Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19
20 = 1. Introduction =
21
22 == 1.1 What is the LT-22222-L I/O Controller? ==
23
24
25 (((
26 (((
27 {{info}}
28 **This manual is also applicable to the LT-33222-L.**
29 {{/info}}
30
31 The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN end device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
32
33 The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
34 )))
35 )))
36
37 (((
38 With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
39 )))
40
41 (((
42 You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
43
44 * If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Stack Community Network), you can select a network and register the LT-22222-L I/O controller with it.
45 * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
46 * Setup your own private LoRaWAN network.
47 )))
48
49 (((
50
51
52 The network diagram below illustrates how the LT-22222-L communicates with a typical LoRaWAN network.
53 )))
54
55 (% class="wikigeneratedid" %)
56 [[image:lorawan-nw.jpg||height="354" width="900"]]
57
58
59 == 1.2 Specifications ==
60
61
62 (% style="color:#037691" %)**Hardware System:**
63
64 * STM32L072xxxx MCU
65 * SX1276/78 Wireless Chip 
66 * Power Consumption:
67 ** Idle: 4mA@12V
68 ** 20dB Transmit: 34mA@12V
69 * Operating Temperature: -40 ~~ 85 Degrees, No Dew
70
71 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
72
73 * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50V, or 220V with optional external resistor)
74 * 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
75 * 2 x Relay Output (5A@250VAC / 30VDC)
76 * 2 x 0~~20mA Analog Input (res:0.01mA)
77 * 2 x 0~~30V Analog Input (res:0.01V)
78 * Power Input 7~~ 24V DC. 
79
80 (% style="color:#037691" %)**LoRa Spec:**
81
82 * Frequency Range:
83 ** Band 1 (HF): 862 ~~ 1020 MHz
84 ** Band 2 (LF): 410 ~~ 528 MHz
85 * 168 dB maximum link budget.
86 * +20 dBm - 100 mW constant RF output vs.
87 * +14 dBm high-efficiency PA.
88 * Programmable bit rate up to 300 kbps.
89 * High sensitivity: down to -148 dBm.
90 * Bullet-proof front end: IIP3 = -12.5 dBm.
91 * Excellent blocking immunity.
92 * Low RX current of 10.3 mA, 200 nA register retention.
93 * Fully integrated synthesizer with a resolution of 61 Hz.
94 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
95 * Built-in bit synchronizer for clock recovery.
96 * Preamble detection.
97 * 127 dB Dynamic Range RSSI.
98 * Automatic RF Sense and CAD with ultra-fast AFC.
99 * Packet engine up to 256 bytes with CRC.
100
101 == 1.3 Features ==
102
103
104 * LoRaWAN Class A & Class C modes
105 * Optional Customized LoRa Protocol
106 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
107 * AT Commands to change parameters
108 * Remotely configure parameters via LoRaWAN Downlink
109 * Firmware upgradable via program port
110 * Counting
111
112 == 1.4 Applications ==
113
114
115 * Smart buildings & home automation
116 * Logistics and supply chain management
117 * Smart metering
118 * Smart agriculture
119 * Smart cities
120 * Smart factory
121
122 == 1.5 Hardware Variants ==
123
124
125 (% border="1" cellspacing="3" style="width:510px" %)
126 |(% style="background-color:#4f81bd; color:white; width:94px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:172px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:244px" %)**Description**
127 |(% style="width:94px" %)**LT-33222-L**|(% style="width:172px" %)(((
128 (% style="text-align:center" %)
129 [[image:lt33222-l.jpg||height="110" width="95"]]
130 )))|(% style="width:256px" %)(((
131 * 3 x Digital Input (Bi-direction)
132 * 3 x Digital Output
133 * 2 x Relay Output (5A@250VAC / 30VDC)
134 * 2 x 0~~20mA Analog Input (res:0.01mA)
135 * 2 x 0~~30V Analog Input (res:0.01v)
136 * 1 x Counting Port
137 )))
138
139 = 2. Assembling the device =
140
141 == 2.1 Connecting the antenna ==
142
143
144 Connect the LoRa antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper screw terminal block. Secure the antenna by tightening it clockwise.
145
146 {{warning}}
147 **Warning! Do not power on the device without connecting the antenna.**
148 {{/warning}}
149
150
151 == 2.2 Terminals ==
152
153
154 The  LT-22222-L has two screw terminal blocks. The upper screw terminal block has 6 screw terminals and the lower screw terminal block has 10 screw terminals.
155
156 **Upper screw terminal block (from left to right):**
157
158 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:381px" %)
159 |=(% style="width: 139px;background-color:#4f81bd;color:white" %)Screw Terminal|=(% style="width: 242px;background-color:#4f81bd;color:white" %)Function
160 |(% style="width:139px" %)GND|(% style="width:242px" %)Ground
161 |(% style="width:139px" %)VIN|(% style="width:242px" %)Input Voltage
162 |(% style="width:139px" %)AVI2|(% style="width:242px" %)Analog Voltage Input Terminal 2
163 |(% style="width:139px" %)AVI1|(% style="width:242px" %)Analog Voltage Input Terminal 1
164 |(% style="width:139px" %)ACI2|(% style="width:242px" %)Analog Current Input Terminal 2
165 |(% style="width:139px" %)ACI1|(% style="width:242px" %)Analog Current Input Terminal 1
166
167 **Lower screw terminal block (from left to right):**
168
169 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:253px" %)
170 |=(% style="width: 125px;background-color:#4f81bd;color:white" %)Screw Terminal|=(% style="width: 128px;background-color:#4f81bd;color:white" %)Function
171 |(% style="width:125px" %)RO1-2|(% style="width:128px" %)Relay Output 1
172 |(% style="width:125px" %)RO1-1|(% style="width:128px" %)Relay Output 1
173 |(% style="width:125px" %)RO2-2|(% style="width:128px" %)Relay Output 2
174 |(% style="width:125px" %)RO2-1|(% style="width:128px" %)Relay Output 2
175 |(% style="width:125px" %)DI2+|(% style="width:128px" %)Digital Input 2
176 |(% style="width:125px" %)DI2-|(% style="width:128px" %)Digital Input 2
177 |(% style="width:125px" %)DI1+|(% style="width:128px" %)Digital Input 1
178 |(% style="width:125px" %)DI1-|(% style="width:128px" %)Digital Input 1
179 |(% style="width:125px" %)DO2|(% style="width:128px" %)Digital Output 2
180 |(% style="width:125px" %)DO1|(% style="width:128px" %)Digital Output 1
181
182 == 2.3 Connecting LT-22222-L to a Power Source ==
183
184
185 The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect your power supply’s **positive wire** to the **VIN** and the **negative wire** to the **GND** screw terminals. The power indicator **(PWR) LED** will turn on when the device is properly powered.
186
187 {{warning}}
188 **We recommend that you power on the LT-22222-L after adding its registration information to the LoRaWAN network server. Otherwise, the device will continuously send join-request messages to attempt to join a LoRaWAN network but will fail.**
189 {{/warning}}
190
191
192 [[image:1653297104069-180.png]]
193
194
195 = 3. Registering LT-22222-L with a LoRaWAN Network Server =
196
197
198 The LT-22222-L supports both OTAA (Over-the-Air Activation) and ABP (Activation By Personalization) methods to activate with a LoRaWAN Network Server. However, OTAA is the most secure method for activating a device with a LoRaWAN Network Server. OTAA regenerates session keys upon initial registration and regenerates new session keys after any subsequent reboots. By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode.
199
200
201 == 3.1 Prerequisites ==
202
203
204 The LT-22222-L comes with device registration information such as DevEUI, AppEUI, and AppKey which allows you to register it with a LoRaWAN network. This registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
205
206 [[image:image-20230425173427-2.png||height="246" width="530"]]
207
208 {{info}}
209 If you are unable to set the provided root key and other identifiers in the network server, you must generate new keys and identifiers with the network server and configure the device with them using AT commands.
210 {{/info}}
211
212 The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
213
214
215 == 3.2 The Things Stack ==
216
217
218 This section guides you through how to register your LT-22222-L with The Things Stack Sandbox.
219
220 {{info}}
221 The Things Stack Sandbox was formally called The Things Stack Community Edition.
222 {{/info}}
223
224
225 The network diagram below illustrates the connection between the LT-22222-L and The Things Stack, as well as how the data can be integrated with the ThingsEye IoT platform.
226
227
228 [[image:dragino-lorawan-nw-lt-22222-n.jpg||height="374" width="1400"]]
229
230 {{info}}
231 You can use a LoRaWAN gateway, such as the [[Dragino LPS8N>>https://www.dragino.com/products/lora-lorawan-gateway/item/200-lps8n.html]], to expand or create LoRaWAN coverage in your area.
232 {{/info}}
233
234
235 === 3.2.1 Setting up ===
236
237
238 * Sign up for a free account with [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] if you do not have one yet.
239 * Log in to your The Things Stack Sandbox account.
240 * Create an **application** with The Things Stack if you do not have one yet (E.g., dragino-docs).
241 * Go to your application's page and click on the **End devices** in the left menu.
242 * On the End devices page, click on **+ Register end device**. Two registration options are available:
243
244 ==== 3.2.1.1 Using the LoRaWAN Device Repository ====
245
246
247 * On the **Register end device** page:
248 ** Select the option **Select the end device in the LoRaWAN Device Repository **under **Input method**.
249 ** Select the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)** from the respective dropdown lists.
250 *** **End device brand**: Dragino Technology Co., Limited
251 *** **Model**: LT22222-L I/O Controller
252 *** **Hardware ver**: Unknown
253 *** **Firmware ver**: 1.6.0
254 *** **Profile (Region)**: Select the region that matches your device.
255 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
256
257 [[image:lt-22222-l-dev-repo-reg-p1.png]]
258
259
260 * Register end device page continued...
261 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'.
262 ** In the **DevEUI** field, enter the **DevEUI**.
263 ** In the **AppKey** field, enter the **AppKey.**
264 ** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
265 ** Under **After registration**, select the **View registered end device** option.
266
267 [[image:lt-22222-l-dev-repo-reg-p2.png]]
268
269
270 ==== 3.2.1.2 Adding device manually ====
271
272
273 * On the **Register end device** page:
274 ** Select the option **Enter end device specifies manually** under **Input method**.
275 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
276 ** Select the **LoRaWAN version** as **LoRaWAN Specification 1.0.3**
277 ** Select the **Regional Parameters version** as** RP001 Regional Parameters 1.0.3 revision A**
278 ** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the hidden section.
279 ** Select the option **Over the air activation (OTAA)** under the **Activation mode.**
280 ** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities** dropdown list.
281
282 [[image:lt-22222-l-manually-p1.png]]
283
284
285 * Register end device page continued...
286 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message '//**This end device can be registered on the network**//'
287 ** In the **DevEUI** field, enter the **DevEUI**.
288 ** In the **AppKey** field, enter the **AppKey**.
289 ** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
290 ** Under **After registration**, select the **View registered end device** option.
291 ** Click the **Register end device** button.
292
293 [[image:lt-22222-l-manually-p2.png]]
294
295
296 You will be navigated to the **Device overview** page.
297
298
299 [[image:lt-22222-device-overview.png]]
300
301
302 === 3.2.2 Joining ===
303
304
305 On the end device's page (in this case, lt-22222-l), click on **Live data** tab. The Live data panel for your device will display. Initially, it is blank.
306
307 Now power on your LT-22222-L. The **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** The Things Stack network server. The **TX LED** will be on for **5 seconds** after joining the network. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server.
308
309
310 [[image:lt-22222-l-joining.png]]
311
312
313 === 3.2.3 Uplinks ===
314
315
316 After successfully joining, the device will send its first **uplink data message** to The Things Stack application it belongs to (in this example, it is **dragino-docs**). When the LT-22222-L sends an uplink message to the server, the **TX LED** turns on for **1 second**. By default, you will receive an uplink data message from the device every 10 minutes.
317
318 Click on one of the **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the **decode_payload {}** JSON object.
319
320 [[image:lt-22222-ul-payload-decoded.png]]
321
322
323 If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **Applications > [your application] > End devices** > [**your end device]** > **Payload formatters** > **Uplink**. Then select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
324
325 {{info}}
326 The Things Stack provides two levels of payload formatters: application level and device level. The device-level payload formatters **override **the application-level payload formatters.
327 {{/info}}
328
329 [[image:lt-22222-ul-payload-fmt.png]]
330
331
332 We have written a payload formatter that resolves some decoding issues present in The Things Stack Device Repository payload formatter. You can add it under the **Custom JavaScript formatter**. It can be found [[here>>https://github.com/dragino/dragino-end-node-decoder/blob/main/LT22222-L/v1.6_decoder_ttn%20.txt]]:
333
334 (% class="wikigeneratedid" %)
335 [[image:lt-22222-l-js-custom-payload-formatter.png]]
336
337
338 === 3.2.4 Downlinks ===
339
340
341 When the LT-22222-L receives a downlink message from the LoRaWAN Network Server, the **RX LED** turns on for **1 second**.
342
343
344 == 3.3 Working Modes and Uplink Payload formats ==
345
346
347 The LT-22222-L has 5 **working modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
348
349 * (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
350
351 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
352
353 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
354
355 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
356
357 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
358
359 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
360
361 The uplink messages are sent over LoRaWAN FPort=2. By default, an uplink message is sent every 10 minutes.
362
363
364 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
365
366
367 (((
368 This is the default mode.
369
370 The uplink payload is 11 bytes long.
371
372 (% style="color:red" %)**Note:The maximum count depends on the bytes number of bytes.
373 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
374 It starts counting again when it reaches the maximum value.**(% style="display:none" wfd-invisible="true" %)
375
376 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
377 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
378 |Value|(((
379 AVI1 voltage
380 )))|(((
381 AVI2 voltage
382 )))|(((
383 ACI1 Current
384 )))|(((
385 ACI2 Current
386 )))|**DIDORO***|(((
387 Reserve
388 )))|MOD
389 )))
390
391 (((
392 (% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
393
394 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
395 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
396 |RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
397 )))
398
399 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
400 * DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
401 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
402
403 (% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
404
405 For example, if the payload is: [[image:image-20220523175847-2.png]]
406
407
408 **The interface values can be calculated as follows:  **
409
410 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
411
412 AVI2 channel voltage is 0x04AC/1000=1.196V
413
414 ACI1 channel current is 0x1310/1000=4.880mA
415
416 ACI2 channel current is 0x1300/1000=4.864mA
417
418 The last byte 0xAA= **10101010**(b) means,
419
420 * [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
421 * [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
422 * **[1] DI3 - not used for LT-22222-L.**
423 * [0] DI2 channel input is LOW, and the DI2 LED is OFF.
424 * [1] DI1 channel input state:
425 ** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
426 ** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
427 ** DI1 LED is ON in both cases.
428 * **[0] DO3 - not used for LT-22222-L.**
429 * [1] DO2 channel output is LOW, and the DO2 LED is ON.
430 * [0] DO1 channel output state:
431 ** DO1 is FLOATING when there is no load between DO1 and V+.
432 ** DO1 is HIGH and there is a load between DO1 and V+.
433 ** DO1 LED is OFF in both cases.
434
435 Reserve = 0
436
437 MOD = 1
438
439
440 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
441
442
443 (((
444 **For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
445 )))
446
447 (((
448 The uplink payload is 11 bytes long.
449
450 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
451 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
452 It starts counting again when it reaches the maximum value.**
453
454 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
455 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
456 |Value|COUNT1|COUNT2 |DIDORO*|(((
457 Reserve
458 )))|MOD
459 )))
460
461 (((
462 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
463
464 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
465 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
466 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
467
468 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
469 )))
470
471 * FIRST: Indicates that this is the first packet after joining the network.
472 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
473
474 (((
475 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
476
477
478 )))
479
480 (((
481 **To activate this mode, run the following AT commands:**
482 )))
483
484 (((
485 (% class="box infomessage" %)
486 (((
487 **AT+MOD=2**
488
489 **ATZ**
490 )))
491 )))
492
493 (((
494
495
496 (% style="color:#4f81bd" %)**AT Commands for counting:**
497 )))
498
499 (((
500 **For LT22222-L:**
501
502 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
503
504 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
505
506 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
507
508 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
509
510 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
511
512 (% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
513 )))
514
515
516 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
517
518
519 (% style="color:red" %)**Note: The maximum count depends on the bytes it is.
520 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
521 It starts counting again when it reaches the maximum value.**
522
523 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
524
525 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
526 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
527 |Value|COUNT1|(((
528 ACI1 Current
529 )))|(((
530 ACI2 Current
531 )))|DIDORO*|Reserve|MOD
532
533 (((
534 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
535
536 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
537 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
538 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
539 )))
540
541 * RO is for the relay. ROx=1: closed, ROx=0 always open.
542 * FIRST: Indicates that this is the first packet after joining the network.
543 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
544
545 (((
546 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
547 )))
548
549
550 (((
551 **To activate this mode, run the following AT commands:**
552 )))
553
554 (((
555 (% class="box infomessage" %)
556 (((
557 **AT+MOD=3**
558
559 **ATZ**
560 )))
561 )))
562
563 (((
564 AT Commands for counting:
565
566 The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
567 )))
568
569
570 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
571
572
573 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
574 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
575 It starts counting again when it reaches the maximum value.**
576
577
578 (((
579 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
580 )))
581
582 (((
583 The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
584
585 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
586 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
587 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
588 Reserve
589 )))|MOD
590 )))
591
592 (((
593 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
594
595 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
596 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
597 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
598 )))
599
600 * RO is for the relay. ROx=1: closed, ROx=0 always open.
601 * FIRST: Indicates that this is the first packet after joining the network.
602 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
603
604 (((
605 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
606
607
608 )))
609
610 (((
611 **To activate this mode, run the following AT commands:**
612 )))
613
614 (((
615 (% class="box infomessage" %)
616 (((
617 **AT+MOD=4**
618
619 **ATZ**
620 )))
621 )))
622
623 (((
624 AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
625 )))
626
627 (((
628 **In addition to that, below are the commands for AVI1 Counting:**
629
630 (% style="color:blue" %)**AT+SETCNT=3,60 **(%%)**(Sets AVI1 Count to 60)**
631
632 (% style="color:blue" %)**AT+VOLMAX=20000 **(%%)**(If the AVI1 voltage is higher than VOLMAX (20000mV =20V), the counter increases by 1)**
633
634 (% style="color:blue" %)**AT+VOLMAX=20000,0 **(%%)**(If the AVI1 voltage is lower than VOLMAX (20000mV =20V), counter increases by 1)**
635
636 (% style="color:blue" %)**AT+VOLMAX=20000,1 **(%%)**(If the AVI1 voltage is higher than VOLMAX (20000mV =20V), counter increases by 1)**
637 )))
638
639
640 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
641
642
643 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
644 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
645 It starts counting again when it reaches the maximum value.**
646
647
648 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
649
650 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
651 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
652 |Value|(((
653 AVI1 voltage
654 )))|(((
655 AVI2 voltage
656 )))|(((
657 ACI1 Current
658 )))|COUNT1|DIDORO*|(((
659 Reserve
660 )))|MOD
661
662 (((
663 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
664
665 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
666 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
667 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
668 )))
669
670 * RO is for the relay. ROx=1: closed, ROx=0 always open.
671 * FIRST: Indicates that this is the first packet after joining the network.
672 * (((
673 DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
674 )))
675
676 (((
677 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
678 )))
679
680 (((
681 **To activate this mode, run the following AT commands:**
682 )))
683
684 (((
685 (% class="box infomessage" %)
686 (((
687 **AT+MOD=5**
688
689 **ATZ**
690 )))
691 )))
692
693 (((
694 Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
695 )))
696
697
698 === 3.3.6 AT+ADDMOD~=6 (Trigger Mode, Optional) ===
699
700
701 (% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate __alongside__ with other modes.**
702
703 For example, if you configure the following commands:
704
705 * **AT+MOD=1 ** **~-~->**  Sets the default working mode
706 * **AT+ADDMOD6=1**   **~-~->**  Enables trigger mode
707
708 The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. It will send uplink packets in two cases:
709
710 1. Periodic uplink: Based on TDC time. The payload is the same as in normal mode (MOD=1 as set above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
711 1. (((
712 Trigger uplink: sent when a trigger condition is met. In this case, LT will send two packets
713
714 * The first uplink uses the payload specified in trigger mode (MOD=6).
715 * The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**confirmed uplinks.**
716 )))
717
718 (% style="color:#037691" %)**AT Commands to set Trigger Conditions**:
719
720 (% style="color:#4f81bd" %)**Trigger based on voltage**:
721
722 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
723
724
725 **Example:**
726
727 AT+AVLIM=3000,6000,0,2000 (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
728
729 AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0 for parameters that are not in use)
730
731
732 (% style="color:#4f81bd" %)**Trigger based on current**:
733
734 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
735
736
737 **Example:**
738
739 AT+ACLIM=10000,15000,0,0 (triggers an uplink if AC1 current is lower than 10mA or higher than 15mA)
740
741
742 (% style="color:#4f81bd" %)**Trigger based on DI status**:
743
744 DI status triggers Flag.
745
746 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
747
748
749 **Example:**
750
751 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
752
753
754 (% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
755
756 **Type Code**: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
757
758 **Format**: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
759
760 AA: Type Code for this downlink Command:
761
762 xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
763
764 yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
765
766 yy2 yy2: AC1 or AV1 HIGH limit.
767
768 yy3 yy3: AC2 or AV2 LOW limit.
769
770 Yy4 yy4: AC2 or AV2 HIGH limit.
771
772
773 **Example 1**: AA 00 13 88 00 00 00 00 00 00
774
775 Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
776
777
778 **Example 2**: AA 02 01 00
779
780 Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
781
782
783 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
784
785 MOD6 Payload: a total of 11 bytes
786
787 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
788 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
789 |Value|(((
790 TRI_A FLAG
791 )))|(((
792 TRI_A Status
793 )))|(((
794 TRI_DI FLAG+STA
795 )))|Reserve|Enable/Disable MOD6|(((
796 MOD(6)
797 )))
798
799 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Total 1 byte as below.
800
801 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
802 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
803 |(((
804 AV1_LOW
805 )))|(((
806 AV1_HIGH
807 )))|(((
808 AV2_LOW
809 )))|(((
810 AV2_HIGH
811 )))|(((
812 AC1_LOW
813 )))|(((
814 AC1_HIGH
815 )))|(((
816 AC2_LOW
817 )))|(((
818 AC2_HIGH
819 )))
820
821 * Each bit shows if the corresponding trigger has been configured.
822
823 **Example:**
824
825 10100000: This means the system is configured to use the triggers AV1_LOW and AV2_LOW.
826
827
828 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is triggered. Total 1 byte as below.
829
830 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
831 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
832 |(((
833 AV1_LOW
834 )))|(((
835 AV1_HIGH
836 )))|(((
837 AV2_LOW
838 )))|(((
839 AV2_HIGH
840 )))|(((
841 AC1_LOW
842 )))|(((
843 AC1_HIGH
844 )))|(((
845 AC2_LOW
846 )))|(((
847 AC2_HIGH
848 )))
849
850 * Each bit shows which status has been triggered on this uplink.
851
852 **Example:**
853
854 10000000: The uplink is triggered by AV1_LOW, indicating that the voltage is too low.
855
856
857 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is triggered. Total 1 byte as below.
858
859 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
860 |(% style="width:50px" %)**bit 7**|(% style="width:50px" %)**bit 6**|(% style="width:50px" %)**bit 5**|(% style="width:50px" %)**bit 4**|(% style="width:90px" %)**bit 3**|(% style="width:80px" %)**bit 2**|(% style="width:90px" %)**bit 1**|(% style="width:95px" %)**bit 0**
861 |(% style="width:49px" %)N/A|(% style="width:53px" %)N/A|(% style="width:53px" %)N/A|(% style="width:55px" %)N/A|(% style="width:99px" %)DI2_STATUS|(% style="width:83px" %)DI2_FLAG|(% style="width:98px" %)DI1_STATUS|(% style="width:85px" %)DI1_FLAG
862
863 * Each bit shows which status has been triggered on this uplink.
864
865 **Example:**
866
867 00000111: This means both DI1 and DI2 triggers are enabled, and this packet is triggered by DI1.
868
869 00000101: This means both DI1 and DI2 triggers are enabled.
870
871
872 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enabled. 0x00: MOD6 is disabled.
873
874 Downlink command to poll/request MOD6 status:
875
876 **AB 06**
877
878 When the device receives this command, it will send the MOD6 payload.
879
880
881 === 3.3.7 Payload Decoder ===
882
883 (((
884
885
886 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
887 )))
888
889
890 == 3.4 ​Configure LT-22222-L via AT Commands or Downlinks ==
891
892
893 (((
894 You can configure LT-22222-L I/O Controller via AT Commands or LoRaWAN Downlinks.
895 )))
896
897 (((
898 (((
899 There are two types of commands:
900 )))
901 )))
902
903 * (% style="color:blue" %)**Common commands**(%%):
904
905 * (% style="color:blue" %)**Sensor-related commands**(%%):
906
907 === 3.4.1 Common commands ===
908
909
910 (((
911 These are available for each sensor and include actions such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]s.
912
913
914 )))
915
916 === 3.4.2 Sensor-related commands ===
917
918
919 These commands are specially designed for the LT-22222-L. Commands can be sent to the device using options such as an AT command or a LoRaWAN downlink payload.
920
921
922 ==== 3.4.2.1 Set Transmit/Uplink Interval ====
923
924
925 Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
926
927 (% style="color:#037691" %)**AT command**
928
929 (% border="2" style="width:500px" %)
930 |**Command**|AT+TDC=<time>
931 |**Parameters**|**time **: uplink interval in milliseconds
932 |**Get**|AT+TDC=?
933 |**Response**|(((
934 current uplink interval
935
936 OK
937 )))
938 |**Set**|AT+TDC=<time>
939 |**Response**|OK
940 |**Example**|(((
941 AT+TDC=30000
942
943 Sets the uplink interval to **30 seconds** (30000 milliseconds)
944 )))
945
946 (% style="color:#037691" %)**Downlink payload**
947
948 (% border="2" style="width:500px" %)
949 |**Payload**|(((
950 <prefix><time>
951 )))
952 |**Parameters**|(((
953 **prefix** : 0x01
954
955 **time** : uplink interval in **seconds**, represented by **3  bytes** in **hexadecimal**.
956 )))
957 |**Example**|(((
958 01 **00 00 1E**
959
960 Sets the uplink interval to **30 seconds**
961
962 Conversion: 30 (dec) = 00 00 1E (hex)
963
964 See [[RapidTables>>https://www.rapidtables.com/convert/number/decimal-to-hex.html?x=30]]
965
966 [[image:Screenshot 2024-11-23 at 18.27.11.png]]
967 )))
968
969 ==== 3.4.2.2 Set the Working Mode (AT+MOD) ====
970
971
972 Sets the working mode.
973
974 (% style="color:#037691" %)**AT command**
975
976 (% border="2" style="width:500px" %)
977 |(% style="width:97px" %)**Command**|(% style="width:413px" %)AT+MOD=<working_mode>
978 |(% style="width:97px" %)**Parameters**|(% style="width:413px" %)(((
979 **working_mode** :
980
981 1 = (Default mode/factory set):  2ACI + 2AVI + DI + DO + RO
982
983 2 = Double DI Counting + DO + RO
984
985 3 = Single DI Counting + 2 x ACI + DO + RO
986
987 4 = Single DI Counting + 1 x Voltage Counting + DO + RO
988
989 5 = Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
990
991 6 = Trigger Mode, Optional, used together with MOD1 ~~ MOD5
992 )))
993 |(% style="width:97px" %)**Get**|(% style="width:413px" %)AT+MOD=?
994 |(% style="width:97px" %)**Response**|(% style="width:413px" %)(((
995 Current working mode
996
997 OK
998 )))
999 |(% style="width:97px" %)**Set**|(% style="width:413px" %)AT+MOD=<working_mode>
1000 |(% style="width:97px" %)**Response**|(% style="width:413px" %)(((
1001 Attention:Take effect after ATZ
1002
1003 OK
1004 )))
1005 |(% style="width:97px" %)**Example**|(% style="width:413px" %)(((
1006 AT+MOD=2
1007
1008 Sets the device to working mode 2 (Double DI Counting + DO + RO)
1009 )))
1010
1011 (% class="wikigeneratedid" %)
1012 (% style="color:#037691" %)**Downlink payload**
1013
1014 (% border="2" style="width:500px" %)
1015 |(% style="width:98px" %)**Payload**|(% style="width:400px" %)<prefix><working_mode>
1016 |(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
1017 **prefix** : 0x0A
1018
1019 **working_mode** : Working mode, represented by 1 byte in hexadecimal.
1020 )))
1021 |(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
1022 0A **02**
1023
1024 Sets the device to working mode 2 (Double DI Counting + DO + RO)
1025 )))
1026
1027 ==== 3.4.2.3 Request an uplink from the device ====
1028
1029
1030 Requests an uplink from LT-22222-L. The content of the uplink payload varies based on the device's current working mode.
1031
1032 (% style="color:#037691" %)**AT command**
1033
1034 There is no AT Command available for this feature.
1035
1036 (% style="color:#037691" %)**Downlink payload**
1037
1038 (% border="2" style="width:500px" %)
1039 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix>FF
1040 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)**prefix** : 0x08
1041 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1042 08 **FF**
1043
1044 Requests an uplink from LT-22222-L.
1045 )))
1046
1047 ==== 3.4.2.4 Enable/Disable Trigger Mode ====
1048
1049
1050 Enable or disable the trigger mode for the current working mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
1051
1052 (% style="color:#037691" %)**AT Command**
1053
1054 (% border="2" style="width:500px" %)
1055 |(% style="width:95px" %)**Command**|(% style="width:403px" %)AT+ADDMOD6=<enable/disable trigger_mode>
1056 |(% style="width:95px" %)**Response**|(% style="width:403px" %)
1057 |(% style="width:95px" %)**Parameters**|(% style="width:403px" %)(((
1058 **enable/disable trigger_mode** :
1059
1060 1 = enable trigger mode
1061
1062 0 = disable trigger mode
1063 )))
1064 |(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1065 AT+ADDMOD6=1
1066
1067 Enable trigger mode for the current working mode
1068 )))
1069
1070 (% style="color:#037691" %)**Downlink payload**
1071
1072 (% border="2" style="width:500px" %)
1073 |(% style="width:97px" %)**Payload**|(% style="width:401px" %)<prefix><enable/disable trigger_mode>
1074 |(% style="width:97px" %)**Parameters**|(% style="width:401px" %)(((
1075 **prefix** : 0x0A 06 (two bytes in hexadecimal)
1076
1077 **enable/disable trigger_mode** : enable (1) or disable (0), represented by 1 byte in hexadecimal.
1078 )))
1079 |(% style="width:97px" %)**Example**|(% style="width:401px" %)(((
1080 0A 06 **01**
1081
1082 Enable trigger mode for the current working mode
1083 )))
1084
1085 ==== 3.4.2.5 Request trigger settings ====
1086
1087
1088 Requests the trigger settings.
1089
1090 (% style="color:#037691" %)**AT Command:**
1091
1092 There is no AT Command available for this feature.
1093
1094 (% style="color:#037691" %)**Downlink Payload**
1095
1096 (% border="2" style="width:500px" %)
1097 |(% style="width:95px" %)**Payload**|(% style="width:403px" %)<prefix>
1098 |(% style="width:95px" %)**Parameters**|(% style="width:403px" %)**prefix **: AB 06 (two bytes in hexadecimal)
1099 |(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1100 AB 06
1101
1102 Uplink the trigger settings.
1103 )))
1104
1105 ==== 3.4.2.6 Enable/Disable DI1/DI2/DI3 as a trigger ====
1106
1107
1108 Enable or disable DI1/DI2/DI3 as a trigger.
1109
1110 (% style="color:#037691" %)**AT Command**
1111
1112 (% border="2" style="width:500px" %)
1113 |(% style="width:98px" %)**Command**|(% style="width:400px" %)AT+DTRI=<DI1_trigger>,<DI2_trigger>
1114 |(% style="width:98px" %)**Response**|(% style="width:400px" %)
1115 |(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
1116 **DI1_trigger:**
1117
1118 1 = enable DI1 trigger
1119
1120 0 = disable DI1 trigger
1121
1122 **DI2 _trigger**
1123
1124 1 = enable DI2 trigger
1125
1126 0 = disable DI2 trigger
1127 )))
1128 |(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
1129 AT+DTRI=1,0
1130
1131 Enable DI1 trigger, disable DI2 trigger
1132 )))
1133
1134 (% class="wikigeneratedid" %)
1135 (% style="color:#037691" %)**Downlink Payload**
1136
1137 (% border="2" style="width:500px" %)
1138 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><DI1_trigger><DI2_trigger>
1139 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1140 **prefix :** AA 02 (two bytes in hexadecimal)
1141
1142 **DI1_trigger:**
1143
1144 1 = enable DI1 trigger, represented by 1 byte in hexadecimal.
1145
1146 0 = disable DI1 trigger, represented by 1 byte in hexadecimal.
1147
1148 **DI2 _trigger**
1149
1150 1 = enable DI2 trigger, represented by 1 byte in hexadecimal.
1151
1152 0 = disable DI2 trigger, represented by 1 byte in hexadecimal.
1153 )))
1154 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1155 AA 02 **01 00**
1156
1157 Enable DI1 trigger, disable DI2 trigger
1158 )))
1159
1160 ==== 3.4.2.7 Trigger1 – Set DI or DI3 as a trigger ====
1161
1162
1163 Sets DI1 or DI3 (for LT-33222-L) as a trigger.
1164
1165 (% style="color:#037691" %)**AT Command**
1166
1167 (% border="2" style="width:500px" %)
1168 |(% style="width:101px" %)**Command**|(% style="width:397px" %)AT+TRIG1=<interrupt_mode>,<minimum_signal_duration>
1169 |(% style="width:101px" %)**Response**|(% style="width:397px" %)
1170 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1171 **interrupt_mode** :  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1172
1173 **minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1174 )))
1175 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1176 AT+TRIG1=1,100
1177
1178 Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1179 )))
1180
1181 (% class="wikigeneratedid" %)
1182 (% style="color:#037691" %)**Downlink Payload**
1183
1184 (% border="2" style="width:500px" %)
1185 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><interrupt_mode><minimum_signal_duration>
1186 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1187 **prefix** : 09 01 (hexadecimal)
1188
1189 **interrupt_mode** : 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1190
1191 **minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal.
1192 )))
1193 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1194 09 01 **01 00 64**
1195
1196 Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1197 )))
1198
1199 ==== 3.4.2.8 Trigger2 – Set DI2 as a trigger ====
1200
1201
1202 Sets DI2 as a trigger.
1203
1204 (% style="color:#037691" %)**AT Command**
1205
1206 (% border="2" style="width:500px" %)
1207 |(% style="width:94px" %)**Command**|(% style="width:404px" %)AT+TRIG2=<interrupt_mode>,<minimum_signal_duration>
1208 |(% style="width:94px" %)**Response**|(% style="width:404px" %)
1209 |(% style="width:94px" %)**Parameters**|(% style="width:404px" %)(((
1210 **interrupt_mode **:  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1211
1212 **minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1213 )))
1214 |(% style="width:94px" %)**Example**|(% style="width:404px" %)(((
1215 AT+TRIG2=0,100
1216
1217 Set the DI1 port to trigger on a falling edge; the valid signal duration is 100 ms.
1218 )))
1219
1220 (% style="color:#037691" %)**Downlink Payload**
1221
1222 (% border="2" style="width:500px" %)
1223 |(% style="width:96px" %)**Payload**|(% style="width:402px" %)<prefix><interrupt_mode><minimum_signal_duration>
1224 |(% style="width:96px" %)**Parameters**|(% style="width:402px" %)(((
1225 **prefix** : 09 02 (hexadecimal)
1226
1227 **interrupt_mode **: 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1228
1229 **minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal
1230 )))
1231 |(% style="width:96px" %)**Example**|(% style="width:402px" %)09 02 **00 00 64**
1232
1233 ==== 3.4.2.9 Trigger – Set AC (current) as a trigger ====
1234
1235
1236 Sets the current trigger based on the AC port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1237
1238 (% style="color:#037691" %)**AT Command**
1239
1240 (% border="2" style="width:500px" %)
1241 |(% style="width:104px" %)**Command**|(% style="width:394px" %)(((
1242 AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1243 )))
1244 |(% style="width:104px" %)**Response**|(% style="width:394px" %)
1245 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1246 **AC1_LIMIT_LOW** : lower limit of the current to be checked
1247
1248 **AC1_LIMIT_HIGH **: higher limit of the current to be checked
1249
1250 **AC2_LIMIT_HIGH **: lower limit of the current to be checked
1251
1252 **AC2_LIMIT_LOW** : higher limit of the current to be checked
1253 )))
1254 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1255 AT+ACLIM=10000,15000,0,0
1256
1257 Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA
1258 )))
1259 |(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1260
1261 (% style="color:#037691" %)**Downlink Payload**
1262
1263 (% border="2" style="width:500px" %)
1264 |(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1265 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1266 **prefix **: AA 01 (hexadecimal)
1267
1268 **AC1_LIMIT_LOW** : lower limit of the current to be checked, two bytes in hexadecimal
1269
1270 **AC1_LIMIT_HIGH **: higher limit of the current to be checked, two bytes in hexadecimal
1271
1272 **AC2_LIMIT_HIGH **: lower limit of the current to be checked, two bytes in hexadecimal
1273
1274 **AC2_LIMIT_LOW** : higher limit of the current to be checked, two bytes in hexadecimal
1275 )))
1276 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1277 AA 01 **27** **10 3A** **98** 00 00 00 00
1278
1279 Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA. Set all values to zero for AC2 limits because we are only checking AC1 limits.
1280 )))
1281 |(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1282
1283 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
1284
1285
1286 Sets the current trigger based on the AV port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1287
1288 (% style="color:#037691" %)**AT Command**
1289
1290 (% border="2" style="width:500px" %)
1291 |(% style="width:104px" %)**Command**|(% style="width:387px" %)AT+AVLIM= AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1292 |(% style="width:104px" %)**Response**|(% style="width:387px" %)
1293 |(% style="width:104px" %)**Parameters**|(% style="width:387px" %)(((
1294 **AC1_LIMIT_LOW** : lower limit of the current to be checked
1295
1296 **AC1_LIMIT_HIGH **: higher limit of the current to be checked
1297
1298 **AC2_LIMIT_HIGH **: lower limit of the current to be checked
1299
1300 **AC2_LIMIT_LOW** : higher limit of the current to be checked
1301 )))
1302 |(% style="width:104px" %)**Example**|(% style="width:387px" %)(((
1303 AT+AVLIM=3000,6000,0,2000
1304
1305 Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V
1306 )))
1307 |(% style="width:104px" %)**Note**|(% style="width:387px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1308
1309 (% style="color:#037691" %)**Downlink Payload**
1310
1311 (% border="2" style="width:500px" %)
1312 |(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1313 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1314 **prefix **: AA 00 (hexadecimal)
1315
1316 **AV1_LIMIT_LOW** : lower limit of the voltage to be checked, two bytes in hexadecimal
1317
1318 **AV1_LIMIT_HIGH **: higher limit of the voltage to be checked, two bytes in hexadecimal
1319
1320 **AV2_LIMIT_HIGH **: lower limit of the voltage to be checked, two bytes in hexadecimal
1321
1322 **AV2_LIMIT_LOW** : higher limit of the voltage to be checked, two bytes in hexadecimal
1323 )))
1324 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1325 AA 00 **0B B8 17 70 00 00 07 D0**
1326
1327 Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V.
1328 )))
1329 |(% style="width:104px" %)**Note**|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1330
1331 ==== 3.4.2.11 Trigger – Set the minimum interval ====
1332
1333
1334 Sets the AV and AC trigger minimum interval. The device won't respond to a second trigger within this set time after the first trigger.
1335
1336 (% style="color:#037691" %)**AT Command**
1337
1338 (% border="2" style="width:500px" %)
1339 |(% style="width:113px" %)**Command**|(% style="width:385px" %)AT+ATDC=<time>
1340 |(% style="width:113px" %)**Response**|(% style="width:385px" %)
1341 |(% style="width:113px" %)**Parameters**|(% style="width:385px" %)(((
1342 **time** : in minutes
1343 )))
1344 |(% style="width:113px" %)**Example**|(% style="width:385px" %)(((
1345 AT+ATDC=5
1346
1347 The device won't respond to the second trigger within 5 minutes after the first trigger.
1348 )))
1349 |(% style="width:113px" %)Note|(% style="width:385px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1350
1351 (% style="color:#037691" %)**Downlink Payload**
1352
1353 (% border="2" style="width:500px" %)
1354 |(% style="width:112px" %)**Payload**|(% style="width:386px" %)<prefix><time>
1355 |(% style="width:112px" %)**Parameters**|(% style="width:386px" %)(((
1356 **prefix** : AC (hexadecimal)
1357
1358 **time **: in minutes (two bytes in hexadecimal)
1359 )))
1360 |(% style="width:112px" %)**Example**|(% style="width:386px" %)(((
1361 AC **00 05**
1362
1363 The device won't respond to the second trigger within 5 minutes after the first trigger.
1364 )))
1365 |(% style="width:112px" %)Note|(% style="width:386px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1366
1367 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1368
1369
1370 Controls the digital outputs DO1, DO2, and DO3
1371
1372 (% style="color:#037691" %)**AT Command**
1373
1374 There is no AT Command to control the Digital Output.
1375
1376
1377 (% style="color:#037691" %)**Downlink Payload**
1378
1379 (% border="2" style="width:500px" %)
1380 |(% style="width:115px" %)**Payload**|(% style="width:383px" %)<prefix><DO1><DO2><DO3>
1381 |(% style="width:115px" %)**Parameters**|(% style="width:383px" %)(((
1382 **prefix** : 02 (hexadecimal)
1383
1384 **DOI** : 01: Low,  00: High, 11: No action (1 byte in hex)
1385
1386 **DO2** : 01: Low,  00: High, 11: No action (1 byte in hex)
1387
1388 **DO3 **: 01: Low,  00: High, 11: No action (1 byte in hex)
1389 )))
1390 |(% style="width:115px" %)**Examples**|(% style="width:383px" %)(((
1391 02 **01 00 01**
1392
1393 If there is a load between V+ and DOx, it means DO1 is set to low, DO2 is set to high, and DO3 is set to low.
1394
1395 **More examples:**
1396
1397 (((
1398 01: Low,  00: High,  11: No action
1399
1400 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:383px" %)
1401 |(% style="background-color:#4f81bd; color:white; width:126px" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white; width:85px" %)**DO1**|(% style="background-color:#4f81bd; color:white; width:86px" %)**DO2**|(% style="background-color:#4f81bd; color:white; width:86px" %)**DO3**
1402 |(% style="width:126px" %)02  01  00  11|(% style="width:85px" %)Low|(% style="width:86px" %)High|(% style="width:86px" %)No Action
1403 |(% style="width:126px" %)02  00  11  01|(% style="width:85px" %)High|(% style="width:86px" %)No Action|(% style="width:86px" %)Low
1404 |(% style="width:126px" %)02  11  01  00|(% style="width:85px" %)No Action|(% style="width:86px" %)Low|(% style="width:86px" %)High
1405 )))
1406
1407 (((
1408 (((
1409 (% style="color:red" %)**Note: For the LT-22222-L, there is no DO3; the last byte can have any value.**
1410 )))
1411
1412 (((
1413 (% style="color:red" %)**The device will upload a packet if downlink code executes successfully.**
1414 )))
1415 )))
1416 )))
1417
1418 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1419
1420
1421 (% style="color:#037691" %)**AT command**
1422
1423 There is no AT command to control the digital output.
1424
1425
1426 (% style="color:#037691" %)**Downlink payload**
1427
1428
1429 (% border="2" style="width:500px" %)
1430 |(% style="width:116px" %)**Prefix**|(% style="width:382px" %)0xA9
1431 |(% style="width:116px" %)**Parameters**|(% style="width:382px" %)(((
1432 **inverter_mode**: 1 byte in hex.
1433
1434 **01:** DO pins revert to their original state after the timeout.
1435 **00:** DO pins switch to an inverted state after the timeout.
1436
1437
1438 **DO1_control_method_and_port_status **- 1 byte in hex
1439
1440 0x01 : DO1 set to low
1441
1442 0x00 : DO1 set to high
1443
1444 0x11 : DO1 NO action
1445
1446
1447 **DO2_control_method_and_port_status** - 1 byte in hex
1448
1449 0x01 : DO2 set to low
1450
1451 0x00 : DO2 set to high
1452
1453 0x11 : DO2 NO action
1454
1455
1456 **DO3_control_method_and_port_status **- 1 byte in hex
1457
1458 0x01 : DO3 set to low
1459
1460 0x00 : DO3 set to high
1461
1462 0x11 : DO3 NO action
1463
1464
1465 **latching_time** : 4 bytes in hex
1466
1467 (% style="color:red" %)**Note: **
1468
1469 Since firmware v1.6.0, the latch time supports 4 bytes or 2 bytes
1470
1471 Before firmware v1.6.0, the latch time only supported 2 bytes.
1472
1473 (% style="color:red" %)**The device will uplink a packet if the downlink code executes successfully.**
1474 )))
1475 |(% style="width:116px" %)**Payload format**|(% style="width:382px" %)<prefix><inverter_mode><DO1_control_method_and_port_status><DO2_control_method_and_port_status><DO2_control_method_and_port_status><latching_time>
1476 |(% style="width:116px" %)**Example**|(% style="width:382px" %)(((
1477 **A9 01 01 01 01 07 D0**
1478
1479 DO1 pin, DO2 pin, and DO3 pin will be set to low, last for 2 seconds, and then revert to their original state.
1480
1481
1482 **A9 01 00 01 11 07 D0**
1483
1484 DO1 pin is set to high, DO2 pin is set to low, and DO3 pin takes no action. This lasts for 2 seconds and then reverts to the original state.
1485
1486
1487 **A9 00 00 00 00 07 D0**
1488
1489 DO1 pin, DO2 pin, and DO3 pin will be set to high, last for 2 seconds, and then all change to low.
1490
1491
1492 **A9 00 11 01 00 07 D0**
1493
1494 DO1 pin takes no action, DO2 pin is set to low, and DO3 pin is set to high. This lasts for 2 seconds, after which the DO1 pin takes no action, the DO2 pin is set to high, and the DO3 pin is set to low.
1495 )))
1496
1497 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1498
1499
1500 (% style="color:#037691" %)**AT Command:**
1501
1502 There is no AT Command to control the Relay Output.
1503
1504
1505 (% style="color:#037691" %)**Downlink Payload**
1506
1507 (% border="2" style="width:500px" %)
1508 |(% style="width:113px" %)**Prefix**|(% style="width:384px" %)0x03
1509 |(% style="width:113px" %)**Parameters**|(% style="width:384px" %)(((
1510 **RO1_status** : 1 byte in hex
1511
1512 00: Close
1513
1514 01: Open
1515
1516 11: No action
1517
1518
1519 **RO2_status** : 1 byte in hex
1520
1521 00: Close
1522
1523 01: Open
1524
1525 11: No action
1526 )))
1527 |(% style="width:113px" %)**Payload format**|(% style="width:384px" %)<prefix><RO1_status><RO2_status>
1528 |(% style="width:113px" %)**Example**|(% style="width:384px" %)(((
1529 (% border="2" %)
1530 |=Payload|=RO1|=RO2
1531 |03  00  11|Open|No action
1532 |03  01  11|Close|No action
1533 |03 11  00|No action|Open
1534 |03 11 10|No action|Close
1535 |03 00 00|Open|Open
1536 |03 01 01|Close|Close
1537 |03 01 00|Close|Open
1538 |03 00 01|Open|Close
1539
1540 (% style="color:red" %)**The device will transmit an uplink packet if the downlink payload is executed successfully.**
1541 )))
1542
1543 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1544
1545
1546 Controls the relay output time.
1547
1548
1549 (% style="color:#037691" %)**AT Command:**
1550
1551 There is no AT Command to control the Relay Output
1552
1553
1554 (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1555
1556 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Sets RO1/RO2 relays with time control
1557
1558
1559 This controls the relay output time and includes 4 bytes:
1560
1561 (% style="color:#4f81bd" %)**First byte **(%%)**:** Type code (0x05)
1562
1563 (% style="color:#4f81bd" %)**Second byte (aa)**(%%): Inverter Mode
1564
1565 01: Relays will change back to their original state after a timeout.
1566
1567 00: Relays will change to the inverter state after a timeout.
1568
1569
1570 (% style="color:#4f81bd" %)**Third byte (bb)**(%%): Control Method and Ports status:
1571
1572 [[image:image-20221008095908-1.png||height="364" width="564"]]
1573
1574
1575 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh bytes (cc)**(%%): Latching time. Unit: ms
1576
1577
1578 (% style="color:red" %)**Note:**
1579
1580 Since firmware v1.6.0, the latch time supports both 4 bytes and 2 bytes.
1581
1582 Before firmware v1.6.0, the latch time only supported 2 bytes.
1583
1584
1585 (% style="color:red" %)**The device will uplink a packet if the downlink code executes successfully.**
1586
1587
1588 **Example payload:**
1589
1590 **~1. 05 01 11 07 D0**
1591
1592 Relay1 and Relay2 will be set to NC, lasting 2 seconds, then revert to their original state
1593
1594 **2. 05 01 10 07 D0**
1595
1596 Relay1 will change to NC, Relay2 will change to NO, lasting 2 seconds, and then both will revert to their original state.
1597
1598 **3. 05 00 01 07 D0**
1599
1600 Relay1 will change to NO, Relay2 will change to NC, lasting 2 seconds, then Relay1 will change to NC, and Relay2 will change to NO.
1601
1602 **4. 05 00 00 07 D0**
1603
1604 Relay1 and Relay2 will change to NO, lasting 2 seconds, then both will change to NC.
1605
1606
1607
1608 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1609
1610
1611 When the voltage exceeds the threshold, counting begins. For details, see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1612
1613 (% style="color:#037691" %)**AT Command**
1614
1615 (% border="2" style="width:500px" %)
1616 |(% style="width:137px" %)**Command**|(% style="width:361px" %)AT+VOLMAX=<voltage>,<logic>
1617 |(% style="width:137px" %)**Response**|(% style="width:361px" %)
1618 |(% style="width:137px" %)**Parameters**|(% style="width:361px" %)(((
1619 **voltage** : voltage threshold in mV
1620
1621 **logic**:
1622
1623 **0** : lower than
1624
1625 **1**: higher than
1626
1627 if you leave the logic parameter blank, it is considered 0
1628 )))
1629 |(% style="width:137px" %)**Examples**|(% style="width:361px" %)(((
1630 AT+VOLMAX=20000
1631
1632 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1633
1634 AT+VOLMAX=20000,0
1635
1636 If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1637
1638 AT+VOLMAX=20000,1
1639
1640 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1641 )))
1642
1643 (% style="color:#037691" %)**Downlink Payload**
1644
1645 (% border="2" style="width:500px" %)
1646 |(% style="width:140px" %)**Payload**|(% style="width:358px" %)<prefix><voltage><logic>
1647 |(% style="width:140px" %)**Parameters**|(% style="width:358px" %)(((
1648 **prefix** : A5 (hex)
1649
1650 **voltage** : voltage threshold in mV (2 bytes in hex)
1651
1652 **logic**: (1 byte in hexadecimal)
1653
1654 **0** : lower than
1655
1656 **1**: higher than
1657
1658 if you leave the logic parameter blank, it is considered 1 (higher than)
1659 )))
1660 |(% style="width:140px" %)**Example**|(% style="width:358px" %)(((
1661 A5 **4E 20**
1662
1663 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1664
1665 A5 **4E 20 00**
1666
1667 If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1668
1669 A5 **4E 20 01**
1670
1671 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1672 )))
1673
1674 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1675
1676 This command allows users to pre-configure specific count numbers for various counting parameters such as Count1, Count2, or AVI1 Count. Use the AT command to set the desired count number for each configuration.
1677
1678 (% style="color:#037691" %)**AT Command**
1679
1680 (% border="2" style="width:500px" %)
1681 |(% style="width:134px" %)**Command**|(% style="width:364px" %)AT+SETCNT=<counting_parameter>,<number>
1682 |(% style="width:134px" %)**Response**|(% style="width:364px" %)
1683 |(% style="width:134px" %)**Parameters**|(% style="width:364px" %)(((
1684 **counting_parameter** :
1685
1686 1: COUNT1
1687
1688 2: COUNT2
1689
1690 3: AVI1 Count
1691
1692 **number** : Start number
1693 )))
1694 |(% style="width:134px" %)**Example**|(% style="width:364px" %)(((
1695 AT+SETCNT=1,10
1696
1697 Sets the COUNT1 to 10.
1698 )))
1699
1700 (% style="color:#037691" %)**Downlink Payload**
1701
1702 (% border="2" style="width:500px" %)
1703 |(% style="width:135px" %)**Payload**|(% style="width:363px" %)<prefix><counting_parameter><number>
1704 |(% style="width:135px" %)**Parameters**|(% style="width:363px" %)(((
1705 prefix : A8 (hex)
1706
1707 **counting_parameter** : (1 byte in hexadecimal)
1708
1709 1: COUNT1
1710
1711 2: COUNT2
1712
1713 3: AVI1 Count
1714
1715 **number** : Start number, 4 bytes in hexadecimal
1716 )))
1717 |(% style="width:135px" %)**Example**|(% style="width:363px" %)(((
1718 A8 **01 00 00 00 0A**
1719
1720 Sets the COUNT1 to 10.
1721 )))
1722
1723 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1724
1725 This command clears the counting in counting mode.
1726
1727 (% style="color:#037691" %)**AT Command**
1728
1729 (% border="2" style="width:500px" %)
1730 |(% style="width:142px" %)**Command**|(% style="width:356px" %)AT+CLRCOUNT
1731 |(% style="width:142px" %)**Response**|(% style="width:356px" %)-
1732
1733 (% style="color:#037691" %)**Downlink Payload**
1734
1735 (% border="2" style="width:500px" %)
1736 |(% style="width:141px" %)**Payload**|(% style="width:357px" %)<prefix><clear?>
1737 |(% style="width:141px" %)**Parameters**|(% style="width:357px" %)(((
1738 prefix : A6 (hex)
1739
1740 clear? : 01 (hex)
1741 )))
1742 |(% style="width:141px" %)**Example**|(% style="width:357px" %)A6 **01**
1743
1744 ==== 3.4.2.19 Counting ~-~- Set Saving Interval for 'Counting Result' ====
1745
1746
1747 This command allows you to configure the device to save its counting result to internal flash memory at specified intervals. By setting a save time, the device will periodically store the counting data to prevent loss in case of power failure. The save interval can be adjusted to suit your requirements, with a minimum value of 30 seconds.
1748
1749 (% style="color:#037691" %)**AT Command**
1750
1751 (% border="2" style="width:500px" %)
1752 |(% style="width:124px" %)**Command**|(% style="width:374px" %)AT+COUTIME=<time>
1753 |(% style="width:124px" %)**Response**|(% style="width:374px" %)
1754 |(% style="width:124px" %)**Parameters**|(% style="width:374px" %)time : seconds (0 to 16777215)
1755 |(% style="width:124px" %)**Example**|(% style="width:374px" %)(((
1756 AT+COUTIME=60
1757
1758 Sets the device to save its counting results to the memory every 60 seconds.
1759 )))
1760
1761 (% style="color:#037691" %)**Downlink Payload**
1762
1763 (% border="2" style="width:500px" %)
1764 |(% style="width:123px" %)**Payload**|(% style="width:375px" %)<prefix><time>
1765 |(% style="width:123px" %)**Parameters**|(% style="width:375px" %)(((
1766 prefix : A7
1767
1768 time : seconds, 3 bytes in hexadecimal
1769 )))
1770 |(% style="width:123px" %)**Example**|(% style="width:375px" %)(((
1771 A7 **00 00 3C**
1772
1773 Sets the device to save its counting results to the memory every 60 seconds.
1774 )))
1775
1776 ==== 3.4.2.20 Reset saved RO and DO states ====
1777
1778
1779 This command allows you to reset the saved relay output (RO) and digital output (DO) states when the device joins the network. By configuring this setting, you can control whether the device should retain or reset the relay states after a reset and rejoin to the network.
1780
1781 (% style="color:#037691" %)**AT Command**
1782
1783 (% border="2" style="width:500px" %)
1784 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+RODORESET=<state>
1785 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1786 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1787 **state** :
1788
1789 **0** : RODO will close when the device joins the network. (default)
1790
1791 **1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1792 )))
1793 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1794 (% style="color:blue" %)**AT+RODORESET=1 **
1795
1796 RODO will close when the device joins the network. (default)
1797
1798 (% style="color:blue" %)**AT+RODORESET=0 **
1799
1800 After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1801 )))
1802
1803 (% style="color:#037691" %)**Downlink Payload**
1804
1805 (% border="2" style="width:500px" %)
1806 |(% style="width:127px" %)**Payload**|(% style="width:371px" %)<prefix><state>
1807 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1808 **prefix** : AD
1809
1810 **state** :
1811
1812 **0** : RODO will close when the device joins the network. (default), represents as 1 byte in hexadecimal.
1813
1814 **1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network. - represents as 1 byte in hexadecimal
1815 )))
1816 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1817 AD **01**
1818
1819 RODO will close when the device joins the network. (default)
1820
1821 AD **00**
1822
1823 After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1824 )))
1825
1826 ==== 3.4.2.21 Encrypted payload ====
1827
1828
1829 This command allows you to configure whether the device should upload data in an encrypted format or in plaintext. By default, the device encrypts the payload before uploading. You can toggle this setting to either upload encrypted data or transmit it without encryption.
1830
1831 (% style="color:#037691" %)**AT Command:**
1832
1833 (% border="2" style="width:500px" %)
1834 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DECRYPT=<state>
1835 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1836 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1837 **state** :
1838
1839 **1** : The payload is uploaded without encryption
1840
1841 **0** : The payload is encrypted when uploaded (default)
1842 )))
1843 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1844 AT+DECRYPT=1
1845
1846 The payload is uploaded without encryption
1847
1848 AT+DECRYPT=0
1849
1850 The payload is encrypted when uploaded (default)
1851 )))
1852
1853 There is no downlink payload for this configuration.
1854
1855
1856 ==== 3.4.2.22 Get sensor value ====
1857
1858
1859 This command allows you to retrieve and optionally uplink sensor readings through the serial port.
1860
1861 (% style="color:#037691" %)**AT Command**
1862
1863 (% border="2" style="width:500px" %)
1864 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+GETSENSORVALUE=<state>
1865 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1866 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1867 **state** :
1868
1869 **0 **: Retrieves the current sensor reading via the serial port.
1870
1871 **1 **: Retrieves and uploads the current sensor reading via the serial port.
1872 )))
1873 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1874 AT+GETSENSORVALUE=0
1875
1876 Retrieves the current sensor reading via the serial port.
1877
1878 AT+GETSENSORVALUE=1
1879
1880 Retrieves and uplinks the current sensor reading via the serial port.
1881 )))
1882
1883 There is no downlink payload for this configuration.
1884
1885
1886 ==== 3.4.2.23 Resetting the downlink packet count ====
1887
1888
1889 This command manages how the node handles mismatched downlink packet counts. It offers two modes: one disables the reception of further downlink packets if discrepancies occur, while the other resets the downlink packet count to align with the server, ensuring continued communication.
1890
1891 (% style="color:#037691" %)**AT Command**
1892
1893 (% border="2" style="width:500px" %)
1894 |(% style="width:130px" %)**Command**|(% style="width:368px" %)AT+DISFCNTCHECK=<state>
1895 |(% style="width:130px" %)**Response**|(% style="width:368px" %)(((
1896
1897 )))
1898 |(% style="width:130px" %)**Parameters**|(% style="width:368px" %)(((
1899 **state **:
1900
1901 **0** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default).
1902
1903
1904 **1** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency.
1905 )))
1906 |(% style="width:130px" %)**Example**|(% style="width:368px" %)(((
1907 AT+DISFCNTCHECK=0
1908
1909 When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default).
1910
1911 AT+DISFCNTCHECK=1
1912
1913 When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency.
1914 )))
1915
1916 There is no downlink payload for this configuration.
1917
1918
1919 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1920
1921
1922 This command controls the behavior of the node when the combined size of the MAC commands (MACANS) from the server and the payload exceed the allowed byte limit for the current data rate (DR). The command provides two modes: one enables splitting the data into batches to ensure compliance with the byte limit, while the other prioritizes the payload and ignores the MACANS in cases of overflow.
1923
1924 (% style="color:#037691" %)**AT Command**
1925
1926 (% border="2" style="width:500px" %)
1927 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DISMACANS=<state>
1928 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1929 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1930 **state** :
1931
1932 **0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1933
1934 **1** : When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1935 )))
1936 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1937 AT+DISMACANS=0
1938
1939 When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1940
1941 AT+DISMACANS=1
1942
1943 When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1944 )))
1945
1946 (% style="color:#037691" %)**Downlink Payload**
1947
1948 (% border="2" style="width:500px" %)
1949 |(% style="width:126px" %)**Payload**|(% style="width:372px" %)<prefix><state>
1950 |(% style="width:126px" %)**Parameters**|(% style="width:372px" %)(((
1951 **prefix** : 21
1952
1953 **state** : (2 bytes in hexadecimal)
1954
1955 **0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1956
1957 **1 **: When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1958 )))
1959 |(% style="width:126px" %)**Example**|(% style="width:372px" %)(((
1960 21 **00 01**
1961
1962 Set DISMACANS=1
1963 )))
1964
1965 ==== 3.4.2.25 Copy downlink to uplink ====
1966
1967
1968 This command enables the device to immediately uplink the payload of a received downlink packet back to the server. The command allows for quick data replication from downlink to uplink, with a fixed port number of 100.
1969
1970 (% style="color:#037691" %)**AT Command**(%%)**:**
1971
1972 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving a downlink payload from the server, the device will immediately uplink the payload back to the server using port number 100.
1973
1974 Example:**aa xx xx xx xx**         ~/~/ **aa** indicates whether the configuration has changed: **00** means YES, and **01** means NO. **xx xx xx xx** are the bytes uplinked back.
1975
1976
1977 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1978
1979 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1980
1981 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1982
1983 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1984
1985
1986 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1987
1988 There is no downlink option available for this feature.
1989
1990
1991 ==== 3.4.2.26 Query firmware version, frequency band, subband, and TDC time ====
1992
1993
1994 This command is used to query key information about the device, including its firmware version, frequency band, subband, and TDC time. By sending the specified payload as a downlink, the server can retrieve this essential data from the device.
1995
1996 * (((
1997 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1998
1999 (% style="color:blue" %)**26 01  ** (%%) ~/~/  The downlink payload 26 01 is used to query the device's firmware version, frequency band, subband, and TDC time.
2000
2001
2002
2003 )))
2004
2005 **Example:**
2006
2007 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
2008
2009
2010 == 3.5 Integrating with ThingsEye.io ==
2011
2012
2013 The Things Stack application supports integration with ThingsEye.io. Once integrated, ThingsEye.io acts as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
2014
2015
2016 === 3.5.1 Configuring The Things Stack ===
2017
2018
2019 We use The Things Stack Sandbox in this example:
2020
2021 * In **The Things Stack Sandbox**, go to the **Application **for the LT-22222-L you added.
2022 * Select **MQTT** under **Integrations** in the left menu.
2023 * In the **Connection information **section, under **Connection credentials**, The Things Stack displays an auto-generated **username**. You can use it or provide a new one.
2024 * Click the **Generate new API key** button to generate a password. You can view it by clicking on the **visibility toggle/eye** icon. The API key works as the password.
2025
2026 {{info}}
2027 The username and  password (API key) you created here are required in the next section.
2028 {{/info}}
2029
2030 [[image:tts-mqtt-integration.png]]
2031
2032
2033 === 3.5.2 Configuring ThingsEye.io ===
2034
2035
2036 The ThingsEye.io IoT platform is not open for self-registration at the moment. If you are interested in testing the platform, please send your project information to admin@thingseye.io, and we will create an account for you.
2037
2038 * Login to your [[ThingsEye.io >>https://thingseye.io]]account.
2039 * Under the **Integrations center**, click **Integrations**.
2040 * Click the **Add integration** button (the button with the **+** symbol).
2041
2042 [[image:thingseye-io-step-1.png]]
2043
2044
2045 On the **Add integration** window, configure the following:
2046
2047 **Basic settings:**
2048
2049 * Select **The Things Stack Community** from the **Integration type** list.
2050 * Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
2051 * Ensure the following options are turned on.
2052 ** Enable integration
2053 ** Debug mode
2054 ** Allow creating devices or assets
2055 * Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
2056
2057 [[image:thingseye-io-step-2.png]]
2058
2059
2060 **Uplink data converter:**
2061
2062 * Click the **Create new** button if it is not selected by default.
2063 * Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
2064 * Click the **JavaScript** button.
2065 * Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
2066 * Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
2067
2068 [[image:thingseye-io-step-3.png]]
2069
2070
2071 **Downlink data converter (this is an optional step):**
2072
2073 * Click the **Create new** button if it is not selected by default.
2074 * Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name.
2075 * Click the **JavaScript** button.
2076 * Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Downlink_Converter.js]].
2077 * Click the **Next** button. You will be navigated to the **Connection** tab.
2078
2079 [[image:thingseye-io-step-4.png]]
2080
2081
2082 **Connection:**
2083
2084 * Choose **Region** from the **Host type**.
2085 * Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
2086 * Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The **username **and **password **can be found on the MQTT integration page of your The Things Stack account (see **3.5.1 Configuring The Things Stack**).
2087 * Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
2088
2089 [[image:message-1.png]]
2090
2091
2092 * Click the **Add** button.
2093
2094 [[image:thingseye-io-step-5.png]]
2095
2096
2097 Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings and correct any errors.
2098
2099
2100 [[image:thingseye.io_integrationsCenter_integrations.png]]
2101
2102
2103 ==== 3.5.2.1 Viewing integration details ====
2104
2105
2106 Click on your integration from the list. The **Integration details** window will appear with the **Details **tab selected. The **Details **tab shows all the settings you have provided for this integration.
2107
2108 [[image:integration-details.png]]
2109
2110
2111 If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
2112
2113 {{info}}
2114 See also [[ThingsEye documentation>>https://wiki.thingseye.io/xwiki/bin/view/Main/]].
2115 {{/info}}
2116
2117
2118 ==== 3.5.2.2 Viewing events ====
2119
2120
2121 The **Events **tab displays all the uplink messages from the LT-22222-L.
2122
2123 * Select **Debug **from the **Event type** dropdown.
2124 * Select the** time frame** from the **time window**.
2125
2126 [[image:thingseye-events.png]]
2127
2128
2129 * To view the **JSON payload** of a message, click on the **three dots (...)** in the **Message** column of the desired message.
2130
2131 [[image:thingseye-json.png]]
2132
2133
2134 ==== 3.5.2.3 Deleting an integration ====
2135
2136
2137 If you want to delete an integration, click the **Delete integratio**n button on the Integrations page.
2138
2139
2140 ==== 3.5.2.4 Viewing sensor data on a dashboard ====
2141
2142
2143 You can create a dashboard with ThingsEye to visualize the sensor data coming from the LHT65N-VIB. The following image shows a dashboard created for the LT-22222-L. See **Creating a dashboard** in ThingsEye documentation for more information.
2144
2145
2146
2147 [[image:lt-22222-l-dashboard.png]]
2148
2149
2150 == 3.6 Interface Details ==
2151
2152 === 3.6.1 Digital Input Ports: DI1/DI2/DI3 (For LT-33222-L, Low Active) ===
2153
2154
2155 Supports** NPN-type **sensors.
2156
2157 [[image:1653356991268-289.png]]
2158
2159
2160 === 3.6.2 Digital Input Ports: DI1/DI2 ===
2161
2162
2163 (((
2164 The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
2165 )))
2166
2167 (((
2168 (((
2169 The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
2170
2171
2172 )))
2173 )))
2174
2175 [[image:1653357170703-587.png]]
2176
2177 (((
2178 (((
2179 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
2180 )))
2181 )))
2182
2183 (((
2184
2185 )))
2186
2187 (((
2188 (% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
2189 )))
2190
2191 (((
2192 This type of sensor outputs a low (GND) signal when active.
2193 )))
2194
2195 * (((
2196 Connect the sensor's output to DI1-
2197 )))
2198 * (((
2199 Connect the sensor's VCC to DI1+.
2200 )))
2201
2202 (((
2203 When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be:
2204 )))
2205
2206 (((
2207 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
2208 )))
2209
2210 (((
2211 For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
2212 )))
2213
2214 (((
2215
2216 )))
2217
2218 (((
2219 (% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
2220 )))
2221
2222 (((
2223 This type of sensor outputs a high signal (e.g., 24V) when active.
2224 )))
2225
2226 * (((
2227 Connect the sensor's output to DI1+
2228 )))
2229 * (((
2230 Connect the sensor's GND DI1-.
2231 )))
2232
2233 (((
2234 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
2235 )))
2236
2237 (((
2238 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
2239 )))
2240
2241 (((
2242 If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
2243 )))
2244
2245 (((
2246
2247 )))
2248
2249 (((
2250 (% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
2251 )))
2252
2253 (((
2254 Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
2255 )))
2256
2257 * (((
2258 Connect the sensor's output to DI1+ with a 50K resistor in series.
2259 )))
2260 * (((
2261 Connect the sensor's GND DI1-.
2262 )))
2263
2264 (((
2265 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
2266 )))
2267
2268 (((
2269 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
2270 )))
2271
2272 (((
2273 If the sensor output is 220V, then [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
2274 )))
2275
2276
2277 (% style="color:blue" %)**Example 4**(%%): Connecting to a Dry Contact sensor
2278
2279 From the DI port circuit above, activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference on its own.
2280
2281 To detect a Dry Contact, you can supply a power source to one of the pins of the Dry Contact. A reference circuit diagram is shown below.
2282
2283 [[image:image-20230616235145-1.png]]
2284
2285 (% style="color:blue" %)**Example 5**(%%): Connecting to an Open Collector
2286
2287 [[image:image-20240219115718-1.png]]
2288
2289
2290 === 3.6.3 Digital Output Ports: DO1/DO2 ===
2291
2292
2293 (% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
2294
2295 (% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
2296
2297 [[image:1653357531600-905.png]]
2298
2299
2300 === 3.6.4 Analog Input Interfaces ===
2301
2302
2303 The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
2304
2305
2306 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
2307
2308 [[image:1653357592296-182.png]]
2309
2310 Example: Connecting a 4~~20mA sensor
2311
2312 We will use the wind speed sensor as an example for reference only.
2313
2314
2315 (% style="color:blue" %)**Specifications of the wind speed sensor:**
2316
2317 (% style="color:red" %)**Red:  12~~24V**
2318
2319 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
2320
2321 **Black:  GND**
2322
2323 **Connection diagram:**
2324
2325 [[image:1653357640609-758.png]]
2326
2327 [[image:1653357648330-671.png||height="155" width="733"]]
2328
2329
2330 Example: Connecting to a regulated power supply to measure voltage
2331
2332 [[image:image-20230608101532-1.png||height="606" width="447"]]
2333
2334 [[image:image-20230608101608-2.jpeg||height="379" width="284"]]
2335
2336 [[image:image-20230608101722-3.png||height="102" width="1139"]]
2337
2338
2339 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
2340
2341 (% style="color:red" %)**Red:  12~~24v**
2342
2343 **Black:  GND**
2344
2345
2346 === 3.6.5 Relay Output ===
2347
2348
2349 (((
2350 The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
2351
2352 **Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
2353 )))
2354
2355 [[image:image-20220524100215-9.png]]
2356
2357
2358 [[image:image-20220524100215-10.png||height="382" width="723"]]
2359
2360
2361 == 3.7 LED Indicators ==
2362
2363
2364 The table below lists the behaviour of LED indicators for each port function.
2365
2366 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
2367 |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
2368 |**PWR**|Always on when there is power
2369 |**TX**|(((
2370 (((
2371 Device booting: TX blinks 5 times.
2372 )))
2373
2374 (((
2375 Successful network joins: TX remains ON for 5 seconds.
2376 )))
2377
2378 (((
2379 Transmit a LoRa packet: TX blinks once
2380 )))
2381 )))
2382 |**RX**|RX blinks once when a packet is received.
2383 |**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
2384 |**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
2385 |**DI1**|(((
2386 For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
2387 )))
2388 |**DI2**|(((
2389 For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
2390 )))
2391 |**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
2392 |**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
2393
2394 = 4. Using AT Commands =
2395
2396
2397 The LT-22222-L supports programming using AT Commands.
2398
2399
2400 == 4.1 Connecting the LT-22222-L to a PC ==
2401
2402
2403 (((
2404 You can use a USB-to-TTL adapter/converter along with a 3.5mm Program Cable to connect the LT-22222-L to a PC, as shown below.
2405
2406 [[image:usb-ttl-audio-jack-connection.jpg]]
2407
2408
2409 )))
2410
2411
2412 (((
2413 On the PC, you need to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate of (% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-L. Access to AT commands is disabled by default, and a password (default: (% style="color:green" %)**123456**)(%%) must be entered to enable AT command access, as shown below:
2414 )))
2415
2416 [[image:1653358355238-883.png]]
2417
2418
2419 (((
2420 You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
2421
2422
2423 == 4.2 LT-22222-L related AT commands ==
2424
2425
2426 )))
2427
2428 (((
2429 The following is the list of all the AT commands related to the LT-22222-L, except for those used for switching between working modes.
2430
2431 * **##AT##+<CMD>?** : Help on <CMD>
2432 * **##AT##+<CMD>** : Run <CMD>
2433 * **##AT##+<CMD>=<value>** : Set the value
2434 * **##AT##+<CMD>=?** : Get the value
2435 * ##**ATZ**##: Trigger a reset of the MCU
2436 * ##**AT+FDR**##: Reset Parameters to factory default, reserve keys 
2437 * **##AT+DEUI##**: Get or set the Device EUI (DevEUI)
2438 * **##AT+DADDR##**: Get or set the Device Address (DevAddr)
2439 * **##AT+APPKEY##**: Get or set the Application Key (AppKey)
2440 * ##**AT+NWKSKEY**##: Get or set the Network Session Key (NwkSKey)
2441 * **##AT+APPSKEY##**: Get or set the Application Session Key (AppSKey)
2442 * **##AT+APPEUI##**: Get or set the Application EUI (AppEUI)
2443 * **##AT+ADR##**: Get or set the Adaptive Data Rate setting. (0: OFF, 1: ON)
2444 * ##**AT+TXP**##: Get or set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Specification)
2445 * **##AT+DR##**:  Get or set the Data Rate. (0-7 corresponding to DR_X)  
2446 * **##AT+DCS##**: Get or set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
2447 * ##**AT+PNM**##: Get or set the public network mode. (0: off, 1: on)
2448 * ##**AT+RX2FQ**##: Get or set the Rx2 window frequency
2449 * ##**AT+RX2DR**##: Get or set the Rx2 window data rate (0-7 corresponding to DR_X)
2450 * ##**AT+RX1DL**##: Get or set the delay between the end of the Tx and the Rx Window 1 in ms
2451 * ##**AT+RX2DL**##: Get or set the delay between the end of the Tx and the Rx Window 2 in ms
2452 * ##**AT+JN1DL**##: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
2453 * ##**AT+JN2DL**##: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
2454 * ##**AT+NJM**##: Get or set the Network Join Mode. (0: ABP, 1: OTAA)
2455 * ##**AT+NWKID**##: Get or set the Network ID
2456 * ##**AT+FCU**##: Get or set the Frame Counter Uplink (FCntUp)
2457 * ##**AT+FCD**##: Get or set the Frame Counter Downlink (FCntDown)
2458 * ##**AT+CLASS**##: Get or set the Device Class
2459 * ##**AT+JOIN**##: Join Network
2460 * ##**AT+NJS**##: Get OTAA Join Status
2461 * ##**AT+SENDB**##: Send hexadecimal data along with the application port
2462 * ##**AT+SEND**##: Send text data along with the application port
2463 * ##**AT+RECVB**##: Print the last received data in binary format (with hexadecimal values)
2464 * ##**AT+RECV**##: Print the last received data in raw format
2465 * ##**AT+VER**##: Get the current image version and Frequency Band
2466 * ##**AT+CFM**##: Get or Set the confirmation mode (0-1)
2467 * ##**AT+CFS**##: Get confirmation status of the last AT+SEND (0-1)
2468 * ##**AT+SNR**##: Get the SNR of the last received packet
2469 * ##**AT+RSSI**##: Get the RSSI of the last received packet
2470 * ##**AT+TDC**##: Get or set the application data transmission interval in ms
2471 * ##**AT+PORT**##: Get or set the application port
2472 * ##**AT+DISAT**##: Disable AT commands
2473 * ##**AT+PWORD**##: Set password, max 9 digits
2474 * ##**AT+CHS**##: Get or set the Frequency (Unit: Hz) for Single Channel Mode
2475 * ##**AT+CHE**##: Get or set eight channels mode, Only for US915, AU915, CN470
2476 * ##**AT+CFG**##: Print all settings
2477 )))
2478
2479
2480 == 4.2 Common AT Command Sequence ==
2481
2482 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
2483
2484 (((
2485
2486
2487 (((
2488 (% style="color:blue" %)**If the device has not yet joined the network:**
2489 )))
2490 )))
2491
2492 (((
2493 (% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT command access**##
2494 )))
2495
2496 (((
2497 (% style="background-color:#dcdcdc" %)##**AT+FDR ~/~/Reset parameters to factory default, Reserve keys**##
2498 )))
2499
2500 (((
2501 (% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT command access**##
2502 )))
2503
2504 (((
2505 (% style="background-color:#dcdcdc" %)##**AT+NJM=0 ~/~/Set to ABP mode**##
2506 )))
2507
2508 (((
2509 (% style="background-color:#dcdcdc" %)##**ATZ ~/~/Reset MCU**##
2510 )))
2511
2512
2513 (((
2514 (% style="color:blue" %)**If the device has already joined the network:**
2515 )))
2516
2517 (((
2518 (% style="background-color:#dcdcdc" %)##**AT+NJM=0**##
2519 )))
2520
2521 (((
2522 (% style="background-color:#dcdcdc" %)##**ATZ**##
2523 )))
2524
2525
2526 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
2527
2528 (((
2529
2530
2531 (((
2532 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter the password to enable AT commands access
2533 )))
2534 )))
2535
2536 (((
2537 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset parameters to Factory Default, Reserve keys
2538 )))
2539
2540 (((
2541 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter the password to enable AT command access
2542 )))
2543
2544 (((
2545 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to CLASS C mode
2546 )))
2547
2548 (((
2549 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
2550 )))
2551
2552 (((
2553 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
2554 )))
2555
2556 (((
2557 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
2558 )))
2559
2560 (((
2561 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
2562 )))
2563
2564 (((
2565 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4 MHz
2566 )))
2567
2568 (((
2569 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2 frequency to 868.4 MHz (according to the result from the server)
2570 )))
2571
2572 (((
2573 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2 DR to match the downlink DR from the server. See below.
2574 )))
2575
2576 (((
2577 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address. The Device Address can be found in the application on the LoRaWAN NS.
2578 )))
2579
2580 (((
2581 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
2582
2583
2584 )))
2585
2586 (((
2587 (% style="color:red" %)**Note:**
2588 )))
2589
2590 (((
2591 **~1. Ensure that the device is set to ABP mode in the LoRaWAN Network Server.**
2592
2593 **2. Verify that the LG01/02 gateway RX frequency matches the AT+CHS setting exactly.**
2594
2595 **3. Make sure the SF/bandwidth settings in the LG01/LG02 match the settings of AT+DR. Refer to [[this link>>url:http://www.dragino.com/downloads/index.php?
2596 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
2597
2598 **4. The commands AT+RX2FQ and AT+RX2DR enable downlink functionality. To set the correct parameters, you can check the actual downlink parameters to be used as shown below. Here, RX2FQ should be set to 868400000 and RX2DR should be set to 5.**
2599 )))
2600
2601 (((
2602 [[image:1653359097980-169.png||height="188" width="729"]]
2603 )))
2604
2605
2606 === 4.2.3 Change to Class A ===
2607
2608
2609 (((
2610 (% style="color:blue" %)**If the sensor has JOINED:**
2611
2612 (% style="background-color:#dcdcdc" %)**AT+CLASS=A**
2613
2614 (% style="background-color:#dcdcdc" %)**ATZ**
2615 )))
2616
2617
2618 = 5. Case Study =
2619
2620 == 5.1 Counting how many objects pass through the flow line ==
2621
2622
2623 See [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]].
2624
2625
2626 = 6. FAQ =
2627
2628
2629 This section contains some frequently asked questions, which can help you resolve common issues and find solutions quickly.
2630
2631
2632 == 6.1 How to update the firmware? ==
2633
2634
2635 Dragino frequently releases firmware updates for the LT-22222-L. Updating your LT-22222-L with the latest firmware version helps to:
2636
2637 * Support new features
2638 * Fix bugs
2639 * Change LoRaWAN frequency bands
2640
2641 You will need the following things before proceeding:
2642
2643 * 3.5mm programming cable (included with the LT-22222-L as an additional accessory)
2644 * USB to TTL adapter/converter
2645 * Download and install the [[STM32 Flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. (replaced by STM32CubeProgrammer)
2646 * Download the latest firmware image from [[LT-22222-L firmware image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. Check the file name of the firmware to find the correct region.
2647
2648 {{info}}
2649 As of this writing, the latest firmware version available for the LT-22222-L is v1.6.1.
2650 {{/info}}
2651
2652 Below is the hardware setup for uploading a firmware image to the LT-22222-L:
2653
2654 [[image:usb-ttl-audio-jack-connection.jpg]]
2655
2656
2657
2658 Start the STM32 Flash Loader and choose the correct COM port to update.
2659
2660 (((
2661 (((
2662 (% style="color:blue" %)**For LT-22222-L**(%%):
2663
2664 Hold down the **PRO** button, then briefly press the **RST** button. The **DO1** LED will change from OFF to ON. When the **DO1** LED is ON, it indicates that the device is in firmware download mode.
2665 )))
2666
2667
2668 )))
2669
2670 [[image:image-20220524103407-12.png]]
2671
2672
2673 [[image:image-20220524103429-13.png]]
2674
2675
2676 [[image:image-20220524104033-15.png]]
2677
2678
2679 (% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5 mm cable. The pin mapping is as follows:
2680
2681 [[image:1653360054704-518.png||height="186" width="745"]]
2682
2683
2684 (((
2685 (((
2686 == 6.2 How to change the LoRaWAN frequency band/region? ==
2687
2688
2689 )))
2690 )))
2691
2692 (((
2693 You can follow the introductions on [[how to upgrade the image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2694 )))
2695
2696 (((
2697
2698
2699 == 6.3 How to set up LT-22222-L to work with a Single Channel Gateway, such as LG01/LG02? ==
2700
2701
2702 )))
2703
2704 (((
2705 (((
2706 In this case, you need to set the LT-22222-L to work in ABP mode and transmit on only one frequency.
2707 )))
2708 )))
2709
2710 (((
2711 (((
2712 We assume you have an LG01/LG02 working on the frequency 868400000. Below are the steps.
2713
2714
2715 )))
2716 )))
2717
2718 (((
2719 (% style="color:#0000ff" %)**Step 1**(%%): Log in to The Things Stack Sandbox account and create an ABP device in the application. To do this, use the manual registration option as explained in section 3.2.2.2, //Adding a Device Manually//. Select //Activation by Personalization (ABP)// under Activation Mode. Enter the DevEUI exactly as shown on the registration information sticker, then generate the Device Address, Application Session Key (AppSKey), and Network Session Key (NwkSKey).
2720
2721 [[image:lt-22222-l-abp.png||height="686" width="1000"]]
2722 )))
2723
2724 (((
2725
2726 )))
2727
2728 {{warning}}
2729 Ensure that the Device Address (DevAddr) and the two keys match between the LT-22222-L and The Things Stack. You can modify them either in The Things Stack or on the LT-22222-L to make them align. In The Things Stack, you can configure the NwkSKey and AppSKey on the settings page, but note that the Device Address is generated by The Things Stack.
2730 {{/warning}}
2731
2732
2733 (((
2734 (% style="color:blue" %)**Step 2**(%%)**:  **(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)Run AT commands to configure the LT-22222-L to operate in single-frequency and ABP mode. The AT commands are as follows:
2735
2736
2737 )))
2738
2739 (((
2740 (% style="background-color:#dcdcdc" %)**123456** (%%) : Enter the password to enable AT access.
2741
2742 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Reset parameters to factory default, keeping keys reserved.
2743
2744 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) : Set to ABP mode.
2745
2746 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) : Disable the Adaptive Data Rate (ADR).
2747
2748 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) : Set Data Rate (Use AT+DR=3 for the 915 MHz band).
2749
2750 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) : Set transmit interval to 60 seconds.
2751
2752 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4 MHz.
2753
2754 (% style="background-color:#dcdcdc" %)**AT+DADDR=xxxx**(%%) : Set the Device Address (DevAddr)
2755
2756 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:700; text-decoration:none; white-space:pre-wrap" %)**AT+APPKEY=xxxx**(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %): Get or set the Application Key (AppKey)
2757
2758 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+NWKSKEY=xxxx**: Get or set the Network Session Key (NwkSKey)
2759
2760 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+APPSKEY=xxxx**: Get or set the Application Session Key (AppSKey)
2761
2762 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) : Reset MCU.
2763 )))
2764
2765
2766 (((
2767 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)The following figure shows the screenshot of the command set above, issued using a serial tool:
2768 )))
2769
2770 [[image:1653360498588-932.png||height="485" width="726"]]
2771
2772
2773 == 6.4 How to change the uplink interval? ==
2774
2775
2776 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2777
2778
2779 == 6.5 Can I see the counting event in the serial output? ==
2780
2781
2782 (((
2783 You can run the AT command **AT+DEBUG** to view the counting event in the serial output. If the firmware is too old and doesn’t support AT+DEBUG, update to the latest firmware first.
2784
2785
2786 == 6.6 Can I use point-to-point communication with LT-22222-L? ==
2787
2788
2789 Yes, you can. Please refer to the [[Point-to-Point Communication of LT-22222-L>>https://wiki.dragino.com/xwiki/bin/view/Main/%20Point%20to%20Point%20Communication%20of%20LT-22222-L/]] page. The firmware that supports point-to-point communication can be found [[here>>https://github.com/dragino/LT-22222-L/releases]].
2790
2791
2792 )))
2793
2794 (((
2795 == 6.7 Why does the relay output default to an open relay after the LT-22222-L is powered off? ==
2796
2797
2798 * If the device is not properly shut down and is directly powered off.
2799 * It will default to a power-off state.
2800 * In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2801 * After a restart, the status before the power failure will be read from Flash.
2802
2803 == 6.8 Can I set up LT-22222-L as an NC (Normally Closed) relay? ==
2804
2805
2806 The LT-22222-L's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
2807
2808
2809 [[image:image-20221006170630-1.png||height="610" width="945"]]
2810
2811
2812 == 6.9 Can the LT-22222-L save the RO state? ==
2813
2814
2815 To enable this feature, the firmware version must be 1.6.0 or higher.
2816
2817
2818 == 6.10 Why does the LT-22222-L always report 15.585V when measuring the AVI? ==
2819
2820
2821 It is likely that the GND is not connected during the measurement, or that the wire connected to the GND is loose.
2822
2823
2824 = 7. Troubleshooting =
2825
2826
2827 This section provides some known troubleshooting tips.
2828
2829
2830 )))
2831
2832 (((
2833 (((
2834 == 7.1 Downlink isn't working. How can I solve this? ==
2835
2836
2837 )))
2838 )))
2839
2840 (((
2841 Please refer to this link for debugging instructions: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2842 )))
2843
2844 (((
2845
2846
2847 == 7.2 Having trouble uploading an image? ==
2848
2849
2850 )))
2851
2852 (((
2853 Please refer to this link for troubleshooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2854 )))
2855
2856 (((
2857
2858
2859 == 7.3 Why can't I join TTN in the US915 /AU915 bands? ==
2860
2861
2862 )))
2863
2864 (((
2865 It might be related to the channel mapping. [[Please refer to this link for details.>>https://github.com/dragino/LT-22222-L/releases]]
2866 )))
2867
2868
2869 == 7.4 Why can the LT-22222-L perform uplink normally, but cannot receive downlink? ==
2870
2871
2872 The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue.
2873 Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2874
2875
2876 = 8. Ordering information =
2877
2878
2879 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2880
2881 (% style="color:#4f81bd" %)**XXX:**
2882
2883 * (% style="color:red" %)**EU433**(%%): LT with frequency bands EU433
2884 * (% style="color:red" %)**EU868**(%%): LT with frequency bands EU868
2885 * (% style="color:red" %)**KR920**(%%): LT with frequency bands KR920
2886 * (% style="color:red" %)**CN470**(%%): LT with frequency bands CN470
2887 * (% style="color:red" %)**AS923**(%%): LT with frequency bands AS923
2888 * (% style="color:red" %)**AU915**(%%): LT with frequency bands AU915
2889 * (% style="color:red" %)**US915**(%%): LT with frequency bands US915
2890 * (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2891 * (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2892
2893 = 9. Package information =
2894
2895
2896 **Package includes**:
2897
2898 * 1 x LT-22222-L I/O Controller
2899 * 1 x LoRa antenna matched to the frequency of the LT-22222-L
2900 * 1 x bracket for DIN rail mounting
2901 * 1 x 3.5 mm programming cable
2902
2903 **Dimension and weight**:
2904
2905 * Device Size: 13.5 x 7 x 3 cm
2906 * Device Weight: 105 g
2907 * Package Size / pcs : 14.5 x 8 x 5 cm
2908 * Weight / pcs : 170 g
2909
2910 = 10. Support =
2911
2912
2913 * (((
2914 Support is available Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule.
2915 )))
2916 * (((
2917 Please provide as much information as possible regarding your inquiry (e.g., product models, a detailed description of the problem, steps to replicate it, etc.) and send an email to [[support@dragino.cc>>mailto:support@dragino.cc]]
2918
2919
2920 )))
2921
2922 = 11. Reference​​​​​ =
2923
2924
2925 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2926 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2927 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0