Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19
20 = 1. Introduction =
21
22 == 1.1 What is the LT-22222-L I/O Controller? ==
23
24
25 (((
26 (((
27 {{info}}
28 **This manual is also applicable to the LT-33222-L.**
29 {{/info}}
30
31 The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN end device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
32
33 The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
34 )))
35 )))
36
37 (((
38 With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
39 )))
40
41 (((
42 You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
43
44 * If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Stack Community Network), you can select a network and register the LT-22222-L I/O controller with it.
45 * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
46 * Setup your own private LoRaWAN network.
47 )))
48
49 (((
50
51
52 The network diagram below illustrates how the LT-22222-L communicates with a typical LoRaWAN network.
53 )))
54
55 (% class="wikigeneratedid" %)
56 [[image:lorawan-nw.jpg||height="354" width="900"]]
57
58
59 == 1.2 Specifications ==
60
61
62 (% style="color:#037691" %)**Hardware System:**
63
64 * STM32L072xxxx MCU
65 * SX1276/78 Wireless Chip 
66 * Power Consumption:
67 ** Idle: 4mA@12V
68 ** 20dB Transmit: 34mA@12V
69 * Operating Temperature: -40 ~~ 85 Degrees, No Dew
70
71 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
72
73 * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50V, or 220V with optional external resistor)
74 * 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
75 * 2 x Relay Output (5A@250VAC / 30VDC)
76 * 2 x 0~~20mA Analog Input (res:0.01mA)
77 * 2 x 0~~30V Analog Input (res:0.01V)
78 * Power Input 7~~ 24V DC. 
79
80 (% style="color:#037691" %)**LoRa Spec:**
81
82 * Frequency Range:
83 ** Band 1 (HF): 862 ~~ 1020 MHz
84 ** Band 2 (LF): 410 ~~ 528 MHz
85 * 168 dB maximum link budget.
86 * +20 dBm - 100 mW constant RF output vs.
87 * +14 dBm high-efficiency PA.
88 * Programmable bit rate up to 300 kbps.
89 * High sensitivity: down to -148 dBm.
90 * Bullet-proof front end: IIP3 = -12.5 dBm.
91 * Excellent blocking immunity.
92 * Low RX current of 10.3 mA, 200 nA register retention.
93 * Fully integrated synthesizer with a resolution of 61 Hz.
94 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
95 * Built-in bit synchronizer for clock recovery.
96 * Preamble detection.
97 * 127 dB Dynamic Range RSSI.
98 * Automatic RF Sense and CAD with ultra-fast AFC.
99 * Packet engine up to 256 bytes with CRC.
100
101 == 1.3 Features ==
102
103
104 * LoRaWAN Class A & Class C modes
105 * Optional Customized LoRa Protocol
106 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
107 * AT Commands to change parameters
108 * Remotely configure parameters via LoRaWAN Downlink
109 * Firmware upgradable via program port
110 * Counting
111
112 == 1.4 Applications ==
113
114
115 * Smart buildings & home automation
116 * Logistics and supply chain management
117 * Smart metering
118 * Smart agriculture
119 * Smart cities
120 * Smart factory
121
122 == 1.5 Hardware Variants ==
123
124
125 (% border="1" cellspacing="3" style="width:510px" %)
126 |(% style="background-color:#4f81bd; color:white; width:94px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:172px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:244px" %)**Description**
127 |(% style="width:94px" %)**LT-22222-L**|(% style="width:172px" %)(((
128 (% style="text-align:center" %)
129 [[image:lt33222-l.jpg||height="110" width="95"]]
130 )))|(% style="width:256px" %)(((
131 * 2 x Digital Input (Bi-direction)
132 * 2 x Digital Output
133 * 2 x Relay Output (5A@250VAC / 30VDC)
134 * 2 x 0~~20mA Analog Input (res:0.01mA)
135 * 2 x 0~~30V Analog Input (res:0.01v)
136 * 1 x Counting Port
137 )))
138
139 = 2. Assembling the device =
140
141 == 2.1 Connecting the antenna ==
142
143
144 Connect the LoRa antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper screw terminal block. Secure the antenna by tightening it clockwise.
145
146 {{warning}}
147 **Warning! Do not power on the device without connecting the antenna.**
148 {{/warning}}
149
150
151 == 2.2 Terminals ==
152
153
154 The  LT-22222-L has two screw terminal blocks. The upper screw treminal block has 6 screw terminals and the lower screw terminal block has 10 screw terminals.
155
156 **Upper screw terminal block (from left to right):**
157
158 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:381px" %)
159 |=(% style="width: 139px;background-color:#4f81bd;color:white" %)Screw Terminal|=(% style="width: 242px;background-color:#4f81bd;color:white" %)Function
160 |(% style="width:139px" %)GND|(% style="width:242px" %)Ground
161 |(% style="width:139px" %)VIN|(% style="width:242px" %)Input Voltage
162 |(% style="width:139px" %)AVI2|(% style="width:242px" %)Analog Voltage Input Terminal 2
163 |(% style="width:139px" %)AVI1|(% style="width:242px" %)Analog Voltage Input Terminal 1
164 |(% style="width:139px" %)ACI2|(% style="width:242px" %)Analog Current Input Terminal 2
165 |(% style="width:139px" %)ACI1|(% style="width:242px" %)Analog Current Input Terminal 1
166
167 **Lower screw terminal block (from left to right):**
168
169 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:253px" %)
170 |=(% style="width: 125px;background-color:#4f81bd;color:white" %)Screw Terminal|=(% style="width: 128px;background-color:#4f81bd;color:white" %)Function
171 |(% style="width:125px" %)RO1-2|(% style="width:128px" %)Relay Output 1
172 |(% style="width:125px" %)RO1-1|(% style="width:128px" %)Relay Output 1
173 |(% style="width:125px" %)RO2-2|(% style="width:128px" %)Relay Output 2
174 |(% style="width:125px" %)RO2-1|(% style="width:128px" %)Relay Output 2
175 |(% style="width:125px" %)DI2+|(% style="width:128px" %)Digital Input 2
176 |(% style="width:125px" %)DI2-|(% style="width:128px" %)Digital Input 2
177 |(% style="width:125px" %)DI1+|(% style="width:128px" %)Digital Input 1
178 |(% style="width:125px" %)DI1-|(% style="width:128px" %)Digital Input 1
179 |(% style="width:125px" %)DO2|(% style="width:128px" %)Digital Output 2
180 |(% style="width:125px" %)DO1|(% style="width:128px" %)Digital Output 1
181
182 == 2.3 Connecting LT-22222-L to a Power Source ==
183
184
185 The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect your power supply’s **positive wire** to the **VIN** and the **negative wire** to the **GND** screw terminals. The power indicator **(PWR) LED** will turn on when the device is properly powered.
186
187 {{warning}}
188 **We recommend that you power on the LT-22222-L after adding its registration information to the LoRaWAN network server. Otherwise, the device will continuously send join-request messages to attempt to join a LoRaWAN network but will fail.**
189 {{/warning}}
190
191
192 [[image:1653297104069-180.png]]
193
194
195 = 3. Registering LT-22222-L with a LoRaWAN Network Server =
196
197
198 The LT-22222-L supports both OTAA (Over-the-Air Activation) and ABP (Activation By Personalization) methods to activate with a LoRaWAN Network Server. However, OTAA is the most secure method for activating a device with a LoRaWAN Network Server. OTAA regenerates session keys upon initial registration and regenerates new session keys after any subsequent reboots. By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode.
199
200
201 == 3.1 Prerequisites ==
202
203
204 The LT-22222-L comes with device registration information such as DevEUI, AppEUI, and AppKey that allows you to register it with a LoRaWAN network. These registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
205
206 [[image:image-20230425173427-2.png||height="246" width="530"]]
207
208 {{info}}
209 If you are unable to set the provided root key and other identifiers in the network server, you must generate new keys and identifiers with the network server and configure the device with them using AT commands.
210 {{/info}}
211
212 The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
213
214
215 == 3.2 The Things Stack ==
216
217
218 This section guides you through how to register your LT-22222-L with The Things Stack Sandbox.
219
220 {{info}}
221 The Things Stack Sandbox was formally called The Things Stack Community Edition.
222 {{/info}}
223
224
225 The network diagram below illustrates the connection between the LT-22222-L and The Things Stack, as well as how the data can be integrated with the ThingsEye IoT platform.
226
227
228 [[image:dragino-lorawan-nw-lt-22222-n.jpg||height="374" width="1400"]]
229
230 {{info}}
231 You can use a LoRaWAN gateway, such as the [[Dragino LPS8N>>https://www.dragino.com/products/lora-lorawan-gateway/item/200-lps8n.html]], to expand or create LoRaWAN coverage in your area.
232 {{/info}}
233
234
235 === 3.2.1 Setting up ===
236
237
238 * Sign up for a free account with [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] if you do not have one yet.
239 * Log in to your The Things Stack Sandbox account.
240 * Create an **application** with The Things Stack if you do not have one yet (E.g., dragino-docs).
241 * Go to your application's page and click on the **End devices** in the left menu.
242 * On the End devices page, click on **+ Register end device**. Two registration options are available:
243
244
245 ==== 3.2.1.1 Using the LoRaWAN Device Repository ====
246
247
248 * On the **Register end device** page:
249 ** Select the option **Select the end device in the LoRaWAN Device Repository **under **Input method**.
250 ** Select the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)** from the respective dropdown lists.
251 *** **End device brand**: Dragino Technology Co., Limited
252 *** **Model**: LT22222-L I/O Controller
253 *** **Hardware ver**: Unknown
254 *** **Firmware ver**: 1.6.0
255 *** **Profile (Region)**: Select the region that matches your device.
256 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
257
258 [[image:lt-22222-l-dev-repo-reg-p1.png]]
259
260
261 * Register end device page continued...
262 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'.
263 ** In the **DevEUI** field, enter the **DevEUI**.
264 ** In the **AppKey** field, enter the **AppKey.**
265 ** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
266 ** Under **After registration**, select the **View registered end device** option.
267
268 [[image:lt-22222-l-dev-repo-reg-p2.png]]
269
270
271 ==== 3.2.1.2 Adding device manually ====
272
273
274 * On the **Register end device** page:
275 ** Select the option **Enter end device specifies manually** under **Input method**.
276 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
277 ** Select the **LoRaWAN version** as **LoRaWAN Specification 1.0.3**
278 ** Select the **Regional Parameters version** as** RP001 Regional Parameters 1.0.3 revision A**
279 ** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the hidden section.
280 ** Select the option **Over the air activation (OTAA)** under the **Activation mode.**
281 ** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities** dropdown list.
282
283 [[image:lt-22222-l-manually-p1.png]]
284
285
286 * Register end device page continued...
287 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message '//**This end device can be registered on the network**//'
288 ** In the **DevEUI** field, enter the **DevEUI**.
289 ** In the **AppKey** field, enter the **AppKey**.
290 ** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
291 ** Under **After registration**, select the **View registered end device** option.
292 ** Click the **Register end device** button.
293
294 [[image:lt-22222-l-manually-p2.png]]
295
296
297 You will be navigated to the **Device overview** page.
298
299
300 [[image:lt-22222-device-overview.png]]
301
302
303 === 3.2.2 Joining ===
304
305
306 On the Device's page, click on **Live data** tab. The Live data panel for your device will display.
307
308 Now power on your LT-22222-L. The **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** The Things Stack network server. The **TX LED** will be on for **5 seconds** after joining the network. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server.
309
310
311 [[image:lt-22222-l-joining.png]]
312
313
314 === 3.2.3 Uplinks ===
315
316
317 After successfully joining, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**). When the LT-22222-L sends an uplink message to the server, the **TX LED** turns on for **1 second**. By default, you will receive an uplink data message from the device every 10 minutes.
318
319 Click on one of a **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the decode_payload {} JSON object.
320
321 [[image:lt-22222-ul-payload-decoded.png]]
322
323
324 If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **Applications > your application > End devices** > **your end device** > **Payload formatters** > **Uplink**. Then  select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
325
326 {{info}}
327 The Things Stack provides two levels of payload formatters: application level and device level. The device-level payload formatters **override **the application-level payload formatters.
328 {{/info}}
329
330 [[image:lt-22222-ul-payload-fmt.png]]
331
332
333 We also have a payload formatter that resolves some decoding issues present in the Device Repository formatter. You can add it under the Custom JavaScript formatter. It can be found [[here>>https://github.com/dragino/dragino-end-node-decoder/blob/main/LT22222-L/v1.6_decoder_ttn%20.txt]]:
334
335 (% class="wikigeneratedid" %)
336 [[image:lt-22222-l-js-custom-payload-formatter.png]]
337
338
339 === 3.2.4 Downlinks ===
340
341
342 When the LT-22222-L receives a downlink message from the server, the **RX LED** turns on for **1 second**.
343
344
345 == 3.3 Working Modes and Uplink Payload formats ==
346
347
348 The LT-22222-L has 5 **working modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
349
350 * (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
351
352 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
353
354 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
355
356 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
357
358 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
359
360 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
361
362 The uplink messages are sent over LoRaWAN FPort=2. By default, an uplink message is sent every 10 minutes.
363
364
365 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
366
367
368 (((
369 This is the default mode.
370
371 The uplink payload is 11 bytes long.
372
373 (% style="color:red" %)**Note:The maximum count depends on the bytes number of bytes.
374 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
375 It starts counting again when it reaches the maximum value.**(% style="display:none" wfd-invisible="true" %)
376
377 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
378 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
379 |Value|(((
380 AVI1 voltage
381 )))|(((
382 AVI2 voltage
383 )))|(((
384 ACI1 Current
385 )))|(((
386 ACI2 Current
387 )))|**DIDORO***|(((
388 Reserve
389 )))|MOD
390 )))
391
392 (((
393 (% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
394
395 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
396 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
397 |RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
398 )))
399
400 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
401 * DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
402 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
403
404 (% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
405
406 For example, if the payload is: [[image:image-20220523175847-2.png]]
407
408
409 **The interface values can be calculated as follows:  **
410
411 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
412
413 AVI2 channel voltage is 0x04AC/1000=1.196V
414
415 ACI1 channel current is 0x1310/1000=4.880mA
416
417 ACI2 channel current is 0x1300/1000=4.864mA
418
419 The last byte 0xAA= **10101010**(b) means,
420
421 * [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
422 * [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
423 * **[1] DI3 - not used for LT-22222-L.**
424 * [0] DI2 channel input is LOW, and the DI2 LED is OFF.
425 * [1] DI1 channel input state:
426 ** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
427 ** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
428 ** DI1 LED is ON in both cases.
429 * **[0] DO3 - not used for LT-22222-L.**
430 * [1] DO2 channel output is LOW, and the DO2 LED is ON.
431 * [0] DO1 channel output state:
432 ** DO1 is FLOATING when there is no load between DO1 and V+.
433 ** DO1 is HIGH and there is a load between DO1 and V+.
434 ** DO1 LED is OFF in both cases.
435
436 Reserve = 0
437
438 MOD = 1
439
440
441 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
442
443
444 (((
445 **For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
446 )))
447
448 (((
449 The uplink payload is 11 bytes long.
450
451 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
452 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
453 It starts counting again when it reaches the maximum value.**
454
455 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
456 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
457 |Value|COUNT1|COUNT2 |DIDORO*|(((
458 Reserve
459 )))|MOD
460 )))
461
462 (((
463 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
464
465 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
466 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
467 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
468
469 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
470 )))
471
472 * FIRST: Indicates that this is the first packet after joining the network.
473 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
474
475 (((
476 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
477
478
479 )))
480
481 (((
482 **To activate this mode, run the following AT commands:**
483 )))
484
485 (((
486 (% class="box infomessage" %)
487 (((
488 **AT+MOD=2**
489
490 **ATZ**
491 )))
492 )))
493
494 (((
495
496
497 (% style="color:#4f81bd" %)**AT Commands for counting:**
498 )))
499
500 (((
501 **For LT22222-L:**
502
503 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
504
505 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
506
507 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
508
509 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
510
511 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
512
513 (% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
514 )))
515
516
517 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
518
519
520 (% style="color:red" %)**Note: The maximum count depends on the bytes it is.
521 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
522 It starts counting again when it reaches the maximum value.**
523
524 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
525
526 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
527 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
528 |Value|COUNT1|(((
529 ACI1 Current
530 )))|(((
531 ACI2 Current
532 )))|DIDORO*|Reserve|MOD
533
534 (((
535 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
536
537 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
538 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
539 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
540 )))
541
542 * RO is for the relay. ROx=1: closed, ROx=0 always open.
543 * FIRST: Indicates that this is the first packet after joining the network.
544 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
545
546 (((
547 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
548 )))
549
550
551 (((
552 **To activate this mode, run the following AT commands:**
553 )))
554
555 (((
556 (% class="box infomessage" %)
557 (((
558 **AT+MOD=3**
559
560 **ATZ**
561 )))
562 )))
563
564 (((
565 AT Commands for counting:
566
567 The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
568 )))
569
570
571 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
572
573
574 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
575 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
576 It starts counting again when it reaches the maximum value.**
577
578
579 (((
580 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
581 )))
582
583 (((
584 The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
585
586 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
587 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
588 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
589 Reserve
590 )))|MOD
591 )))
592
593 (((
594 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
595
596 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
597 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
598 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
599 )))
600
601 * RO is for the relay. ROx=1: closed, ROx=0 always open.
602 * FIRST: Indicates that this is the first packet after joining the network.
603 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
604
605 (((
606 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
607
608
609 )))
610
611 (((
612 **To activate this mode, run the following AT commands:**
613 )))
614
615 (((
616 (% class="box infomessage" %)
617 (((
618 **AT+MOD=4**
619
620 **ATZ**
621 )))
622 )))
623
624 (((
625 AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
626 )))
627
628 (((
629 **In addition to that, below are the commands for AVI1 Counting:**
630
631 (% style="color:blue" %)**AT+SETCNT=3,60 **(%%)**(Sets AVI1 Count to 60)**
632
633 (% style="color:blue" %)**AT+VOLMAX=20000 **(%%)**(If the AVI1 voltage is higher than VOLMAX (20000mV =20V), the counter increases by 1)**
634
635 (% style="color:blue" %)**AT+VOLMAX=20000,0 **(%%)**(If the AVI1 voltage is lower than VOLMAX (20000mV =20V), counter increases by 1)**
636
637 (% style="color:blue" %)**AT+VOLMAX=20000,1 **(%%)**(If the AVI1 voltage is higher than VOLMAX (20000mV =20V), counter increases by 1)**
638 )))
639
640
641 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
642
643
644 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
645 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
646 It starts counting again when it reaches the maximum value.**
647
648
649 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
650
651 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
652 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
653 |Value|(((
654 AVI1 voltage
655 )))|(((
656 AVI2 voltage
657 )))|(((
658 ACI1 Current
659 )))|COUNT1|DIDORO*|(((
660 Reserve
661 )))|MOD
662
663 (((
664 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
665
666 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
667 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
668 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
669 )))
670
671 * RO is for the relay. ROx=1: closed, ROx=0 always open.
672 * FIRST: Indicates that this is the first packet after joining the network.
673 * (((
674 DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
675 )))
676
677 (((
678 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
679 )))
680
681 (((
682 **To activate this mode, run the following AT commands:**
683 )))
684
685 (((
686 (% class="box infomessage" %)
687 (((
688 **AT+MOD=5**
689
690 **ATZ**
691 )))
692 )))
693
694 (((
695 Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
696 )))
697
698
699 === 3.3.6 AT+ADDMOD~=6 (Trigger Mode, Optional) ===
700
701
702 (% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate __alongside__ with other modes.**
703
704 For example, if you configure the following commands:
705
706 * **AT+MOD=1 ** **~-~->**  Sets the default working mode
707 * **AT+ADDMOD6=1**   **~-~->**  Enables trigger mode
708
709 The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. It will send uplink packets in two cases:
710
711 1. Periodic uplink: Based on TDC time. The payload is the same as in normal mode (MOD=1 as set above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
712 1. (((
713 Trigger uplink: sent when a trigger condition is met. In this case, LT will send two packets
714
715 * The first uplink uses the payload specified in trigger mode (MOD=6).
716 * The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**confirmed uplinks.**
717 )))
718
719 (% style="color:#037691" %)**AT Commands to set Trigger Conditions**:
720
721 (% style="color:#4f81bd" %)**Trigger based on voltage**:
722
723 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
724
725
726 **Example:**
727
728 AT+AVLIM=3000,6000,0,2000 (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
729
730 AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
731
732
733 (% style="color:#4f81bd" %)**Trigger based on current**:
734
735 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
736
737
738 **Example:**
739
740 AT+ACLIM=10000,15000,0,0 (triggers an uplink if AC1 current is lower than 10mA or higher than 15mA)
741
742
743 (% style="color:#4f81bd" %)**Trigger based on DI status**:
744
745 DI status triggers Flag.
746
747 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
748
749
750 **Example:**
751
752 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
753
754
755 (% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
756
757 **Type Code**: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
758
759 **Format**: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
760
761 AA: Type Code for this downlink Command:
762
763 xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
764
765 yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
766
767 yy2 yy2: AC1 or AV1 HIGH limit.
768
769 yy3 yy3: AC2 or AV2 LOW limit.
770
771 Yy4 yy4: AC2 or AV2 HIGH limit.
772
773
774 **Example 1**: AA 00 13 88 00 00 00 00 00 00
775
776 Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
777
778
779 **Example 2**: AA 02 01 00
780
781 Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
782
783
784 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
785
786 MOD6 Payload: total of 11 bytes
787
788 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
789 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
790 |Value|(((
791 TRI_A FLAG
792 )))|(((
793 TRI_A Status
794 )))|(((
795 TRI_DI FLAG+STA
796 )))|Reserve|Enable/Disable MOD6|(((
797 MOD(6)
798 )))
799
800 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
801
802 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
803 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
804 |(((
805 AV1_LOW
806 )))|(((
807 AV1_HIGH
808 )))|(((
809 AV2_LOW
810 )))|(((
811 AV2_HIGH
812 )))|(((
813 AC1_LOW
814 )))|(((
815 AC1_HIGH
816 )))|(((
817 AC2_LOW
818 )))|(((
819 AC2_HIGH
820 )))
821
822 * Each bit shows if the corresponding trigger has been configured.
823
824 **Example:**
825
826 10100000: This means the system is configured to use the triggers AV1_LOW and AV2_LOW.
827
828
829 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
830
831 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
832 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
833 |(((
834 AV1_LOW
835 )))|(((
836 AV1_HIGH
837 )))|(((
838 AV2_LOW
839 )))|(((
840 AV2_HIGH
841 )))|(((
842 AC1_LOW
843 )))|(((
844 AC1_HIGH
845 )))|(((
846 AC2_LOW
847 )))|(((
848 AC2_HIGH
849 )))
850
851 * Each bit shows which status has been triggered on this uplink.
852
853 **Example:**
854
855 10000000: The uplink is triggered by AV1_LOW, indicating that the voltage is too low.
856
857
858 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
859
860 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
861 |(% style="width:50px" %)**bit 7**|(% style="width:50px" %)**bit 6**|(% style="width:50px" %)**bit 5**|(% style="width:50px" %)**bit 4**|(% style="width:90px" %)**bit 3**|(% style="width:80px" %)**bit 2**|(% style="width:90px" %)**bit 1**|(% style="width:95px" %)**bit 0**
862 |(% style="width:49px" %)N/A|(% style="width:53px" %)N/A|(% style="width:53px" %)N/A|(% style="width:55px" %)N/A|(% style="width:99px" %)DI2_STATUS|(% style="width:83px" %)DI2_FLAG|(% style="width:98px" %)DI1_STATUS|(% style="width:85px" %)DI1_FLAG
863
864 * Each bit shows which status has been triggered on this uplink.
865
866 **Example:**
867
868 00000111: This means both DI1 and DI2 triggers are enabled, and this packet is trigger by DI1.
869
870 00000101: This means both DI1 and DI2 triggers are enabled.
871
872
873 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enabled. 0x00: MOD6 is disabled.
874
875 Downlink command to poll/request MOD6 status:
876
877 **AB 06**
878
879 When device receives this command, it will send the MOD6 payload.
880
881
882 === 3.3.7 Payload Decoder ===
883
884 (((
885
886
887 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
888 )))
889
890
891 == 3.4 ​Configure LT-22222-L via AT Commands or Downlinks ==
892
893
894 (((
895 You can configure LT-22222-L I/O Controller via AT Commands or LoRaWAN Downlinks.
896 )))
897
898 (((
899 (((
900 There are two tytes of commands:
901 )))
902 )))
903
904 * (% style="color:blue" %)**Common commands**(%%):
905
906 * (% style="color:blue" %)**Sensor-related commands**(%%):
907
908 === 3.4.1 Common commands ===
909
910
911 (((
912 These are available for each sensors and include actions such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]s.
913
914
915 )))
916
917 === 3.4.2 Sensor-related commands ===
918
919
920 These commands are specially designed for the LT-22222-L. Commands can be sent to the device using options such as an AT command or a LoRaWAN downlink payload.
921
922
923 ==== 3.4.2.1 Set Transmit/Uplink Interval ====
924
925
926 Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
927
928 (% style="color:#037691" %)**AT command**
929
930 (% border="2" style="width:500px" %)
931 |**Command**|AT+TDC=<time>
932 |**Parameters**|**time **: uplink interval in milliseconds
933 |**Get**|AT+TDC=?
934 |**Response**|(((
935 current uplink interval
936
937 OK
938 )))
939 |**Set**|AT+TDC=<time>
940 |**Response**|OK
941 |**Example**|(((
942 AT+TDC=30000
943
944 Sets the uplink interval to **30 seconds** (30000 milliseconds)
945 )))
946
947 (% style="color:#037691" %)**Downlink payload**
948
949 (% border="2" style="width:500px" %)
950 |**Payload**|(((
951 <prefix><time>
952 )))
953 |**Parameters**|(((
954 **prefix** : 0x01
955
956 **time** : uplink interval in **seconds**, represented by **3  bytes** in **hexadecimal**.
957 )))
958 |**Example**|(((
959 01 **00 00 1E**
960
961 Sets the uplink interval to **30 seconds**
962
963 Conversion: 30 (dec) = 00 00 1E (hex)
964
965 See [[RapidTables>>https://www.rapidtables.com/convert/number/decimal-to-hex.html?x=30]]
966
967 [[image:Screenshot 2024-11-23 at 18.27.11.png]]
968 )))
969
970 ==== 3.4.2.2 Set the Working Mode (AT+MOD) ====
971
972
973 Sets the working mode.
974
975 (% style="color:#037691" %)**AT command**
976
977 (% border="2" style="width:500px" %)
978 |(% style="width:97px" %)**Command**|(% style="width:413px" %)AT+MOD=<working_mode>
979 |(% style="width:97px" %)**Parameters**|(% style="width:413px" %)(((
980 **working_mode** :
981
982 1 = (Default mode/factory set):  2ACI + 2AVI + DI + DO + RO
983
984 2 = Double DI Counting + DO + RO
985
986 3 = Single DI Counting + 2 x ACI + DO + RO
987
988 4 = Single DI Counting + 1 x Voltage Counting + DO + RO
989
990 5 = Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
991
992 6 = Trigger Mode, Optional, used together with MOD1 ~~ MOD5
993 )))
994 |(% style="width:97px" %)**Get**|(% style="width:413px" %)AT+MOD=?
995 |(% style="width:97px" %)**Response**|(% style="width:413px" %)(((
996 Current working mode
997
998 OK
999 )))
1000 |(% style="width:97px" %)**Set**|(% style="width:413px" %)AT+MOD=<working_mode>
1001 |(% style="width:97px" %)**Response**|(% style="width:413px" %)(((
1002 Attention:Take effect after ATZ
1003
1004 OK
1005 )))
1006 |(% style="width:97px" %)**Example**|(% style="width:413px" %)(((
1007 AT+MOD=2
1008
1009 Sets the device to working mode 2 (Double DI Counting + DO + RO)
1010 )))
1011
1012 (% class="wikigeneratedid" %)
1013 (% style="color:#037691" %)**Downlink payload**
1014
1015 (% border="2" style="width:500px" %)
1016 |(% style="width:98px" %)**Payload**|(% style="width:400px" %)<prefix><working_mode>
1017 |(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
1018 **prefix** : 0x0A
1019
1020 **working_mode** : Working mode, represented by 1 byte in hexadecimal.
1021 )))
1022 |(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
1023 0A **02**
1024
1025 Sets the device to working mode 2 (Double DI Counting + DO + RO)
1026 )))
1027
1028 ==== 3.4.2.3 Request an uplink from the device ====
1029
1030
1031 Requests an uplink from LT-22222-L. The content of the uplink payload varies based on the device's current working mode.
1032
1033 (% style="color:#037691" %)**AT command**
1034
1035 There is no AT Command available for this feature.
1036
1037 (% style="color:#037691" %)**Downlink payload**
1038
1039 (% border="2" style="width:500px" %)
1040 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix>FF
1041 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)**prefix** : 0x08
1042 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1043 08 **FF**
1044
1045 Requests an uplink from LT-22222-L.
1046 )))
1047
1048 ==== 3.4.2.4 Enable/Disable Trigger Mode ====
1049
1050
1051 Enable or disable the trigger mode for the current working mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
1052
1053 (% style="color:#037691" %)**AT Command**
1054
1055 (% border="2" style="width:500px" %)
1056 |(% style="width:95px" %)**Command**|(% style="width:403px" %)AT+ADDMOD6=<enable/disable trigger_mode>
1057 |(% style="width:95px" %)**Response**|(% style="width:403px" %)
1058 |(% style="width:95px" %)**Parameters**|(% style="width:403px" %)(((
1059 **enable/disable trigger_mode** :
1060
1061 1 = enable trigger mode
1062
1063 0 = disable trigger mode
1064 )))
1065 |(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1066 AT+ADDMOD6=1
1067
1068 Enable trigger mode for the current working mode
1069 )))
1070
1071 (% style="color:#037691" %)**Downlink payload**
1072
1073 (% border="2" style="width:500px" %)
1074 |(% style="width:97px" %)**Payload**|(% style="width:401px" %)<prefix><enable/disable trigger_mode>
1075 |(% style="width:97px" %)**Parameters**|(% style="width:401px" %)(((
1076 **prefix** : 0x0A 06 (two bytes in hexadecimal)
1077
1078 **enable/disable trigger_mode** : enable (1) or disable (0), represented by 1 byte in hexadecimal.
1079 )))
1080 |(% style="width:97px" %)**Example**|(% style="width:401px" %)(((
1081 0A 06 **01**
1082
1083 Enable trigger mode for the current working mode
1084 )))
1085
1086 ==== 3.4.2.5 Request trigger settings ====
1087
1088
1089 Requests the trigger settings.
1090
1091 (% style="color:#037691" %)**AT Command:**
1092
1093 There is no AT Command available for this feature.
1094
1095 (% style="color:#037691" %)**Downlink Payload**
1096
1097 (% border="2" style="width:500px" %)
1098 |(% style="width:95px" %)**Payload**|(% style="width:403px" %)<prefix>
1099 |(% style="width:95px" %)**Parameters**|(% style="width:403px" %)**prefix **: AB 06 (two bytes in hexadecimal)
1100 |(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1101 AB 06
1102
1103 Uplinks the trigger settings.
1104 )))
1105
1106 ==== 3.4.2.6 Enable/Disable DI1/DI2/DI3 as a trigger ====
1107
1108
1109 Enable or disable DI1/DI2/DI3 as a trigger.
1110
1111 (% style="color:#037691" %)**AT Command**
1112
1113 (% border="2" style="width:500px" %)
1114 |(% style="width:98px" %)**Command**|(% style="width:400px" %)AT+DTRI=<DI1_trigger>,<DI2_trigger>
1115 |(% style="width:98px" %)**Response**|(% style="width:400px" %)
1116 |(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
1117 **DI1_trigger:**
1118
1119 1 = enable DI1 trigger
1120
1121 0 = disable DI1 trigger
1122
1123 **DI2 _trigger**
1124
1125 1 = enable DI2 trigger
1126
1127 0 = disable DI2 trigger
1128 )))
1129 |(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
1130 AT+DTRI=1,0
1131
1132 Enable DI1 trigger, disable DI2 trigger
1133 )))
1134
1135 (% class="wikigeneratedid" %)
1136 (% style="color:#037691" %)**Downlink Payload**
1137
1138 (% border="2" style="width:500px" %)
1139 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><DI1_trigger><DI2_trigger>
1140 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1141 **prefix :** AA 02 (two bytes in hexadecimal)
1142
1143 **DI1_trigger:**
1144
1145 1 = enable DI1 trigger, represented by 1 byte in hexadecimal.
1146
1147 0 = disable DI1 trigger, represented by 1 byte in hexadecimal.
1148
1149 **DI2 _trigger**
1150
1151 1 = enable DI2 trigger, represented by 1 byte in hexadecimal.
1152
1153 0 = disable DI2 trigger, represented by 1 byte in hexadecimal.
1154 )))
1155 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1156 AA 02 **01 00**
1157
1158 Enable DI1 trigger, disable DI2 trigger
1159 )))
1160
1161 ==== 3.4.2.7 Trigger1 – Set DI or DI3 as a trigger ====
1162
1163
1164 Sets DI1 or DI3 (for LT-33222-L) as a trigger.
1165
1166 (% style="color:#037691" %)**AT Command**
1167
1168 (% border="2" style="width:500px" %)
1169 |(% style="width:101px" %)**Command**|(% style="width:397px" %)AT+TRIG1=<interrupt_mode>,<minimum_signal_duration>
1170 |(% style="width:101px" %)**Response**|(% style="width:397px" %)
1171 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1172 **interrupt_mode** :  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1173
1174 **minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1175 )))
1176 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1177 AT+TRIG1=1,100
1178
1179 Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1180 )))
1181
1182 (% class="wikigeneratedid" %)
1183 (% style="color:#037691" %)**Downlink Payload**
1184
1185 (% border="2" style="width:500px" %)
1186 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><interrupt_mode><minimum_signal_duration>
1187 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1188 **prefix** : 09 01 (hexadecimal)
1189
1190 **interrupt_mode** : 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1191
1192 **minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal.
1193 )))
1194 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1195 09 01 **01 00 64**
1196
1197 Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1198 )))
1199
1200 ==== 3.4.2.8 Trigger2 – Set DI2 as a trigger ====
1201
1202
1203 Sets DI2 as a trigger.
1204
1205 (% style="color:#037691" %)**AT Command**
1206
1207 (% border="2" style="width:500px" %)
1208 |(% style="width:94px" %)**Command**|(% style="width:404px" %)AT+TRIG2=<interrupt_mode>,<minimum_signal_duration>
1209 |(% style="width:94px" %)**Response**|(% style="width:404px" %)
1210 |(% style="width:94px" %)**Parameters**|(% style="width:404px" %)(((
1211 **interrupt_mode **:  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1212
1213 **minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1214 )))
1215 |(% style="width:94px" %)**Example**|(% style="width:404px" %)(((
1216 AT+TRIG2=0,100
1217
1218 Set the DI1 port to trigger on a falling edge; the valid signal duration is 100 ms.
1219 )))
1220
1221 (% style="color:#037691" %)**Downlink Payload**
1222
1223 (% border="2" style="width:500px" %)
1224 |(% style="width:96px" %)**Payload**|(% style="width:402px" %)<prefix><interrupt_mode><minimum_signal_duration>
1225 |(% style="width:96px" %)**Parameters**|(% style="width:402px" %)(((
1226 **prefix** : 09 02 (hexadecimal)
1227
1228 **interrupt_mode **: 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1229
1230 **minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal
1231 )))
1232 |(% style="width:96px" %)**Example**|(% style="width:402px" %)09 02 **00 00 64**
1233
1234 ==== 3.4.2.9 Trigger – Set AC (current) as a trigger ====
1235
1236
1237 Sets the current trigger based on the AC port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1238
1239 (% style="color:#037691" %)**AT Command**
1240
1241 (% border="2" style="width:500px" %)
1242 |(% style="width:104px" %)**Command**|(% style="width:394px" %)(((
1243 AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1244 )))
1245 |(% style="width:104px" %)**Response**|(% style="width:394px" %)
1246 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1247 **AC1_LIMIT_LOW** : lower limit of the current to be checked
1248
1249 **AC1_LIMIT_HIGH **: higher limit of the current to be checked
1250
1251 **AC2_LIMIT_HIGH **: lower limit of the current to be checked
1252
1253 **AC2_LIMIT_LOW** : higher limit of the current to be checked
1254 )))
1255 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1256 AT+ACLIM=10000,15000,0,0
1257
1258 Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA
1259 )))
1260 |(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1261
1262 (% style="color:#037691" %)**Downlink Payload**
1263
1264 (% border="2" style="width:500px" %)
1265 |(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1266 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1267 **prefix **: AA 01 (hexadecimal)
1268
1269 **AC1_LIMIT_LOW** : lower limit of the current to be checked, two bytes in hexadecimal
1270
1271 **AC1_LIMIT_HIGH **: higher limit of the current to be checked, two bytes in hexadecimal
1272
1273 **AC2_LIMIT_HIGH **: lower limit of the current to be checked, two bytes in hexadecimal
1274
1275 **AC2_LIMIT_LOW** : higher limit of the current to be checked, two bytes in hexadecimal
1276 )))
1277 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1278 AA 01 **27** **10 3A** **98** 00 00 00 00
1279
1280 Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA. Set all values to zero for AC2 limits because we are only checking AC1 limits.
1281 )))
1282 |(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1283
1284 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
1285
1286
1287 Sets the current trigger based on the AV port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1288
1289 (% style="color:#037691" %)**AT Command**
1290
1291 (% border="2" style="width:500px" %)
1292 |(% style="width:104px" %)**Command**|(% style="width:387px" %)AT+AVLIM= AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1293 |(% style="width:104px" %)**Response**|(% style="width:387px" %)
1294 |(% style="width:104px" %)**Parameters**|(% style="width:387px" %)(((
1295 **AC1_LIMIT_LOW** : lower limit of the current to be checked
1296
1297 **AC1_LIMIT_HIGH **: higher limit of the current to be checked
1298
1299 **AC2_LIMIT_HIGH **: lower limit of the current to be checked
1300
1301 **AC2_LIMIT_LOW** : higher limit of the current to be checked
1302 )))
1303 |(% style="width:104px" %)**Example**|(% style="width:387px" %)(((
1304 AT+AVLIM=3000,6000,0,2000
1305
1306 Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V
1307 )))
1308 |(% style="width:104px" %)**Note**|(% style="width:387px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1309
1310 (% style="color:#037691" %)**Downlink Payload**
1311
1312 (% border="2" style="width:500px" %)
1313 |(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1314 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1315 **prefix **: AA 00 (hexadecimal)
1316
1317 **AV1_LIMIT_LOW** : lower limit of the voltage to be checked, two bytes in hexadecimal
1318
1319 **AV1_LIMIT_HIGH **: higher limit of the voltage to be checked, two bytes in hexadecimal
1320
1321 **AV2_LIMIT_HIGH **: lower limit of the voltage to be checked, two bytes in hexadecimal
1322
1323 **AV2_LIMIT_LOW** : higher limit of the voltage to be checked, two bytes in hexadecimal
1324 )))
1325 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1326 AA 00 **0B B8 17 70 00 00 07 D0**
1327
1328 Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V.
1329 )))
1330 |(% style="width:104px" %)**Note**|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1331
1332 ==== 3.4.2.11 Trigger – Set minimum interval ====
1333
1334
1335 Sets the AV and AC trigger minimum interval. The device won't respond to a second trigger within this set time after the first trigger.
1336
1337 (% style="color:#037691" %)**AT Command**
1338
1339 (% border="2" style="width:500px" %)
1340 |(% style="width:113px" %)**Command**|(% style="width:385px" %)AT+ATDC=<time>
1341 |(% style="width:113px" %)**Response**|(% style="width:385px" %)
1342 |(% style="width:113px" %)**Parameters**|(% style="width:385px" %)(((
1343 **time** : in minutes
1344 )))
1345 |(% style="width:113px" %)**Example**|(% style="width:385px" %)(((
1346 AT+ATDC=5
1347
1348 The device won't respond to the second trigger within 5 minutes after the first trigger.
1349 )))
1350 |(% style="width:113px" %)Note|(% style="width:385px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1351
1352 (% style="color:#037691" %)**Downlink Payload**
1353
1354 (% border="2" style="width:500px" %)
1355 |(% style="width:112px" %)**Payload**|(% style="width:386px" %)<prefix><time>
1356 |(% style="width:112px" %)**Parameters**|(% style="width:386px" %)(((
1357 **prefix** : AC (hexadecimal)
1358
1359 **time **: in minutes (two bytes in hexadecimal)
1360 )))
1361 |(% style="width:112px" %)**Example**|(% style="width:386px" %)(((
1362 AC **00 05**
1363
1364 The device won't respond to the second trigger within 5 minutes after the first trigger.
1365 )))
1366 |(% style="width:112px" %)Note|(% style="width:386px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1367
1368 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1369
1370
1371 Controls the digital outputs DO1, DO2, and DO3
1372
1373 (% style="color:#037691" %)**AT Command**
1374
1375 There is no AT Command to control the Digital Output.
1376
1377
1378 (% style="color:#037691" %)**Downlink Payload**
1379
1380 (% border="2" style="width:500px" %)
1381 |(% style="width:115px" %)**Payload**|(% style="width:383px" %)<prefix><DO1><DO2><DO3>
1382 |(% style="width:115px" %)**Parameters**|(% style="width:383px" %)(((
1383 **prefix** : 02 (hexadecimal)
1384
1385 **DOI** : 01: Low,  00: High, 11: No action (1 byte in hex)
1386
1387 **DO2** : 01: Low,  00: High, 11: No action (1 byte in hex)
1388
1389 **DO3 **: 01: Low,  00: High, 11: No action (1 byte in hex)
1390 )))
1391 |(% style="width:115px" %)**Examples**|(% style="width:383px" %)(((
1392 02 **01 00 01**
1393
1394 If there is a load between V+ and DOx, it means DO1 is set to low, DO2 is set to high, and DO3 is set to low.
1395
1396 **More examples:**
1397
1398 (((
1399 01: Low,  00: High,  11: No action
1400
1401 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:383px" %)
1402 |(% style="background-color:#4f81bd; color:white; width:126px" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white; width:85px" %)**DO1**|(% style="background-color:#4f81bd; color:white; width:86px" %)**DO2**|(% style="background-color:#4f81bd; color:white; width:86px" %)**DO3**
1403 |(% style="width:126px" %)02  01  00  11|(% style="width:85px" %)Low|(% style="width:86px" %)High|(% style="width:86px" %)No Action
1404 |(% style="width:126px" %)02  00  11  01|(% style="width:85px" %)High|(% style="width:86px" %)No Action|(% style="width:86px" %)Low
1405 |(% style="width:126px" %)02  11  01  00|(% style="width:85px" %)No Action|(% style="width:86px" %)Low|(% style="width:86px" %)High
1406 )))
1407
1408 (((
1409 (((
1410 (% style="color:red" %)**Note: For the LT-22222-L, there is no DO3; the last byte can have any value.**
1411 )))
1412
1413 (((
1414 (% style="color:red" %)**The device will upload a packet if downlink code executes successfully.**
1415 )))
1416 )))
1417 )))
1418
1419 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1420
1421
1422 (% style="color:#037691" %)**AT command**
1423
1424 There is no AT command to control the digital output.
1425
1426
1427 (% style="color:#037691" %)**Downlink payload**
1428
1429
1430 (% border="2" style="width:500px" %)
1431 |(% style="width:116px" %)**Prefix**|(% style="width:382px" %)0xA9
1432 |(% style="width:116px" %)**Parameters**|(% style="width:382px" %)(((
1433 **inverter_mode**: 1 byte in hex.
1434
1435 **01:** DO pins revert to their original state after the timeout.
1436 **00:** DO pins switch to an inverted state after the timeout.
1437
1438
1439 **DO1_control_method_and_port_status **- 1 byte in hex
1440
1441 0x01 : DO1 set to low
1442
1443 0x00 : DO1 set to high
1444
1445 0x11 : DO1 NO action
1446
1447
1448 **DO2_control_method_and_port_status** - 1 byte in hex
1449
1450 0x01 : DO2 set to low
1451
1452 0x00 : DO2 set to high
1453
1454 0x11 : DO2 NO action
1455
1456
1457 **DO3_control_method_and_port_status **- 1 byte in hex
1458
1459 0x01 : DO3 set to low
1460
1461 0x00 : DO3 set to high
1462
1463 0x11 : DO3 NO action
1464
1465
1466 **latching_time** : 4 bytes in hex
1467
1468 (% style="color:red" %)**Note: **
1469
1470 Since firmware v1.6.0, the latch time support 4 bytes or 2 bytes
1471
1472 Before firmware v1.6.0, the latch time only supported 2 bytes.
1473
1474 (% style="color:red" %)**The device will uplink a packet if the downlink code executes successfully.**
1475 )))
1476 |(% style="width:116px" %)**Payload format**|(% style="width:382px" %)<prefix><inverter_mode><DO1_control_method_and_port_status><DO2_control_method_and_port_status><DO2_control_method_and_port_status><latching_time>
1477 |(% style="width:116px" %)**Example**|(% style="width:382px" %)(((
1478 **A9 01 01 01 01 07 D0**
1479
1480 DO1 pin, DO2 pin, and DO3 pin will be set to low, last for 2 seconds, and then revert to their original state.
1481
1482
1483 **A9 01 00 01 11 07 D0**
1484
1485 DO1 pin is set to high, DO2 pin is set to low, and DO3 pin takes no action. This lasts for 2 seconds and then reverts to the original state.
1486
1487
1488 **A9 00 00 00 00 07 D0**
1489
1490 DO1 pin, DO2 pin, and DO3 pin will be set to high, last for 2 seconds, and then all change to low.
1491
1492
1493 **A9 00 11 01 00 07 D0**
1494
1495 DO1 pin takes no action, DO2 pin is set to low, and DO3 pin is set to high. This lasts for 2 seconds, after which DO1 pin takes no action, DO2 pin is set to high, and DO3 pin is set to low.
1496 )))
1497
1498
1499 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1500
1501
1502 * (% style="color:#037691" %)**AT Command:**
1503
1504 There is no AT Command to control the Relay Output
1505
1506
1507 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1508
1509 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Sets RO1/RO2 output
1510
1511
1512 (((
1513 If the payload is 0x030100, it means setting RO1 to close and RO2 to open.
1514 )))
1515
1516 (((
1517 00: Close ,  01: Open , 11: No action
1518
1519 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1520 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1521 |03  00  11|Open|No Action
1522 |03  01  11|Close|No Action
1523 |03  11  00|No Action|Open
1524 |03  11  01|No Action|Close
1525 |03  00  00|Open|Open
1526 |03  01  01|Close|Close
1527 |03  01  00|Close|Open
1528 |03  00  01|Open|Close
1529 )))
1530
1531 (% style="color:red" %)**The device will uplink a packet if the downlink code executes successfully.**
1532
1533
1534 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1535
1536
1537 Controls the relay output time.
1538
1539 * (% style="color:#037691" %)**AT Command:**
1540
1541 There is no AT Command to control the Relay Output
1542
1543
1544 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1545
1546 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Sets RO1/RO2 relays with time control
1547
1548
1549 This controls the relay output time and includes 4 bytes:
1550
1551 (% style="color:#4f81bd" %)**First byte **(%%)**:** Type code (0x05)
1552
1553 (% style="color:#4f81bd" %)**Second byte (aa)**(%%): Inverter Mode
1554
1555 01: Relays will change back to their original state after timeout.
1556
1557 00: Relays will change to the inverter state after timeout.
1558
1559
1560 (% style="color:#4f81bd" %)**Third byte (bb)**(%%): Control Method and Ports status:
1561
1562 [[image:image-20221008095908-1.png||height="364" width="564"]]
1563
1564
1565 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh bytes (cc)**(%%): Latching time. Unit: ms
1566
1567
1568 (% style="color:red" %)**Note:**
1569
1570 Since firmware v1.6.0, the latch time supports both 4 bytes and 2 bytes.
1571
1572 Before firmware v1.6.0, the latch time only supported 2 bytes.
1573
1574
1575 (% style="color:red" %)**The device will uplink a packet if the downlink code executes successfully.**
1576
1577
1578 **Example payload:**
1579
1580 **~1. 05 01 11 07 D0**
1581
1582 Relay1 and Relay2 will be set to NC, lasting 2 seconds, then revert to their original state
1583
1584 **2. 05 01 10 07 D0**
1585
1586 Relay1 will change to NC, Relay2 will change to NO, lasting 2 seconds, then both will revert to their original state.
1587
1588 **3. 05 00 01 07 D0**
1589
1590 Relay1 will change to NO, Relay2 will change to NC, lasting 2 seconds, then Relay1 will change to NC, and Relay2 will change to NO.
1591
1592 **4. 05 00 00 07 D0**
1593
1594 Relay1 and Relay2 will change to NO, lasting 2 seconds, then both will change to NC.
1595
1596
1597
1598 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1599
1600
1601 When the voltage exceeds the threshold, counting begins. For details, see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1602
1603 (% style="color:#037691" %)**AT Command**
1604
1605 (% border="2" style="width:500px" %)
1606 |(% style="width:137px" %)**Command**|(% style="width:361px" %)AT+VOLMAX=<voltage>,<logic>
1607 |(% style="width:137px" %)**Response**|(% style="width:361px" %)
1608 |(% style="width:137px" %)**Parameters**|(% style="width:361px" %)(((
1609 **voltage** : voltage threshold in mV
1610
1611 **logic**:
1612
1613 **0** : lower than
1614
1615 **1**: higher than
1616
1617 if you leave logic parameter blank, it is considered 0
1618 )))
1619 |(% style="width:137px" %)**Examples**|(% style="width:361px" %)(((
1620 AT+VOLMAX=20000
1621
1622 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1623
1624 AT+VOLMAX=20000,0
1625
1626 If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1627
1628 AT+VOLMAX=20000,1
1629
1630 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1631 )))
1632
1633 (% style="color:#037691" %)**Downlink Payload**
1634
1635 (% border="2" style="width:500px" %)
1636 |(% style="width:140px" %)**Payload**|(% style="width:358px" %)<prefix><voltage><logic>
1637 |(% style="width:140px" %)**Parameters**|(% style="width:358px" %)(((
1638 **prefix** : A5 (hex)
1639
1640 **voltage** : voltage threshold in mV (2 bytes in hex)
1641
1642 **logic**: (1 byte in hexadecimal)
1643
1644 **0** : lower than
1645
1646 **1**: higher than
1647
1648 if you leave logic parameter blank, it is considered 1 (higher than)
1649 )))
1650 |(% style="width:140px" %)**Example**|(% style="width:358px" %)(((
1651 A5 **4E 20**
1652
1653 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1654
1655 A5 **4E 20 00**
1656
1657 If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1658
1659 A5 **4E 20 01**
1660
1661 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1662 )))
1663
1664 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1665
1666 This command allows users to pre-configure specific count numbers for various counting parameters such as Count1, Count2, or AVI1 Count. Use the AT command to set the desired count number for each configuration.
1667
1668 (% style="color:#037691" %)**AT Command**
1669
1670 (% border="2" style="width:500px" %)
1671 |(% style="width:134px" %)**Command**|(% style="width:364px" %)AT+SETCNT=<counting_parameter>,<number>
1672 |(% style="width:134px" %)**Response**|(% style="width:364px" %)
1673 |(% style="width:134px" %)**Parameters**|(% style="width:364px" %)(((
1674 **counting_parameter** :
1675
1676 1: COUNT1
1677
1678 2: COUNT2
1679
1680 3: AVI1 Count
1681
1682 **number** : Start number
1683 )))
1684 |(% style="width:134px" %)**Example**|(% style="width:364px" %)(((
1685 AT+SETCNT=1,10
1686
1687 Sets the COUNT1 to 10.
1688 )))
1689
1690 (% style="color:#037691" %)**Downlink Payload**
1691
1692 (% border="2" style="width:500px" %)
1693 |(% style="width:135px" %)**Payload**|(% style="width:363px" %)<prefix><counting_parameter><number>
1694 |(% style="width:135px" %)**Parameters**|(% style="width:363px" %)(((
1695 prefix : A8 (hex)
1696
1697 **counting_parameter** : (1 byte in hexadecimal)
1698
1699 1: COUNT1
1700
1701 2: COUNT2
1702
1703 3: AVI1 Count
1704
1705 **number** : Start number, 4 bytes in hexadecimal
1706 )))
1707 |(% style="width:135px" %)**Example**|(% style="width:363px" %)(((
1708 A8 **01 00 00 00 0A**
1709
1710 Sets the COUNT1 to 10.
1711 )))
1712
1713 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1714
1715 This command clears the counting in counting mode.
1716
1717 (% style="color:#037691" %)**AT Command**
1718
1719 (% border="2" style="width:500px" %)
1720 |(% style="width:142px" %)**Command**|(% style="width:356px" %)AT+CLRCOUNT
1721 |(% style="width:142px" %)**Response**|(% style="width:356px" %)-
1722
1723 (% style="color:#037691" %)**Downlink Payload**
1724
1725 (% border="2" style="width:500px" %)
1726 |(% style="width:141px" %)**Payload**|(% style="width:357px" %)<prefix><clear?>
1727 |(% style="width:141px" %)**Parameters**|(% style="width:357px" %)(((
1728 prefix : A6 (hex)
1729
1730 clear? : 01 (hex)
1731 )))
1732 |(% style="width:141px" %)**Example**|(% style="width:357px" %)A6 **01**
1733
1734 ==== 3.4.2.19 Counting ~-~- Set Saving Interval for 'Counting Result' ====
1735
1736
1737 This command allows you to configure the device to save its counting result to internal flash memory at specified intervals. By setting a save time, the device will periodically store the counting data to prevent loss in case of power failure. The save interval can be adjusted to suit your requirements, with a minimum value of 30 seconds.
1738
1739 (% style="color:#037691" %)**AT Command**
1740
1741 (% border="2" style="width:500px" %)
1742 |(% style="width:124px" %)**Command**|(% style="width:374px" %)AT+COUTIME=<time>
1743 |(% style="width:124px" %)**Response**|(% style="width:374px" %)
1744 |(% style="width:124px" %)**Parameters**|(% style="width:374px" %)time : seconds (0 to 16777215)
1745 |(% style="width:124px" %)**Example**|(% style="width:374px" %)(((
1746 AT+COUTIME=60
1747
1748 Sets the device to save its counting results to the memory every 60 seconds.
1749 )))
1750
1751 (% style="color:#037691" %)**Downlink Payload**
1752
1753 (% border="2" style="width:500px" %)
1754 |(% style="width:123px" %)**Payload**|(% style="width:375px" %)<prefix><time>
1755 |(% style="width:123px" %)**Parameters**|(% style="width:375px" %)(((
1756 prefix : A7
1757
1758 time : seconds, 3 bytes in hexadecimal
1759 )))
1760 |(% style="width:123px" %)**Example**|(% style="width:375px" %)(((
1761 A7 **00 00 3C**
1762
1763 Sets the device to save its counting results to the memory every 60 seconds.
1764 )))
1765
1766 ==== 3.4.2.20 Reset saved RO and DO states ====
1767
1768
1769 This command allows you to reset the saved relay output (RO) and digital output (DO) states when the device joins the network. By configuring this setting, you can control whether the device should retain or reset the relay states after a reset and rejoin to the network.
1770
1771 (% style="color:#037691" %)**AT Command**
1772
1773 (% border="2" style="width:500px" %)
1774 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+RODORESET=<state>
1775 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1776 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1777 **state** :
1778
1779 **0** : RODO will close when the device joins the network. (default)
1780
1781 **1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1782 )))
1783 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1784 (% style="color:blue" %)**AT+RODORESET=1 **
1785
1786 RODO will close when the device joins the network. (default)
1787
1788 (% style="color:blue" %)**AT+RODORESET=0 **
1789
1790 After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1791 )))
1792
1793 (% style="color:#037691" %)**Downlink Payload**
1794
1795 (% border="2" style="width:500px" %)
1796 |(% style="width:127px" %)**Payload**|(% style="width:371px" %)<prefix><state>
1797 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1798 **prefix** : AD
1799
1800 **state** :
1801
1802 **0** : RODO will close when the device joins the network. (default), represents as 1 byte in hexadecimal.
1803
1804 **1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network. - represents as 1 byte in hexadecimal
1805 )))
1806 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1807 AD **01**
1808
1809 RODO will close when the device joins the network. (default)
1810
1811 AD **00**
1812
1813 After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1814 )))
1815
1816 ==== 3.4.2.21 Encrypted payload ====
1817
1818
1819 This command allows you to configure whether the device should upload data in an encrypted format or in plaintext. By default, the device encrypts the payload before uploading. You can toggle this setting to either upload encrypted data or transmit it without encryption.
1820
1821 (% style="color:#037691" %)**AT Command:**
1822
1823 (% border="2" style="width:500px" %)
1824 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DECRYPT=<state>
1825 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1826 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1827 **state** :
1828
1829 **1** : The payload is uploaded without encryption
1830
1831 **0** : The payload is encrypted when uploaded (default)
1832 )))
1833 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1834 AT+DECRYPT=1
1835
1836 The payload is uploaded without encryption
1837
1838 AT+DECRYPT=0
1839
1840 The payload is encrypted when uploaded (default)
1841 )))
1842
1843 There is no downlink payload for this configuration.
1844
1845
1846 ==== 3.4.2.22 Get sensor value ====
1847
1848
1849 This command allows you to retrieve and optionally uplink sensor readings through the serial port.
1850
1851 (% style="color:#037691" %)**AT Command**
1852
1853 (% border="2" style="width:500px" %)
1854 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+GETSENSORVALUE=<state>
1855 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1856 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1857 **state** :
1858
1859 **0 **: Retrieves the current sensor reading via the serial port.
1860
1861 **1 **: Retrieves and uploads the current sensor reading via the serial port.
1862 )))
1863 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1864 AT+GETSENSORVALUE=0
1865
1866 Retrieves the current sensor reading via the serial port.
1867
1868 AT+GETSENSORVALUE=1
1869
1870 Retrieves and uplinks the current sensor reading via the serial port.
1871 )))
1872
1873 There is no downlink payload for this configuration.
1874
1875
1876 ==== 3.4.2.23 Resetting the downlink packet count ====
1877
1878
1879 This command manages how the node handles mismatched downlink packet counts. It offers two modes: one disables the reception of further downlink packets if discrepancies occur, while the other resets the downlink packet count to align with the server, ensuring continued communication.
1880
1881 (% style="color:#037691" %)**AT Command**
1882
1883 (% border="2" style="width:500px" %)
1884 |(% style="width:130px" %)**Command**|(% style="width:368px" %)AT+DISFCNTCHECK=<state>
1885 |(% style="width:130px" %)**Response**|(% style="width:368px" %)(((
1886
1887 )))
1888 |(% style="width:130px" %)**Parameters**|(% style="width:368px" %)(((
1889 **state **:
1890
1891 **0** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default).
1892
1893
1894 **1** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency.
1895 )))
1896 |(% style="width:130px" %)**Example**|(% style="width:368px" %)(((
1897 AT+DISFCNTCHECK=0
1898
1899 When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default).
1900
1901 AT+DISFCNTCHECK=1
1902
1903 When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency.
1904 )))
1905
1906 There is no downlink payload for this configuration.
1907
1908
1909 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1910
1911
1912 This command controls the behavior of the node when the combined size of the MAC commands (MACANS) from the server and the payload exceeds the allowed byte limit for the current data rate (DR). The command provides two modes: one enables splitting the data into batches to ensure compliance with the byte limit, while the other prioritizes the payload and ignores the MACANS in cases of overflow.
1913
1914 (% style="color:#037691" %)**AT Command**
1915
1916 (% border="2" style="width:500px" %)
1917 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DISMACANS=<state>
1918 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1919 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1920 **state** :
1921
1922 **0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1923
1924 **1** : When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1925 )))
1926 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1927 AT+DISMACANS=0
1928
1929 When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1930
1931 AT+DISMACANS=1
1932
1933 When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1934 )))
1935
1936 (% style="color:#037691" %)**Downlink Payload**
1937
1938 (% border="2" style="width:500px" %)
1939 |(% style="width:126px" %)**Payload**|(% style="width:372px" %)<prefix><state>
1940 |(% style="width:126px" %)**Parameters**|(% style="width:372px" %)(((
1941 **prefix** : 21
1942
1943 **state** : (2 bytes in hexadecimal)
1944
1945 **0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1946
1947 **1 **: When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1948 )))
1949 |(% style="width:126px" %)**Example**|(% style="width:372px" %)(((
1950 21 **00 01**
1951
1952 Set DISMACANS=1
1953 )))
1954
1955 ==== 3.4.2.25 Copy downlink to uplink ====
1956
1957
1958 This command enables the device to immediately uplink the payload of a received downlink packet back to the server. The command allows for quick data replication from downlink to uplink, with a fixed port number of 100.
1959
1960 (% style="color:#037691" %)**AT Command**(%%)**:**
1961
1962 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving a downlink payload from the server, the device will immediately uplink the payload back to the server using port number 100.
1963
1964 Example:**aa xx xx xx xx**         ~/~/ **aa** indicates whether the configuration has changed: **00** means YES, and **01** means NO. **xx xx xx xx** are the bytes uplinked back.
1965
1966
1967 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1968
1969 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1970
1971 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1972
1973 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1974
1975
1976 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1977
1978 There is no downlink option available for this feature.
1979
1980
1981 ==== 3.4.2.26 Query firmware version, frequency band, sub band, and TDC time ====
1982
1983
1984 This command is used to query key information about the device, including its firmware version, frequency band, sub band, and TDC time. By sending the specified payload as a downlink, the server can retrieve this essential data from the device.
1985
1986 * (((
1987 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1988
1989 (% style="color:blue" %)**26 01  ** (%%) ~/~/  The downlink payload 26 01 is used to query the device's firmware version, frequency band, sub band, and TDC time.
1990
1991
1992
1993 )))
1994
1995 **Example:**
1996
1997 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1998
1999
2000 == 3.5 Integrating with ThingsEye.io ==
2001
2002
2003 The Things Stack application supports integration with ThingsEye.io. Once integrated, ThingsEye.io acts as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
2004
2005
2006 === 3.5.1 Configuring The Things Stack ===
2007
2008
2009 We use The Things Stack Sandbox in this example:
2010
2011 * In **The Things Stack Sandbox**, go to the **Application **for the LT-22222-L you added.
2012 * Select **MQTT** under **Integrations** in the left menu.
2013 * In the **Connection information **section, under **Connection credentials**, The Things Stack displays an auto-generated **username**. You can use it or provide a new one.
2014 * Click the **Generate new API key** button to generate a password. You can view it by clicking on the **visibility toggle/eye** icon. The API key works as the password.
2015
2016 {{info}}
2017 The username and  password (API key) you created here are required in the next section.
2018 {{/info}}
2019
2020 [[image:tts-mqtt-integration.png]]
2021
2022
2023 === 3.5.2 Configuring ThingsEye.io ===
2024
2025
2026 The ThingsEye.io IoT platform is not open for self-registration at the moment. If you are interested in testing the platform, please send your project information to admin@thingseye.io, and we will create an account for you.
2027
2028 * Login to your [[ThingsEye.io >>https://thingseye.io]]account.
2029 * Under the **Integrations center**, click **Integrations**.
2030 * Click the **Add integration** button (the button with the **+** symbol).
2031
2032 [[image:thingseye-io-step-1.png]]
2033
2034
2035 On the **Add integration** window, configure the following:
2036
2037 **Basic settings:**
2038
2039 * Select **The Things Stack Community** from the **Integration type** list.
2040 * Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
2041 * Ensure the following options are turned on.
2042 ** Enable integration
2043 ** Debug mode
2044 ** Allow create devices or assets
2045 * Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
2046
2047 [[image:thingseye-io-step-2.png]]
2048
2049
2050 **Uplink data converter:**
2051
2052 * Click the **Create new** button if it is not selected by default.
2053 * Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
2054 * Click the **JavaScript** button.
2055 * Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
2056 * Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
2057
2058 [[image:thingseye-io-step-3.png]]
2059
2060
2061 **Downlink data converter (this is an optional step):**
2062
2063 * Click the **Create new** button if it is not selected by default.
2064 * Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name.
2065 * Click the **JavaScript** button.
2066 * Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Downlink_Converter.js]].
2067 * Click the **Next** button. You will be navigated to the **Connection** tab.
2068
2069 [[image:thingseye-io-step-4.png]]
2070
2071
2072 **Connection:**
2073
2074 * Choose **Region** from the **Host type**.
2075 * Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
2076 * Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The **username **and **password **can be found on the MQTT integration page of your The Things Stack account (see **3.5.1 Configuring The Things Stack**).
2077 * Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
2078
2079 [[image:message-1.png]]
2080
2081
2082 * Click the **Add** button.
2083
2084 [[image:thingseye-io-step-5.png]]
2085
2086
2087 Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings and correct any errors.
2088
2089
2090 [[image:thingseye.io_integrationsCenter_integrations.png]]
2091
2092
2093 ==== 3.5.2.1 Viewing integration details ====
2094
2095
2096 Click on your integration from the list. The **Integration details** window will appear with the **Details **tab selected. The **Details **tab shows all the settings you have provided for this integration.
2097
2098 [[image:integration-details.png]]
2099
2100
2101 If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
2102
2103 {{info}}
2104 See also [[ThingsEye documentation>>https://wiki.thingseye.io/xwiki/bin/view/Main/]].
2105 {{/info}}
2106
2107
2108 ==== 3.5.2.2 Viewing events ====
2109
2110
2111 The **Events **tab displays all the uplink messages from the LT-22222-L.
2112
2113 * Select **Debug **from the **Event type** dropdown.
2114 * Select the** time frame** from the **time window**.
2115
2116 [[image:thingseye-events.png]]
2117
2118
2119 * To view the **JSON payload** of a message, click on the **three dots (...)** in the Message column of the desired message.
2120
2121 [[image:thingseye-json.png]]
2122
2123
2124 ==== 3.5.2.3 Deleting an integration ====
2125
2126
2127 If you want to delete an integration, click the **Delete integratio**n button on the Integrations page.
2128
2129
2130 ==== 3.5.2.4 Creating a Dashboard to Display and Analyze LT-22222-L Data ====
2131
2132
2133 This will be added soon.
2134
2135
2136 == 3.6 Interface Details ==
2137
2138 === 3.6.1 Digital Input Ports: DI1/DI2/DI3 (For LT-33222-L, Low Active) ===
2139
2140
2141 Supports** NPN-type **sensors.
2142
2143 [[image:1653356991268-289.png]]
2144
2145
2146 === 3.6.2 Digital Input Ports: DI1/DI2 ===
2147
2148
2149 (((
2150 The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
2151 )))
2152
2153 (((
2154 (((
2155 The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
2156
2157
2158 )))
2159 )))
2160
2161 [[image:1653357170703-587.png]]
2162
2163 (((
2164 (((
2165 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
2166 )))
2167 )))
2168
2169 (((
2170
2171 )))
2172
2173 (((
2174 (% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
2175 )))
2176
2177 (((
2178 This type of sensor outputs a low (GND) signal when active.
2179 )))
2180
2181 * (((
2182 Connect the sensor's output to DI1-
2183 )))
2184 * (((
2185 Connect the sensor's VCC to DI1+.
2186 )))
2187
2188 (((
2189 When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be:
2190 )))
2191
2192 (((
2193 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
2194 )))
2195
2196 (((
2197 For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
2198 )))
2199
2200 (((
2201
2202 )))
2203
2204 (((
2205 (% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
2206 )))
2207
2208 (((
2209 This type of sensor outputs a high signal (e.g., 24V) when active.
2210 )))
2211
2212 * (((
2213 Connect the sensor's output to DI1+
2214 )))
2215 * (((
2216 Connect the sensor's GND DI1-.
2217 )))
2218
2219 (((
2220 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
2221 )))
2222
2223 (((
2224 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
2225 )))
2226
2227 (((
2228 If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
2229 )))
2230
2231 (((
2232
2233 )))
2234
2235 (((
2236 (% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
2237 )))
2238
2239 (((
2240 Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
2241 )))
2242
2243 * (((
2244 Connect the sensor's output to DI1+ with a 50K resistor in series.
2245 )))
2246 * (((
2247 Connect the sensor's GND DI1-.
2248 )))
2249
2250 (((
2251 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
2252 )))
2253
2254 (((
2255 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
2256 )))
2257
2258 (((
2259 If the sensor output is 220V, then [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
2260 )))
2261
2262
2263 (% style="color:blue" %)**Example 4**(%%): Connecting to a Dry Contact sensor
2264
2265 From the DI port circuit above, activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference on its own.
2266
2267 To detect a Dry Contact, you can supply a power source to one of the pins of the Dry Contact. A reference circuit diagram is shown below.
2268
2269 [[image:image-20230616235145-1.png]]
2270
2271 (% style="color:blue" %)**Example 5**(%%): Connecting to an Open Collector
2272
2273 [[image:image-20240219115718-1.png]]
2274
2275
2276 === 3.6.3 Digital Output Ports: DO1/DO2 ===
2277
2278
2279 (% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
2280
2281 (% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
2282
2283 [[image:1653357531600-905.png]]
2284
2285
2286 === 3.6.4 Analog Input Interfaces ===
2287
2288
2289 The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
2290
2291
2292 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
2293
2294 [[image:1653357592296-182.png]]
2295
2296 Example: Connecting a 4~~20mA sensor
2297
2298 We will use the wind speed sensor as an example for reference only.
2299
2300
2301 (% style="color:blue" %)**Specifications of the wind speed sensor:**
2302
2303 (% style="color:red" %)**Red:  12~~24V**
2304
2305 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
2306
2307 **Black:  GND**
2308
2309 **Connection diagram:**
2310
2311 [[image:1653357640609-758.png]]
2312
2313 [[image:1653357648330-671.png||height="155" width="733"]]
2314
2315
2316 Example: Connecting to a regulated power supply to measure voltage
2317
2318 [[image:image-20230608101532-1.png||height="606" width="447"]]
2319
2320 [[image:image-20230608101608-2.jpeg||height="379" width="284"]]
2321
2322 [[image:image-20230608101722-3.png||height="102" width="1139"]]
2323
2324
2325 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
2326
2327 (% style="color:red" %)**Red:  12~~24v**
2328
2329 **Black:  GND**
2330
2331
2332 === 3.6.5 Relay Output ===
2333
2334
2335 (((
2336 The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
2337
2338 **Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
2339 )))
2340
2341 [[image:image-20220524100215-9.png]]
2342
2343
2344 [[image:image-20220524100215-10.png||height="382" width="723"]]
2345
2346
2347 == 3.7 LED Indicators ==
2348
2349
2350 The table below lists the behavior of LED indicators for each port function.
2351
2352 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
2353 |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
2354 |**PWR**|Always on when there is power
2355 |**TX**|(((
2356 (((
2357 Device boot: TX blinks 5 times.
2358 )))
2359
2360 (((
2361 Successful network join: TX remains ON for 5 seconds.
2362 )))
2363
2364 (((
2365 Transmit a LoRa packet: TX blinks once
2366 )))
2367 )))
2368 |**RX**|RX blinks once when a packet is received.
2369 |**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
2370 |**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
2371 |**DI1**|(((
2372 For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
2373 )))
2374 |**DI2**|(((
2375 For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
2376 )))
2377 |**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
2378 |**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
2379
2380 = 4. Using AT Commands =
2381
2382
2383 The LT-22222-L supports programming using AT Commands.
2384
2385
2386 == 4.1 Connecting the LT-22222-L to a PC ==
2387
2388
2389 (((
2390 You can use a USB-to-TTL adapter/converter along with a 3.5mm Program Cable to connect the LT-22222-L to a PC, as shown below.
2391
2392 [[image:usb-ttl-audio-jack-connection.jpg]]
2393
2394
2395 )))
2396
2397
2398 (((
2399 On the PC, you need to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate of (% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-L. Access to AT commands is disabled by default, and a password (default: (% style="color:green" %)**123456**)(%%) must be entered to enable AT command access, as shown below:
2400 )))
2401
2402 [[image:1653358355238-883.png]]
2403
2404
2405 (((
2406 You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
2407
2408
2409 == 4.2 LT-22222-L related AT commands ==
2410
2411
2412 )))
2413
2414 (((
2415 The following is the list of all the AT commands related to the LT-22222-L, except for those used for switching between working modes.
2416
2417 * **##AT##+<CMD>?** : Help on <CMD>
2418 * **##AT##+<CMD>** : Run <CMD>
2419 * **##AT##+<CMD>=<value>** : Set the value
2420 * **##AT##+<CMD>=?** : Get the value
2421 * ##**ATZ**##: Trigger a reset of the MCU
2422 * ##**AT+FDR**##: Reset Parameters to factory default, reserve keys 
2423 * **##AT+DEUI##**: Get or set the Device EUI (DevEUI)
2424 * **##AT+DADDR##**: Get or set the Device Address (DevAddr)
2425 * **##AT+APPKEY##**: Get or set the Application Key (AppKey)
2426 * ##**AT+NWKSKEY**##: Get or set the Network Session Key (NwkSKey)
2427 * **##AT+APPSKEY##**: Get or set the Application Session Key (AppSKey)
2428 * **##AT+APPEUI##**: Get or set the Application EUI (AppEUI)
2429 * **##AT+ADR##**: Get or set the Adaptive Data Rate setting. (0: OFF, 1: ON)
2430 * ##**AT+TXP**##: Get or set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Specification)
2431 * **##AT+DR##**:  Get or set the Data Rate. (0-7 corresponding to DR_X)  
2432 * **##AT+DCS##**: Get or set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
2433 * ##**AT+PNM**##: Get or set the public network mode. (0: off, 1: on)
2434 * ##**AT+RX2FQ**##: Get or set the Rx2 window frequency
2435 * ##**AT+RX2DR**##: Get or set the Rx2 window data rate (0-7 corresponding to DR_X)
2436 * ##**AT+RX1DL**##: Get or set the delay between the end of the Tx and the Rx Window 1 in ms
2437 * ##**AT+RX2DL**##: Get or set the delay between the end of the Tx and the Rx Window 2 in ms
2438 * ##**AT+JN1DL**##: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
2439 * ##**AT+JN2DL**##: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
2440 * ##**AT+NJM**##: Get or set the Network Join Mode. (0: ABP, 1: OTAA)
2441 * ##**AT+NWKID**##: Get or set the Network ID
2442 * ##**AT+FCU**##: Get or set the Frame Counter Uplink (FCntUp)
2443 * ##**AT+FCD**##: Get or set the Frame Counter Downlink (FCntDown)
2444 * ##**AT+CLASS**##: Get or set the Device Class
2445 * ##**AT+JOIN**##: Join network
2446 * ##**AT+NJS**##: Get OTAA Join Status
2447 * ##**AT+SENDB**##: Send hexadecimal data along with the application port
2448 * ##**AT+SEND**##: Send text data along with the application port
2449 * ##**AT+RECVB**##: Print last received data in binary format (with hexadecimal values)
2450 * ##**AT+RECV**##: Print last received data in raw format
2451 * ##**AT+VER**##: Get current image version and Frequency Band
2452 * ##**AT+CFM**##: Get or Set the confirmation mode (0-1)
2453 * ##**AT+CFS**##: Get confirmation status of the last AT+SEND (0-1)
2454 * ##**AT+SNR**##: Get the SNR of the last received packet
2455 * ##**AT+RSSI**##: Get the RSSI of the last received packet
2456 * ##**AT+TDC**##: Get or set the application data transmission interval in ms
2457 * ##**AT+PORT**##: Get or set the application port
2458 * ##**AT+DISAT**##: Disable AT commands
2459 * ##**AT+PWORD**##: Set password, max 9 digits
2460 * ##**AT+CHS**##: Get or set the Frequency (Unit: Hz) for Single Channel Mode
2461 * ##**AT+CHE**##: Get or set eight channels mode, Only for US915, AU915, CN470
2462 * ##**AT+CFG**##: Print all settings
2463 )))
2464
2465
2466 == 4.2 Common AT Command Sequence ==
2467
2468 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
2469
2470 (((
2471
2472
2473 (((
2474 (% style="color:blue" %)**If the device has not yet joined the network:**
2475 )))
2476 )))
2477
2478 (((
2479 (% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT commands access**##
2480 )))
2481
2482 (((
2483 (% style="background-color:#dcdcdc" %)##**AT+FDR ~/~/Reset parameters to factory default, Reserve keys**##
2484 )))
2485
2486 (((
2487 (% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT commands access**##
2488 )))
2489
2490 (((
2491 (% style="background-color:#dcdcdc" %)##**AT+NJM=0 ~/~/Set to ABP mode**##
2492 )))
2493
2494 (((
2495 (% style="background-color:#dcdcdc" %)##**ATZ ~/~/Reset MCU**##
2496 )))
2497
2498
2499 (((
2500 (% style="color:blue" %)**If the device has already joined the network:**
2501 )))
2502
2503 (((
2504 (% style="background-color:#dcdcdc" %)##**AT+NJM=0**##
2505 )))
2506
2507 (((
2508 (% style="background-color:#dcdcdc" %)##**ATZ**##
2509 )))
2510
2511
2512 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
2513
2514 (((
2515
2516
2517 (((
2518 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter password to enable AT commands access
2519 )))
2520 )))
2521
2522 (((
2523 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset parameters to Factory Default, Reserve keys
2524 )))
2525
2526 (((
2527 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter password to enable AT commands access
2528 )))
2529
2530 (((
2531 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to CLASS C mode
2532 )))
2533
2534 (((
2535 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
2536 )))
2537
2538 (((
2539 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
2540 )))
2541
2542 (((
2543 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
2544 )))
2545
2546 (((
2547 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
2548 )))
2549
2550 (((
2551 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4 MHz
2552 )))
2553
2554 (((
2555 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2 frequency to 868.4 MHz (according to the result from the server)
2556 )))
2557
2558 (((
2559 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2 DR to match the downlink DR from the server. See below.
2560 )))
2561
2562 (((
2563 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address. The Device Address can be found in the application on the LoRaWAN NS.
2564 )))
2565
2566 (((
2567 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
2568
2569
2570 )))
2571
2572 (((
2573 (% style="color:red" %)**Note:**
2574 )))
2575
2576 (((
2577 **~1. Ensure that the device is set to ABP mode in the LoRaWAN Network Server.**
2578
2579 **2. Verify that the LG01/02 gateway RX frequency matches the AT+CHS setting exactly.**
2580
2581 **3. Make sure the SF/bandwidth settings in the LG01/LG02 match the settings of AT+DR. Refer to [[this link>>url:http://www.dragino.com/downloads/index.php?
2582 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
2583
2584 **4. The commands AT+RX2FQ and AT+RX2DR enable downlink functionality. To set the correct parameters, you can check the actual downlink parameters to be used as shown below. Here, RX2FQ should be set to 868400000 and RX2DR should be set to 5.**
2585 )))
2586
2587 (((
2588 [[image:1653359097980-169.png||height="188" width="729"]]
2589 )))
2590
2591
2592 === 4.2.3 Change to Class A ===
2593
2594
2595 (((
2596 (% style="color:blue" %)**If the sensor has JOINED:**
2597
2598 (% style="background-color:#dcdcdc" %)**AT+CLASS=A**
2599
2600 (% style="background-color:#dcdcdc" %)**ATZ**
2601 )))
2602
2603
2604 = 5. Case Study =
2605
2606 == 5.1 Counting how many objects pass through the flow line ==
2607
2608
2609 See [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
2610
2611
2612 = 6. FAQ =
2613
2614
2615 This section contains some frequently asked questions, which can help you resolve common issues and find solutions quickly.
2616
2617
2618 == 6.1 How to update the firmware? ==
2619
2620
2621 Dragino frequently releases firmware updates for the LT-22222-L. Updating your LT-22222-L with the latest firmware version helps to:
2622
2623 * Support new features
2624 * Fix bugs
2625 * Change LoRaWAN frequency bands
2626
2627 You will need the following things before proceeding:
2628
2629 * 3.5mm programming cable (included with the LT-22222-L as an additional accessory)
2630 * USB to TTL adapter/converter
2631 * Download and install the [[STM32 Flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. (replaced by STM32CubeProgrammer)
2632 * Download the latest firmware image from [[LT-22222-L firmware image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. Check the file name of the firmware to find the correct region.
2633
2634 {{info}}
2635 As of this writing, the latest firmware version available for the LT-22222-L is v1.6.1.
2636 {{/info}}
2637
2638 Below is the hardware setup for uploading a firmware image to the LT-22222-L:
2639
2640 [[image:usb-ttl-audio-jack-connection.jpg]]
2641
2642
2643
2644 Start the STM32 Flash Loader and choose the correct COM port to update.
2645
2646 (((
2647 (((
2648 (% style="color:blue" %)**For LT-22222-L**(%%):
2649
2650 Hold down the **PRO** button, then briefly press the **RST** button. The **DO1** LED will change from OFF to ON. When the **DO1** LED is ON, it indicates that the device is in firmware download mode.
2651 )))
2652
2653
2654 )))
2655
2656 [[image:image-20220524103407-12.png]]
2657
2658
2659 [[image:image-20220524103429-13.png]]
2660
2661
2662 [[image:image-20220524104033-15.png]]
2663
2664
2665 (% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5 mm cable. The pin mapping is as follows:
2666
2667 [[image:1653360054704-518.png||height="186" width="745"]]
2668
2669
2670 (((
2671 (((
2672 == 6.2 How to change the LoRaWAN frequency band/region? ==
2673
2674
2675 )))
2676 )))
2677
2678 (((
2679 You can follow the introductions on [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2680 )))
2681
2682 (((
2683
2684
2685 == 6.3 How to setup LT-22222-L to work with a Single Channel Gateway, such as LG01/LG02? ==
2686
2687
2688 )))
2689
2690 (((
2691 (((
2692 In this case, you need to set the LT-22222-L to work in ABP mode and transmit on only one frequency.
2693 )))
2694 )))
2695
2696 (((
2697 (((
2698 We assume you have an LG01/LG02 working on the frequency 868400000. Below are the steps.
2699
2700
2701 )))
2702 )))
2703
2704 (((
2705 (% style="color:#0000ff" %)**Step 1**(%%): Log in to The Things Stack Sandbox account and create an ABP device in the application. To do this, use the manual registration option as explained in section 3.2.2.2, //Adding a Device Manually//. Select //Activation by Personalization (ABP)// under Activation Mode. Enter the DevEUI exactly as shown on the registration information sticker, then generate the Device Address, Application Session Key (AppSKey), and Network Session Key (NwkSKey).
2706
2707 [[image:lt-22222-l-abp.png||height="686" width="1000"]]
2708 )))
2709
2710 (((
2711
2712 )))
2713
2714 {{warning}}
2715 Ensure that the Device Address (DevAddr) and the two keys match between the LT-22222-L and The Things Stack. You can modify them either in The Things Stack or on the LT-22222-L to make them align. In The Things Stack, you can configure the NwkSKey and AppSKey on the settings page, but note that the Device Address is generated by The Things Stack.
2716 {{/warning}}
2717
2718
2719 (((
2720 (% style="color:blue" %)**Step 2**(%%)**:  **(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)Run AT commands to configure the LT-22222-L to operate in single-frequency and ABP mode. The AT commands are as follows:
2721
2722
2723 )))
2724
2725 (((
2726 (% style="background-color:#dcdcdc" %)**123456** (%%) : Enter the password to enable AT access.
2727
2728 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Reset parameters to factory default, keeping keys reserved.
2729
2730 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) : Set to ABP mode.
2731
2732 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) : Disable the Adaptive Data Rate (ADR).
2733
2734 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) : Set Data Rate (Use AT+DR=3 for the 915 MHz band).
2735
2736 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) : Set transmit interval to 60 seconds.
2737
2738 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4 MHz.
2739
2740 (% style="background-color:#dcdcdc" %)**AT+DADDR=xxxx**(%%) : Set the Device Address (DevAddr)
2741
2742 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:700; text-decoration:none; white-space:pre-wrap" %)**AT+APPKEY=xxxx**(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %): Get or set the Application Key (AppKey)
2743
2744 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+NWKSKEY=xxxx**: Get or set the Network Session Key (NwkSKey)
2745
2746 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+APPSKEY=xxxx**: Get or set the Application Session Key (AppSKey)
2747
2748 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) : Reset MCU.
2749 )))
2750
2751
2752 (((
2753 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)The following figure shows the screenshot of the command set above, issued using a serial tool:
2754 )))
2755
2756 [[image:1653360498588-932.png||height="485" width="726"]]
2757
2758
2759 == 6.4 How to change the uplink interval? ==
2760
2761
2762 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2763
2764
2765 == 6.5 Can I see the counting event in the serial output? ==
2766
2767
2768 (((
2769 You can run the AT command **AT+DEBUG** to view the counting event in the serial output. If the firmware is too old and doesn’t support AT+DEBUG, update to the latest firmware first.
2770
2771
2772 == 6.6 Can I use point-to-point communication with LT-22222-L? ==
2773
2774
2775 Yes, you can. Please refer to the [[Point-to-Point Communication of LT-22222-L>>https://wiki.dragino.com/xwiki/bin/view/Main/%20Point%20to%20Point%20Communication%20of%20LT-22222-L/]] page. The firmware that supports point-to-point communication can be found [[here>>https://github.com/dragino/LT-22222-L/releases]].
2776
2777
2778 )))
2779
2780 (((
2781 == 6.7 Why does the relay output default to an open relay after the LT-22222-L is powered off? ==
2782
2783
2784 * If the device is not properly shut down and is directly powered off.
2785 * It will default to a power-off state.
2786 * In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2787 * After a restart, the status before the power failure will be read from flash.
2788
2789 == 6.8 Can I setup LT-22222-L as a NC (Normally Closed) relay? ==
2790
2791
2792 The LT-22222-L's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
2793
2794
2795 [[image:image-20221006170630-1.png||height="610" width="945"]]
2796
2797
2798 == 6.9 Can the LT-22222-L save the RO state? ==
2799
2800
2801 To enable this feature, the firmware version must be 1.6.0 or higher.
2802
2803
2804 == 6.10 Why does the LT-22222-L always report 15.585V when measuring the AVI? ==
2805
2806
2807 It is likely that the GND is not connected during the measurement, or that the wire connected to the GND is loose.
2808
2809
2810 = 7. Troubleshooting =
2811
2812
2813 This section provides some known troubleshooting tips.
2814
2815
2816 )))
2817
2818 (((
2819 (((
2820 == 7.1 Downlink isn't working. How can I solve this? ==
2821
2822
2823 )))
2824 )))
2825
2826 (((
2827 Please refer to this link for debugging instructions: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2828 )))
2829
2830 (((
2831
2832
2833 == 7.2 Having trouble uploading an image? ==
2834
2835
2836 )))
2837
2838 (((
2839 Please refer to this link for troubleshooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2840 )))
2841
2842 (((
2843
2844
2845 == 7.3 Why can't I join TTN in the US915 /AU915 bands? ==
2846
2847
2848 )))
2849
2850 (((
2851 It might be related to the channel mapping. [[Please refer to this link for details.>>https://github.com/dragino/LT-22222-L/releases]]
2852 )))
2853
2854
2855 == 7.4 Why can the LT-22222-L perform uplink normally, but cannot receive downlink? ==
2856
2857
2858 The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue.
2859 Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2860
2861
2862 = 8. Ordering information =
2863
2864
2865 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2866
2867 (% style="color:#4f81bd" %)**XXX:**
2868
2869 * (% style="color:red" %)**EU433**(%%): LT with frequency bands EU433
2870 * (% style="color:red" %)**EU868**(%%): LT with frequency bands EU868
2871 * (% style="color:red" %)**KR920**(%%): LT with frequency bands KR920
2872 * (% style="color:red" %)**CN470**(%%): LT with frequency bands CN470
2873 * (% style="color:red" %)**AS923**(%%): LT with frequency bands AS923
2874 * (% style="color:red" %)**AU915**(%%): LT with frequency bands AU915
2875 * (% style="color:red" %)**US915**(%%): LT with frequency bands US915
2876 * (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2877 * (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2878
2879 = 9. Package information =
2880
2881
2882 **Package includes**:
2883
2884 * 1 x LT-22222-L I/O Controller
2885 * 1 x LoRa antenna matched to the frequency of the LT-22222-L
2886 * 1 x bracket for DIN rail mounting
2887 * 1 x 3.5 mm programming cable
2888
2889 **Dimension and weight**:
2890
2891 * Device Size: 13.5 x 7 x 3 cm
2892 * Device Weight: 105 g
2893 * Package Size / pcs : 14.5 x 8 x 5 cm
2894 * Weight / pcs : 170 g
2895
2896 = 10. Support =
2897
2898
2899 * (((
2900 Support is available Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule.
2901 )))
2902 * (((
2903 Please provide as much information as possible regarding your inquiry (e.g., product models, a detailed description of the problem, steps to replicate it, etc.) and send an email to [[support@dragino.cc>>mailto:support@dragino.cc]]
2904
2905
2906 )))
2907
2908 = 11. Reference​​​​​ =
2909
2910
2911 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2912 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2913 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0