Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19
20 = 1. Introduction =
21
22 == 1.1 What is the LT-22222-L I/O Controller? ==
23
24
25 (((
26 (((
27 {{info}}
28 **This manual is also applicable to the LT-33222-L.**
29 {{/info}}
30
31 The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN end device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
32
33 The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
34 )))
35 )))
36
37 (((
38 With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
39 )))
40
41 (((
42 You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
43
44 * If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Stack Community Network), you can select a network and register the LT-22222-L I/O controller with it.
45 * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
46 * Setup your own private LoRaWAN network.
47 )))
48
49 (((
50
51
52 The network diagram below illustrates how the LT-22222-L communicates with a typical LoRaWAN network.
53 )))
54
55 (% class="wikigeneratedid" %)
56 [[image:lorawan-nw.jpg||height="354" width="900"]]
57
58
59 == 1.2 Specifications ==
60
61
62 (% style="color:#037691" %)**Hardware System:**
63
64 * STM32L072xxxx MCU
65 * SX1276/78 Wireless Chip 
66 * Power Consumption:
67 ** Idle: 4mA@12V
68 ** 20dB Transmit: 34mA@12V
69 * Operating Temperature: -40 ~~ 85 Degrees, No Dew
70
71 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
72
73 * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50V, or 220V with optional external resistor)
74 * 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
75 * 2 x Relay Output (5A@250VAC / 30VDC)
76 * 2 x 0~~20mA Analog Input (res:0.01mA)
77 * 2 x 0~~30V Analog Input (res:0.01V)
78 * Power Input 7~~ 24V DC. 
79
80 (% style="color:#037691" %)**LoRa Spec:**
81
82 * Frequency Range:
83 ** Band 1 (HF): 862 ~~ 1020 MHz
84 ** Band 2 (LF): 410 ~~ 528 MHz
85 * 168 dB maximum link budget.
86 * +20 dBm - 100 mW constant RF output vs.
87 * +14 dBm high-efficiency PA.
88 * Programmable bit rate up to 300 kbps.
89 * High sensitivity: down to -148 dBm.
90 * Bullet-proof front end: IIP3 = -12.5 dBm.
91 * Excellent blocking immunity.
92 * Low RX current of 10.3 mA, 200 nA register retention.
93 * Fully integrated synthesizer with a resolution of 61 Hz.
94 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
95 * Built-in bit synchronizer for clock recovery.
96 * Preamble detection.
97 * 127 dB Dynamic Range RSSI.
98 * Automatic RF Sense and CAD with ultra-fast AFC.
99 * Packet engine up to 256 bytes with CRC.
100
101 == 1.3 Features ==
102
103
104 * LoRaWAN Class A & Class C modes
105 * Optional Customized LoRa Protocol
106 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
107 * AT Commands to change parameters
108 * Remotely configure parameters via LoRaWAN Downlink
109 * Firmware upgradable via program port
110 * Counting
111
112 == 1.4 Applications ==
113
114
115 * Smart buildings & home automation
116 * Logistics and supply chain management
117 * Smart metering
118 * Smart agriculture
119 * Smart cities
120 * Smart factory
121
122 == 1.5 Hardware Variants ==
123
124
125 (% border="1" cellspacing="3" style="width:510px" %)
126 |(% style="background-color:#4f81bd; color:white; width:94px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:172px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:244px" %)**Description**
127 |(% style="width:94px" %)**LT-22222-L**|(% style="width:172px" %)(((
128 (% style="text-align:center" %)
129 [[image:lt33222-l.jpg||height="110" width="95"]]
130 )))|(% style="width:256px" %)(((
131 * 2 x Digital Input (Bi-direction)
132 * 2 x Digital Output
133 * 2 x Relay Output (5A@250VAC / 30VDC)
134 * 2 x 0~~20mA Analog Input (res:0.01mA)
135 * 2 x 0~~30V Analog Input (res:0.01v)
136 * 1 x Counting Port
137 )))
138
139 = 2. Assembling the device =
140
141 == 2.1 Connecting the antenna ==
142
143
144 Connect the LoRa antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper screw terminal block. Secure the antenna by tightening it clockwise.
145
146 {{warning}}
147 **Warning! Do not power on the device without connecting the antenna.**
148 {{/warning}}
149
150
151 == 2.2 Terminals ==
152
153
154 The  LT-22222-L has two screw terminal blocks. The upper screw treminal block has 6 screw terminals and the lower screw terminal block has 10 screw terminals.
155
156 **Upper screw terminal block (from left to right):**
157
158 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:381px" %)
159 |=(% style="width: 139px;background-color:#4f81bd;color:white" %)Screw Terminal|=(% style="width: 242px;background-color:#4f81bd;color:white" %)Function
160 |(% style="width:139px" %)GND|(% style="width:242px" %)Ground
161 |(% style="width:139px" %)VIN|(% style="width:242px" %)Input Voltage
162 |(% style="width:139px" %)AVI2|(% style="width:242px" %)Analog Voltage Input Terminal 2
163 |(% style="width:139px" %)AVI1|(% style="width:242px" %)Analog Voltage Input Terminal 1
164 |(% style="width:139px" %)ACI2|(% style="width:242px" %)Analog Current Input Terminal 2
165 |(% style="width:139px" %)ACI1|(% style="width:242px" %)Analog Current Input Terminal 1
166
167 **Lower screw terminal block (from left to right):**
168
169 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:253px" %)
170 |=(% style="width: 125px;background-color:#4f81bd;color:white" %)Screw Terminal|=(% style="width: 128px;background-color:#4f81bd;color:white" %)Function
171 |(% style="width:125px" %)RO1-2|(% style="width:128px" %)Relay Output 1
172 |(% style="width:125px" %)RO1-1|(% style="width:128px" %)Relay Output 1
173 |(% style="width:125px" %)RO2-2|(% style="width:128px" %)Relay Output 2
174 |(% style="width:125px" %)RO2-1|(% style="width:128px" %)Relay Output 2
175 |(% style="width:125px" %)DI2+|(% style="width:128px" %)Digital Input 2
176 |(% style="width:125px" %)DI2-|(% style="width:128px" %)Digital Input 2
177 |(% style="width:125px" %)DI1+|(% style="width:128px" %)Digital Input 1
178 |(% style="width:125px" %)DI1-|(% style="width:128px" %)Digital Input 1
179 |(% style="width:125px" %)DO2|(% style="width:128px" %)Digital Output 2
180 |(% style="width:125px" %)DO1|(% style="width:128px" %)Digital Output 1
181
182 == 2.3 Connecting LT-22222-L to a Power Source ==
183
184
185 The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect your power supply’s **positive wire** to the **VIN** and the **negative wire** to the **GND** screw terminals. The power indicator **(PWR) LED** will turn on when the device is properly powered.
186
187 {{warning}}
188 **We recommend that you power on the LT-22222-L after adding its registration information to the LoRaWAN network server. Otherwise, the device will continuously send join-request messages to attempt to join a LoRaWAN network but will fail.**
189 {{/warning}}
190
191
192 [[image:1653297104069-180.png]]
193
194
195 = 3. Registering LT-22222-L with a LoRaWAN Network Server =
196
197
198 The LT-22222-L supports both OTAA (Over-the-Air Activation) and ABP (Activation By Personalization) methods to activate with a LoRaWAN Network Server. However, OTAA is the most secure method for activating a device with a LoRaWAN Network Server. OTAA regenerates session keys upon initial registration and regenerates new session keys after any subsequent reboots. By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode.
199
200
201 == 3.1 Prerequisites ==
202
203
204 The LT-22222-L comes with device registration information such as DevEUI, AppEUI, and AppKey that allows you to register it with a LoRaWAN network. These registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
205
206 [[image:image-20230425173427-2.png||height="246" width="530"]]
207
208 {{info}}
209 If you are unable to set the provided root key and other identifiers in the network server, you must generate new keys and identifiers with the network server and configure the device with them using AT commands.
210 {{/info}}
211
212 The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
213
214
215 == 3.2 The Things Stack ==
216
217
218 This section guides you through how to register your LT-22222-L with The Things Stack Sandbox.
219
220 {{info}}
221 The Things Stack Sandbox was formally called The Things Stack Community Edition.
222 {{/info}}
223
224
225 The network diagram below illustrates the connection between the LT-22222-L and The Things Stack, as well as how the data can be integrated with the ThingsEye IoT platform.
226
227
228 [[image:dragino-lorawan-nw-lt-22222-n.jpg||height="374" width="1400"]]
229
230 {{info}}
231 You can use a LoRaWAN gateway, such as the [[Dragino LPS8N>>https://www.dragino.com/products/lora-lorawan-gateway/item/200-lps8n.html]], to expand or create LoRaWAN coverage in your area.
232 {{/info}}
233
234
235 === 3.2.1 Setting up ===
236
237
238 * Sign up for a free account with [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] if you do not have one yet.
239 * Log in to your The Things Stack Sandbox account.
240 * Create an **application** with The Things Stack if you do not have one yet (E.g., dragino-docs).
241 * Go to your application's page and click on the **End devices** in the left menu.
242 * On the End devices page, click on **+ Register end device**. Two registration options are available:
243
244 ==== 3.2.1.1 Using the LoRaWAN Device Repository ====
245
246
247 * On the **Register end device** page:
248 ** Select the option **Select the end device in the LoRaWAN Device Repository **under **Input method**.
249 ** Select the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)** from the respective dropdown lists.
250 *** **End device brand**: Dragino Technology Co., Limited
251 *** **Model**: LT22222-L I/O Controller
252 *** **Hardware ver**: Unknown
253 *** **Firmware ver**: 1.6.0
254 *** **Profile (Region)**: Select the region that matches your device.
255 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
256
257 [[image:lt-22222-l-dev-repo-reg-p1.png]]
258
259
260 * Register end device page continued...
261 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'.
262 ** In the **DevEUI** field, enter the **DevEUI**.
263 ** In the **AppKey** field, enter the **AppKey.**
264 ** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
265 ** Under **After registration**, select the **View registered end device** option.
266
267 [[image:lt-22222-l-dev-repo-reg-p2.png]]
268
269
270 ==== 3.2.1.2 Adding device manually ====
271
272
273 * On the **Register end device** page:
274 ** Select the option **Enter end device specifies manually** under **Input method**.
275 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
276 ** Select the **LoRaWAN version** as **LoRaWAN Specification 1.0.3**
277 ** Select the **Regional Parameters version** as** RP001 Regional Parameters 1.0.3 revision A**
278 ** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the hidden section.
279 ** Select the option **Over the air activation (OTAA)** under the **Activation mode.**
280 ** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities** dropdown list.
281
282 [[image:lt-22222-l-manually-p1.png]]
283
284
285 * Register end device page continued...
286 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message '//**This end device can be registered on the network**//'
287 ** In the **DevEUI** field, enter the **DevEUI**.
288 ** In the **AppKey** field, enter the **AppKey**.
289 ** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
290 ** Under **After registration**, select the **View registered end device** option.
291 ** Click the **Register end device** button.
292
293 [[image:lt-22222-l-manually-p2.png]]
294
295
296 You will be navigated to the **Device overview** page.
297
298
299 [[image:lt-22222-device-overview.png]]
300
301
302 === 3.2.2 Joining ===
303
304
305 On the Device's page, click on **Live data** tab. The Live data panel for your device will display.
306
307 Now power on your LT-22222-L. The **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** The Things Stack network server. The **TX LED** will be on for **5 seconds** after joining the network. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server.
308
309
310 [[image:lt-22222-l-joining.png]]
311
312
313 === 3.2.3 Uplinks ===
314
315
316 After successfully joining, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**). When the LT-22222-L sends an uplink message to the server, the **TX LED** turns on for **1 second**. By default, you will receive an uplink data message from the device every 10 minutes.
317
318 Click on one of a **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the decode_payload {} JSON object.
319
320 [[image:lt-22222-ul-payload-decoded.png]]
321
322
323 If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **Applications > your application > End devices** > **your end device** > **Payload formatters** > **Uplink**. Then  select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
324
325 {{info}}
326 The Things Stack provides two levels of payload formatters: application level and device level. The device-level payload formatters **override **the application-level payload formatters.
327 {{/info}}
328
329 [[image:lt-22222-ul-payload-fmt.png]]
330
331
332 We also have a payload formatter that resolves some decoding issues present in the Device Repository formatter. You can add it under the Custom JavaScript formatter. It can be found [[here>>https://github.com/dragino/dragino-end-node-decoder/blob/main/LT22222-L/v1.6_decoder_ttn%20.txt]]:
333
334 (% class="wikigeneratedid" %)
335 [[image:lt-22222-l-js-custom-payload-formatter.png]]
336
337
338 === 3.2.4 Downlinks ===
339
340
341 When the LT-22222-L receives a downlink message from the server, the **RX LED** turns on for **1 second**.
342
343
344 == 3.3 Working Modes and Uplink Payload formats ==
345
346
347 The LT-22222-L has 5 **working modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
348
349 * (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
350
351 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
352
353 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
354
355 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
356
357 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
358
359 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
360
361 The uplink messages are sent over LoRaWAN FPort=2. By default, an uplink message is sent every 10 minutes.
362
363
364 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
365
366
367 (((
368 This is the default mode.
369
370 The uplink payload is 11 bytes long.
371
372 (% style="color:red" %)**Note:The maximum count depends on the bytes number of bytes.
373 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
374 It starts counting again when it reaches the maximum value.**(% style="display:none" wfd-invisible="true" %)
375
376 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
377 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
378 |Value|(((
379 AVI1 voltage
380 )))|(((
381 AVI2 voltage
382 )))|(((
383 ACI1 Current
384 )))|(((
385 ACI2 Current
386 )))|**DIDORO***|(((
387 Reserve
388 )))|MOD
389 )))
390
391 (((
392 (% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
393
394 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
395 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
396 |RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
397 )))
398
399 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
400 * DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
401 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
402
403 (% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
404
405 For example, if the payload is: [[image:image-20220523175847-2.png]]
406
407
408 **The interface values can be calculated as follows:  **
409
410 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
411
412 AVI2 channel voltage is 0x04AC/1000=1.196V
413
414 ACI1 channel current is 0x1310/1000=4.880mA
415
416 ACI2 channel current is 0x1300/1000=4.864mA
417
418 The last byte 0xAA= **10101010**(b) means,
419
420 * [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
421 * [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
422 * **[1] DI3 - not used for LT-22222-L.**
423 * [0] DI2 channel input is LOW, and the DI2 LED is OFF.
424 * [1] DI1 channel input state:
425 ** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
426 ** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
427 ** DI1 LED is ON in both cases.
428 * **[0] DO3 - not used for LT-22222-L.**
429 * [1] DO2 channel output is LOW, and the DO2 LED is ON.
430 * [0] DO1 channel output state:
431 ** DO1 is FLOATING when there is no load between DO1 and V+.
432 ** DO1 is HIGH and there is a load between DO1 and V+.
433 ** DO1 LED is OFF in both cases.
434
435 Reserve = 0
436
437 MOD = 1
438
439
440 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
441
442
443 (((
444 **For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
445 )))
446
447 (((
448 The uplink payload is 11 bytes long.
449
450 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
451 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
452 It starts counting again when it reaches the maximum value.**
453
454 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
455 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
456 |Value|COUNT1|COUNT2 |DIDORO*|(((
457 Reserve
458 )))|MOD
459 )))
460
461 (((
462 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
463
464 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
465 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
466 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
467
468 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
469 )))
470
471 * FIRST: Indicates that this is the first packet after joining the network.
472 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
473
474 (((
475 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
476
477
478 )))
479
480 (((
481 **To activate this mode, run the following AT commands:**
482 )))
483
484 (((
485 (% class="box infomessage" %)
486 (((
487 **AT+MOD=2**
488
489 **ATZ**
490 )))
491 )))
492
493 (((
494
495
496 (% style="color:#4f81bd" %)**AT Commands for counting:**
497 )))
498
499 (((
500 **For LT22222-L:**
501
502 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
503
504 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
505
506 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
507
508 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
509
510 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
511
512 (% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
513 )))
514
515
516 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
517
518
519 (% style="color:red" %)**Note: The maximum count depends on the bytes it is.
520 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
521 It starts counting again when it reaches the maximum value.**
522
523 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
524
525 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
526 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
527 |Value|COUNT1|(((
528 ACI1 Current
529 )))|(((
530 ACI2 Current
531 )))|DIDORO*|Reserve|MOD
532
533 (((
534 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
535
536 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
537 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
538 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
539 )))
540
541 * RO is for the relay. ROx=1: closed, ROx=0 always open.
542 * FIRST: Indicates that this is the first packet after joining the network.
543 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
544
545 (((
546 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
547 )))
548
549
550 (((
551 **To activate this mode, run the following AT commands:**
552 )))
553
554 (((
555 (% class="box infomessage" %)
556 (((
557 **AT+MOD=3**
558
559 **ATZ**
560 )))
561 )))
562
563 (((
564 AT Commands for counting:
565
566 The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
567 )))
568
569
570 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
571
572
573 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
574 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
575 It starts counting again when it reaches the maximum value.**
576
577
578 (((
579 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
580 )))
581
582 (((
583 The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
584
585 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
586 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
587 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
588 Reserve
589 )))|MOD
590 )))
591
592 (((
593 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
594
595 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
596 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
597 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
598 )))
599
600 * RO is for the relay. ROx=1: closed, ROx=0 always open.
601 * FIRST: Indicates that this is the first packet after joining the network.
602 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
603
604 (((
605 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
606
607
608 )))
609
610 (((
611 **To activate this mode, run the following AT commands:**
612 )))
613
614 (((
615 (% class="box infomessage" %)
616 (((
617 **AT+MOD=4**
618
619 **ATZ**
620 )))
621 )))
622
623 (((
624 AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
625 )))
626
627 (((
628 **In addition to that, below are the commands for AVI1 Counting:**
629
630 (% style="color:blue" %)**AT+SETCNT=3,60 **(%%)**(Sets AVI1 Count to 60)**
631
632 (% style="color:blue" %)**AT+VOLMAX=20000 **(%%)**(If the AVI1 voltage is higher than VOLMAX (20000mV =20V), the counter increases by 1)**
633
634 (% style="color:blue" %)**AT+VOLMAX=20000,0 **(%%)**(If the AVI1 voltage is lower than VOLMAX (20000mV =20V), counter increases by 1)**
635
636 (% style="color:blue" %)**AT+VOLMAX=20000,1 **(%%)**(If the AVI1 voltage is higher than VOLMAX (20000mV =20V), counter increases by 1)**
637 )))
638
639
640 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
641
642
643 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
644 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
645 It starts counting again when it reaches the maximum value.**
646
647
648 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
649
650 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
651 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
652 |Value|(((
653 AVI1 voltage
654 )))|(((
655 AVI2 voltage
656 )))|(((
657 ACI1 Current
658 )))|COUNT1|DIDORO*|(((
659 Reserve
660 )))|MOD
661
662 (((
663 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
664
665 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
666 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
667 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
668 )))
669
670 * RO is for the relay. ROx=1: closed, ROx=0 always open.
671 * FIRST: Indicates that this is the first packet after joining the network.
672 * (((
673 DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
674 )))
675
676 (((
677 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
678 )))
679
680 (((
681 **To activate this mode, run the following AT commands:**
682 )))
683
684 (((
685 (% class="box infomessage" %)
686 (((
687 **AT+MOD=5**
688
689 **ATZ**
690 )))
691 )))
692
693 (((
694 Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
695 )))
696
697
698 === 3.3.6 AT+ADDMOD~=6 (Trigger Mode, Optional) ===
699
700
701 (% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate __alongside__ with other modes.**
702
703 For example, if you configure the following commands:
704
705 * **AT+MOD=1 ** **~-~->**  Sets the default working mode
706 * **AT+ADDMOD6=1**   **~-~->**  Enables trigger mode
707
708 The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. It will send uplink packets in two cases:
709
710 1. Periodic uplink: Based on TDC time. The payload is the same as in normal mode (MOD=1 as set above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
711 1. (((
712 Trigger uplink: sent when a trigger condition is met. In this case, LT will send two packets
713
714 * The first uplink uses the payload specified in trigger mode (MOD=6).
715 * The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**confirmed uplinks.**
716 )))
717
718 (% style="color:#037691" %)**AT Commands to set Trigger Conditions**:
719
720 (% style="color:#4f81bd" %)**Trigger based on voltage**:
721
722 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
723
724
725 **Example:**
726
727 AT+AVLIM=3000,6000,0,2000 (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
728
729 AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
730
731
732 (% style="color:#4f81bd" %)**Trigger based on current**:
733
734 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
735
736
737 **Example:**
738
739 AT+ACLIM=10000,15000,0,0 (triggers an uplink if AC1 current is lower than 10mA or higher than 15mA)
740
741
742 (% style="color:#4f81bd" %)**Trigger based on DI status**:
743
744 DI status triggers Flag.
745
746 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
747
748
749 **Example:**
750
751 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
752
753
754 (% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
755
756 **Type Code**: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
757
758 **Format**: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
759
760 AA: Type Code for this downlink Command:
761
762 xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
763
764 yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
765
766 yy2 yy2: AC1 or AV1 HIGH limit.
767
768 yy3 yy3: AC2 or AV2 LOW limit.
769
770 Yy4 yy4: AC2 or AV2 HIGH limit.
771
772
773 **Example 1**: AA 00 13 88 00 00 00 00 00 00
774
775 Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
776
777
778 **Example 2**: AA 02 01 00
779
780 Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
781
782
783 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
784
785 MOD6 Payload: total of 11 bytes
786
787 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
788 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
789 |Value|(((
790 TRI_A FLAG
791 )))|(((
792 TRI_A Status
793 )))|(((
794 TRI_DI FLAG+STA
795 )))|Reserve|Enable/Disable MOD6|(((
796 MOD(6)
797 )))
798
799 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
800
801 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
802 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
803 |(((
804 AV1_LOW
805 )))|(((
806 AV1_HIGH
807 )))|(((
808 AV2_LOW
809 )))|(((
810 AV2_HIGH
811 )))|(((
812 AC1_LOW
813 )))|(((
814 AC1_HIGH
815 )))|(((
816 AC2_LOW
817 )))|(((
818 AC2_HIGH
819 )))
820
821 * Each bit shows if the corresponding trigger has been configured.
822
823 **Example:**
824
825 10100000: This means the system is configured to use the triggers AV1_LOW and AV2_LOW.
826
827
828 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
829
830 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
831 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
832 |(((
833 AV1_LOW
834 )))|(((
835 AV1_HIGH
836 )))|(((
837 AV2_LOW
838 )))|(((
839 AV2_HIGH
840 )))|(((
841 AC1_LOW
842 )))|(((
843 AC1_HIGH
844 )))|(((
845 AC2_LOW
846 )))|(((
847 AC2_HIGH
848 )))
849
850 * Each bit shows which status has been triggered on this uplink.
851
852 **Example:**
853
854 10000000: The uplink is triggered by AV1_LOW, indicating that the voltage is too low.
855
856
857 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
858
859 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
860 |(% style="width:50px" %)**bit 7**|(% style="width:50px" %)**bit 6**|(% style="width:50px" %)**bit 5**|(% style="width:50px" %)**bit 4**|(% style="width:90px" %)**bit 3**|(% style="width:80px" %)**bit 2**|(% style="width:90px" %)**bit 1**|(% style="width:95px" %)**bit 0**
861 |(% style="width:49px" %)N/A|(% style="width:53px" %)N/A|(% style="width:53px" %)N/A|(% style="width:55px" %)N/A|(% style="width:99px" %)DI2_STATUS|(% style="width:83px" %)DI2_FLAG|(% style="width:98px" %)DI1_STATUS|(% style="width:85px" %)DI1_FLAG
862
863 * Each bit shows which status has been triggered on this uplink.
864
865 **Example:**
866
867 00000111: This means both DI1 and DI2 triggers are enabled, and this packet is trigger by DI1.
868
869 00000101: This means both DI1 and DI2 triggers are enabled.
870
871
872 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enabled. 0x00: MOD6 is disabled.
873
874 Downlink command to poll/request MOD6 status:
875
876 **AB 06**
877
878 When device receives this command, it will send the MOD6 payload.
879
880
881 === 3.3.7 Payload Decoder ===
882
883 (((
884
885
886 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
887 )))
888
889
890 == 3.4 ​Configure LT-22222-L via AT Commands or Downlinks ==
891
892
893 (((
894 You can configure LT-22222-L I/O Controller via AT Commands or LoRaWAN Downlinks.
895 )))
896
897 (((
898 (((
899 There are two tytes of commands:
900 )))
901 )))
902
903 * (% style="color:blue" %)**Common commands**(%%):
904
905 * (% style="color:blue" %)**Sensor-related commands**(%%):
906
907 === 3.4.1 Common commands ===
908
909
910 (((
911 These are available for each sensors and include actions such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]s.
912
913
914 )))
915
916 === 3.4.2 Sensor-related commands ===
917
918
919 These commands are specially designed for the LT-22222-L. Commands can be sent to the device using options such as an AT command or a LoRaWAN downlink payload.
920
921
922 ==== 3.4.2.1 Set Transmit/Uplink Interval ====
923
924
925 Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
926
927 (% style="color:#037691" %)**AT command**
928
929 (% border="2" style="width:500px" %)
930 |**Command**|AT+TDC=<time>
931 |**Parameters**|**time **: uplink interval in milliseconds
932 |**Get**|AT+TDC=?
933 |**Response**|(((
934 current uplink interval
935
936 OK
937 )))
938 |**Set**|AT+TDC=<time>
939 |**Response**|OK
940 |**Example**|(((
941 AT+TDC=30000
942
943 Sets the uplink interval to **30 seconds** (30000 milliseconds)
944 )))
945
946 (% style="color:#037691" %)**Downlink payload**
947
948 (% border="2" style="width:500px" %)
949 |**Payload**|(((
950 <prefix><time>
951 )))
952 |**Parameters**|(((
953 **prefix** : 0x01
954
955 **time** : uplink interval in **seconds**, represented by **3  bytes** in **hexadecimal**.
956 )))
957 |**Example**|(((
958 01 **00 00 1E**
959
960 Sets the uplink interval to **30 seconds**
961
962 Conversion: 30 (dec) = 00 00 1E (hex)
963
964 See [[RapidTables>>https://www.rapidtables.com/convert/number/decimal-to-hex.html?x=30]]
965
966 [[image:Screenshot 2024-11-23 at 18.27.11.png]]
967 )))
968
969 ==== 3.4.2.2 Set the Working Mode (AT+MOD) ====
970
971
972 Sets the working mode.
973
974 (% style="color:#037691" %)**AT command**
975
976 (% border="2" style="width:500px" %)
977 |(% style="width:97px" %)**Command**|(% style="width:413px" %)AT+MOD=<working_mode>
978 |(% style="width:97px" %)**Parameters**|(% style="width:413px" %)(((
979 **working_mode** :
980
981 1 = (Default mode/factory set):  2ACI + 2AVI + DI + DO + RO
982
983 2 = Double DI Counting + DO + RO
984
985 3 = Single DI Counting + 2 x ACI + DO + RO
986
987 4 = Single DI Counting + 1 x Voltage Counting + DO + RO
988
989 5 = Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
990
991 6 = Trigger Mode, Optional, used together with MOD1 ~~ MOD5
992 )))
993 |(% style="width:97px" %)**Get**|(% style="width:413px" %)AT+MOD=?
994 |(% style="width:97px" %)**Response**|(% style="width:413px" %)(((
995 Current working mode
996
997 OK
998 )))
999 |(% style="width:97px" %)**Set**|(% style="width:413px" %)AT+MOD=<working_mode>
1000 |(% style="width:97px" %)**Response**|(% style="width:413px" %)(((
1001 Attention:Take effect after ATZ
1002
1003 OK
1004 )))
1005 |(% style="width:97px" %)**Example**|(% style="width:413px" %)(((
1006 AT+MOD=2
1007
1008 Sets the device to working mode 2 (Double DI Counting + DO + RO)
1009 )))
1010
1011 (% class="wikigeneratedid" %)
1012 (% style="color:#037691" %)**Downlink payload**
1013
1014 (% border="2" style="width:500px" %)
1015 |(% style="width:98px" %)**Payload**|(% style="width:400px" %)<prefix><working_mode>
1016 |(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
1017 **prefix** : 0x0A
1018
1019 **working_mode** : Working mode, represented by 1 byte in hexadecimal.
1020 )))
1021 |(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
1022 0A **02**
1023
1024 Sets the device to working mode 2 (Double DI Counting + DO + RO)
1025 )))
1026
1027 ==== 3.4.2.3 Request an uplink from the device ====
1028
1029
1030 Requests an uplink from LT-22222-L. The content of the uplink payload varies based on the device's current working mode.
1031
1032 (% style="color:#037691" %)**AT command**
1033
1034 There is no AT Command available for this feature.
1035
1036 (% style="color:#037691" %)**Downlink payload**
1037
1038 (% border="2" style="width:500px" %)
1039 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix>FF
1040 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)**prefix** : 0x08
1041 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1042 08 **FF**
1043
1044 Requests an uplink from LT-22222-L.
1045 )))
1046
1047 ==== 3.4.2.4 Enable/Disable Trigger Mode ====
1048
1049
1050 Enable or disable the trigger mode for the current working mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
1051
1052 (% style="color:#037691" %)**AT Command**
1053
1054 (% border="2" style="width:500px" %)
1055 |(% style="width:95px" %)**Command**|(% style="width:403px" %)AT+ADDMOD6=<enable/disable trigger_mode>
1056 |(% style="width:95px" %)**Response**|(% style="width:403px" %)
1057 |(% style="width:95px" %)**Parameters**|(% style="width:403px" %)(((
1058 **enable/disable trigger_mode** :
1059
1060 1 = enable trigger mode
1061
1062 0 = disable trigger mode
1063 )))
1064 |(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1065 AT+ADDMOD6=1
1066
1067 Enable trigger mode for the current working mode
1068 )))
1069
1070 (% style="color:#037691" %)**Downlink payload**
1071
1072 (% border="2" style="width:500px" %)
1073 |(% style="width:97px" %)**Payload**|(% style="width:401px" %)<prefix><enable/disable trigger_mode>
1074 |(% style="width:97px" %)**Parameters**|(% style="width:401px" %)(((
1075 **prefix** : 0x0A 06 (two bytes in hexadecimal)
1076
1077 **enable/disable trigger_mode** : enable (1) or disable (0), represented by 1 byte in hexadecimal.
1078 )))
1079 |(% style="width:97px" %)**Example**|(% style="width:401px" %)(((
1080 0A 06 **01**
1081
1082 Enable trigger mode for the current working mode
1083 )))
1084
1085 ==== 3.4.2.5 Request trigger settings ====
1086
1087
1088 Requests the trigger settings.
1089
1090 (% style="color:#037691" %)**AT Command:**
1091
1092 There is no AT Command available for this feature.
1093
1094 (% style="color:#037691" %)**Downlink Payload**
1095
1096 (% border="2" style="width:500px" %)
1097 |(% style="width:95px" %)**Payload**|(% style="width:403px" %)<prefix>
1098 |(% style="width:95px" %)**Parameters**|(% style="width:403px" %)**prefix **: AB 06 (two bytes in hexadecimal)
1099 |(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1100 AB 06
1101
1102 Uplinks the trigger settings.
1103 )))
1104
1105 ==== 3.4.2.6 Enable/Disable DI1/DI2/DI3 as a trigger ====
1106
1107
1108 Enable or disable DI1/DI2/DI3 as a trigger.
1109
1110 (% style="color:#037691" %)**AT Command**
1111
1112 (% border="2" style="width:500px" %)
1113 |(% style="width:98px" %)**Command**|(% style="width:400px" %)AT+DTRI=<DI1_trigger>,<DI2_trigger>
1114 |(% style="width:98px" %)**Response**|(% style="width:400px" %)
1115 |(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
1116 **DI1_trigger:**
1117
1118 1 = enable DI1 trigger
1119
1120 0 = disable DI1 trigger
1121
1122 **DI2 _trigger**
1123
1124 1 = enable DI2 trigger
1125
1126 0 = disable DI2 trigger
1127 )))
1128 |(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
1129 AT+DTRI=1,0
1130
1131 Enable DI1 trigger, disable DI2 trigger
1132 )))
1133
1134 (% class="wikigeneratedid" %)
1135 (% style="color:#037691" %)**Downlink Payload**
1136
1137 (% border="2" style="width:500px" %)
1138 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><DI1_trigger><DI2_trigger>
1139 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1140 **prefix :** AA 02 (two bytes in hexadecimal)
1141
1142 **DI1_trigger:**
1143
1144 1 = enable DI1 trigger, represented by 1 byte in hexadecimal.
1145
1146 0 = disable DI1 trigger, represented by 1 byte in hexadecimal.
1147
1148 **DI2 _trigger**
1149
1150 1 = enable DI2 trigger, represented by 1 byte in hexadecimal.
1151
1152 0 = disable DI2 trigger, represented by 1 byte in hexadecimal.
1153 )))
1154 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1155 AA 02 **01 00**
1156
1157 Enable DI1 trigger, disable DI2 trigger
1158 )))
1159
1160 ==== 3.4.2.7 Trigger1 – Set DI or DI3 as a trigger ====
1161
1162
1163 Sets DI1 or DI3 (for LT-33222-L) as a trigger.
1164
1165 (% style="color:#037691" %)**AT Command**
1166
1167 (% border="2" style="width:500px" %)
1168 |(% style="width:101px" %)**Command**|(% style="width:397px" %)AT+TRIG1=<interrupt_mode>,<minimum_signal_duration>
1169 |(% style="width:101px" %)**Response**|(% style="width:397px" %)
1170 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1171 **interrupt_mode** :  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1172
1173 **minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1174 )))
1175 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1176 AT+TRIG1=1,100
1177
1178 Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1179 )))
1180
1181 (% class="wikigeneratedid" %)
1182 (% style="color:#037691" %)**Downlink Payload**
1183
1184 (% border="2" style="width:500px" %)
1185 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><interrupt_mode><minimum_signal_duration>
1186 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1187 **prefix** : 09 01 (hexadecimal)
1188
1189 **interrupt_mode** : 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1190
1191 **minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal.
1192 )))
1193 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1194 09 01 **01 00 64**
1195
1196 Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1197 )))
1198
1199 ==== 3.4.2.8 Trigger2 – Set DI2 as a trigger ====
1200
1201
1202 Sets DI2 as a trigger.
1203
1204 (% style="color:#037691" %)**AT Command**
1205
1206 (% border="2" style="width:500px" %)
1207 |(% style="width:94px" %)**Command**|(% style="width:404px" %)AT+TRIG2=<interrupt_mode>,<minimum_signal_duration>
1208 |(% style="width:94px" %)**Response**|(% style="width:404px" %)
1209 |(% style="width:94px" %)**Parameters**|(% style="width:404px" %)(((
1210 **interrupt_mode **:  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1211
1212 **minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1213 )))
1214 |(% style="width:94px" %)**Example**|(% style="width:404px" %)(((
1215 AT+TRIG2=0,100
1216
1217 Set the DI1 port to trigger on a falling edge; the valid signal duration is 100 ms.
1218 )))
1219
1220 (% style="color:#037691" %)**Downlink Payload**
1221
1222 (% border="2" style="width:500px" %)
1223 |(% style="width:96px" %)**Payload**|(% style="width:402px" %)<prefix><interrupt_mode><minimum_signal_duration>
1224 |(% style="width:96px" %)**Parameters**|(% style="width:402px" %)(((
1225 **prefix** : 09 02 (hexadecimal)
1226
1227 **interrupt_mode **: 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1228
1229 **minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal
1230 )))
1231 |(% style="width:96px" %)**Example**|(% style="width:402px" %)09 02 **00 00 64**
1232
1233 ==== 3.4.2.9 Trigger – Set AC (current) as a trigger ====
1234
1235
1236 Sets the current trigger based on the AC port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1237
1238 (% style="color:#037691" %)**AT Command**
1239
1240 (% border="2" style="width:500px" %)
1241 |(% style="width:104px" %)**Command**|(% style="width:394px" %)(((
1242 AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1243 )))
1244 |(% style="width:104px" %)**Response**|(% style="width:394px" %)
1245 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1246 **AC1_LIMIT_LOW** : lower limit of the current to be checked
1247
1248 **AC1_LIMIT_HIGH **: higher limit of the current to be checked
1249
1250 **AC2_LIMIT_HIGH **: lower limit of the current to be checked
1251
1252 **AC2_LIMIT_LOW** : higher limit of the current to be checked
1253 )))
1254 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1255 AT+ACLIM=10000,15000,0,0
1256
1257 Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA
1258 )))
1259 |(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1260
1261 (% style="color:#037691" %)**Downlink Payload**
1262
1263 (% border="2" style="width:500px" %)
1264 |(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1265 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1266 **prefix **: AA 01 (hexadecimal)
1267
1268 **AC1_LIMIT_LOW** : lower limit of the current to be checked, two bytes in hexadecimal
1269
1270 **AC1_LIMIT_HIGH **: higher limit of the current to be checked, two bytes in hexadecimal
1271
1272 **AC2_LIMIT_HIGH **: lower limit of the current to be checked, two bytes in hexadecimal
1273
1274 **AC2_LIMIT_LOW** : higher limit of the current to be checked, two bytes in hexadecimal
1275 )))
1276 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1277 AA 01 **27** **10 3A** **98** 00 00 00 00
1278
1279 Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA. Set all values to zero for AC2 limits because we are only checking AC1 limits.
1280 )))
1281 |(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1282
1283 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
1284
1285
1286 Sets the current trigger based on the AV port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1287
1288 (% style="color:#037691" %)**AT Command**
1289
1290 (% border="2" style="width:500px" %)
1291 |(% style="width:104px" %)**Command**|(% style="width:387px" %)AT+AVLIM= AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1292 |(% style="width:104px" %)**Response**|(% style="width:387px" %)
1293 |(% style="width:104px" %)**Parameters**|(% style="width:387px" %)(((
1294 **AC1_LIMIT_LOW** : lower limit of the current to be checked
1295
1296 **AC1_LIMIT_HIGH **: higher limit of the current to be checked
1297
1298 **AC2_LIMIT_HIGH **: lower limit of the current to be checked
1299
1300 **AC2_LIMIT_LOW** : higher limit of the current to be checked
1301 )))
1302 |(% style="width:104px" %)**Example**|(% style="width:387px" %)(((
1303 AT+AVLIM=3000,6000,0,2000
1304
1305 Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V
1306 )))
1307 |(% style="width:104px" %)**Note**|(% style="width:387px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1308
1309 (% style="color:#037691" %)**Downlink Payload**
1310
1311 (% border="2" style="width:500px" %)
1312 |(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1313 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1314 **prefix **: AA 00 (hexadecimal)
1315
1316 **AV1_LIMIT_LOW** : lower limit of the voltage to be checked, two bytes in hexadecimal
1317
1318 **AV1_LIMIT_HIGH **: higher limit of the voltage to be checked, two bytes in hexadecimal
1319
1320 **AV2_LIMIT_HIGH **: lower limit of the voltage to be checked, two bytes in hexadecimal
1321
1322 **AV2_LIMIT_LOW** : higher limit of the voltage to be checked, two bytes in hexadecimal
1323 )))
1324 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1325 AA 00 **0B B8 17 70 00 00 07 D0**
1326
1327 Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V.
1328 )))
1329 |(% style="width:104px" %)**Note**|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1330
1331 ==== 3.4.2.11 Trigger – Set minimum interval ====
1332
1333
1334 Sets the AV and AC trigger minimum interval. The device won't respond to a second trigger within this set time after the first trigger.
1335
1336 (% style="color:#037691" %)**AT Command**
1337
1338 (% border="2" style="width:500px" %)
1339 |(% style="width:113px" %)**Command**|(% style="width:385px" %)AT+ATDC=<time>
1340 |(% style="width:113px" %)**Response**|(% style="width:385px" %)
1341 |(% style="width:113px" %)**Parameters**|(% style="width:385px" %)(((
1342 **time** : in minutes
1343 )))
1344 |(% style="width:113px" %)**Example**|(% style="width:385px" %)(((
1345 AT+ATDC=5
1346
1347 The device won't respond to the second trigger within 5 minutes after the first trigger.
1348 )))
1349 |(% style="width:113px" %)Note|(% style="width:385px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1350
1351 (% style="color:#037691" %)**Downlink Payload**
1352
1353 (% border="2" style="width:500px" %)
1354 |(% style="width:112px" %)**Payload**|(% style="width:386px" %)<prefix><time>
1355 |(% style="width:112px" %)**Parameters**|(% style="width:386px" %)(((
1356 **prefix** : AC (hexadecimal)
1357
1358 **time **: in minutes (two bytes in hexadecimal)
1359 )))
1360 |(% style="width:112px" %)**Example**|(% style="width:386px" %)(((
1361 AC **00 05**
1362
1363 The device won't respond to the second trigger within 5 minutes after the first trigger.
1364 )))
1365 |(% style="width:112px" %)Note|(% style="width:386px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1366
1367 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1368
1369
1370 Controls the digital outputs DO1, DO2, and DO3
1371
1372 (% style="color:#037691" %)**AT Command**
1373
1374 There is no AT Command to control the Digital Output.
1375
1376
1377 (% style="color:#037691" %)**Downlink Payload**
1378
1379 (% border="2" style="width:500px" %)
1380 |(% style="width:115px" %)**Payload**|(% style="width:383px" %)<prefix><DO1><DO2><DO3>
1381 |(% style="width:115px" %)**Parameters**|(% style="width:383px" %)(((
1382 **prefix** : 02 (hexadecimal)
1383
1384 **DOI** : 01: Low,  00: High, 11: No action (1 byte in hex)
1385
1386 **DO2** : 01: Low,  00: High, 11: No action (1 byte in hex)
1387
1388 **DO3 **: 01: Low,  00: High, 11: No action (1 byte in hex)
1389 )))
1390 |(% style="width:115px" %)**Examples**|(% style="width:383px" %)(((
1391 02 **01 00 01**
1392
1393 If there is a load between V+ and DOx, it means DO1 is set to low, DO2 is set to high, and DO3 is set to low.
1394
1395 **More examples:**
1396
1397 (((
1398 01: Low,  00: High,  11: No action
1399
1400 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:383px" %)
1401 |(% style="background-color:#4f81bd; color:white; width:126px" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white; width:85px" %)**DO1**|(% style="background-color:#4f81bd; color:white; width:86px" %)**DO2**|(% style="background-color:#4f81bd; color:white; width:86px" %)**DO3**
1402 |(% style="width:126px" %)02  01  00  11|(% style="width:85px" %)Low|(% style="width:86px" %)High|(% style="width:86px" %)No Action
1403 |(% style="width:126px" %)02  00  11  01|(% style="width:85px" %)High|(% style="width:86px" %)No Action|(% style="width:86px" %)Low
1404 |(% style="width:126px" %)02  11  01  00|(% style="width:85px" %)No Action|(% style="width:86px" %)Low|(% style="width:86px" %)High
1405 )))
1406
1407 (((
1408 (((
1409 (% style="color:red" %)**Note: For the LT-22222-L, there is no DO3; the last byte can have any value.**
1410 )))
1411
1412 (((
1413 (% style="color:red" %)**The device will upload a packet if downlink code executes successfully.**
1414 )))
1415 )))
1416 )))
1417
1418 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1419
1420
1421 (% style="color:#037691" %)**AT command**
1422
1423 There is no AT command to control the digital output.
1424
1425
1426 (% style="color:#037691" %)**Downlink payload**
1427
1428
1429 (% border="2" style="width:500px" %)
1430 |(% style="width:116px" %)**Prefix**|(% style="width:382px" %)0xA9
1431 |(% style="width:116px" %)**Parameters**|(% style="width:382px" %)(((
1432 **inverter_mode**: 1 byte in hex.
1433
1434 **01:** DO pins revert to their original state after the timeout.
1435 **00:** DO pins switch to an inverted state after the timeout.
1436
1437
1438 **DO1_control_method_and_port_status **- 1 byte in hex
1439
1440 0x01 : DO1 set to low
1441
1442 0x00 : DO1 set to high
1443
1444 0x11 : DO1 NO action
1445
1446
1447 **DO2_control_method_and_port_status** - 1 byte in hex
1448
1449 0x01 : DO2 set to low
1450
1451 0x00 : DO2 set to high
1452
1453 0x11 : DO2 NO action
1454
1455
1456 **DO3_control_method_and_port_status **- 1 byte in hex
1457
1458 0x01 : DO3 set to low
1459
1460 0x00 : DO3 set to high
1461
1462 0x11 : DO3 NO action
1463
1464
1465 **latching_time** : 4 bytes in hex
1466
1467 (% style="color:red" %)**Note: **
1468
1469 Since firmware v1.6.0, the latch time support 4 bytes or 2 bytes
1470
1471 Before firmware v1.6.0, the latch time only supported 2 bytes.
1472
1473 (% style="color:red" %)**The device will uplink a packet if the downlink code executes successfully.**
1474 )))
1475 |(% style="width:116px" %)**Payload format**|(% style="width:382px" %)<prefix><inverter_mode><DO1_control_method_and_port_status><DO2_control_method_and_port_status><DO2_control_method_and_port_status><latching_time>
1476 |(% style="width:116px" %)**Example**|(% style="width:382px" %)(((
1477 **A9 01 01 01 01 07 D0**
1478
1479 DO1 pin, DO2 pin, and DO3 pin will be set to low, last for 2 seconds, and then revert to their original state.
1480
1481
1482 **A9 01 00 01 11 07 D0**
1483
1484 DO1 pin is set to high, DO2 pin is set to low, and DO3 pin takes no action. This lasts for 2 seconds and then reverts to the original state.
1485
1486
1487 **A9 00 00 00 00 07 D0**
1488
1489 DO1 pin, DO2 pin, and DO3 pin will be set to high, last for 2 seconds, and then all change to low.
1490
1491
1492 **A9 00 11 01 00 07 D0**
1493
1494 DO1 pin takes no action, DO2 pin is set to low, and DO3 pin is set to high. This lasts for 2 seconds, after which DO1 pin takes no action, DO2 pin is set to high, and DO3 pin is set to low.
1495 )))
1496
1497 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1498
1499
1500 (% style="color:#037691" %)**AT Command:**
1501
1502 There is no AT Command to control the Relay Output.
1503
1504
1505 (% style="color:#037691" %)**Downlink Payload**
1506
1507 (% border="2" style="width:500px" %)
1508 |(% style="width:113px" %)**Prefix**|(% style="width:384px" %)0x03
1509 |(% style="width:113px" %)**Parameters**|(% style="width:384px" %)(((
1510 **RO1_status** : 1 byte in hex
1511
1512 00: Close
1513
1514 01: Open
1515
1516 11: No action
1517
1518
1519 **RO2_status** : 1 byte in hex
1520
1521 00: Close
1522
1523 01: Open
1524
1525 11: No action
1526 )))
1527 |(% style="width:113px" %)**Payload format**|(% style="width:384px" %)<prefix><RO1_status><RO2_status>
1528 |(% style="width:113px" %)**Example**|(% style="width:384px" %)(((
1529 (% border="2" %)
1530 |=Payload|=RO1|=RO2
1531 |03  00  11|Open|No action
1532 |03  01  11|Close|No action
1533 |03 11  00|No action|Open
1534 |03 11 10|No action|Close
1535 |03 00 00|Open|Open
1536 |03 01 01|Close|Close
1537 |03 01 00|Close|Open
1538 |03 00 01|Open|Close
1539
1540 (% style="color:red" %)**The device will transmit an uplink packet if the downlink payload is executed successfully.**
1541 )))
1542
1543
1544 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1545
1546
1547 Controls the relay output time.
1548
1549
1550 (% style="color:#037691" %)**AT Command:**
1551
1552 There is no AT Command to control the Relay Output
1553
1554
1555 (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1556
1557 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Sets RO1/RO2 relays with time control
1558
1559
1560 This controls the relay output time and includes 4 bytes:
1561
1562 (% style="color:#4f81bd" %)**First byte **(%%)**:** Type code (0x05)
1563
1564 (% style="color:#4f81bd" %)**Second byte (aa)**(%%): Inverter Mode
1565
1566 01: Relays will change back to their original state after timeout.
1567
1568 00: Relays will change to the inverter state after timeout.
1569
1570
1571 (% style="color:#4f81bd" %)**Third byte (bb)**(%%): Control Method and Ports status:
1572
1573 [[image:image-20221008095908-1.png||height="364" width="564"]]
1574
1575
1576 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh bytes (cc)**(%%): Latching time. Unit: ms
1577
1578
1579 (% style="color:red" %)**Note:**
1580
1581 Since firmware v1.6.0, the latch time supports both 4 bytes and 2 bytes.
1582
1583 Before firmware v1.6.0, the latch time only supported 2 bytes.
1584
1585
1586 (% style="color:red" %)**The device will uplink a packet if the downlink code executes successfully.**
1587
1588
1589 **Example payload:**
1590
1591 **~1. 05 01 11 07 D0**
1592
1593 Relay1 and Relay2 will be set to NC, lasting 2 seconds, then revert to their original state
1594
1595 **2. 05 01 10 07 D0**
1596
1597 Relay1 will change to NC, Relay2 will change to NO, lasting 2 seconds, then both will revert to their original state.
1598
1599 **3. 05 00 01 07 D0**
1600
1601 Relay1 will change to NO, Relay2 will change to NC, lasting 2 seconds, then Relay1 will change to NC, and Relay2 will change to NO.
1602
1603 **4. 05 00 00 07 D0**
1604
1605 Relay1 and Relay2 will change to NO, lasting 2 seconds, then both will change to NC.
1606
1607
1608
1609 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1610
1611
1612 When the voltage exceeds the threshold, counting begins. For details, see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1613
1614 (% style="color:#037691" %)**AT Command**
1615
1616 (% border="2" style="width:500px" %)
1617 |(% style="width:137px" %)**Command**|(% style="width:361px" %)AT+VOLMAX=<voltage>,<logic>
1618 |(% style="width:137px" %)**Response**|(% style="width:361px" %)
1619 |(% style="width:137px" %)**Parameters**|(% style="width:361px" %)(((
1620 **voltage** : voltage threshold in mV
1621
1622 **logic**:
1623
1624 **0** : lower than
1625
1626 **1**: higher than
1627
1628 if you leave logic parameter blank, it is considered 0
1629 )))
1630 |(% style="width:137px" %)**Examples**|(% style="width:361px" %)(((
1631 AT+VOLMAX=20000
1632
1633 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1634
1635 AT+VOLMAX=20000,0
1636
1637 If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1638
1639 AT+VOLMAX=20000,1
1640
1641 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1642 )))
1643
1644 (% style="color:#037691" %)**Downlink Payload**
1645
1646 (% border="2" style="width:500px" %)
1647 |(% style="width:140px" %)**Payload**|(% style="width:358px" %)<prefix><voltage><logic>
1648 |(% style="width:140px" %)**Parameters**|(% style="width:358px" %)(((
1649 **prefix** : A5 (hex)
1650
1651 **voltage** : voltage threshold in mV (2 bytes in hex)
1652
1653 **logic**: (1 byte in hexadecimal)
1654
1655 **0** : lower than
1656
1657 **1**: higher than
1658
1659 if you leave logic parameter blank, it is considered 1 (higher than)
1660 )))
1661 |(% style="width:140px" %)**Example**|(% style="width:358px" %)(((
1662 A5 **4E 20**
1663
1664 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1665
1666 A5 **4E 20 00**
1667
1668 If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1669
1670 A5 **4E 20 01**
1671
1672 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1673 )))
1674
1675 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1676
1677 This command allows users to pre-configure specific count numbers for various counting parameters such as Count1, Count2, or AVI1 Count. Use the AT command to set the desired count number for each configuration.
1678
1679 (% style="color:#037691" %)**AT Command**
1680
1681 (% border="2" style="width:500px" %)
1682 |(% style="width:134px" %)**Command**|(% style="width:364px" %)AT+SETCNT=<counting_parameter>,<number>
1683 |(% style="width:134px" %)**Response**|(% style="width:364px" %)
1684 |(% style="width:134px" %)**Parameters**|(% style="width:364px" %)(((
1685 **counting_parameter** :
1686
1687 1: COUNT1
1688
1689 2: COUNT2
1690
1691 3: AVI1 Count
1692
1693 **number** : Start number
1694 )))
1695 |(% style="width:134px" %)**Example**|(% style="width:364px" %)(((
1696 AT+SETCNT=1,10
1697
1698 Sets the COUNT1 to 10.
1699 )))
1700
1701 (% style="color:#037691" %)**Downlink Payload**
1702
1703 (% border="2" style="width:500px" %)
1704 |(% style="width:135px" %)**Payload**|(% style="width:363px" %)<prefix><counting_parameter><number>
1705 |(% style="width:135px" %)**Parameters**|(% style="width:363px" %)(((
1706 prefix : A8 (hex)
1707
1708 **counting_parameter** : (1 byte in hexadecimal)
1709
1710 1: COUNT1
1711
1712 2: COUNT2
1713
1714 3: AVI1 Count
1715
1716 **number** : Start number, 4 bytes in hexadecimal
1717 )))
1718 |(% style="width:135px" %)**Example**|(% style="width:363px" %)(((
1719 A8 **01 00 00 00 0A**
1720
1721 Sets the COUNT1 to 10.
1722 )))
1723
1724 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1725
1726 This command clears the counting in counting mode.
1727
1728 (% style="color:#037691" %)**AT Command**
1729
1730 (% border="2" style="width:500px" %)
1731 |(% style="width:142px" %)**Command**|(% style="width:356px" %)AT+CLRCOUNT
1732 |(% style="width:142px" %)**Response**|(% style="width:356px" %)-
1733
1734 (% style="color:#037691" %)**Downlink Payload**
1735
1736 (% border="2" style="width:500px" %)
1737 |(% style="width:141px" %)**Payload**|(% style="width:357px" %)<prefix><clear?>
1738 |(% style="width:141px" %)**Parameters**|(% style="width:357px" %)(((
1739 prefix : A6 (hex)
1740
1741 clear? : 01 (hex)
1742 )))
1743 |(% style="width:141px" %)**Example**|(% style="width:357px" %)A6 **01**
1744
1745 ==== 3.4.2.19 Counting ~-~- Set Saving Interval for 'Counting Result' ====
1746
1747
1748 This command allows you to configure the device to save its counting result to internal flash memory at specified intervals. By setting a save time, the device will periodically store the counting data to prevent loss in case of power failure. The save interval can be adjusted to suit your requirements, with a minimum value of 30 seconds.
1749
1750 (% style="color:#037691" %)**AT Command**
1751
1752 (% border="2" style="width:500px" %)
1753 |(% style="width:124px" %)**Command**|(% style="width:374px" %)AT+COUTIME=<time>
1754 |(% style="width:124px" %)**Response**|(% style="width:374px" %)
1755 |(% style="width:124px" %)**Parameters**|(% style="width:374px" %)time : seconds (0 to 16777215)
1756 |(% style="width:124px" %)**Example**|(% style="width:374px" %)(((
1757 AT+COUTIME=60
1758
1759 Sets the device to save its counting results to the memory every 60 seconds.
1760 )))
1761
1762 (% style="color:#037691" %)**Downlink Payload**
1763
1764 (% border="2" style="width:500px" %)
1765 |(% style="width:123px" %)**Payload**|(% style="width:375px" %)<prefix><time>
1766 |(% style="width:123px" %)**Parameters**|(% style="width:375px" %)(((
1767 prefix : A7
1768
1769 time : seconds, 3 bytes in hexadecimal
1770 )))
1771 |(% style="width:123px" %)**Example**|(% style="width:375px" %)(((
1772 A7 **00 00 3C**
1773
1774 Sets the device to save its counting results to the memory every 60 seconds.
1775 )))
1776
1777 ==== 3.4.2.20 Reset saved RO and DO states ====
1778
1779
1780 This command allows you to reset the saved relay output (RO) and digital output (DO) states when the device joins the network. By configuring this setting, you can control whether the device should retain or reset the relay states after a reset and rejoin to the network.
1781
1782 (% style="color:#037691" %)**AT Command**
1783
1784 (% border="2" style="width:500px" %)
1785 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+RODORESET=<state>
1786 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1787 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1788 **state** :
1789
1790 **0** : RODO will close when the device joins the network. (default)
1791
1792 **1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1793 )))
1794 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1795 (% style="color:blue" %)**AT+RODORESET=1 **
1796
1797 RODO will close when the device joins the network. (default)
1798
1799 (% style="color:blue" %)**AT+RODORESET=0 **
1800
1801 After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1802 )))
1803
1804 (% style="color:#037691" %)**Downlink Payload**
1805
1806 (% border="2" style="width:500px" %)
1807 |(% style="width:127px" %)**Payload**|(% style="width:371px" %)<prefix><state>
1808 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1809 **prefix** : AD
1810
1811 **state** :
1812
1813 **0** : RODO will close when the device joins the network. (default), represents as 1 byte in hexadecimal.
1814
1815 **1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network. - represents as 1 byte in hexadecimal
1816 )))
1817 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1818 AD **01**
1819
1820 RODO will close when the device joins the network. (default)
1821
1822 AD **00**
1823
1824 After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1825 )))
1826
1827 ==== 3.4.2.21 Encrypted payload ====
1828
1829
1830 This command allows you to configure whether the device should upload data in an encrypted format or in plaintext. By default, the device encrypts the payload before uploading. You can toggle this setting to either upload encrypted data or transmit it without encryption.
1831
1832 (% style="color:#037691" %)**AT Command:**
1833
1834 (% border="2" style="width:500px" %)
1835 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DECRYPT=<state>
1836 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1837 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1838 **state** :
1839
1840 **1** : The payload is uploaded without encryption
1841
1842 **0** : The payload is encrypted when uploaded (default)
1843 )))
1844 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1845 AT+DECRYPT=1
1846
1847 The payload is uploaded without encryption
1848
1849 AT+DECRYPT=0
1850
1851 The payload is encrypted when uploaded (default)
1852 )))
1853
1854 There is no downlink payload for this configuration.
1855
1856
1857 ==== 3.4.2.22 Get sensor value ====
1858
1859
1860 This command allows you to retrieve and optionally uplink sensor readings through the serial port.
1861
1862 (% style="color:#037691" %)**AT Command**
1863
1864 (% border="2" style="width:500px" %)
1865 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+GETSENSORVALUE=<state>
1866 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1867 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1868 **state** :
1869
1870 **0 **: Retrieves the current sensor reading via the serial port.
1871
1872 **1 **: Retrieves and uploads the current sensor reading via the serial port.
1873 )))
1874 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1875 AT+GETSENSORVALUE=0
1876
1877 Retrieves the current sensor reading via the serial port.
1878
1879 AT+GETSENSORVALUE=1
1880
1881 Retrieves and uplinks the current sensor reading via the serial port.
1882 )))
1883
1884 There is no downlink payload for this configuration.
1885
1886
1887 ==== 3.4.2.23 Resetting the downlink packet count ====
1888
1889
1890 This command manages how the node handles mismatched downlink packet counts. It offers two modes: one disables the reception of further downlink packets if discrepancies occur, while the other resets the downlink packet count to align with the server, ensuring continued communication.
1891
1892 (% style="color:#037691" %)**AT Command**
1893
1894 (% border="2" style="width:500px" %)
1895 |(% style="width:130px" %)**Command**|(% style="width:368px" %)AT+DISFCNTCHECK=<state>
1896 |(% style="width:130px" %)**Response**|(% style="width:368px" %)(((
1897
1898 )))
1899 |(% style="width:130px" %)**Parameters**|(% style="width:368px" %)(((
1900 **state **:
1901
1902 **0** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default).
1903
1904
1905 **1** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency.
1906 )))
1907 |(% style="width:130px" %)**Example**|(% style="width:368px" %)(((
1908 AT+DISFCNTCHECK=0
1909
1910 When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default).
1911
1912 AT+DISFCNTCHECK=1
1913
1914 When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency.
1915 )))
1916
1917 There is no downlink payload for this configuration.
1918
1919
1920 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1921
1922
1923 This command controls the behavior of the node when the combined size of the MAC commands (MACANS) from the server and the payload exceeds the allowed byte limit for the current data rate (DR). The command provides two modes: one enables splitting the data into batches to ensure compliance with the byte limit, while the other prioritizes the payload and ignores the MACANS in cases of overflow.
1924
1925 (% style="color:#037691" %)**AT Command**
1926
1927 (% border="2" style="width:500px" %)
1928 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DISMACANS=<state>
1929 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1930 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1931 **state** :
1932
1933 **0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1934
1935 **1** : When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1936 )))
1937 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1938 AT+DISMACANS=0
1939
1940 When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1941
1942 AT+DISMACANS=1
1943
1944 When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1945 )))
1946
1947 (% style="color:#037691" %)**Downlink Payload**
1948
1949 (% border="2" style="width:500px" %)
1950 |(% style="width:126px" %)**Payload**|(% style="width:372px" %)<prefix><state>
1951 |(% style="width:126px" %)**Parameters**|(% style="width:372px" %)(((
1952 **prefix** : 21
1953
1954 **state** : (2 bytes in hexadecimal)
1955
1956 **0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1957
1958 **1 **: When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1959 )))
1960 |(% style="width:126px" %)**Example**|(% style="width:372px" %)(((
1961 21 **00 01**
1962
1963 Set DISMACANS=1
1964 )))
1965
1966 ==== 3.4.2.25 Copy downlink to uplink ====
1967
1968
1969 This command enables the device to immediately uplink the payload of a received downlink packet back to the server. The command allows for quick data replication from downlink to uplink, with a fixed port number of 100.
1970
1971 (% style="color:#037691" %)**AT Command**(%%)**:**
1972
1973 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving a downlink payload from the server, the device will immediately uplink the payload back to the server using port number 100.
1974
1975 Example:**aa xx xx xx xx**         ~/~/ **aa** indicates whether the configuration has changed: **00** means YES, and **01** means NO. **xx xx xx xx** are the bytes uplinked back.
1976
1977
1978 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1979
1980 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1981
1982 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1983
1984 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1985
1986
1987 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1988
1989 There is no downlink option available for this feature.
1990
1991
1992 ==== 3.4.2.26 Query firmware version, frequency band, sub band, and TDC time ====
1993
1994
1995 This command is used to query key information about the device, including its firmware version, frequency band, sub band, and TDC time. By sending the specified payload as a downlink, the server can retrieve this essential data from the device.
1996
1997 * (((
1998 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1999
2000 (% style="color:blue" %)**26 01  ** (%%) ~/~/  The downlink payload 26 01 is used to query the device's firmware version, frequency band, sub band, and TDC time.
2001
2002
2003
2004 )))
2005
2006 **Example:**
2007
2008 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
2009
2010
2011 == 3.5 Integrating with ThingsEye.io ==
2012
2013
2014 The Things Stack application supports integration with ThingsEye.io. Once integrated, ThingsEye.io acts as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
2015
2016
2017 === 3.5.1 Configuring The Things Stack ===
2018
2019
2020 We use The Things Stack Sandbox in this example:
2021
2022 * In **The Things Stack Sandbox**, go to the **Application **for the LT-22222-L you added.
2023 * Select **MQTT** under **Integrations** in the left menu.
2024 * In the **Connection information **section, under **Connection credentials**, The Things Stack displays an auto-generated **username**. You can use it or provide a new one.
2025 * Click the **Generate new API key** button to generate a password. You can view it by clicking on the **visibility toggle/eye** icon. The API key works as the password.
2026
2027 {{info}}
2028 The username and  password (API key) you created here are required in the next section.
2029 {{/info}}
2030
2031 [[image:tts-mqtt-integration.png]]
2032
2033
2034 === 3.5.2 Configuring ThingsEye.io ===
2035
2036
2037 The ThingsEye.io IoT platform is not open for self-registration at the moment. If you are interested in testing the platform, please send your project information to admin@thingseye.io, and we will create an account for you.
2038
2039 * Login to your [[ThingsEye.io >>https://thingseye.io]]account.
2040 * Under the **Integrations center**, click **Integrations**.
2041 * Click the **Add integration** button (the button with the **+** symbol).
2042
2043 [[image:thingseye-io-step-1.png]]
2044
2045
2046 On the **Add integration** window, configure the following:
2047
2048 **Basic settings:**
2049
2050 * Select **The Things Stack Community** from the **Integration type** list.
2051 * Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
2052 * Ensure the following options are turned on.
2053 ** Enable integration
2054 ** Debug mode
2055 ** Allow create devices or assets
2056 * Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
2057
2058 [[image:thingseye-io-step-2.png]]
2059
2060
2061 **Uplink data converter:**
2062
2063 * Click the **Create new** button if it is not selected by default.
2064 * Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
2065 * Click the **JavaScript** button.
2066 * Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
2067 * Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
2068
2069 [[image:thingseye-io-step-3.png]]
2070
2071
2072 **Downlink data converter (this is an optional step):**
2073
2074 * Click the **Create new** button if it is not selected by default.
2075 * Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name.
2076 * Click the **JavaScript** button.
2077 * Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Downlink_Converter.js]].
2078 * Click the **Next** button. You will be navigated to the **Connection** tab.
2079
2080 [[image:thingseye-io-step-4.png]]
2081
2082
2083 **Connection:**
2084
2085 * Choose **Region** from the **Host type**.
2086 * Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
2087 * Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The **username **and **password **can be found on the MQTT integration page of your The Things Stack account (see **3.5.1 Configuring The Things Stack**).
2088 * Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
2089
2090 [[image:message-1.png]]
2091
2092
2093 * Click the **Add** button.
2094
2095 [[image:thingseye-io-step-5.png]]
2096
2097
2098 Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings and correct any errors.
2099
2100
2101 [[image:thingseye.io_integrationsCenter_integrations.png]]
2102
2103
2104 ==== 3.5.2.1 Viewing integration details ====
2105
2106
2107 Click on your integration from the list. The **Integration details** window will appear with the **Details **tab selected. The **Details **tab shows all the settings you have provided for this integration.
2108
2109 [[image:integration-details.png]]
2110
2111
2112 If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
2113
2114 {{info}}
2115 See also [[ThingsEye documentation>>https://wiki.thingseye.io/xwiki/bin/view/Main/]].
2116 {{/info}}
2117
2118
2119 ==== 3.5.2.2 Viewing events ====
2120
2121
2122 The **Events **tab displays all the uplink messages from the LT-22222-L.
2123
2124 * Select **Debug **from the **Event type** dropdown.
2125 * Select the** time frame** from the **time window**.
2126
2127 [[image:thingseye-events.png]]
2128
2129
2130 * To view the **JSON payload** of a message, click on the **three dots (...)** in the **Message** column of the desired message.
2131
2132 [[image:thingseye-json.png]]
2133
2134
2135 ==== 3.5.2.3 Deleting an integration ====
2136
2137
2138 If you want to delete an integration, click the **Delete integratio**n button on the Integrations page.
2139
2140
2141 ==== 3.5.2.4 Viewing sensor data on a dashboard ====
2142
2143
2144 You can create a dashboard with ThingsEye to visualize the sensor data coming from the LHT65N-VIB. The following image shows a dashboard created for the LT-22222-L. See **Creating a dashboard** in ThingsEye documentation for more information.
2145
2146
2147
2148 [[image:lt-22222-l-dashboard.png]]
2149
2150
2151 == 3.6 Interface Details ==
2152
2153 === 3.6.1 Digital Input Ports: DI1/DI2/DI3 (For LT-33222-L, Low Active) ===
2154
2155
2156 Supports** NPN-type **sensors.
2157
2158 [[image:1653356991268-289.png]]
2159
2160
2161 === 3.6.2 Digital Input Ports: DI1/DI2 ===
2162
2163
2164 (((
2165 The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
2166 )))
2167
2168 (((
2169 (((
2170 The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
2171
2172
2173 )))
2174 )))
2175
2176 [[image:1653357170703-587.png]]
2177
2178 (((
2179 (((
2180 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
2181 )))
2182 )))
2183
2184 (((
2185
2186 )))
2187
2188 (((
2189 (% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
2190 )))
2191
2192 (((
2193 This type of sensor outputs a low (GND) signal when active.
2194 )))
2195
2196 * (((
2197 Connect the sensor's output to DI1-
2198 )))
2199 * (((
2200 Connect the sensor's VCC to DI1+.
2201 )))
2202
2203 (((
2204 When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be:
2205 )))
2206
2207 (((
2208 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
2209 )))
2210
2211 (((
2212 For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
2213 )))
2214
2215 (((
2216
2217 )))
2218
2219 (((
2220 (% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
2221 )))
2222
2223 (((
2224 This type of sensor outputs a high signal (e.g., 24V) when active.
2225 )))
2226
2227 * (((
2228 Connect the sensor's output to DI1+
2229 )))
2230 * (((
2231 Connect the sensor's GND DI1-.
2232 )))
2233
2234 (((
2235 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
2236 )))
2237
2238 (((
2239 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
2240 )))
2241
2242 (((
2243 If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
2244 )))
2245
2246 (((
2247
2248 )))
2249
2250 (((
2251 (% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
2252 )))
2253
2254 (((
2255 Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
2256 )))
2257
2258 * (((
2259 Connect the sensor's output to DI1+ with a 50K resistor in series.
2260 )))
2261 * (((
2262 Connect the sensor's GND DI1-.
2263 )))
2264
2265 (((
2266 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
2267 )))
2268
2269 (((
2270 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
2271 )))
2272
2273 (((
2274 If the sensor output is 220V, then [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
2275 )))
2276
2277
2278 (% style="color:blue" %)**Example 4**(%%): Connecting to a Dry Contact sensor
2279
2280 From the DI port circuit above, activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference on its own.
2281
2282 To detect a Dry Contact, you can supply a power source to one of the pins of the Dry Contact. A reference circuit diagram is shown below.
2283
2284 [[image:image-20230616235145-1.png]]
2285
2286 (% style="color:blue" %)**Example 5**(%%): Connecting to an Open Collector
2287
2288 [[image:image-20240219115718-1.png]]
2289
2290
2291 === 3.6.3 Digital Output Ports: DO1/DO2 ===
2292
2293
2294 (% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
2295
2296 (% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
2297
2298 [[image:1653357531600-905.png]]
2299
2300
2301 === 3.6.4 Analog Input Interfaces ===
2302
2303
2304 The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
2305
2306
2307 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
2308
2309 [[image:1653357592296-182.png]]
2310
2311 Example: Connecting a 4~~20mA sensor
2312
2313 We will use the wind speed sensor as an example for reference only.
2314
2315
2316 (% style="color:blue" %)**Specifications of the wind speed sensor:**
2317
2318 (% style="color:red" %)**Red:  12~~24V**
2319
2320 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
2321
2322 **Black:  GND**
2323
2324 **Connection diagram:**
2325
2326 [[image:1653357640609-758.png]]
2327
2328 [[image:1653357648330-671.png||height="155" width="733"]]
2329
2330
2331 Example: Connecting to a regulated power supply to measure voltage
2332
2333 [[image:image-20230608101532-1.png||height="606" width="447"]]
2334
2335 [[image:image-20230608101608-2.jpeg||height="379" width="284"]]
2336
2337 [[image:image-20230608101722-3.png||height="102" width="1139"]]
2338
2339
2340 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
2341
2342 (% style="color:red" %)**Red:  12~~24v**
2343
2344 **Black:  GND**
2345
2346
2347 === 3.6.5 Relay Output ===
2348
2349
2350 (((
2351 The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
2352
2353 **Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
2354 )))
2355
2356 [[image:image-20220524100215-9.png]]
2357
2358
2359 [[image:image-20220524100215-10.png||height="382" width="723"]]
2360
2361
2362 == 3.7 LED Indicators ==
2363
2364
2365 The table below lists the behavior of LED indicators for each port function.
2366
2367 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
2368 |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
2369 |**PWR**|Always on when there is power
2370 |**TX**|(((
2371 (((
2372 Device boot: TX blinks 5 times.
2373 )))
2374
2375 (((
2376 Successful network join: TX remains ON for 5 seconds.
2377 )))
2378
2379 (((
2380 Transmit a LoRa packet: TX blinks once
2381 )))
2382 )))
2383 |**RX**|RX blinks once when a packet is received.
2384 |**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
2385 |**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
2386 |**DI1**|(((
2387 For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
2388 )))
2389 |**DI2**|(((
2390 For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
2391 )))
2392 |**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
2393 |**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
2394
2395 = 4. Using AT Commands =
2396
2397
2398 The LT-22222-L supports programming using AT Commands.
2399
2400
2401 == 4.1 Connecting the LT-22222-L to a PC ==
2402
2403
2404 (((
2405 You can use a USB-to-TTL adapter/converter along with a 3.5mm Program Cable to connect the LT-22222-L to a PC, as shown below.
2406
2407 [[image:usb-ttl-audio-jack-connection.jpg]]
2408
2409
2410 )))
2411
2412
2413 (((
2414 On the PC, you need to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate of (% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-L. Access to AT commands is disabled by default, and a password (default: (% style="color:green" %)**123456**)(%%) must be entered to enable AT command access, as shown below:
2415 )))
2416
2417 [[image:1653358355238-883.png]]
2418
2419
2420 (((
2421 You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
2422
2423
2424 == 4.2 LT-22222-L related AT commands ==
2425
2426
2427 )))
2428
2429 (((
2430 The following is the list of all the AT commands related to the LT-22222-L, except for those used for switching between working modes.
2431
2432 * **##AT##+<CMD>?** : Help on <CMD>
2433 * **##AT##+<CMD>** : Run <CMD>
2434 * **##AT##+<CMD>=<value>** : Set the value
2435 * **##AT##+<CMD>=?** : Get the value
2436 * ##**ATZ**##: Trigger a reset of the MCU
2437 * ##**AT+FDR**##: Reset Parameters to factory default, reserve keys 
2438 * **##AT+DEUI##**: Get or set the Device EUI (DevEUI)
2439 * **##AT+DADDR##**: Get or set the Device Address (DevAddr)
2440 * **##AT+APPKEY##**: Get or set the Application Key (AppKey)
2441 * ##**AT+NWKSKEY**##: Get or set the Network Session Key (NwkSKey)
2442 * **##AT+APPSKEY##**: Get or set the Application Session Key (AppSKey)
2443 * **##AT+APPEUI##**: Get or set the Application EUI (AppEUI)
2444 * **##AT+ADR##**: Get or set the Adaptive Data Rate setting. (0: OFF, 1: ON)
2445 * ##**AT+TXP**##: Get or set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Specification)
2446 * **##AT+DR##**:  Get or set the Data Rate. (0-7 corresponding to DR_X)  
2447 * **##AT+DCS##**: Get or set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
2448 * ##**AT+PNM**##: Get or set the public network mode. (0: off, 1: on)
2449 * ##**AT+RX2FQ**##: Get or set the Rx2 window frequency
2450 * ##**AT+RX2DR**##: Get or set the Rx2 window data rate (0-7 corresponding to DR_X)
2451 * ##**AT+RX1DL**##: Get or set the delay between the end of the Tx and the Rx Window 1 in ms
2452 * ##**AT+RX2DL**##: Get or set the delay between the end of the Tx and the Rx Window 2 in ms
2453 * ##**AT+JN1DL**##: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
2454 * ##**AT+JN2DL**##: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
2455 * ##**AT+NJM**##: Get or set the Network Join Mode. (0: ABP, 1: OTAA)
2456 * ##**AT+NWKID**##: Get or set the Network ID
2457 * ##**AT+FCU**##: Get or set the Frame Counter Uplink (FCntUp)
2458 * ##**AT+FCD**##: Get or set the Frame Counter Downlink (FCntDown)
2459 * ##**AT+CLASS**##: Get or set the Device Class
2460 * ##**AT+JOIN**##: Join network
2461 * ##**AT+NJS**##: Get OTAA Join Status
2462 * ##**AT+SENDB**##: Send hexadecimal data along with the application port
2463 * ##**AT+SEND**##: Send text data along with the application port
2464 * ##**AT+RECVB**##: Print last received data in binary format (with hexadecimal values)
2465 * ##**AT+RECV**##: Print last received data in raw format
2466 * ##**AT+VER**##: Get current image version and Frequency Band
2467 * ##**AT+CFM**##: Get or Set the confirmation mode (0-1)
2468 * ##**AT+CFS**##: Get confirmation status of the last AT+SEND (0-1)
2469 * ##**AT+SNR**##: Get the SNR of the last received packet
2470 * ##**AT+RSSI**##: Get the RSSI of the last received packet
2471 * ##**AT+TDC**##: Get or set the application data transmission interval in ms
2472 * ##**AT+PORT**##: Get or set the application port
2473 * ##**AT+DISAT**##: Disable AT commands
2474 * ##**AT+PWORD**##: Set password, max 9 digits
2475 * ##**AT+CHS**##: Get or set the Frequency (Unit: Hz) for Single Channel Mode
2476 * ##**AT+CHE**##: Get or set eight channels mode, Only for US915, AU915, CN470
2477 * ##**AT+CFG**##: Print all settings
2478 )))
2479
2480
2481 == 4.2 Common AT Command Sequence ==
2482
2483 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
2484
2485 (((
2486
2487
2488 (((
2489 (% style="color:blue" %)**If the device has not yet joined the network:**
2490 )))
2491 )))
2492
2493 (((
2494 (% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT commands access**##
2495 )))
2496
2497 (((
2498 (% style="background-color:#dcdcdc" %)##**AT+FDR ~/~/Reset parameters to factory default, Reserve keys**##
2499 )))
2500
2501 (((
2502 (% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT commands access**##
2503 )))
2504
2505 (((
2506 (% style="background-color:#dcdcdc" %)##**AT+NJM=0 ~/~/Set to ABP mode**##
2507 )))
2508
2509 (((
2510 (% style="background-color:#dcdcdc" %)##**ATZ ~/~/Reset MCU**##
2511 )))
2512
2513
2514 (((
2515 (% style="color:blue" %)**If the device has already joined the network:**
2516 )))
2517
2518 (((
2519 (% style="background-color:#dcdcdc" %)##**AT+NJM=0**##
2520 )))
2521
2522 (((
2523 (% style="background-color:#dcdcdc" %)##**ATZ**##
2524 )))
2525
2526
2527 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
2528
2529 (((
2530
2531
2532 (((
2533 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter password to enable AT commands access
2534 )))
2535 )))
2536
2537 (((
2538 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset parameters to Factory Default, Reserve keys
2539 )))
2540
2541 (((
2542 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter password to enable AT commands access
2543 )))
2544
2545 (((
2546 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to CLASS C mode
2547 )))
2548
2549 (((
2550 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
2551 )))
2552
2553 (((
2554 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
2555 )))
2556
2557 (((
2558 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
2559 )))
2560
2561 (((
2562 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
2563 )))
2564
2565 (((
2566 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4 MHz
2567 )))
2568
2569 (((
2570 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2 frequency to 868.4 MHz (according to the result from the server)
2571 )))
2572
2573 (((
2574 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2 DR to match the downlink DR from the server. See below.
2575 )))
2576
2577 (((
2578 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address. The Device Address can be found in the application on the LoRaWAN NS.
2579 )))
2580
2581 (((
2582 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
2583
2584
2585 )))
2586
2587 (((
2588 (% style="color:red" %)**Note:**
2589 )))
2590
2591 (((
2592 **~1. Ensure that the device is set to ABP mode in the LoRaWAN Network Server.**
2593
2594 **2. Verify that the LG01/02 gateway RX frequency matches the AT+CHS setting exactly.**
2595
2596 **3. Make sure the SF/bandwidth settings in the LG01/LG02 match the settings of AT+DR. Refer to [[this link>>url:http://www.dragino.com/downloads/index.php?
2597 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
2598
2599 **4. The commands AT+RX2FQ and AT+RX2DR enable downlink functionality. To set the correct parameters, you can check the actual downlink parameters to be used as shown below. Here, RX2FQ should be set to 868400000 and RX2DR should be set to 5.**
2600 )))
2601
2602 (((
2603 [[image:1653359097980-169.png||height="188" width="729"]]
2604 )))
2605
2606
2607 === 4.2.3 Change to Class A ===
2608
2609
2610 (((
2611 (% style="color:blue" %)**If the sensor has JOINED:**
2612
2613 (% style="background-color:#dcdcdc" %)**AT+CLASS=A**
2614
2615 (% style="background-color:#dcdcdc" %)**ATZ**
2616 )))
2617
2618
2619 = 5. Case Study =
2620
2621 == 5.1 Counting how many objects pass through the flow line ==
2622
2623
2624 See [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
2625
2626
2627 = 6. FAQ =
2628
2629
2630 This section contains some frequently asked questions, which can help you resolve common issues and find solutions quickly.
2631
2632
2633 == 6.1 How to update the firmware? ==
2634
2635
2636 Dragino frequently releases firmware updates for the LT-22222-L. Updating your LT-22222-L with the latest firmware version helps to:
2637
2638 * Support new features
2639 * Fix bugs
2640 * Change LoRaWAN frequency bands
2641
2642 You will need the following things before proceeding:
2643
2644 * 3.5mm programming cable (included with the LT-22222-L as an additional accessory)
2645 * USB to TTL adapter/converter
2646 * Download and install the [[STM32 Flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. (replaced by STM32CubeProgrammer)
2647 * Download the latest firmware image from [[LT-22222-L firmware image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. Check the file name of the firmware to find the correct region.
2648
2649 {{info}}
2650 As of this writing, the latest firmware version available for the LT-22222-L is v1.6.1.
2651 {{/info}}
2652
2653 Below is the hardware setup for uploading a firmware image to the LT-22222-L:
2654
2655 [[image:usb-ttl-audio-jack-connection.jpg]]
2656
2657
2658
2659 Start the STM32 Flash Loader and choose the correct COM port to update.
2660
2661 (((
2662 (((
2663 (% style="color:blue" %)**For LT-22222-L**(%%):
2664
2665 Hold down the **PRO** button, then briefly press the **RST** button. The **DO1** LED will change from OFF to ON. When the **DO1** LED is ON, it indicates that the device is in firmware download mode.
2666 )))
2667
2668
2669 )))
2670
2671 [[image:image-20220524103407-12.png]]
2672
2673
2674 [[image:image-20220524103429-13.png]]
2675
2676
2677 [[image:image-20220524104033-15.png]]
2678
2679
2680 (% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5 mm cable. The pin mapping is as follows:
2681
2682 [[image:1653360054704-518.png||height="186" width="745"]]
2683
2684
2685 (((
2686 (((
2687 == 6.2 How to change the LoRaWAN frequency band/region? ==
2688
2689
2690 )))
2691 )))
2692
2693 (((
2694 You can follow the introductions on [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2695 )))
2696
2697 (((
2698
2699
2700 == 6.3 How to setup LT-22222-L to work with a Single Channel Gateway, such as LG01/LG02? ==
2701
2702
2703 )))
2704
2705 (((
2706 (((
2707 In this case, you need to set the LT-22222-L to work in ABP mode and transmit on only one frequency.
2708 )))
2709 )))
2710
2711 (((
2712 (((
2713 We assume you have an LG01/LG02 working on the frequency 868400000. Below are the steps.
2714
2715
2716 )))
2717 )))
2718
2719 (((
2720 (% style="color:#0000ff" %)**Step 1**(%%): Log in to The Things Stack Sandbox account and create an ABP device in the application. To do this, use the manual registration option as explained in section 3.2.2.2, //Adding a Device Manually//. Select //Activation by Personalization (ABP)// under Activation Mode. Enter the DevEUI exactly as shown on the registration information sticker, then generate the Device Address, Application Session Key (AppSKey), and Network Session Key (NwkSKey).
2721
2722 [[image:lt-22222-l-abp.png||height="686" width="1000"]]
2723 )))
2724
2725 (((
2726
2727 )))
2728
2729 {{warning}}
2730 Ensure that the Device Address (DevAddr) and the two keys match between the LT-22222-L and The Things Stack. You can modify them either in The Things Stack or on the LT-22222-L to make them align. In The Things Stack, you can configure the NwkSKey and AppSKey on the settings page, but note that the Device Address is generated by The Things Stack.
2731 {{/warning}}
2732
2733
2734 (((
2735 (% style="color:blue" %)**Step 2**(%%)**:  **(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)Run AT commands to configure the LT-22222-L to operate in single-frequency and ABP mode. The AT commands are as follows:
2736
2737
2738 )))
2739
2740 (((
2741 (% style="background-color:#dcdcdc" %)**123456** (%%) : Enter the password to enable AT access.
2742
2743 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Reset parameters to factory default, keeping keys reserved.
2744
2745 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) : Set to ABP mode.
2746
2747 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) : Disable the Adaptive Data Rate (ADR).
2748
2749 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) : Set Data Rate (Use AT+DR=3 for the 915 MHz band).
2750
2751 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) : Set transmit interval to 60 seconds.
2752
2753 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4 MHz.
2754
2755 (% style="background-color:#dcdcdc" %)**AT+DADDR=xxxx**(%%) : Set the Device Address (DevAddr)
2756
2757 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:700; text-decoration:none; white-space:pre-wrap" %)**AT+APPKEY=xxxx**(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %): Get or set the Application Key (AppKey)
2758
2759 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+NWKSKEY=xxxx**: Get or set the Network Session Key (NwkSKey)
2760
2761 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+APPSKEY=xxxx**: Get or set the Application Session Key (AppSKey)
2762
2763 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) : Reset MCU.
2764 )))
2765
2766
2767 (((
2768 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)The following figure shows the screenshot of the command set above, issued using a serial tool:
2769 )))
2770
2771 [[image:1653360498588-932.png||height="485" width="726"]]
2772
2773
2774 == 6.4 How to change the uplink interval? ==
2775
2776
2777 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2778
2779
2780 == 6.5 Can I see the counting event in the serial output? ==
2781
2782
2783 (((
2784 You can run the AT command **AT+DEBUG** to view the counting event in the serial output. If the firmware is too old and doesn’t support AT+DEBUG, update to the latest firmware first.
2785
2786
2787 == 6.6 Can I use point-to-point communication with LT-22222-L? ==
2788
2789
2790 Yes, you can. Please refer to the [[Point-to-Point Communication of LT-22222-L>>https://wiki.dragino.com/xwiki/bin/view/Main/%20Point%20to%20Point%20Communication%20of%20LT-22222-L/]] page. The firmware that supports point-to-point communication can be found [[here>>https://github.com/dragino/LT-22222-L/releases]].
2791
2792
2793 )))
2794
2795 (((
2796 == 6.7 Why does the relay output default to an open relay after the LT-22222-L is powered off? ==
2797
2798
2799 * If the device is not properly shut down and is directly powered off.
2800 * It will default to a power-off state.
2801 * In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2802 * After a restart, the status before the power failure will be read from flash.
2803
2804 == 6.8 Can I setup LT-22222-L as a NC (Normally Closed) relay? ==
2805
2806
2807 The LT-22222-L's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
2808
2809
2810 [[image:image-20221006170630-1.png||height="610" width="945"]]
2811
2812
2813 == 6.9 Can the LT-22222-L save the RO state? ==
2814
2815
2816 To enable this feature, the firmware version must be 1.6.0 or higher.
2817
2818
2819 == 6.10 Why does the LT-22222-L always report 15.585V when measuring the AVI? ==
2820
2821
2822 It is likely that the GND is not connected during the measurement, or that the wire connected to the GND is loose.
2823
2824
2825 = 7. Troubleshooting =
2826
2827
2828 This section provides some known troubleshooting tips.
2829
2830
2831 )))
2832
2833 (((
2834 (((
2835 == 7.1 Downlink isn't working. How can I solve this? ==
2836
2837
2838 )))
2839 )))
2840
2841 (((
2842 Please refer to this link for debugging instructions: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2843 )))
2844
2845 (((
2846
2847
2848 == 7.2 Having trouble uploading an image? ==
2849
2850
2851 )))
2852
2853 (((
2854 Please refer to this link for troubleshooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2855 )))
2856
2857 (((
2858
2859
2860 == 7.3 Why can't I join TTN in the US915 /AU915 bands? ==
2861
2862
2863 )))
2864
2865 (((
2866 It might be related to the channel mapping. [[Please refer to this link for details.>>https://github.com/dragino/LT-22222-L/releases]]
2867 )))
2868
2869
2870 == 7.4 Why can the LT-22222-L perform uplink normally, but cannot receive downlink? ==
2871
2872
2873 The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue.
2874 Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2875
2876
2877 = 8. Ordering information =
2878
2879
2880 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2881
2882 (% style="color:#4f81bd" %)**XXX:**
2883
2884 * (% style="color:red" %)**EU433**(%%): LT with frequency bands EU433
2885 * (% style="color:red" %)**EU868**(%%): LT with frequency bands EU868
2886 * (% style="color:red" %)**KR920**(%%): LT with frequency bands KR920
2887 * (% style="color:red" %)**CN470**(%%): LT with frequency bands CN470
2888 * (% style="color:red" %)**AS923**(%%): LT with frequency bands AS923
2889 * (% style="color:red" %)**AU915**(%%): LT with frequency bands AU915
2890 * (% style="color:red" %)**US915**(%%): LT with frequency bands US915
2891 * (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2892 * (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2893
2894 = 9. Package information =
2895
2896
2897 **Package includes**:
2898
2899 * 1 x LT-22222-L I/O Controller
2900 * 1 x LoRa antenna matched to the frequency of the LT-22222-L
2901 * 1 x bracket for DIN rail mounting
2902 * 1 x 3.5 mm programming cable
2903
2904 **Dimension and weight**:
2905
2906 * Device Size: 13.5 x 7 x 3 cm
2907 * Device Weight: 105 g
2908 * Package Size / pcs : 14.5 x 8 x 5 cm
2909 * Weight / pcs : 170 g
2910
2911 = 10. Support =
2912
2913
2914 * (((
2915 Support is available Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule.
2916 )))
2917 * (((
2918 Please provide as much information as possible regarding your inquiry (e.g., product models, a detailed description of the problem, steps to replicate it, etc.) and send an email to [[support@dragino.cc>>mailto:support@dragino.cc]]
2919
2920
2921 )))
2922
2923 = 11. Reference​​​​​ =
2924
2925
2926 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2927 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2928 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0