double DI Counting + DO + RO)
1032 )))
1033
1034 ==== 3.4.2.3 Request an uplink from the device ====
1035
1036
1037 Requests an uplink from LT-22222-L. The content of the uplink payload varies based on the device's current working mode.
1038
1039 (% style="color:#037691" %)**AT command**
1040
1041 There is no AT Command available for this feature.
1042
1043 (% style="color:#037691" %)**Downlink payload**
1044
1045 (% border="2" style="width:500px" %)
1046 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix>FF
1047 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)**prefix** : 0x08
1048 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1049 08 **FF**
1050
1051 Requests an uplink from LT-22222-L.
1052 )))
1053
1054 ==== 3.4.2.4 Enable/Disable Trigger Mode ====
1055
1056
1057 Enable or disable the trigger mode for the current working mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
1058
1059 (% style="color:#037691" %)**AT Command**
1060
1061 (% border="2" style="width:500px" %)
1062 |(% style="width:95px" %)**Command**|(% style="width:403px" %)AT+ADDMOD6=<enable/disable trigger_mode>
1063 |(% style="width:95px" %)**Response**|(% style="width:403px" %)
1064 |(% style="width:95px" %)**Parameters**|(% style="width:403px" %)(((
1065 **enable/disable trigger_mode** :
1066
1067 1 = enable trigger mode
1068
1069 0 = disable trigger mode
1070 )))
1071 |(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1072 AT+ADDMOD6=1
1073
1074 Enable trigger mode for the current working mode
1075 )))
1076
1077 (% style="color:#037691" %)**Downlink payload**
1078
1079 (% border="2" style="width:500px" %)
1080 |(% style="width:97px" %)**Payload**|(% style="width:401px" %)<prefix><enable/disable trigger_mode>
1081 |(% style="width:97px" %)**Parameters**|(% style="width:401px" %)(((
1082 **prefix** : 0x0A 06 (two bytes in hexadecimal)
1083
1084 **enable/disable trigger_mode** : enable (1) or disable (0), represented by 1 byte in hexadecimal.
1085 )))
1086 |(% style="width:97px" %)**Example**|(% style="width:401px" %)(((
1087 0A 06 **01**
1088
1089 Enable trigger mode for the current working mode
1090 )))
1091
1092 ==== 3.4.2.5 Request trigger settings ====
1093
1094
1095 Requests the trigger settings.
1096
1097 (% style="color:#037691" %)**AT Command:**
1098
1099 There is no AT Command available for this feature.
1100
1101 (% style="color:#037691" %)**Downlink Payload**
1102
1103 (% border="2" style="width:500px" %)
1104 |(% style="width:95px" %)**Payload**|(% style="width:403px" %)<prefix>
1105 |(% style="width:95px" %)**Parameters**|(% style="width:403px" %)**prefix **: AB 06 (two bytes in hexadecimal)
1106 |(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1107 AB 06
1108
1109 Uplink the trigger settings.
1110 )))
1111
1112 ==== 3.4.2.6 Enable/Disable DI1/DI2/DI3 as a trigger ====
1113
1114
1115 Enable or disable DI1/DI2/DI3 as a trigger.
1116
1117 (% style="color:#037691" %)**AT Command**
1118
1119 (% border="2" style="width:500px" %)
1120 |(% style="width:98px" %)**Command**|(% style="width:400px" %)AT+DTRI=<DI1_trigger>,<DI2_trigger>
1121 |(% style="width:98px" %)**Response**|(% style="width:400px" %)
1122 |(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
1123 **DI1_trigger:**
1124
1125 1 = enable DI1 trigger
1126
1127 0 = disable DI1 trigger
1128
1129 **DI2 _trigger**
1130
1131 1 = enable DI2 trigger
1132
1133 0 = disable DI2 trigger
1134 )))
1135 |(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
1136 AT+DTRI=1,0
1137
1138 Enable DI1 trigger, disable DI2 trigger
1139 )))
1140
1141 (% class="wikigeneratedid" %)
1142 (% style="color:#037691" %)**Downlink Payload**
1143
1144 (% border="2" style="width:500px" %)
1145 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><DI1_trigger><DI2_trigger>
1146 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1147 **prefix :** AA 02 (two bytes in hexadecimal)
1148
1149 **DI1_trigger:**
1150
1151 1 = enable DI1 trigger, represented by 1 byte in hexadecimal.
1152
1153 0 = disable DI1 trigger, represented by 1 byte in hexadecimal.
1154
1155 **DI2 _trigger**
1156
1157 1 = enable DI2 trigger, represented by 1 byte in hexadecimal.
1158
1159 0 = disable DI2 trigger, represented by 1 byte in hexadecimal.
1160 )))
1161 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1162 AA 02 **01 00**
1163
1164 Enable DI1 trigger, disable DI2 trigger
1165 )))
1166
1167 ==== 3.4.2.7 Trigger1 – Set DI or DI3 as a trigger ====
1168
1169
1170 Sets DI1 or DI3 (for LT-33222-L) as a trigger.
1171
1172 (% style="color:#037691" %)**AT Command**
1173
1174 (% border="2" style="width:500px" %)
1175 |(% style="width:101px" %)**Command**|(% style="width:397px" %)AT+TRIG1=<interrupt_mode>,<minimum_signal_duration>
1176 |(% style="width:101px" %)**Response**|(% style="width:397px" %)
1177 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1178 **interrupt_mode** :  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1179
1180 **minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1181 )))
1182 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1183 AT+TRIG1=1,100
1184
1185 Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1186 )))
1187
1188 (% class="wikigeneratedid" %)
1189 (% style="color:#037691" %)**Downlink Payload**
1190
1191 (% border="2" style="width:500px" %)
1192 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><interrupt_mode><minimum_signal_duration>
1193 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1194 **prefix** : 09 01 (hexadecimal)
1195
1196 **interrupt_mode** : 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1197
1198 **minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal.
1199 )))
1200 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1201 09 01 **01 00 64**
1202
1203 Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1204 )))
1205
1206 ==== 3.4.2.8 Trigger2 – Set DI2 as a trigger ====
1207
1208
1209 Sets DI2 as a trigger.
1210
1211 (% style="color:#037691" %)**AT Command**
1212
1213 (% border="2" style="width:500px" %)
1214 |(% style="width:94px" %)**Command**|(% style="width:404px" %)AT+TRIG2=<interrupt_mode>,<minimum_signal_duration>
1215 |(% style="width:94px" %)**Response**|(% style="width:404px" %)
1216 |(% style="width:94px" %)**Parameters**|(% style="width:404px" %)(((
1217 **interrupt_mode **:  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1218
1219 **minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1220 )))
1221 |(% style="width:94px" %)**Example**|(% style="width:404px" %)(((
1222 AT+TRIG2=0,100
1223
1224 Set the DI1 port to trigger on a falling edge; the valid signal duration is 100 ms.
1225 )))
1226
1227 (% style="color:#037691" %)**Downlink Payload**
1228
1229 (% border="2" style="width:500px" %)
1230 |(% style="width:96px" %)**Payload**|(% style="width:402px" %)<prefix><interrupt_mode><minimum_signal_duration>
1231 |(% style="width:96px" %)**Parameters**|(% style="width:402px" %)(((
1232 **prefix** : 09 02 (hexadecimal)
1233
1234 **interrupt_mode **: 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1235
1236 **minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal
1237 )))
1238 |(% style="width:96px" %)**Example**|(% style="width:402px" %)09 02 **00 00 64**
1239
1240 ==== 3.4.2.9 Trigger – Set AC (current) as a trigger ====
1241
1242
1243 Sets the current trigger based on the AC port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1244
1245 (% style="color:#037691" %)**AT Command**
1246
1247 (% border="2" style="width:500px" %)
1248 |(% style="width:104px" %)**Command**|(% style="width:394px" %)(((
1249 AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1250 )))
1251 |(% style="width:104px" %)**Response**|(% style="width:394px" %)
1252 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1253 **AC1_LIMIT_LOW** : lower limit of the current to be checked
1254
1255 **AC1_LIMIT_HIGH **: higher limit of the current to be checked
1256
1257 **AC2_LIMIT_HIGH **: lower limit of the current to be checked
1258
1259 **AC2_LIMIT_LOW** : higher limit of the current to be checked
1260 )))
1261 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1262 AT+ACLIM=10000,15000,0,0
1263
1264 Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA
1265 )))
1266 |(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1267
1268 (% style="color:#037691" %)**Downlink Payload**
1269
1270 (% border="2" style="width:500px" %)
1271 |(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1272 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1273 **prefix **: AA 01 (hexadecimal)
1274
1275 **AC1_LIMIT_LOW** : lower limit of the current to be checked, two bytes in hexadecimal
1276
1277 **AC1_LIMIT_HIGH **: higher limit of the current to be checked, two bytes in hexadecimal
1278
1279 **AC2_LIMIT_HIGH **: lower limit of the current to be checked, two bytes in hexadecimal
1280
1281 **AC2_LIMIT_LOW** : higher limit of the current to be checked, two bytes in hexadecimal
1282 )))
1283 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1284 AA 01 **27** **10 3A** **98** 00 00 00 00
1285
1286 Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA. Set all values to zero for AC2 limits because we are only checking AC1 limits.
1287 )))
1288 |(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1289
1290 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
1291
1292
1293 Sets the current trigger based on the AV port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1294
1295 (% style="color:#037691" %)**AT Command**
1296
1297 (% border="2" style="width:500px" %)
1298 |(% style="width:104px" %)**Command**|(% style="width:387px" %)AT+AVLIM= AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1299 |(% style="width:104px" %)**Response**|(% style="width:387px" %)
1300 |(% style="width:104px" %)**Parameters**|(% style="width:387px" %)(((
1301 **AC1_LIMIT_LOW** : lower limit of the current to be checked
1302
1303 **AC1_LIMIT_HIGH **: higher limit of the current to be checked
1304
1305 **AC2_LIMIT_HIGH **: lower limit of the current to be checked
1306
1307 **AC2_LIMIT_LOW** : higher limit of the current to be checked
1308 )))
1309 |(% style="width:104px" %)**Example**|(% style="width:387px" %)(((
1310 AT+AVLIM=3000,6000,0,2000
1311
1312 Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V
1313 )))
1314 |(% style="width:104px" %)**Note**|(% style="width:387px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1315
1316 (% style="color:#037691" %)**Downlink Payload**
1317
1318 (% border="2" style="width:500px" %)
1319 |(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1320 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1321 **prefix **: AA 00 (hexadecimal)
1322
1323 **AV1_LIMIT_LOW** : lower limit of the voltage to be checked, two bytes in hexadecimal
1324
1325 **AV1_LIMIT_HIGH **: higher limit of the voltage to be checked, two bytes in hexadecimal
1326
1327 **AV2_LIMIT_HIGH **: lower limit of the voltage to be checked, two bytes in hexadecimal
1328
1329 **AV2_LIMIT_LOW** : higher limit of the voltage to be checked, two bytes in hexadecimal
1330 )))
1331 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1332 AA 00 **0B B8 17 70 00 00 07 D0**
1333
1334 Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V.
1335 )))
1336 |(% style="width:104px" %)**Note**|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1337
1338 ==== 3.4.2.11 Trigger – Set the minimum interval ====
1339
1340
1341 Sets the AV and AC trigger minimum interval. The device won't respond to a second trigger within this set time after the first trigger.
1342
1343 (% style="color:#037691" %)**AT Command**
1344
1345 (% border="2" style="width:500px" %)
1346 |(% style="width:113px" %)**Command**|(% style="width:385px" %)AT+ATDC=<time>
1347 |(% style="width:113px" %)**Response**|(% style="width:385px" %)
1348 |(% style="width:113px" %)**Parameters**|(% style="width:385px" %)(((
1349 **time** : in minutes
1350 )))
1351 |(% style="width:113px" %)**Example**|(% style="width:385px" %)(((
1352 AT+ATDC=5
1353
1354 The device won't respond to the second trigger within 5 minutes after the first trigger.
1355 )))
1356 |(% style="width:113px" %)Note|(% style="width:385px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1357
1358 (% style="color:#037691" %)**Downlink Payload**
1359
1360 (% border="2" style="width:500px" %)
1361 |(% style="width:112px" %)**Payload**|(% style="width:386px" %)<prefix><time>
1362 |(% style="width:112px" %)**Parameters**|(% style="width:386px" %)(((
1363 **prefix** : AC (hexadecimal)
1364
1365 **time **: in minutes (two bytes in hexadecimal)
1366 )))
1367 |(% style="width:112px" %)**Example**|(% style="width:386px" %)(((
1368 AC **00 05**
1369
1370 The device won't respond to the second trigger within 5 minutes after the first trigger.
1371 )))
1372 |(% style="width:112px" %)Note|(% style="width:386px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1373
1374 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1375
1376
1377 Controls the digital outputs DO1, DO2, and DO3
1378
1379 (% style="color:#037691" %)**AT Command**
1380
1381 There is no AT Command to control the Digital Output.
1382
1383
1384 (% style="color:#037691" %)**Downlink Payload**
1385
1386 (% border="2" style="width:500px" %)
1387 |(% style="width:115px" %)**Payload**|(% style="width:383px" %)<prefix><DO1><DO2><DO3>
1388 |(% style="width:115px" %)**Parameters**|(% style="width:383px" %)(((
1389 **prefix** : 02 (hexadecimal)
1390
1391 **DOI** : 01: Low,  00: High, 11: No action (1 byte in hex)
1392
1393 **DO2** : 01: Low,  00: High, 11: No action (1 byte in hex)
1394
1395 **DO3 **: 01: Low,  00: High, 11: No action (1 byte in hex)
1396 )))
1397 |(% style="width:115px" %)**Examples**|(% style="width:383px" %)(((
1398 02 **01 00 01**
1399
1400 If there is a load between V+ and DOx, it means DO1 is set to low, DO2 is set to high, and DO3 is set to low.
1401
1402 **More examples:**
1403
1404 (((
1405 01: Low,  00: High,  11: No action
1406
1407 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:383px" %)
1408 |(% style="background-color:#4f81bd; color:white; width:126px" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white; width:85px" %)**DO1**|(% style="background-color:#4f81bd; color:white; width:86px" %)**DO2**|(% style="background-color:#4f81bd; color:white; width:86px" %)**DO3**
1409 |(% style="width:126px" %)02  01  00  11|(% style="width:85px" %)Low|(% style="width:86px" %)High|(% style="width:86px" %)No Action
1410 |(% style="width:126px" %)02  00  11  01|(% style="width:85px" %)High|(% style="width:86px" %)No Action|(% style="width:86px" %)Low
1411 |(% style="width:126px" %)02  11  01  00|(% style="width:85px" %)No Action|(% style="width:86px" %)Low|(% style="width:86px" %)High
1412 )))
1413
1414 (((
1415 (((
1416 (% style="color:red" %)**Note: For the LT-22222-L, there is no DO3; the last byte can have any value.**
1417 )))
1418
1419 (((
1420 (% style="color:red" %)**The device will upload a packet if downlink code executes successfully.**
1421 )))
1422 )))
1423 )))
1424
1425 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1426
1427
1428 (% style="color:#037691" %)**AT command**
1429
1430 There is no AT command to control the digital output.
1431
1432
1433 (% style="color:#037691" %)**Downlink payload**
1434
1435
1436 (% border="2" style="width:500px" %)
1437 |(% style="width:116px" %)**Prefix**|(% style="width:382px" %)0xA9
1438 |(% style="width:116px" %)**Parameters**|(% style="width:382px" %)(((
1439 **inverter_mode**: 1 byte in hex.
1440
1441 **01:** DO pins revert to their original state after the timeout.
1442 **00:** DO pins switch to an inverted state after the timeout.
1443
1444
1445 **DO1_control_method_and_port_status **- 1 byte in hex
1446
1447 0x01 : DO1 set to low
1448
1449 0x00 : DO1 set to high
1450
1451 0x11 : DO1 NO action
1452
1453
1454 **DO2_control_method_and_port_status** - 1 byte in hex
1455
1456 0x01 : DO2 set to low
1457
1458 0x00 : DO2 set to high
1459
1460 0x11 : DO2 NO action
1461
1462
1463 **DO3_control_method_and_port_status **- 1 byte in hex
1464
1465 0x01 : DO3 set to low
1466
1467 0x00 : DO3 set to high
1468
1469 0x11 : DO3 NO action
1470
1471
1472 **latching_time** : 4 bytes in hex
1473
1474 (% style="color:red" %)**Note: **
1475
1476 Since firmware v1.6.0, the latch time supports 4 bytes or 2 bytes
1477
1478 Before firmware v1.6.0, the latch time only supported 2 bytes.
1479
1480 (% style="color:red" %)**The device will uplink a packet if the downlink code executes successfully.**
1481 )))
1482 |(% style="width:116px" %)**Payload format**|(% style="width:382px" %)<prefix><inverter_mode><DO1_control_method_and_port_status><DO2_control_method_and_port_status><DO2_control_method_and_port_status><latching_time>
1483 |(% style="width:116px" %)**Example**|(% style="width:382px" %)(((
1484 **A9 01 01 01 01 07 D0**
1485
1486 DO1 pin, DO2 pin, and DO3 pin will be set to low, last for 2 seconds, and then revert to their original state.
1487
1488
1489 **A9 01 00 01 11 07 D0**
1490
1491 DO1 pin is set to high, DO2 pin is set to low, and DO3 pin takes no action. This lasts for 2 seconds and then reverts to the original state.
1492
1493
1494 **A9 00 00 00 00 07 D0**
1495
1496 DO1 pin, DO2 pin, and DO3 pin will be set to high, last for 2 seconds, and then all change to low.
1497
1498
1499 **A9 00 11 01 00 07 D0**
1500
1501 DO1 pin takes no action, DO2 pin is set to low, and DO3 pin is set to high. This lasts for 2 seconds, after which the DO1 pin takes no action, the DO2 pin is set to high, and the DO3 pin is set to low.
1502 )))
1503
1504 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1505
1506
1507 (% style="color:#037691" %)**AT Command:**
1508
1509 There is no AT Command to control the Relay Output.
1510
1511
1512 (% style="color:#037691" %)**Downlink Payload**
1513
1514 (% border="2" style="width:500px" %)
1515 |(% style="width:113px" %)**Prefix**|(% style="width:384px" %)0x03
1516 |(% style="width:113px" %)**Parameters**|(% style="width:384px" %)(((
1517 **RO1_status** : 1 byte in hex
1518
1519 00: Close
1520
1521 01: Open
1522
1523 11: No action
1524
1525
1526 **RO2_status** : 1 byte in hex
1527
1528 00: Close
1529
1530 01: Open
1531
1532 11: No action
1533 )))
1534 |(% style="width:113px" %)**Payload format**|(% style="width:384px" %)<prefix><RO1_status><RO2_status>
1535 |(% style="width:113px" %)**Example**|(% style="width:384px" %)(((
1536 (% border="2" %)
1537 |=Payload|=RO1|=RO2
1538 |03  00  11|Open|No action
1539 |03  01  11|Close|No action
1540 |03 11  00|No action|Open
1541 |03 11 10|No action|Close
1542 |03 00 00|Open|Open
1543 |03 01 01|Close|Close
1544 |03 01 00|Close|Open
1545 |03 00 01|Open|Close
1546
1547 (% style="color:red" %)**The device will transmit an uplink packet if the downlink payload is executed successfully.**
1548 )))
1549
1550 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1551
1552
1553 Controls the relay output time.
1554
1555
1556 (% style="color:#037691" %)**AT Command:**
1557
1558 There is no AT Command to control the Relay Output
1559
1560
1561 (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1562
1563 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Sets RO1/RO2 relays with time control
1564
1565
1566 This controls the relay output time and includes 4 bytes:
1567
1568 (% style="color:#4f81bd" %)**First byte **(%%)**:** Type code (0x05)
1569
1570 (% style="color:#4f81bd" %)**Second byte (aa)**(%%): Inverter Mode
1571
1572 01: Relays will change back to their original state after a timeout.
1573
1574 00: Relays will change to the inverter state after a timeout.
1575
1576
1577 (% style="color:#4f81bd" %)**Third byte (bb)**(%%): Control Method and Ports status:
1578
1579 [[image:image-20221008095908-1.png||height="364" width="564"]]
1580
1581
1582 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh bytes (cc)**(%%): Latching time. Unit: ms
1583
1584
1585 (% style="color:red" %)**Note:**
1586
1587 Since firmware v1.6.0, the latch time supports both 4 bytes and 2 bytes.
1588
1589 Before firmware v1.6.0, the latch time only supported 2 bytes.
1590
1591
1592 (% style="color:red" %)**The device will uplink a packet if the downlink code executes successfully.**
1593
1594
1595 **Example payload:**
1596
1597 **~1. 05 01 11 07 D0**
1598
1599 Relay1 and Relay2 will be set to NC, lasting 2 seconds, then revert to their original state
1600
1601 **2. 05 01 10 07 D0**
1602
1603 Relay1 will change to NC, Relay2 will change to NO, lasting 2 seconds, and then both will revert to their original state.
1604
1605 **3. 05 00 01 07 D0**
1606
1607 Relay1 will change to NO, Relay2 will change to NC, lasting 2 seconds, then Relay1 will change to NC, and Relay2 will change to NO.
1608
1609 **4. 05 00 00 07 D0**
1610
1611 Relay1 and Relay2 will change to NO, lasting 2 seconds, then both will change to NC.
1612
1613
1614
1615 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1616
1617
1618 When the voltage exceeds the threshold, counting begins. For details, see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1619
1620 (% style="color:#037691" %)**AT Command**
1621
1622 (% border="2" style="width:500px" %)
1623 |(% style="width:137px" %)**Command**|(% style="width:361px" %)AT+VOLMAX=<voltage>,<logic>
1624 |(% style="width:137px" %)**Response**|(% style="width:361px" %)
1625 |(% style="width:137px" %)**Parameters**|(% style="width:361px" %)(((
1626 **voltage** : voltage threshold in mV
1627
1628 **logic**:
1629
1630 **0** : lower than
1631
1632 **1**: higher than
1633
1634 if you leave the logic parameter blank, it is considered 0
1635 )))
1636 |(% style="width:137px" %)**Examples**|(% style="width:361px" %)(((
1637 AT+VOLMAX=20000
1638
1639 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1640
1641 AT+VOLMAX=20000,0
1642
1643 If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1644
1645 AT+VOLMAX=20000,1
1646
1647 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1648 )))
1649
1650 (% style="color:#037691" %)**Downlink Payload**
1651
1652 (% border="2" style="width:500px" %)
1653 |(% style="width:140px" %)**Payload**|(% style="width:358px" %)<prefix><voltage><logic>
1654 |(% style="width:140px" %)**Parameters**|(% style="width:358px" %)(((
1655 **prefix** : A5 (hex)
1656
1657 **voltage** : voltage threshold in mV (2 bytes in hex)
1658
1659 **logic**: (1 byte in hexadecimal)
1660
1661 **0** : lower than
1662
1663 **1**: higher than
1664
1665 if you leave the logic parameter blank, it is considered 1 (higher than)
1666 )))
1667 |(% style="width:140px" %)**Example**|(% style="width:358px" %)(((
1668 A5 **4E 20**
1669
1670 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1671
1672 A5 **4E 20 00**
1673
1674 If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1675
1676 A5 **4E 20 01**
1677
1678 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1679 )))
1680
1681 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1682
1683 This command allows users to pre-configure specific count numbers for various counting parameters such as Count1, Count2, or AVI1 Count. Use the AT command to set the desired count number for each configuration.
1684
1685 (% style="color:#037691" %)**AT Command**
1686
1687 (% border="2" style="width:500px" %)
1688 |(% style="width:134px" %)**Command**|(% style="width:364px" %)AT+SETCNT=<counting_parameter>,<number>
1689 |(% style="width:134px" %)**Response**|(% style="width:364px" %)
1690 |(% style="width:134px" %)**Parameters**|(% style="width:364px" %)(((
1691 **counting_parameter** :
1692
1693 1: COUNT1
1694
1695 2: COUNT2
1696
1697 3: AVI1 Count
1698
1699 **number** : Start number
1700 )))
1701 |(% style="width:134px" %)**Example**|(% style="width:364px" %)(((
1702 AT+SETCNT=1,10
1703
1704 Sets the COUNT1 to 10.
1705 )))
1706
1707 (% style="color:#037691" %)**Downlink Payload**
1708
1709 (% border="2" style="width:500px" %)
1710 |(% style="width:135px" %)**Payload**|(% style="width:363px" %)<prefix><counting_parameter><number>
1711 |(% style="width:135px" %)**Parameters**|(% style="width:363px" %)(((
1712 prefix : A8 (hex)
1713
1714 **counting_parameter** : (1 byte in hexadecimal)
1715
1716 1: COUNT1
1717
1718 2: COUNT2
1719
1720 3: AVI1 Count
1721
1722 **number** : Start number, 4 bytes in hexadecimal
1723 )))
1724 |(% style="width:135px" %)**Example**|(% style="width:363px" %)(((
1725 A8 **01 00 00 00 0A**
1726
1727 Sets the COUNT1 to 10.
1728 )))
1729
1730 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1731
1732 This command clears the counting in counting mode.
1733
1734 (% style="color:#037691" %)**AT Command**
1735
1736 (% border="2" style="width:500px" %)
1737 |(% style="width:142px" %)**Command**|(% style="width:356px" %)AT+CLRCOUNT
1738 |(% style="width:142px" %)**Response**|(% style="width:356px" %)-
1739
1740 (% style="color:#037691" %)**Downlink Payload**
1741
1742 (% border="2" style="width:500px" %)
1743 |(% style="width:141px" %)**Payload**|(% style="width:357px" %)<prefix><clear?>
1744 |(% style="width:141px" %)**Parameters**|(% style="width:357px" %)(((
1745 prefix : A6 (hex)
1746
1747 clear? : 01 (hex)
1748 )))
1749 |(% style="width:141px" %)**Example**|(% style="width:357px" %)A6 **01**
1750
1751 ==== 3.4.2.19 Counting ~-~- Set Saving Interval for 'Counting Result' ====
1752
1753
1754 This command allows you to configure the device to save its counting result to internal flash memory at specified intervals. By setting a save time, the device will periodically store the counting data to prevent loss in case of power failure. The save interval can be adjusted to suit your requirements, with a minimum value of 30 seconds.
1755
1756 (% style="color:#037691" %)**AT Command**
1757
1758 (% border="2" style="width:500px" %)
1759 |(% style="width:124px" %)**Command**|(% style="width:374px" %)AT+COUTIME=<time>
1760 |(% style="width:124px" %)**Response**|(% style="width:374px" %)
1761 |(% style="width:124px" %)**Parameters**|(% style="width:374px" %)time : seconds (0 to 16777215)
1762 |(% style="width:124px" %)**Example**|(% style="width:374px" %)(((
1763 AT+COUTIME=60
1764
1765 Sets the device to save its counting results to the memory every 60 seconds.
1766 )))
1767
1768 (% style="color:#037691" %)**Downlink Payload**
1769
1770 (% border="2" style="width:500px" %)
1771 |(% style="width:123px" %)**Payload**|(% style="width:375px" %)<prefix><time>
1772 |(% style="width:123px" %)**Parameters**|(% style="width:375px" %)(((
1773 prefix : A7
1774
1775 time : seconds, 3 bytes in hexadecimal
1776 )))
1777 |(% style="width:123px" %)**Example**|(% style="width:375px" %)(((
1778 A7 **00 00 3C**
1779
1780 Sets the device to save its counting results to the memory every 60 seconds.
1781 )))
1782
1783 ==== 3.4.2.20 Reset saved RO and DO states ====
1784
1785
1786 This command allows you to reset the saved relay output (RO) and digital output (DO) states when the device joins the network. By configuring this setting, you can control whether the device should retain or reset the relay states after a reset and rejoin to the network.
1787
1788 (% style="color:#037691" %)**AT Command**
1789
1790 (% border="2" style="width:500px" %)
1791 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+RODORESET=<state>
1792 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1793 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1794 **state** :
1795
1796 **0** : RODO will close when the device joins the network. (default)
1797
1798 **1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1799 )))
1800 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1801 (% style="color:blue" %)**AT+RODORESET=1 **
1802
1803 RODO will close when the device joins the network. (default)
1804
1805 (% style="color:blue" %)**AT+RODORESET=0 **
1806
1807 After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1808 )))
1809
1810 (% style="color:#037691" %)**Downlink Payload**
1811
1812 (% border="2" style="width:500px" %)
1813 |(% style="width:127px" %)**Payload**|(% style="width:371px" %)<prefix><state>
1814 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1815 **prefix** : AD
1816
1817 **state** :
1818
1819 **0** : RODO will close when the device joins the network. (default), represents as 1 byte in hexadecimal.
1820
1821 **1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network. - represents as 1 byte in hexadecimal
1822 )))
1823 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1824 AD **01**
1825
1826 RODO will close when the device joins the network. (default)
1827
1828 AD **00**
1829
1830 After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1831 )))
1832
1833 ==== 3.4.2.21 Encrypted payload ====
1834
1835
1836 This command allows you to configure whether the device should upload data in an encrypted format or in plaintext. By default, the device encrypts the payload before uploading. You can toggle this setting to either upload encrypted data or transmit it without encryption.
1837
1838 (% style="color:#037691" %)**AT Command:**
1839
1840 (% border="2" style="width:500px" %)
1841 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DECRYPT=<state>
1842 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1843 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1844 **state** :
1845
1846 **1** : The payload is uploaded without encryption
1847
1848 **0** : The payload is encrypted when uploaded (default)
1849 )))
1850 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1851 AT+DECRYPT=1
1852
1853 The payload is uploaded without encryption
1854
1855 AT+DECRYPT=0
1856
1857 The payload is encrypted when uploaded (default)
1858 )))
1859
1860 There is no downlink payload for this configuration.
1861
1862
1863 ==== 3.4.2.22 Get sensor value ====
1864
1865
1866 This command allows you to retrieve and optionally uplink sensor readings through the serial port.
1867
1868 (% style="color:#037691" %)**AT Command**
1869
1870 (% border="2" style="width:500px" %)
1871 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+GETSENSORVALUE=<state>
1872 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1873 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1874 **state** :
1875
1876 **0 **: Retrieves the current sensor reading via the serial port.
1877
1878 **1 **: Retrieves and uploads the current sensor reading via the serial port.
1879 )))
1880 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1881 AT+GETSENSORVALUE=0
1882
1883 Retrieves the current sensor reading via the serial port.
1884
1885 AT+GETSENSORVALUE=1
1886
1887 Retrieves and uplinks the current sensor reading via the serial port.
1888 )))
1889
1890 There is no downlink payload for this configuration.
1891
1892
1893 ==== 3.4.2.23 Resetting the downlink packet count ====
1894
1895
1896 This command manages how the node handles mismatched downlink packet counts. It offers two modes: one disables the reception of further downlink packets if discrepancies occur, while the other resets the downlink packet count to align with the server, ensuring continued communication.
1897
1898 (% style="color:#037691" %)**AT Command**
1899
1900 (% border="2" style="width:500px" %)
1901 |(% style="width:130px" %)**Command**|(% style="width:368px" %)AT+DISFCNTCHECK=<state>
1902 |(% style="width:130px" %)**Response**|(% style="width:368px" %)(((
1903
1904 )))
1905 |(% style="width:130px" %)**Parameters**|(% style="width:368px" %)(((
1906 **state **:
1907
1908 **0** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default).
1909
1910
1911 **1** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency.
1912 )))
1913 |(% style="width:130px" %)**Example**|(% style="width:368px" %)(((
1914 AT+DISFCNTCHECK=0
1915
1916 When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default).
1917
1918 AT+DISFCNTCHECK=1
1919
1920 When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency.
1921 )))
1922
1923 There is no downlink payload for this configuration.
1924
1925
1926 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1927
1928
1929 This command controls the behavior of the node when the combined size of the MAC commands (MACANS) from the server and the payload exceed the allowed byte limit for the current data rate (DR). The command provides two modes: one enables splitting the data into batches to ensure compliance with the byte limit, while the other prioritizes the payload and ignores the MACANS in cases of overflow.
1930
1931 (% style="color:#037691" %)**AT Command**
1932
1933 (% border="2" style="width:500px" %)
1934 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DISMACANS=<state>
1935 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1936 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1937 **state** :
1938
1939 **0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1940
1941 **1** : When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1942 )))
1943 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1944 AT+DISMACANS=0
1945
1946 When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1947
1948 AT+DISMACANS=1
1949
1950 When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1951 )))
1952
1953 (% style="color:#037691" %)**Downlink Payload**
1954
1955 (% border="2" style="width:500px" %)
1956 |(% style="width:126px" %)**Payload**|(% style="width:372px" %)<prefix><state>
1957 |(% style="width:126px" %)**Parameters**|(% style="width:372px" %)(((
1958 **prefix** : 21
1959
1960 **state** : (2 bytes in hexadecimal)
1961
1962 **0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1963
1964 **1 **: When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1965 )))
1966 |(% style="width:126px" %)**Example**|(% style="width:372px" %)(((
1967 21 **00 01**
1968
1969 Set DISMACANS=1
1970 )))
1971
1972 ==== 3.4.2.25 Copy downlink to uplink ====
1973
1974
1975 This command enables the device to immediately uplink the payload of a received downlink packet back to the server. The command allows for quick data replication from downlink to uplink, with a fixed port number of 100.
1976
1977 (% style="color:#037691" %)**AT Command**(%%)**:**
1978
1979 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving a downlink payload from the server, the device will immediately uplink the payload back to the server using port number 100.
1980
1981 Example:**aa xx xx xx xx**         ~/~/ **aa** indicates whether the configuration has changed: **00** means YES, and **01** means NO. **xx xx xx xx** are the bytes uplinked back.
1982
1983
1984 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1985
1986 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1987
1988 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1989
1990 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1991
1992
1993 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1994
1995 There is no downlink option available for this feature.
1996
1997
1998 ==== 3.4.2.26 Query firmware version, frequency band, subband, and TDC time ====
1999
2000
2001 This command is used to query key information about the device, including its firmware version, frequency band, subband, and TDC time. By sending the specified payload as a downlink, the server can retrieve this essential data from the device.
2002
2003 * (((
2004 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
2005
2006 (% style="color:blue" %)**26 01  ** (%%) ~/~/  The downlink payload 26 01 is used to query the device's firmware version, frequency band, subband, and TDC time.
2007
2008
2009
2010 )))
2011
2012 **Example:**
2013
2014 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
2015
2016
2017 == 3.5 Integrating with ThingsEye.io ==
2018
2019
2020 The Things Stack application supports integration with ThingsEye.io. Once integrated, ThingsEye.io acts as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
2021
2022
2023 === 3.5.1 Configuring The Things Stack ===
2024
2025
2026 We use The Things Stack Sandbox in this example:
2027
2028 * In **The Things Stack Sandbox**, go to the **Application **for the LT-22222-L you added.
2029 * Select **MQTT** under **Integrations** in the left menu.
2030 * In the **Connection information **section, under **Connection credentials**, The Things Stack displays an auto-generated **username**. You can use it or provide a new one.
2031 * Click the **Generate new API key** button to generate a password. You can view it by clicking on the **visibility toggle/eye** icon. The API key works as the password.
2032
2033 {{info}}
2034 The username and  password (API key) you created here are required in the next section.
2035 {{/info}}
2036
2037 [[image:tts-mqtt-integration.png]]
2038
2039
2040 === 3.5.2 Configuring ThingsEye.io ===
2041
2042
2043 The ThingsEye.io IoT platform is not open for self-registration at the moment. If you are interested in testing the platform, please send your project information to admin@thingseye.io, and we will create an account for you.
2044
2045 * Login to your [[ThingsEye.io >>https://thingseye.io]]account.
2046 * Under the **Integrations center**, click **Integrations**.
2047 * Click the **Add integration** button (the button with the **+** symbol).
2048
2049 [[image:thingseye-io-step-1.png]]
2050
2051
2052 On the **Add integration** window, configure the following:
2053
2054 **Basic settings:**
2055
2056 * Select **The Things Stack Community** from the **Integration type** list.
2057 * Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
2058 * Ensure the following options are turned on.
2059 ** Enable integration
2060 ** Debug mode
2061 ** Allow creating devices or assets
2062 * Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
2063
2064 [[image:thingseye-io-step-2.png]]
2065
2066
2067 **Uplink data converter:**
2068
2069 * Click the **Create new** button if it is not selected by default.
2070 * Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
2071 * Click the **JavaScript** button.
2072 * Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
2073 * Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
2074
2075 [[image:thingseye-io-step-3.png]]
2076
2077
2078 **Downlink data converter (this is an optional step):**
2079
2080 * Click the **Create new** button if it is not selected by default.
2081 * Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name.
2082 * Click the **JavaScript** button.
2083 * Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Downlink_Converter.js]].
2084 * Click the **Next** button. You will be navigated to the **Connection** tab.
2085
2086 [[image:thingseye-io-step-4.png]]
2087
2088
2089 **Connection:**
2090
2091 * Choose **Region** from the **Host type**.
2092 * Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
2093 * Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The **username **and **password **can be found on the MQTT integration page of your The Things Stack account (see **3.5.1 Configuring The Things Stack**).
2094 * Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
2095
2096 [[image:message-1.png]]
2097
2098
2099 * Click the **Add** button.
2100
2101 [[image:thingseye-io-step-5.png]]
2102
2103
2104 Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings and correct any errors.
2105
2106
2107 [[image:thingseye.io_integrationsCenter_integrations.png]]
2108
2109
2110 ==== 3.5.2.1 Viewing integration details ====
2111
2112
2113 Click on your integration from the list. The **Integration details** window will appear with the **Details **tab selected. The **Details **tab shows all the settings you have provided for this integration.
2114
2115 [[image:integration-details.png]]
2116
2117
2118 If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
2119
2120 {{info}}
2121 See also [[ThingsEye documentation>>https://wiki.thingseye.io/xwiki/bin/view/Main/]].
2122 {{/info}}
2123
2124
2125 ==== 3.5.2.2 Viewing events ====
2126
2127
2128 The **Events **tab displays all the uplink messages from the LT-22222-L.
2129
2130 * Select **Debug **from the **Event type** dropdown.
2131 * Select the** time frame** from the **time window**.
2132
2133 [[image:thingseye-events.png]]
2134
2135
2136 * To view the **JSON payload** of a message, click on the **three dots (...)** in the **Message** column of the desired message.
2137
2138 [[image:thingseye-json.png]]
2139
2140
2141 ==== 3.5.2.3 Deleting an integration ====
2142
2143
2144 If you want to delete an integration, click the **Delete integratio**n button on the Integrations page.
2145
2146
2147 ==== 3.5.2.4 Viewing sensor data on a dashboard ====
2148
2149
2150 You can create a dashboard with ThingsEye to visualize the sensor data coming from the LT-22222-L. The following image shows a dashboard created for the LT-22222-L. See **Creating a dashboard** in ThingsEye documentation for more information.
2151
2152
2153
2154 [[image:lt-22222-l-dashboard.png]]
2155
2156
2157 == 3.6 Interface Details ==
2158
2159 === 3.6.1 Digital Input Ports: DI1/DI2/DI3 (For LT-33222-L, Low Active) ===
2160
2161
2162 Supports** NPN-type **sensors.
2163
2164 [[image:1653356991268-289.png]]
2165
2166
2167 === 3.6.2 Digital Input Ports: DI1/DI2 ===
2168
2169
2170 (((
2171 The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
2172 )))
2173
2174 (((
2175 (((
2176 The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
2177
2178
2179 )))
2180 )))
2181
2182 [[image:1653357170703-587.png]]
2183
2184 (((
2185 (((
2186 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
2187 )))
2188 )))
2189
2190 (((
2191
2192 )))
2193
2194 (((
2195 (% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
2196 )))
2197
2198 (((
2199 This type of sensor outputs a low (GND) signal when active.
2200 )))
2201
2202 * (((
2203 Connect the sensor's output to DI1-
2204 )))
2205 * (((
2206 Connect the sensor's VCC to DI1+.
2207 )))
2208
2209 (((
2210 When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be:
2211 )))
2212
2213 (((
2214 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
2215 )))
2216
2217 (((
2218 For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
2219 )))
2220
2221 (((
2222
2223 )))
2224
2225 (((
2226 (% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
2227 )))
2228
2229 (((
2230 This type of sensor outputs a high signal (e.g., 24V) when active.
2231 )))
2232
2233 * (((
2234 Connect the sensor's output to DI1+
2235 )))
2236 * (((
2237 Connect the sensor's GND DI1-.
2238 )))
2239
2240 (((
2241 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
2242 )))
2243
2244 (((
2245 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
2246 )))
2247
2248 (((
2249 If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
2250 )))
2251
2252 (((
2253
2254 )))
2255
2256 (((
2257 (% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
2258 )))
2259
2260 (((
2261 Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
2262 )))
2263
2264 * (((
2265 Connect the sensor's output to DI1+ with a 50K resistor in series.
2266 )))
2267 * (((
2268 Connect the sensor's GND DI1-.
2269 )))
2270
2271 (((
2272 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
2273 )))
2274
2275 (((
2276 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
2277 )))
2278
2279 (((
2280 If the sensor output is 220V, then [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
2281 )))
2282
2283
2284 (% style="color:blue" %)**Example 4**(%%): Connecting to a Dry Contact sensor
2285
2286 From the DI port circuit above, activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference on its own.
2287
2288 To detect a Dry Contact, you can supply a power source to one of the pins of the Dry Contact. A reference circuit diagram is shown below.
2289
2290 [[image:image-20230616235145-1.png]]
2291
2292 (% style="color:blue" %)**Example 5**(%%): Connecting to an Open Collector
2293
2294 [[image:image-20240219115718-1.png]]
2295
2296
2297 === 3.6.3 Digital Output Ports: DO1/DO2 ===
2298
2299
2300 (% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
2301
2302 (% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
2303
2304 [[image:1653357531600-905.png]]
2305
2306
2307 === 3.6.4 Analog Input Interfaces ===
2308
2309
2310 The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
2311
2312
2313 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
2314
2315 [[image:1653357592296-182.png]]
2316
2317 Example: Connecting a 4~~20mA sensor
2318
2319 We will use the wind speed sensor as an example for reference only.
2320
2321
2322 (% style="color:blue" %)**Specifications of the wind speed sensor:**
2323
2324 (% style="color:red" %)**Red:  12~~24V**
2325
2326 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
2327
2328 **Black:  GND**
2329
2330 **Connection diagram:**
2331
2332 [[image:1653357640609-758.png]]
2333
2334 [[image:1653357648330-671.png||height="155" width="733"]]
2335
2336
2337 Example: Connecting to a regulated power supply to measure voltage
2338
2339 [[image:image-20230608101532-1.png||height="606" width="447"]]
2340
2341 [[image:image-20230608101608-2.jpeg||height="379" width="284"]]
2342
2343 [[image:image-20230608101722-3.png||height="102" width="1139"]]
2344
2345
2346 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
2347
2348 (% style="color:red" %)**Red:  12~~24v**
2349
2350 **Black:  GND**
2351
2352
2353 === 3.6.5 Relay Output ===
2354
2355
2356 (((
2357 The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
2358
2359 **Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
2360 )))
2361
2362 [[image:image-20220524100215-9.png]]
2363
2364
2365 [[image:image-20220524100215-10.png||height="382" width="723"]]
2366
2367
2368 == 3.7 LED Indicators ==
2369
2370
2371 The table below lists the behaviour of LED indicators for each port function.
2372
2373 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
2374 |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
2375 |**PWR**|Always on when there is power
2376 |**TX**|(((
2377 (((
2378 Device booting: TX blinks 5 times.
2379 )))
2380
2381 (((
2382 Successful network joins: TX remains ON for 5 seconds.
2383 )))
2384
2385 (((
2386 Transmit a LoRa packet: TX blinks once
2387 )))
2388 )))
2389 |**RX**|RX blinks once when a packet is received.
2390 |**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
2391 |**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
2392 |**DI1**|(((
2393 For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
2394 )))
2395 |**DI2**|(((
2396 For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
2397 )))
2398 |**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
2399 |**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
2400
2401 = 4. Using AT Commands =
2402
2403
2404 The LT-22222-L supports programming using AT Commands.
2405
2406
2407 == 4.1 Connecting the LT-22222-L to a PC ==
2408
2409
2410 (((
2411 You can use a USB-to-TTL adapter/converter along with a 3.5mm Program Cable to connect the LT-22222-L to a PC, as shown below.
2412
2413 [[image:usb-ttl-audio-jack-connection.jpg]]
2414
2415
2416 )))
2417
2418
2419 (((
2420 On the PC, you need to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate of (% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-L. Access to AT commands is disabled by default, and a password (default: (% style="color:green" %)**123456**)(%%) must be entered to enable AT command access, as shown below:
2421 )))
2422
2423 [[image:1653358355238-883.png]]
2424
2425
2426 (((
2427 You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
2428
2429
2430 == 4.2 LT-22222-L related AT commands ==
2431
2432
2433 )))
2434
2435 (((
2436 The following is the list of all the AT commands related to the LT-22222-L, except for those used for switching between working modes.
2437
2438 * **##AT##+<CMD>?** : Help on <CMD>
2439 * **##AT##+<CMD>** : Run <CMD>
2440 * **##AT##+<CMD>=<value>** : Set the value
2441 * **##AT##+<CMD>=?** : Get the value
2442 * ##**ATZ**##: Trigger a reset of the MCU
2443 * ##**AT+FDR**##: Reset Parameters to factory default, reserve keys 
2444 * **##AT+DEUI##**: Get or set the Device EUI (DevEUI)
2445 * **##AT+DADDR##**: Get or set the Device Address (DevAddr)
2446 * **##AT+APPKEY##**: Get or set the Application Key (AppKey)
2447 * ##**AT+NWKSKEY**##: Get or set the Network Session Key (NwkSKey)
2448 * **##AT+APPSKEY##**: Get or set the Application Session Key (AppSKey)
2449 * **##AT+APPEUI##**: Get or set the Application EUI (AppEUI)
2450 * **##AT+ADR##**: Get or set the Adaptive Data Rate setting. (0: OFF, 1: ON)
2451 * ##**AT+TXP**##: Get or set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Specification)
2452 * **##AT+DR##**:  Get or set the Data Rate. (0-7 corresponding to DR_X)  
2453 * **##AT+DCS##**: Get or set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
2454 * ##**AT+PNM**##: Get or set the public network mode. (0: off, 1: on)
2455 * ##**AT+RX2FQ**##: Get or set the Rx2 window frequency
2456 * ##**AT+RX2DR**##: Get or set the Rx2 window data rate (0-7 corresponding to DR_X)
2457 * ##**AT+RX1DL**##: Get or set the delay between the end of the Tx and the Rx Window 1 in ms
2458 * ##**AT+RX2DL**##: Get or set the delay between the end of the Tx and the Rx Window 2 in ms
2459 * ##**AT+JN1DL**##: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
2460 * ##**AT+JN2DL**##: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
2461 * ##**AT+NJM**##: Get or set the Network Join Mode. (0: ABP, 1: OTAA)
2462 * ##**AT+NWKID**##: Get or set the Network ID
2463 * ##**AT+FCU**##: Get or set the Frame Counter Uplink (FCntUp)
2464 * ##**AT+FCD**##: Get or set the Frame Counter Downlink (FCntDown)
2465 * ##**AT+CLASS**##: Get or set the Device Class
2466 * ##**AT+JOIN**##: Join Network
2467 * ##**AT+NJS**##: Get OTAA Join Status
2468 * ##**AT+SENDB**##: Send hexadecimal data along with the application port
2469 * ##**AT+SEND**##: Send text data along with the application port
2470 * ##**AT+RECVB**##: Print the last received data in binary format (with hexadecimal values)
2471 * ##**AT+RECV**##: Print the last received data in raw format
2472 * ##**AT+VER**##: Get the current image version and Frequency Band
2473 * ##**AT+CFM**##: Get or Set the confirmation mode (0-1)
2474 * ##**AT+CFS**##: Get confirmation status of the last AT+SEND (0-1)
2475 * ##**AT+SNR**##: Get the SNR of the last received packet
2476 * ##**AT+RSSI**##: Get the RSSI of the last received packet
2477 * ##**AT+TDC**##: Get or set the application data transmission interval in ms
2478 * ##**AT+PORT**##: Get or set the application port
2479 * ##**AT+DISAT**##: Disable AT commands
2480 * ##**AT+PWORD**##: Set password, max 9 digits
2481 * ##**AT+CHS**##: Get or set the Frequency (Unit: Hz) for Single Channel Mode
2482 * ##**AT+CHE**##: Get or set eight channels mode, Only for US915, AU915, CN470
2483 * ##**AT+CFG**##: Print all settings
2484 )))
2485
2486
2487 == 4.2 Common AT Command Sequence ==
2488
2489 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
2490
2491 (((
2492
2493
2494 (((
2495 (% style="color:blue" %)**If the device has not yet joined the network:**
2496 )))
2497 )))
2498
2499 (((
2500 (% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT command access**##
2501 )))
2502
2503 (((
2504 (% style="background-color:#dcdcdc" %)##**AT+FDR ~/~/Reset parameters to factory default, Reserve keys**##
2505 )))
2506
2507 (((
2508 (% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT command access**##
2509 )))
2510
2511 (((
2512 (% style="background-color:#dcdcdc" %)##**AT+NJM=0 ~/~/Set to ABP mode**##
2513 )))
2514
2515 (((
2516 (% style="background-color:#dcdcdc" %)##**ATZ ~/~/Reset MCU**##
2517 )))
2518
2519
2520 (((
2521 (% style="color:blue" %)**If the device has already joined the network:**
2522 )))
2523
2524 (((
2525 (% style="background-color:#dcdcdc" %)##**AT+NJM=0**##
2526 )))
2527
2528 (((
2529 (% style="background-color:#dcdcdc" %)##**ATZ**##
2530 )))
2531
2532
2533 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
2534
2535 (((
2536
2537
2538 (((
2539 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter the password to enable AT commands access
2540 )))
2541 )))
2542
2543 (((
2544 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset parameters to Factory Default, Reserve keys
2545 )))
2546
2547 (((
2548 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter the password to enable AT command access
2549 )))
2550
2551 (((
2552 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to CLASS C mode
2553 )))
2554
2555 (((
2556 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
2557 )))
2558
2559 (((
2560 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
2561 )))
2562
2563 (((
2564 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
2565 )))
2566
2567 (((
2568 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
2569 )))
2570
2571 (((
2572 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4 MHz
2573 )))
2574
2575 (((
2576 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2 frequency to 868.4 MHz (according to the result from the server)
2577 )))
2578
2579 (((
2580 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2 DR to match the downlink DR from the server. See below.
2581 )))
2582
2583 (((
2584 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address. The Device Address can be found in the application on the LoRaWAN NS.
2585 )))
2586
2587 (((
2588 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
2589
2590
2591 )))
2592
2593 (((
2594 (% style="color:red" %)**Note:**
2595 )))
2596
2597 (((
2598 **~1. Ensure that the device is set to ABP mode in the LoRaWAN Network Server.**
2599
2600 **2. Verify that the LG01/02 gateway RX frequency matches the AT+CHS setting exactly.**
2601
2602 **3. Make sure the SF/bandwidth settings in the LG01/LG02 match the settings of AT+DR. Refer to [[this link>>url:http://www.dragino.com/downloads/index.php?
2603 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
2604
2605 **4. The commands AT+RX2FQ and AT+RX2DR enable downlink functionality. To set the correct parameters, you can check the actual downlink parameters to be used as shown below. Here, RX2FQ should be set to 868400000 and RX2DR should be set to 5.**
2606 )))
2607
2608 (((
2609 [[image:1653359097980-169.png||height="188" width="729"]]
2610 )))
2611
2612
2613 === 4.2.3 Change to Class A ===
2614
2615
2616 (((
2617 (% style="color:blue" %)**If the sensor has JOINED:**
2618
2619 (% style="background-color:#dcdcdc" %)**AT+CLASS=A**
2620
2621 (% style="background-color:#dcdcdc" %)**ATZ**
2622 )))
2623
2624
2625 = 5. Case Study =
2626
2627 == 5.1 Counting how many objects pass through the flow line ==
2628
2629
2630 See [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]].
2631
2632
2633 = 6. FAQ =
2634
2635
2636 This section contains some frequently asked questions, which can help you resolve common issues and find solutions quickly.
2637
2638
2639 == 6.1 How to update the firmware? ==
2640
2641
2642 Dragino frequently releases firmware updates for the LT-22222-L. Updating your LT-22222-L with the latest firmware version helps to:
2643
2644 * Support new features
2645 * Fix bugs
2646 * Change LoRaWAN frequency bands
2647
2648 You will need the following things before proceeding:
2649
2650 * 3.5mm programming cable (included with the LT-22222-L as an additional accessory)
2651 * USB to TTL adapter/converter
2652 * Download and install the [[STM32 Flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. (replaced by STM32CubeProgrammer)
2653 * Download the latest firmware image from [[LT-22222-L firmware image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. Check the file name of the firmware to find the correct region.
2654
2655 {{info}}
2656 As of this writing, the latest firmware version available for the LT-22222-L is v1.6.1.
2657 {{/info}}
2658
2659 Below is the hardware setup for uploading a firmware image to the LT-22222-L:
2660
2661 [[image:usb-ttl-audio-jack-connection.jpg]]
2662
2663
2664
2665 Start the STM32 Flash Loader and choose the correct COM port to update.
2666
2667 (((
2668 (((
2669 (% style="color:blue" %)**For LT-22222-L**(%%):
2670
2671 Hold down the **PRO** button, then briefly press the **RST** button. The **DO1** LED will change from OFF to ON. When the **DO1** LED is ON, it indicates that the device is in firmware download mode.
2672 )))
2673
2674
2675 )))
2676
2677 [[image:image-20220524103407-12.png]]
2678
2679
2680 [[image:image-20220524103429-13.png]]
2681
2682
2683 [[image:image-20220524104033-15.png]]
2684
2685
2686 (% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5 mm cable. The pin mapping is as follows:
2687
2688 [[image:1653360054704-518.png||height="186" width="745"]]
2689
2690
2691 (((
2692 (((
2693 == 6.2 How to change the LoRaWAN frequency band/region? ==
2694
2695
2696 )))
2697 )))
2698
2699 (((
2700 You can follow the introductions on [[how to upgrade the image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2701 )))
2702
2703 (((
2704
2705
2706 == 6.3 How to set up LT-22222-L to work with a Single Channel Gateway, such as LG01/LG02? ==
2707
2708
2709 )))
2710
2711 (((
2712 (((
2713 In this case, you need to set the LT-22222-L to work in ABP mode and transmit on only one frequency.
2714 )))
2715 )))
2716
2717 (((
2718 (((
2719 We assume you have an LG01/LG02 working on the frequency 868400000. Below are the steps.
2720
2721
2722 )))
2723 )))
2724
2725 (((
2726 (% style="color:#0000ff" %)**Step 1**(%%): Log in to The Things Stack Sandbox account and create an ABP device in the application. To do this, use the manual registration option as explained in section 3.2.2.2, //Adding a Device Manually//. Select //Activation by Personalization (ABP)// under Activation Mode. Enter the DevEUI exactly as shown on the registration information sticker, then generate the Device Address, Application Session Key (AppSKey), and Network Session Key (NwkSKey).
2727
2728 [[image:lt-22222-l-abp.png||height="686" width="1000"]]
2729 )))
2730
2731 (((
2732
2733 )))
2734
2735 {{warning}}
2736 Ensure that the Device Address (DevAddr) and the two keys match between the LT-22222-L and The Things Stack. You can modify them either in The Things Stack or on the LT-22222-L to make them align. In The Things Stack, you can configure the NwkSKey and AppSKey on the settings page, but note that the Device Address is generated by The Things Stack.
2737 {{/warning}}
2738
2739
2740 (((
2741 (% style="color:blue" %)**Step 2**(%%)**:  **(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)Run AT commands to configure the LT-22222-L to operate in single-frequency and ABP mode. The AT commands are as follows:
2742
2743
2744 )))
2745
2746 (((
2747 (% style="background-color:#dcdcdc" %)**123456** (%%) : Enter the password to enable AT access.
2748
2749 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Reset parameters to factory default, keeping keys reserved.
2750
2751 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) : Set to ABP mode.
2752
2753 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) : Disable the Adaptive Data Rate (ADR).
2754
2755 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) : Set Data Rate (Use AT+DR=3 for the 915 MHz band).
2756
2757 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) : Set transmit interval to 60 seconds.
2758
2759 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4 MHz.
2760
2761 (% style="background-color:#dcdcdc" %)**AT+DADDR=xxxx**(%%) : Set the Device Address (DevAddr)
2762
2763 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:700; text-decoration:none; white-space:pre-wrap" %)**AT+APPKEY=xxxx**(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %): Get or set the Application Key (AppKey)
2764
2765 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+NWKSKEY=xxxx**: Get or set the Network Session Key (NwkSKey)
2766
2767 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+APPSKEY=xxxx**: Get or set the Application Session Key (AppSKey)
2768
2769 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) : Reset MCU.
2770 )))
2771
2772
2773 (((
2774 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)The following figure shows the screenshot of the command set above, issued using a serial tool:
2775 )))
2776
2777 [[image:1653360498588-932.png||height="485" width="726"]]
2778
2779
2780 == 6.4 How to change the uplink interval? ==
2781
2782
2783 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2784
2785
2786 == 6.5 Can I see the counting event in the serial output? ==
2787
2788
2789 (((
2790 You can run the AT command **AT+DEBUG** to view the counting event in the serial output. If the firmware is too old and doesn’t support AT+DEBUG, update to the latest firmware first.
2791
2792
2793 == 6.6 Can I use point-to-point communication with LT-22222-L? ==
2794
2795
2796 Yes, you can. Please refer to the [[Point-to-Point Communication of LT-22222-L>>https://wiki.dragino.com/xwiki/bin/view/Main/%20Point%20to%20Point%20Communication%20of%20LT-22222-L/]] page. The firmware that supports point-to-point communication can be found [[here>>https://github.com/dragino/LT-22222-L/releases]].
2797
2798
2799 )))
2800
2801 (((
2802 == 6.7 Why does the relay output default to an open relay after the LT-22222-L is powered off? ==
2803
2804
2805 * If the device is not properly shut down and is directly powered off.
2806 * It will default to a power-off state.
2807 * In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2808 * After a restart, the status before the power failure will be read from Flash.
2809
2810 == 6.8 Can I set up LT-22222-L as an NC (Normally Closed) relay? ==
2811
2812
2813 The LT-22222-L's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
2814
2815
2816 [[image:image-20221006170630-1.png||height="610" width="945"]]
2817
2818
2819 == 6.9 Can the LT-22222-L save the RO state? ==
2820
2821
2822 To enable this feature, the firmware version must be 1.6.0 or higher.
2823
2824
2825 == 6.10 Why does the LT-22222-L always report 15.585V when measuring the AVI? ==
2826
2827
2828 It is likely that the GND is not connected during the measurement, or that the wire connected to the GND is loose.
2829
2830
2831 = 7. Troubleshooting =
2832
2833
2834 This section provides some known troubleshooting tips.
2835
2836
2837 )))
2838
2839 (((
2840 (((
2841 == 7.1 Downlink isn't working. How can I solve this? ==
2842
2843
2844 )))
2845 )))
2846
2847 (((
2848 Please refer to this link for debugging instructions: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2849 )))
2850
2851 (((
2852
2853
2854 == 7.2 Having trouble uploading an image? ==
2855
2856
2857 )))
2858
2859 (((
2860 Please refer to this link for troubleshooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2861 )))
2862
2863 (((
2864
2865
2866 == 7.3 Why can't I join TTN in the US915 /AU915 bands? ==
2867
2868
2869 )))
2870
2871 (((
2872 It might be related to the channel mapping. [[Please refer to this link for details.>>https://github.com/dragino/LT-22222-L/releases]]
2873 )))
2874
2875
2876 == 7.4 Why can the LT-22222-L perform uplink normally, but cannot receive downlink? ==
2877
2878
2879 The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue.
2880 Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2881
2882
2883 = 8. Ordering information =
2884
2885
2886 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2887
2888 (% style="color:#4f81bd" %)**XXX:**
2889
2890 * (% style="color:red" %)**EU433**(%%): LT with frequency bands EU433
2891 * (% style="color:red" %)**EU868**(%%): LT with frequency bands EU868
2892 * (% style="color:red" %)**KR920**(%%): LT with frequency bands KR920
2893 * (% style="color:red" %)**CN470**(%%): LT with frequency bands CN470
2894 * (% style="color:red" %)**AS923**(%%): LT with frequency bands AS923
2895 * (% style="color:red" %)**AU915**(%%): LT with frequency bands AU915
2896 * (% style="color:red" %)**US915**(%%): LT with frequency bands US915
2897 * (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2898 * (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2899
2900 = 9. Package information =
2901
2902
2903 **Package includes**:
2904
2905 * 1 x LT-22222-L I/O Controller
2906 * 1 x LoRa antenna matched to the frequency of the LT-22222-L
2907 * 1 x bracket for DIN rail mounting
2908 * 1 x 3.5 mm programming cable
2909
2910 **Dimension and weight**:
2911
2912 * Device Size: 13.5 x 7 x 3 cm
2913 * Device Weight: 105 g
2914 * Package Size / pcs : 14.5 x 8 x 5 cm
2915 * Weight / pcs : 170 g
2916
2917 = 10. Support =
2918
2919
2920 * (((
2921 Support is available Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule.
2922 )))
2923 * (((
2924 Please provide as much information as possible regarding your inquiry (e.g., product models, a detailed description of the problem, steps to replicate it, etc.) and send an email to [[support@dragino.cc>>mailto:support@dragino.cc]]
2925
2926
2927 )))
2928
2929 = 11. Reference​​​​​ =
2930
2931
2932 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2933 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2934 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0