Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19
20 = 1. Introduction =
21
22 == 1.1 What is the LT-22222-L I/O Controller? ==
23
24
25 (((
26 (((
27 {{info}}
28 **This manual is also applicable to the LT-33222-L.**
29 {{/info}}
30
31 The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN end device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
32
33 The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
34 )))
35 )))
36
37 (((
38 With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
39 )))
40
41 (((
42 You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
43
44 * If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Stack Community Network), you can select a network and register the LT-22222-L I/O controller with it.
45 * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
46 * Setup your own private LoRaWAN network.
47 )))
48
49 (((
50
51
52 The network diagram below illustrates how the LT-22222-L communicates with a typical LoRaWAN network.
53 )))
54
55 (% class="wikigeneratedid" %)
56 [[image:lorawan-nw.jpg||height="354" width="900"]]
57
58
59 == 1.2 Specifications ==
60
61
62 (% style="color:#037691" %)**Hardware System:**
63
64 * STM32L072xxxx MCU
65 * SX1276/78 Wireless Chip 
66 * Power Consumption:
67 ** Idle: 4mA@12V
68 ** 20dB Transmit: 34mA@12V
69 * Operating Temperature: -40 ~~ 85 Degrees, No Dew
70
71 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
72
73 * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50V, or 220V with optional external resistor)
74 * 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
75 * 2 x Relay Output (5A@250VAC / 30VDC)
76 * 2 x 0~~20mA Analog Input (res:0.01mA)
77 * 2 x 0~~30V Analog Input (res:0.01V)
78 * Power Input 7~~ 24V DC. 
79
80 (% style="color:#037691" %)**LoRa Spec:**
81
82 * Frequency Range:
83 ** Band 1 (HF): 862 ~~ 1020 MHz
84 ** Band 2 (LF): 410 ~~ 528 MHz
85 * 168 dB maximum link budget.
86 * +20 dBm - 100 mW constant RF output vs.
87 * +14 dBm high-efficiency PA.
88 * Programmable bit rate up to 300 kbps.
89 * High sensitivity: down to -148 dBm.
90 * Bullet-proof front end: IIP3 = -12.5 dBm.
91 * Excellent blocking immunity.
92 * Low RX current of 10.3 mA, 200 nA register retention.
93 * Fully integrated synthesizer with a resolution of 61 Hz.
94 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
95 * Built-in bit synchronizer for clock recovery.
96 * Preamble detection.
97 * 127 dB Dynamic Range RSSI.
98 * Automatic RF Sense and CAD with ultra-fast AFC.
99 * Packet engine up to 256 bytes with CRC.
100
101 == 1.3 Features ==
102
103
104 * LoRaWAN Class A & Class C modes
105 * Optional Customized LoRa Protocol
106 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
107 * AT Commands to change parameters
108 * Remotely configure parameters via LoRaWAN Downlink
109 * Firmware upgradable via program port
110 * Counting
111
112 == 1.4 Applications ==
113
114
115 * Smart buildings & home automation
116 * Logistics and supply chain management
117 * Smart metering
118 * Smart agriculture
119 * Smart cities
120 * Smart factory
121
122 == 1.5 Hardware Variants ==
123
124
125 (% border="1" cellspacing="3" style="width:510px" %)
126 |(% style="background-color:#4f81bd; color:white; width:94px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:172px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:244px" %)**Description**
127 |(% style="width:94px" %)**LT-22222-L**|(% style="width:172px" %)(((
128 (% style="text-align:center" %)
129 [[image:lt33222-l.jpg||height="110" width="95"]]
130 )))|(% style="width:256px" %)(((
131 * 2 x Digital Input (Bi-direction)
132 * 2 x Digital Output
133 * 2 x Relay Output (5A@250VAC / 30VDC)
134 * 2 x 0~~20mA Analog Input (res:0.01mA)
135 * 2 x 0~~30V Analog Input (res:0.01v)
136 * 1 x Counting Port
137 )))
138
139 = 2. Assembling the device =
140
141 == 2.1 Connecting the antenna ==
142
143
144 Connect the LoRa antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper screw terminal block. Secure the antenna by tightening it clockwise.
145
146 {{warning}}
147 **Warning! Do not power on the device without connecting the antenna.**
148 {{/warning}}
149
150
151 == 2.2 Terminals ==
152
153
154 The  LT-22222-L has two screw terminal blocks. The upper screw treminal block has 6 screw terminals and the lower screw terminal block has 10 screw terminals.
155
156 **Upper screw terminal block (from left to right):**
157
158 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:381px" %)
159 |=(% style="width: 139px;background-color:#4f81bd;color:white" %)Screw Terminal|=(% style="width: 242px;background-color:#4f81bd;color:white" %)Function
160 |(% style="width:139px" %)GND|(% style="width:242px" %)Ground
161 |(% style="width:139px" %)VIN|(% style="width:242px" %)Input Voltage
162 |(% style="width:139px" %)AVI2|(% style="width:242px" %)Analog Voltage Input Terminal 2
163 |(% style="width:139px" %)AVI1|(% style="width:242px" %)Analog Voltage Input Terminal 1
164 |(% style="width:139px" %)ACI2|(% style="width:242px" %)Analog Current Input Terminal 2
165 |(% style="width:139px" %)ACI1|(% style="width:242px" %)Analog Current Input Terminal 1
166
167 **Lower screw terminal block (from left to right):**
168
169 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:253px" %)
170 |=(% style="width: 125px;background-color:#4f81bd;color:white" %)Screw Terminal|=(% style="width: 128px;background-color:#4f81bd;color:white" %)Function
171 |(% style="width:125px" %)RO1-2|(% style="width:128px" %)Relay Output 1
172 |(% style="width:125px" %)RO1-1|(% style="width:128px" %)Relay Output 1
173 |(% style="width:125px" %)RO2-2|(% style="width:128px" %)Relay Output 2
174 |(% style="width:125px" %)RO2-1|(% style="width:128px" %)Relay Output 2
175 |(% style="width:125px" %)DI2+|(% style="width:128px" %)Digital Input 2
176 |(% style="width:125px" %)DI2-|(% style="width:128px" %)Digital Input 2
177 |(% style="width:125px" %)DI1+|(% style="width:128px" %)Digital Input 1
178 |(% style="width:125px" %)DI1-|(% style="width:128px" %)Digital Input 1
179 |(% style="width:125px" %)DO2|(% style="width:128px" %)Digital Output 2
180 |(% style="width:125px" %)DO1|(% style="width:128px" %)Digital Output 1
181
182
183 == 2.3 Connecting LT-22222-L to a Power Source ==
184
185
186 The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect your power supply’s **positive wire** to the **VIN** and the **negative wire** to the **GND** screw terminals. The power indicator **(PWR) LED** will turn on when the device is properly powered.
187
188 {{warning}}
189 **We recommend that you power on the LT-22222-L after adding its registration information to the LoRaWAN network server. Otherwise, the device will continuously send join-request messages to attempt to join a LoRaWAN network but will fail.**
190 {{/warning}}
191
192
193 [[image:1653297104069-180.png]]
194
195
196 = 3. Registering LT-22222-L with a LoRaWAN Network Server =
197
198
199 The LT-22222-L supports both OTAA (Over-the-Air Activation) and ABP (Activation By Personalization) methods to activate with a LoRaWAN Network Server. However, OTAA is the most secure method for activating a device with a LoRaWAN Network Server. OTAA regenerates session keys upon initial registration and regenerates new session keys after any subsequent reboots. By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode.
200
201
202 === 3.2.1 Prerequisites ===
203
204
205 The LT-22222-L comes with device registration information such as DevEUI, AppEUI, and AppKey that allows you to register it with a LoRaWAN network. These registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
206
207 [[image:image-20230425173427-2.png||height="246" width="530"]]
208
209 {{info}}
210 In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
211 {{/info}}
212
213 The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
214
215
216 === 3.2.2 The Things Stack ===
217
218
219 This section guides you through how to register your LT-22222-L with The Things Stack Sandbox.
220
221 {{info}}
222 The Things Stack Sandbox was formally called The Things Stack Community Edition.
223 {{/info}}
224
225
226 The network diagram below illustrates the connection between the LT-22222-L and The Things Stack, as well as how the data can be integrated with the ThingsEye IoT platform.
227
228
229 [[image:dragino-lorawan-nw-lt-22222-n.jpg||height="374" width="1400"]]
230
231 {{info}}
232 You can use a LoRaWAN gateway, such as the [[Dragino LPS8N>>https://www.dragino.com/products/lora-lorawan-gateway/item/200-lps8n.html]], to expand or create LoRaWAN coverage in your area.
233 {{/info}}
234
235
236 ==== 3.2.2.1 Setting up ====
237
238
239 * Sign up for a free account with [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] if you do not have one yet.
240 * Log in to your The Things Stack Sandbox account.
241 * Create an **application** with The Things Stack if you do not have one yet (E.g., dragino-docs).
242 * Go to your application's page and click on the **End devices** in the left menu.
243 * On the End devices page, click on **+ Register end device**. Two registration options are available:
244
245
246 ==== 3.2.2.2 Using the LoRaWAN Device Repository ====
247
248
249 * On the **Register end device** page:
250 ** Select the option **Select the end device in the LoRaWAN Device Repository **under **Input method**.
251 ** Select the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)** from the respective dropdown lists.
252 *** **End device brand**: Dragino Technology Co., Limited
253 *** **Model**: LT22222-L I/O Controller
254 *** **Hardware ver**: Unknown
255 *** **Firmware ver**: 1.6.0
256 *** **Profile (Region)**: Select the region that matches your device.
257 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
258
259 [[image:lt-22222-l-dev-repo-reg-p1.png]]
260
261
262 * Register end device page continued...
263 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'.
264 ** In the **DevEUI** field, enter the **DevEUI**.
265 ** In the **AppKey** field, enter the **AppKey.**
266 ** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
267 ** Under **After registration**, select the **View registered end device** option.
268
269 [[image:lt-22222-l-dev-repo-reg-p2.png]]
270
271
272 ==== 3.2.2.3 Adding device manually ====
273
274
275 * On the **Register end device** page:
276 ** Select the option **Enter end device specifies manually** under **Input method**.
277 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
278 ** Select the **LoRaWAN version** as **LoRaWAN Specification 1.0.3**
279 ** Select the **Regional Parameters version** as** RP001 Regional Parameters 1.0.3 revision A**
280 ** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the hidden section.
281 ** Select the option **Over the air activation (OTAA)** under the **Activation mode.**
282 ** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities** dropdown list.
283
284 [[image:lt-22222-l-manually-p1.png]]
285
286
287 * Register end device page continued...
288 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message '//**This end device can be registered on the network**//'
289 ** In the **DevEUI** field, enter the **DevEUI**.
290 ** In the **AppKey** field, enter the **AppKey**.
291 ** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
292 ** Under **After registration**, select the **View registered end device** option.
293 ** Click the **Register end device** button.
294
295 [[image:lt-22222-l-manually-p2.png]]
296
297
298 You will be navigated to the **Device overview** page.
299
300
301 [[image:lt-22222-device-overview.png]]
302
303
304 ==== 3.2.2.4 Joining ====
305
306
307 On the Device's page, click on **Live data** tab. The Live data panel for your device will display.
308
309 Now power on your LT-22222-L. The **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** The Things Stack network server. The **TX LED** will be on for **5 seconds** after joining the network. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server.
310
311
312 [[image:lt-22222-l-joining.png]]
313
314
315 ==== 3.2.2.5 Uplinks ====
316
317
318 After successfully joining, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**). When the LT-22222-L sends an uplink message to the server, the **TX LED** turns on for **1 second**. By default, you will receive an uplink data message from the device every 10 minutes.
319
320 Click on one of a **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the decode_payload {} JSON object.
321
322 [[image:lt-22222-ul-payload-decoded.png]]
323
324
325 If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **Applications > your application > End devices** > **your end device** > **Payload formatters** > **Uplink**. Then  select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
326
327 {{info}}
328 The Things Stack provides two levels of payload formatters: application level and device level. The device-level payload formatters **override **the application-level payload formatters.
329 {{/info}}
330
331 [[image:lt-22222-ul-payload-fmt.png]]
332
333
334 We also have a payload formatter that resolves some decoding issues present in the Device Repository formatter. You can add it under the Custom JavaScript formatter. It can be found [[here>>https://github.com/dragino/dragino-end-node-decoder/blob/main/LT22222-L/v1.6_decoder_ttn%20.txt]]:
335
336 (% class="wikigeneratedid" %)
337 [[image:lt-22222-l-js-custom-payload-formatter.png]]
338
339
340 ==== 3.2.2.6 Downlinks ====
341
342
343 When the LT-22222-L receives a downlink message from the server, the **RX LED** turns on for **1 second**.
344
345
346 == 3.3 Working Modes and Uplink Payload formats ==
347
348
349 The LT-22222-L has 5 **working modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
350
351 * (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
352
353 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
354
355 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
356
357 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
358
359 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
360
361 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
362
363 The uplink messages are sent over LoRaWAN FPort=2. By default, an uplink message is sent every 10 minutes.
364
365
366 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
367
368
369 (((
370 This is the default mode.
371
372 The uplink payload is 11 bytes long.
373
374 (% style="color:red" %)**Note:The maximum count depends on the bytes number of bytes.
375 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
376 It starts counting again when it reaches the maximum value.**(% style="display:none" wfd-invisible="true" %)
377
378 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
379 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
380 |Value|(((
381 AVI1 voltage
382 )))|(((
383 AVI2 voltage
384 )))|(((
385 ACI1 Current
386 )))|(((
387 ACI2 Current
388 )))|**DIDORO***|(((
389 Reserve
390 )))|MOD
391 )))
392
393 (((
394 (% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
395
396 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
397 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
398 |RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
399 )))
400
401 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
402 * DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
403 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
404
405 (% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
406
407 For example, if the payload is: [[image:image-20220523175847-2.png]]
408
409
410 **The interface values can be calculated as follows:  **
411
412 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
413
414 AVI2 channel voltage is 0x04AC/1000=1.196V
415
416 ACI1 channel current is 0x1310/1000=4.880mA
417
418 ACI2 channel current is 0x1300/1000=4.864mA
419
420 The last byte 0xAA= **10101010**(b) means,
421
422 * [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
423 * [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
424 * **[1] DI3 - not used for LT-22222-L.**
425 * [0] DI2 channel input is LOW, and the DI2 LED is OFF.
426 * [1] DI1 channel input state:
427 ** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
428 ** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
429 ** DI1 LED is ON in both cases.
430 * **[0] DO3 - not used for LT-22222-L.**
431 * [1] DO2 channel output is LOW, and the DO2 LED is ON.
432 * [0] DO1 channel output state:
433 ** DO1 is FLOATING when there is no load between DO1 and V+.
434 ** DO1 is HIGH and there is a load between DO1 and V+.
435 ** DO1 LED is OFF in both cases.
436
437 Reserve = 0
438
439 MOD = 1
440
441
442 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
443
444
445 (((
446 **For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
447 )))
448
449 (((
450 The uplink payload is 11 bytes long.
451
452 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
453 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
454 It starts counting again when it reaches the maximum value.**
455
456 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
457 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
458 |Value|COUNT1|COUNT2 |DIDORO*|(((
459 Reserve
460 )))|MOD
461 )))
462
463 (((
464 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
465
466 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
467 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
468 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
469
470 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
471 )))
472
473 * FIRST: Indicates that this is the first packet after joining the network.
474 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
475
476 (((
477 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
478
479
480 )))
481
482 (((
483 **To activate this mode, run the following AT commands:**
484 )))
485
486 (((
487 (% class="box infomessage" %)
488 (((
489 **AT+MOD=2**
490
491 **ATZ**
492 )))
493 )))
494
495 (((
496
497
498 (% style="color:#4f81bd" %)**AT Commands for counting:**
499 )))
500
501 (((
502 **For LT22222-L:**
503
504 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
505
506 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
507
508 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
509
510 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
511
512 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
513
514 (% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
515 )))
516
517
518 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
519
520
521 (% style="color:red" %)**Note: The maximum count depends on the bytes it is.
522 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
523 It starts counting again when it reaches the maximum value.**
524
525 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
526
527 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
528 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
529 |Value|COUNT1|(((
530 ACI1 Current
531 )))|(((
532 ACI2 Current
533 )))|DIDORO*|Reserve|MOD
534
535 (((
536 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
537
538 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
539 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
540 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
541 )))
542
543 * RO is for the relay. ROx=1: closed, ROx=0 always open.
544 * FIRST: Indicates that this is the first packet after joining the network.
545 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
546
547 (((
548 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
549 )))
550
551
552 (((
553 **To activate this mode, run the following AT commands:**
554 )))
555
556 (((
557 (% class="box infomessage" %)
558 (((
559 **AT+MOD=3**
560
561 **ATZ**
562 )))
563 )))
564
565 (((
566 AT Commands for counting:
567
568 The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
569 )))
570
571
572 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
573
574
575 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
576 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
577 It starts counting again when it reaches the maximum value.**
578
579
580 (((
581 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
582 )))
583
584 (((
585 The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
586
587 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
588 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
589 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
590 Reserve
591 )))|MOD
592 )))
593
594 (((
595 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
596
597 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
598 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
599 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
600 )))
601
602 * RO is for the relay. ROx=1: closed, ROx=0 always open.
603 * FIRST: Indicates that this is the first packet after joining the network.
604 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
605
606 (((
607 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
608
609
610 )))
611
612 (((
613 **To activate this mode, run the following AT commands:**
614 )))
615
616 (((
617 (% class="box infomessage" %)
618 (((
619 **AT+MOD=4**
620
621 **ATZ**
622 )))
623 )))
624
625 (((
626 AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
627 )))
628
629 (((
630 **In addition to that, below are the commands for AVI1 Counting:**
631
632 (% style="color:blue" %)**AT+SETCNT=3,60 **(%%)**(Sets AVI1 Count to 60)**
633
634 (% style="color:blue" %)**AT+VOLMAX=20000 **(%%)**(If the AVI1 voltage is higher than VOLMAX (20000mV =20V), the counter increases by 1)**
635
636 (% style="color:blue" %)**AT+VOLMAX=20000,0 **(%%)**(If the AVI1 voltage is lower than VOLMAX (20000mV =20V), counter increases by 1)**
637
638 (% style="color:blue" %)**AT+VOLMAX=20000,1 **(%%)**(If the AVI1 voltage is higher than VOLMAX (20000mV =20V), counter increases by 1)**
639 )))
640
641
642 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
643
644
645 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
646 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
647 It starts counting again when it reaches the maximum value.**
648
649
650 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
651
652 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
653 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
654 |Value|(((
655 AVI1 voltage
656 )))|(((
657 AVI2 voltage
658 )))|(((
659 ACI1 Current
660 )))|COUNT1|DIDORO*|(((
661 Reserve
662 )))|MOD
663
664 (((
665 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
666
667 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
668 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
669 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
670 )))
671
672 * RO is for the relay. ROx=1: closed, ROx=0 always open.
673 * FIRST: Indicates that this is the first packet after joining the network.
674 * (((
675 DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
676 )))
677
678 (((
679 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
680 )))
681
682 (((
683 **To activate this mode, run the following AT commands:**
684 )))
685
686 (((
687 (% class="box infomessage" %)
688 (((
689 **AT+MOD=5**
690
691 **ATZ**
692 )))
693 )))
694
695 (((
696 Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
697 )))
698
699
700 === 3.3.6 AT+ADDMOD~=6 (Trigger Mode, Optional) ===
701
702
703 (% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate __alongside__ with other modes.**
704
705 For example, if you configure the following commands:
706
707 * **AT+MOD=1 ** **~-~->**  Sets the default working mode
708 * **AT+ADDMOD6=1**   **~-~->**  Enables trigger mode
709
710 The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. It will send uplink packets in two cases:
711
712 1. Periodic uplink: Based on TDC time. The payload is the same as in normal mode (MOD=1 as set above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
713 1. (((
714 Trigger uplink: sent when a trigger condition is met. In this case, LT will send two packets
715
716 * The first uplink uses the payload specified in trigger mode (MOD=6).
717 * The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**confirmed uplinks.**
718 )))
719
720 (% style="color:#037691" %)**AT Commands to set Trigger Conditions**:
721
722 (% style="color:#4f81bd" %)**Trigger based on voltage**:
723
724 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
725
726
727 **Example:**
728
729 AT+AVLIM=3000,6000,0,2000 (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
730
731 AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
732
733
734 (% style="color:#4f81bd" %)**Trigger based on current**:
735
736 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
737
738
739 **Example:**
740
741 AT+ACLIM=10000,15000,0,0 (triggers an uplink if AC1 current is lower than 10mA or higher than 15mA)
742
743
744 (% style="color:#4f81bd" %)**Trigger based on DI status**:
745
746 DI status triggers Flag.
747
748 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
749
750
751 **Example:**
752
753 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
754
755
756 (% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
757
758 **Type Code**: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
759
760 **Format**: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
761
762 AA: Type Code for this downlink Command:
763
764 xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
765
766 yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
767
768 yy2 yy2: AC1 or AV1 HIGH limit.
769
770 yy3 yy3: AC2 or AV2 LOW limit.
771
772 Yy4 yy4: AC2 or AV2 HIGH limit.
773
774
775 **Example 1**: AA 00 13 88 00 00 00 00 00 00
776
777 Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
778
779
780 **Example 2**: AA 02 01 00
781
782 Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
783
784
785 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
786
787 MOD6 Payload: total of 11 bytes
788
789 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
790 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
791 |Value|(((
792 TRI_A FLAG
793 )))|(((
794 TRI_A Status
795 )))|(((
796 TRI_DI FLAG+STA
797 )))|Reserve|Enable/Disable MOD6|(((
798 MOD(6)
799 )))
800
801 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
802
803 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
804 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
805 |(((
806 AV1_LOW
807 )))|(((
808 AV1_HIGH
809 )))|(((
810 AV2_LOW
811 )))|(((
812 AV2_HIGH
813 )))|(((
814 AC1_LOW
815 )))|(((
816 AC1_HIGH
817 )))|(((
818 AC2_LOW
819 )))|(((
820 AC2_HIGH
821 )))
822
823 * Each bit shows if the corresponding trigger has been configured.
824
825 **Example:**
826
827 10100000: This means the system is configured to use the triggers AV1_LOW and AV2_LOW.
828
829
830 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
831
832 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
833 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
834 |(((
835 AV1_LOW
836 )))|(((
837 AV1_HIGH
838 )))|(((
839 AV2_LOW
840 )))|(((
841 AV2_HIGH
842 )))|(((
843 AC1_LOW
844 )))|(((
845 AC1_HIGH
846 )))|(((
847 AC2_LOW
848 )))|(((
849 AC2_HIGH
850 )))
851
852 * Each bit shows which status has been triggered on this uplink.
853
854 **Example:**
855
856 10000000: The uplink is triggered by AV1_LOW, indicating that the voltage is too low.
857
858
859 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
860
861 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
862 |(% style="width:50px" %)**bit 7**|(% style="width:50px" %)**bit 6**|(% style="width:50px" %)**bit 5**|(% style="width:50px" %)**bit 4**|(% style="width:90px" %)**bit 3**|(% style="width:80px" %)**bit 2**|(% style="width:90px" %)**bit 1**|(% style="width:95px" %)**bit 0**
863 |(% style="width:49px" %)N/A|(% style="width:53px" %)N/A|(% style="width:53px" %)N/A|(% style="width:55px" %)N/A|(% style="width:99px" %)DI2_STATUS|(% style="width:83px" %)DI2_FLAG|(% style="width:98px" %)DI1_STATUS|(% style="width:85px" %)DI1_FLAG
864
865 * Each bit shows which status has been triggered on this uplink.
866
867 **Example:**
868
869 00000111: This means both DI1 and DI2 triggers are enabled, and this packet is trigger by DI1.
870
871 00000101: This means both DI1 and DI2 triggers are enabled.
872
873
874 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enabled. 0x00: MOD6 is disabled.
875
876 Downlink command to poll/request MOD6 status:
877
878 **AB 06**
879
880 When device receives this command, it will send the MOD6 payload.
881
882
883 === 3.3.7 Payload Decoder ===
884
885 (((
886
887
888 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
889 )))
890
891
892 == 3.4 ​Configure LT-22222-L via AT Commands or Downlinks ==
893
894
895 (((
896 You can configure LT-22222-L I/O Controller via AT Commands or LoRaWAN Downlinks.
897 )))
898
899 (((
900 (((
901 There are two tytes of commands:
902 )))
903 )))
904
905 * (% style="color:blue" %)**Common commands**(%%):
906
907 * (% style="color:blue" %)**Sensor-related commands**(%%):
908
909
910 === 3.4.1 Common commands ===
911
912
913 (((
914 These are available for each sensors and include actions such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]s.
915
916
917 )))
918
919 === 3.4.2 Sensor-related commands ===
920
921
922 These commands are specially designed for the LT-22222-L. Commands can be sent to the device using options such as an AT command or a LoRaWAN downlink payload.
923
924
925 ==== 3.4.2.1 Set Transmit/Uplink Interval ====
926
927
928 Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
929
930 (% style="color:#037691" %)**AT command**
931
932 (% border="2" style="width:500px" %)
933 |**Command**|AT+TDC=<time>
934 |**Parameters**|**time **: uplink interval in milliseconds
935 |**Get**|AT+TDC=?
936 |**Response**|(((
937 current uplink interval
938
939 OK
940 )))
941 |**Set**|AT+TDC=<time>
942 |**Response**|OK
943 |**Example**|(((
944 AT+TDC=30000
945
946 Sets the uplink interval to **30 seconds** (30000 milliseconds)
947 )))
948
949 (% style="color:#037691" %)**Downlink payload**
950
951 (% border="2" style="width:500px" %)
952 |**Payload**|(((
953 <prefix><time>
954 )))
955 |**Parameters**|(((
956 **prefix** : 0x01
957
958 **time** : uplink interval in **seconds**, represented by **3  bytes** in **hexadecimal**.
959 )))
960 |**Example**|(((
961 01 **00 00 1E**
962
963 Sets the uplink interval to **30 seconds**
964
965 Conversion: 30 (dec) = 00 00 1E (hex)
966
967 See [[RapidTables>>https://www.rapidtables.com/convert/number/decimal-to-hex.html?x=30]]
968
969 [[image:Screenshot 2024-11-23 at 18.27.11.png]]
970 )))
971
972 ==== 3.4.2.2 Set the Working Mode (AT+MOD) ====
973
974
975 Sets the working mode.
976
977 (% style="color:#037691" %)**AT command**
978
979 (% border="2" style="width:500px" %)
980 |(% style="width:97px" %)**Command**|(% style="width:413px" %)AT+MOD=<working_mode>
981 |(% style="width:97px" %)**Parameters**|(% style="width:413px" %)(((
982 **working_mode** :
983
984 1 = (Default mode/factory set):  2ACI + 2AVI + DI + DO + RO
985
986 2 = Double DI Counting + DO + RO
987
988 3 = Single DI Counting + 2 x ACI + DO + RO
989
990 4 = Single DI Counting + 1 x Voltage Counting + DO + RO
991
992 5 = Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
993
994 6 = Trigger Mode, Optional, used together with MOD1 ~~ MOD5
995 )))
996 |(% style="width:97px" %)**Get**|(% style="width:413px" %)AT+MOD=?
997 |(% style="width:97px" %)**Response**|(% style="width:413px" %)(((
998 Current working mode
999
1000 OK
1001 )))
1002 |(% style="width:97px" %)**Set**|(% style="width:413px" %)AT+MOD=<working_mode>
1003 |(% style="width:97px" %)**Response**|(% style="width:413px" %)(((
1004 Attention:Take effect after ATZ
1005
1006 OK
1007 )))
1008 |(% style="width:97px" %)**Example**|(% style="width:413px" %)(((
1009 AT+MOD=2
1010
1011 Sets the device to working mode 2 (Double DI Counting + DO + RO)
1012 )))
1013
1014 (% class="wikigeneratedid" %)
1015 (% style="color:#037691" %)**Downlink payload**
1016
1017 (% border="2" style="width:500px" %)
1018 |(% style="width:98px" %)**Payload**|(% style="width:400px" %)<prefix><working_mode>
1019 |(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
1020 **prefix** : 0x0A
1021
1022 **working_mode** : Working mode, represented by 1 byte in hexadecimal.
1023 )))
1024 |(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
1025 0A **02**
1026
1027 Sets the device to working mode 2 (Double DI Counting + DO + RO)
1028 )))
1029
1030 ==== 3.4.2.3 Request an uplink from the device ====
1031
1032
1033 Requests an uplink from LT-22222-L. The content of the uplink payload varies based on the device's current working mode.
1034
1035 (% style="color:#037691" %)**AT command**
1036
1037 There is no AT Command available for this feature.
1038
1039 (% style="color:#037691" %)**Downlink payload**
1040
1041 (% border="2" style="width:500px" %)
1042 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix>FF
1043 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)**prefix** : 0x08
1044 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1045 08 **FF**
1046
1047 Requests an uplink from LT-22222-L.
1048 )))
1049
1050 ==== 3.4.2.4 Enable/Disable Trigger Mode ====
1051
1052
1053 Enable or disable the trigger mode for the current working mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
1054
1055 (% style="color:#037691" %)**AT Command**
1056
1057 (% border="2" style="width:500px" %)
1058 |(% style="width:95px" %)**Command**|(% style="width:403px" %)AT+ADDMOD6=<enable/disable trigger_mode>
1059 |(% style="width:95px" %)**Response**|(% style="width:403px" %)
1060 |(% style="width:95px" %)**Parameters**|(% style="width:403px" %)(((
1061 **enable/disable trigger_mode** :
1062
1063 1 = enable trigger mode
1064
1065 0 = disable trigger mode
1066 )))
1067 |(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1068 AT+ADDMOD6=1
1069
1070 Enable trigger mode for the current working mode
1071 )))
1072
1073 (% style="color:#037691" %)**Downlink payload**
1074
1075 (% border="2" style="width:500px" %)
1076 |(% style="width:97px" %)**Payload**|(% style="width:401px" %)<prefix><enable/disable trigger_mode>
1077 |(% style="width:97px" %)**Parameters**|(% style="width:401px" %)(((
1078 **prefix** : 0x0A 06 (two bytes in hexadecimal)
1079
1080 **enable/disable trigger_mode** : enable (1) or disable (0), represented by 1 byte in hexadecimal.
1081 )))
1082 |(% style="width:97px" %)**Example**|(% style="width:401px" %)(((
1083 0A 06 **01**
1084
1085 Enable trigger mode for the current working mode
1086 )))
1087
1088 ==== 3.4.2.5 Request trigger settings ====
1089
1090
1091 Requests the trigger settings.
1092
1093 (% style="color:#037691" %)**AT Command:**
1094
1095 There is no AT Command available for this feature.
1096
1097 (% style="color:#037691" %)**Downlink Payload**
1098
1099 (% border="2" style="width:500px" %)
1100 |(% style="width:95px" %)**Payload**|(% style="width:403px" %)<prefix>
1101 |(% style="width:95px" %)**Parameters**|(% style="width:403px" %)**prefix **: AB 06 (two bytes in hexadecimal)
1102 |(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1103 AB 06
1104
1105 Uplinks the trigger settings.
1106 )))
1107
1108 ==== 3.4.2.6 Enable/Disable DI1/DI2/DI3 as a trigger ====
1109
1110
1111 Enable or disable DI1/DI2/DI3 as a trigger.
1112
1113 (% style="color:#037691" %)**AT Command**
1114
1115 (% border="2" style="width:500px" %)
1116 |(% style="width:98px" %)**Command**|(% style="width:400px" %)AT+DTRI=<DI1_trigger>,<DI2_trigger>
1117 |(% style="width:98px" %)**Response**|(% style="width:400px" %)
1118 |(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
1119 **DI1_trigger:**
1120
1121 1 = enable DI1 trigger
1122
1123 0 = disable DI1 trigger
1124
1125 **DI2 _trigger**
1126
1127 1 = enable DI2 trigger
1128
1129 0 = disable DI2 trigger
1130 )))
1131 |(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
1132 AT+DTRI=1,0
1133
1134 Enable DI1 trigger, disable DI2 trigger
1135 )))
1136
1137 (% class="wikigeneratedid" %)
1138 (% style="color:#037691" %)**Downlink Payload**
1139
1140 (% border="2" style="width:500px" %)
1141 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><DI1_trigger><DI2_trigger>
1142 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1143 **prefix :** AA 02 (two bytes in hexadecimal)
1144
1145 **DI1_trigger:**
1146
1147 1 = enable DI1 trigger, represented by 1 byte in hexadecimal.
1148
1149 0 = disable DI1 trigger, represented by 1 byte in hexadecimal.
1150
1151 **DI2 _trigger**
1152
1153 1 = enable DI2 trigger, represented by 1 byte in hexadecimal.
1154
1155 0 = disable DI2 trigger, represented by 1 byte in hexadecimal.
1156 )))
1157 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1158 AA 02 **01 00**
1159
1160 Enable DI1 trigger, disable DI2 trigger
1161 )))
1162
1163 ==== 3.4.2.7 Trigger1 – Set DI or DI3 as a trigger ====
1164
1165
1166 Sets DI1 or DI3 (for LT-33222-L) as a trigger.
1167
1168 (% style="color:#037691" %)**AT Command**
1169
1170 (% border="2" style="width:500px" %)
1171 |(% style="width:101px" %)**Command**|(% style="width:397px" %)AT+TRIG1=<interrupt_mode>,<minimum_signal_duration>
1172 |(% style="width:101px" %)**Response**|(% style="width:397px" %)
1173 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1174 **interrupt_mode** :  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1175
1176 **minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1177 )))
1178 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1179 AT+TRIG1=1,100
1180
1181 Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1182 )))
1183
1184 (% class="wikigeneratedid" %)
1185 (% style="color:#037691" %)**Downlink Payload**
1186
1187 (% border="2" style="width:500px" %)
1188 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><interrupt_mode><minimum_signal_duration>
1189 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1190 **prefix** : 09 01 (hexadecimal)
1191
1192 **interrupt_mode** : 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1193
1194 **minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal.
1195 )))
1196 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1197 09 01 **01 00 64**
1198
1199 Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1200 )))
1201
1202 ==== 3.4.2.8 Trigger2 – Set DI2 as a trigger ====
1203
1204
1205 Sets DI2 as a trigger.
1206
1207 (% style="color:#037691" %)**AT Command**
1208
1209 (% border="2" style="width:500px" %)
1210 |(% style="width:94px" %)**Command**|(% style="width:404px" %)AT+TRIG2=<interrupt_mode>,<minimum_signal_duration>
1211 |(% style="width:94px" %)**Response**|(% style="width:404px" %)
1212 |(% style="width:94px" %)**Parameters**|(% style="width:404px" %)(((
1213 **interrupt_mode **:  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1214
1215 **minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1216 )))
1217 |(% style="width:94px" %)**Example**|(% style="width:404px" %)(((
1218 AT+TRIG2=0,100
1219
1220 Set the DI1 port to trigger on a falling edge; the valid signal duration is 100 ms.
1221 )))
1222
1223 (% style="color:#037691" %)**Downlink Payload**
1224
1225 (% border="2" style="width:500px" %)
1226 |(% style="width:96px" %)**Payload**|(% style="width:402px" %)<prefix><interrupt_mode><minimum_signal_duration>
1227 |(% style="width:96px" %)**Parameters**|(% style="width:402px" %)(((
1228 **prefix** : 09 02 (hexadecimal)
1229
1230 **interrupt_mode **: 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1231
1232 **minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal
1233 )))
1234 |(% style="width:96px" %)**Example**|(% style="width:402px" %)09 02 **00 00 64**
1235
1236 ==== 3.4.2.9 Trigger – Set AC (current) as a trigger ====
1237
1238
1239 Sets the current trigger based on the AC port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1240
1241 (% style="color:#037691" %)**AT Command**
1242
1243 (% border="2" style="width:500px" %)
1244 |(% style="width:104px" %)**Command**|(% style="width:394px" %)(((
1245 AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1246 )))
1247 |(% style="width:104px" %)**Response**|(% style="width:394px" %)
1248 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1249 **AC1_LIMIT_LOW** : lower limit of the current to be checked
1250
1251 **AC1_LIMIT_HIGH **: higher limit of the current to be checked
1252
1253 **AC2_LIMIT_HIGH **: lower limit of the current to be checked
1254
1255 **AC2_LIMIT_LOW** : higher limit of the current to be checked
1256 )))
1257 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1258 AT+ACLIM=10000,15000,0,0
1259
1260 Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA
1261 )))
1262 |(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1263
1264 (% style="color:#037691" %)**Downlink Payload**
1265
1266 (% border="2" style="width:500px" %)
1267 |(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1268 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1269 **prefix **: AA 01 (hexadecimal)
1270
1271 **AC1_LIMIT_LOW** : lower limit of the current to be checked, two bytes in hexadecimal
1272
1273 **AC1_LIMIT_HIGH **: higher limit of the current to be checked, two bytes in hexadecimal
1274
1275 **AC2_LIMIT_HIGH **: lower limit of the current to be checked, two bytes in hexadecimal
1276
1277 **AC2_LIMIT_LOW** : higher limit of the current to be checked, two bytes in hexadecimal
1278 )))
1279 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1280 AA 01 **27** **10 3A** **98** 00 00 00 00
1281
1282 Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA. Set all values to zero for AC2 limits because we are only checking AC1 limits.
1283 )))
1284 |(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1285
1286 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
1287
1288
1289 Sets the current trigger based on the AV port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1290
1291 (% style="color:#037691" %)**AT Command**
1292
1293 (% border="2" style="width:500px" %)
1294 |(% style="width:104px" %)**Command**|(% style="width:387px" %)AT+AVLIM= AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1295 |(% style="width:104px" %)**Response**|(% style="width:387px" %)
1296 |(% style="width:104px" %)**Parameters**|(% style="width:387px" %)(((
1297 **AC1_LIMIT_LOW** : lower limit of the current to be checked
1298
1299 **AC1_LIMIT_HIGH **: higher limit of the current to be checked
1300
1301 **AC2_LIMIT_HIGH **: lower limit of the current to be checked
1302
1303 **AC2_LIMIT_LOW** : higher limit of the current to be checked
1304 )))
1305 |(% style="width:104px" %)**Example**|(% style="width:387px" %)(((
1306 AT+AVLIM=3000,6000,0,2000
1307
1308 Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V
1309 )))
1310 |(% style="width:104px" %)**Note**|(% style="width:387px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1311
1312 (% style="color:#037691" %)**Downlink Payload**
1313
1314 (% border="2" style="width:500px" %)
1315 |(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1316 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1317 **prefix **: AA 00 (hexadecimal)
1318
1319 **AV1_LIMIT_LOW** : lower limit of the voltage to be checked, two bytes in hexadecimal
1320
1321 **AV1_LIMIT_HIGH **: higher limit of the voltage to be checked, two bytes in hexadecimal
1322
1323 **AV2_LIMIT_HIGH **: lower limit of the voltage to be checked, two bytes in hexadecimal
1324
1325 **AV2_LIMIT_LOW** : higher limit of the voltage to be checked, two bytes in hexadecimal
1326 )))
1327 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1328 AA 00 **0B B8 17 70 00 00 07 D0**
1329
1330 Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V.
1331 )))
1332 |(% style="width:104px" %)**Note**|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1333
1334 ==== 3.4.2.11 Trigger – Set minimum interval ====
1335
1336
1337 Sets the AV and AC trigger minimum interval. The device won't respond to a second trigger within this set time after the first trigger.
1338
1339 (% style="color:#037691" %)**AT Command**
1340
1341 (% border="2" style="width:500px" %)
1342 |(% style="width:113px" %)**Command**|(% style="width:385px" %)AT+ATDC=<time>
1343 |(% style="width:113px" %)**Response**|(% style="width:385px" %)
1344 |(% style="width:113px" %)**Parameters**|(% style="width:385px" %)(((
1345 **time** : in minutes
1346 )))
1347 |(% style="width:113px" %)**Example**|(% style="width:385px" %)(((
1348 AT+ATDC=5
1349
1350 The device won't respond to the second trigger within 5 minutes after the first trigger.
1351 )))
1352 |(% style="width:113px" %)Note|(% style="width:385px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1353
1354 (% style="color:#037691" %)**Downlink Payload**
1355
1356 (% border="2" style="width:500px" %)
1357 |(% style="width:112px" %)**Payload**|(% style="width:386px" %)<prefix><time>
1358 |(% style="width:112px" %)**Parameters**|(% style="width:386px" %)(((
1359 **prefix** : AC (hexadecimal)
1360
1361 **time **: in minutes (two bytes in hexadecimal)
1362 )))
1363 |(% style="width:112px" %)**Example**|(% style="width:386px" %)(((
1364 AC **00 05**
1365
1366 The device won't respond to the second trigger within 5 minutes after the first trigger.
1367 )))
1368 |(% style="width:112px" %)Note|(% style="width:386px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1369
1370 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1371
1372
1373 Controls the digital outputs DO1, DO2, and DO3
1374
1375 (% style="color:#037691" %)**AT Command**
1376
1377 There is no AT Command to control the Digital Output.
1378
1379
1380 (% style="color:#037691" %)**Downlink Payload**
1381
1382 (% border="2" style="width:500px" %)
1383 |(% style="width:115px" %)**Payload**|(% style="width:383px" %)<prefix><DO1><DO2><DO3>
1384 |(% style="width:115px" %)**Parameters**|(% style="width:383px" %)(((
1385 **prefix** : 02 (hexadecimal)
1386
1387 **DOI** : 01: Low,  00: High, 11: No action (1 byte in hex)
1388
1389 **DO2** : 01: Low,  00: High, 11: No action (1 byte in hex)
1390
1391 **DO3 **: 01: Low,  00: High, 11: No action (1 byte in hex)
1392 )))
1393 |(% style="width:115px" %)**Examples**|(% style="width:383px" %)(((
1394 02 **01 00 01**
1395
1396 If there is a load between V+ and DOx, it means DO1 is set to low, DO2 is set to high, and DO3 is set to low.
1397
1398 **More examples:**
1399
1400 (((
1401 01: Low,  00: High,  11: No action
1402
1403 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:383px" %)
1404 |(% style="background-color:#4f81bd; color:white; width:126px" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white; width:85px" %)**DO1**|(% style="background-color:#4f81bd; color:white; width:86px" %)**DO2**|(% style="background-color:#4f81bd; color:white; width:86px" %)**DO3**
1405 |(% style="width:126px" %)02  01  00  11|(% style="width:85px" %)Low|(% style="width:86px" %)High|(% style="width:86px" %)No Action
1406 |(% style="width:126px" %)02  00  11  01|(% style="width:85px" %)High|(% style="width:86px" %)No Action|(% style="width:86px" %)Low
1407 |(% style="width:126px" %)02  11  01  00|(% style="width:85px" %)No Action|(% style="width:86px" %)Low|(% style="width:86px" %)High
1408 )))
1409
1410 (((
1411 (((
1412 (% style="color:red" %)**Note: For the LT-22222-L, there is no DO3; the last byte can have any value.**
1413 )))
1414
1415 (((
1416 (% style="color:red" %)**The device will upload a packet if downlink code executes successfully.**
1417 )))
1418 )))
1419 )))
1420
1421 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1422
1423
1424 * (% style="color:#037691" %)**AT Command**
1425
1426 There is no AT command to control the digital output.
1427
1428
1429 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1430
1431 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Sets DO1/DO2/DO3 outputs with time control
1432
1433 This is to control the digital output time of DO pin. Include four bytes:
1434
1435 (% style="color:#4f81bd" %)**First byte**(%%)**:** Type code (0xA9)
1436
1437 (% style="color:#4f81bd" %)**Second byte**(%%): Inverter Mode
1438
1439 **01:** DO pins revert to their original state after the timeout.
1440 **00:** DO pins switch to an inverted state after the timeout.
1441
1442
1443 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Port status:
1444
1445 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1446 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1447 |0x01|DO1 set to low
1448 |0x00|DO1 set to high
1449 |0x11|DO1 NO Action
1450
1451 (% style="color:#4f81bd" %)**Fourth byte**(%%): Control Method and Port status:
1452
1453 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1454 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1455 |0x01|DO2 set to low
1456 |0x00|DO2 set to high
1457 |0x11|DO2 NO Action
1458
1459 (% style="color:#4f81bd" %)**Fifth byte**(%%): Control Method and Port status:
1460
1461 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1462 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1463 |0x01|DO3 set to low
1464 |0x00|DO3 set to high
1465 |0x11|DO3 NO Action
1466
1467 (% style="color:#4f81bd" %)**Sixth, Seventh, Eighth, and Ninth bytes**:(%%) Latching time (Unit: ms)
1468
1469
1470 (% style="color:red" %)**Note: **
1471
1472 Since firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1473
1474 Before firmware v1.6.0, the latch time only supported 2 bytes.
1475
1476 (% style="color:red" %)**The device will uplink a packet if the downlink code executes successfully.**
1477
1478
1479 **Example payload:**
1480
1481 **~1. A9 01 01 01 01 07 D0**
1482
1483 DO1 pin, DO2 pin, and DO3 pin will be set to low, last for 2 seconds, and then revert to their original state.
1484
1485 **2. A9 01 00 01 11 07 D0**
1486
1487 DO1 pin is set to high, DO2 pin is set to low, and DO3 pin takes no action. This lasts for 2 seconds and then reverts to the original state.
1488
1489 **3. A9 00 00 00 00 07 D0**
1490
1491 DO1 pin, DO2 pin, and DO3 pin will be set to high, last for 2 seconds, and then all change to low.
1492
1493 **4. A9 00 11 01 00 07 D0**
1494
1495 DO1 pin takes no action, DO2 pin is set to low, and DO3 pin is set to high. This lasts for 2 seconds, after which DO1 pin takes no action, DO2 pin is set to high, and DO3 pin is set to low.
1496
1497
1498 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1499
1500
1501 * (% style="color:#037691" %)**AT Command:**
1502
1503 There is no AT Command to control the Relay Output
1504
1505
1506 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1507
1508 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Sets RO1/RO2 output
1509
1510
1511 (((
1512 If the payload is 0x030100, it means setting RO1 to close and RO2 to open.
1513 )))
1514
1515 (((
1516 00: Close ,  01: Open , 11: No action
1517
1518 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1519 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1520 |03  00  11|Open|No Action
1521 |03  01  11|Close|No Action
1522 |03  11  00|No Action|Open
1523 |03  11  01|No Action|Close
1524 |03  00  00|Open|Open
1525 |03  01  01|Close|Close
1526 |03  01  00|Close|Open
1527 |03  00  01|Open|Close
1528 )))
1529
1530 (% style="color:red" %)**The device will uplink a packet if the downlink code executes successfully.**
1531
1532
1533 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1534
1535
1536 Controls the relay output time.
1537
1538 * (% style="color:#037691" %)**AT Command:**
1539
1540 There is no AT Command to control the Relay Output
1541
1542
1543 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1544
1545 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Sets RO1/RO2 relays with time control
1546
1547
1548 This controls the relay output time and includes 4 bytes:
1549
1550 (% style="color:#4f81bd" %)**First byte **(%%)**:** Type code (0x05)
1551
1552 (% style="color:#4f81bd" %)**Second byte (aa)**(%%): Inverter Mode
1553
1554 01: Relays will change back to their original state after timeout.
1555
1556 00: Relays will change to the inverter state after timeout.
1557
1558
1559 (% style="color:#4f81bd" %)**Third byte (bb)**(%%): Control Method and Ports status:
1560
1561 [[image:image-20221008095908-1.png||height="364" width="564"]]
1562
1563
1564 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh bytes (cc)**(%%): Latching time. Unit: ms
1565
1566
1567 (% style="color:red" %)**Note:**
1568
1569 Since firmware v1.6.0, the latch time supports both 4 bytes and 2 bytes.
1570
1571 Before firmware v1.6.0, the latch time only supported 2 bytes.
1572
1573
1574 (% style="color:red" %)**The device will uplink a packet if the downlink code executes successfully.**
1575
1576
1577 **Example payload:**
1578
1579 **~1. 05 01 11 07 D0**
1580
1581 Relay1 and Relay2 will be set to NC, lasting 2 seconds, then revert to their original state
1582
1583 **2. 05 01 10 07 D0**
1584
1585 Relay1 will change to NC, Relay2 will change to NO, lasting 2 seconds, then both will revert to their original state.
1586
1587 **3. 05 00 01 07 D0**
1588
1589 Relay1 will change to NO, Relay2 will change to NC, lasting 2 seconds, then Relay1 will change to NC, and Relay2 will change to NO.
1590
1591 **4. 05 00 00 07 D0**
1592
1593 Relay1 and Relay2 will change to NO, lasting 2 seconds, then both will change to NC.
1594
1595
1596
1597 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1598
1599
1600 When the voltage exceeds the threshold, counting begins. For details, see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1601
1602 (% style="color:#037691" %)**AT Command**
1603
1604 (% border="2" style="width:500px" %)
1605 |(% style="width:137px" %)**Command**|(% style="width:361px" %)AT+VOLMAX=<voltage>,<logic>
1606 |(% style="width:137px" %)**Response**|(% style="width:361px" %)
1607 |(% style="width:137px" %)**Parameters**|(% style="width:361px" %)(((
1608 **voltage** : voltage threshold in mV
1609
1610 **logic**:
1611
1612 **0** : lower than
1613
1614 **1**: higher than
1615
1616 if you leave logic parameter blank, it is considered 0
1617 )))
1618 |(% style="width:137px" %)**Examples**|(% style="width:361px" %)(((
1619 AT+VOLMAX=20000
1620
1621 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1622
1623 AT+VOLMAX=20000,0
1624
1625 If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1626
1627 AT+VOLMAX=20000,1
1628
1629 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1630 )))
1631
1632 (% style="color:#037691" %)**Downlink Payload**
1633
1634 (% border="2" style="width:500px" %)
1635 |(% style="width:140px" %)**Payload**|(% style="width:358px" %)<prefix><voltage><logic>
1636 |(% style="width:140px" %)**Parameters**|(% style="width:358px" %)(((
1637 **prefix** : A5 (hex)
1638
1639 **voltage** : voltage threshold in mV (2 bytes in hex)
1640
1641 **logic**: (1 byte in hexadecimal)
1642
1643 **0** : lower than
1644
1645 **1**: higher than
1646
1647 if you leave logic parameter blank, it is considered 1 (higher than)
1648 )))
1649 |(% style="width:140px" %)**Example**|(% style="width:358px" %)(((
1650 A5 **4E 20**
1651
1652 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1653
1654 A5 **4E 20 00**
1655
1656 If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1657
1658 A5 **4E 20 01**
1659
1660 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1661 )))
1662
1663 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1664
1665 This command allows users to pre-configure specific count numbers for various counting parameters such as Count1, Count2, or AVI1 Count. Use the AT command to set the desired count number for each configuration.
1666
1667 (% style="color:#037691" %)**AT Command**
1668
1669 (% border="2" style="width:500px" %)
1670 |(% style="width:134px" %)**Command**|(% style="width:364px" %)AT+SETCNT=<counting_parameter>,<number>
1671 |(% style="width:134px" %)**Response**|(% style="width:364px" %)
1672 |(% style="width:134px" %)**Parameters**|(% style="width:364px" %)(((
1673 **counting_parameter** :
1674
1675 1: COUNT1
1676
1677 2: COUNT2
1678
1679 3: AVI1 Count
1680
1681 **number** : Start number
1682 )))
1683 |(% style="width:134px" %)**Example**|(% style="width:364px" %)(((
1684 AT+SETCNT=1,10
1685
1686 Sets the COUNT1 to 10.
1687 )))
1688
1689 (% style="color:#037691" %)**Downlink Payload**
1690
1691 (% border="2" style="width:500px" %)
1692 |(% style="width:135px" %)**Payload**|(% style="width:363px" %)<prefix><counting_parameter><number>
1693 |(% style="width:135px" %)**Parameters**|(% style="width:363px" %)(((
1694 prefix : A8 (hex)
1695
1696 **counting_parameter** : (1 byte in hexadecimal)
1697
1698 1: COUNT1
1699
1700 2: COUNT2
1701
1702 3: AVI1 Count
1703
1704 **number** : Start number, 4 bytes in hexadecimal
1705 )))
1706 |(% style="width:135px" %)**Example**|(% style="width:363px" %)(((
1707 A8 **01 00 00 00 0A**
1708
1709 Sets the COUNT1 to 10.
1710 )))
1711
1712 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1713
1714 This command clears the counting in counting mode.
1715
1716 (% style="color:#037691" %)**AT Command**
1717
1718 (% border="2" style="width:500px" %)
1719 |(% style="width:142px" %)**Command**|(% style="width:356px" %)AT+CLRCOUNT
1720 |(% style="width:142px" %)**Response**|(% style="width:356px" %)-
1721
1722 (% style="color:#037691" %)**Downlink Payload**
1723
1724 (% border="2" style="width:500px" %)
1725 |(% style="width:141px" %)**Payload**|(% style="width:357px" %)<prefix><clear?>
1726 |(% style="width:141px" %)**Parameters**|(% style="width:357px" %)(((
1727 prefix : A6 (hex)
1728
1729 clear? : 01 (hex)
1730 )))
1731 |(% style="width:141px" %)**Example**|(% style="width:357px" %)A6 **01**
1732
1733 ==== 3.4.2.19 Counting ~-~- Set Saving Interval for 'Counting Result' ====
1734
1735
1736 This command allows you to configure the device to save its counting result to internal flash memory at specified intervals. By setting a save time, the device will periodically store the counting data to prevent loss in case of power failure. The save interval can be adjusted to suit your requirements, with a minimum value of 30 seconds.
1737
1738 (% style="color:#037691" %)**AT Command**
1739
1740 (% border="2" style="width:500px" %)
1741 |(% style="width:124px" %)**Command**|(% style="width:374px" %)AT+COUTIME=<time>
1742 |(% style="width:124px" %)**Response**|(% style="width:374px" %)
1743 |(% style="width:124px" %)**Parameters**|(% style="width:374px" %)time : seconds (0 to 16777215)
1744 |(% style="width:124px" %)**Example**|(% style="width:374px" %)(((
1745 AT+COUTIME=60
1746
1747 Sets the device to save its counting results to the memory every 60 seconds.
1748 )))
1749
1750 (% style="color:#037691" %)**Downlink Payload**
1751
1752 (% border="2" style="width:500px" %)
1753 |(% style="width:123px" %)**Payload**|(% style="width:375px" %)<prefix><time>
1754 |(% style="width:123px" %)**Parameters**|(% style="width:375px" %)(((
1755 prefix : A7
1756
1757 time : seconds, 3 bytes in hexadecimal
1758 )))
1759 |(% style="width:123px" %)**Example**|(% style="width:375px" %)(((
1760 A7 **00 00 3C**
1761
1762 Sets the device to save its counting results to the memory every 60 seconds.
1763 )))
1764
1765 ==== 3.4.2.20 Reset saved RO and DO states ====
1766
1767
1768 This command allows you to reset the saved relay output (RO) and digital output (DO) states when the device joins the network. By configuring this setting, you can control whether the device should retain or reset the relay states after a reset and rejoin to the network.
1769
1770 (% style="color:#037691" %)**AT Command**
1771
1772 (% border="2" style="width:500px" %)
1773 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+RODORESET=<state>
1774 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1775 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1776 **state** :
1777
1778 **0** : RODO will close when the device joins the network. (default)
1779
1780 **1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1781 )))
1782 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1783 (% style="color:blue" %)**AT+RODORESET=1 **
1784
1785 RODO will close when the device joins the network. (default)
1786
1787 (% style="color:blue" %)**AT+RODORESET=0 **
1788
1789 After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1790 )))
1791
1792 (% style="color:#037691" %)**Downlink Payload**
1793
1794 (% border="2" style="width:500px" %)
1795 |(% style="width:127px" %)**Payload**|(% style="width:371px" %)<prefix><state>
1796 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1797 **prefix** : AD
1798
1799 **state** :
1800
1801 **0** : RODO will close when the device joins the network. (default), represents as 1 byte in hexadecimal.
1802
1803 **1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network. - represents as 1 byte in hexadecimal
1804 )))
1805 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1806 AD **01**
1807
1808 RODO will close when the device joins the network. (default)
1809
1810 AD **00**
1811
1812 After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1813 )))
1814
1815 ==== 3.4.2.21 Encrypted payload ====
1816
1817
1818 This command allows you to configure whether the device should upload data in an encrypted format or in plaintext. By default, the device encrypts the payload before uploading. You can toggle this setting to either upload encrypted data or transmit it without encryption.
1819
1820 (% style="color:#037691" %)**AT Command:**
1821
1822 (% border="2" style="width:500px" %)
1823 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DECRYPT=<state>
1824 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1825 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1826 **state** :
1827
1828 **1** : The payload is uploaded without encryption
1829
1830 **0** : The payload is encrypted when uploaded (default)
1831 )))
1832 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1833 AT+DECRYPT=1
1834
1835 The payload is uploaded without encryption
1836
1837 AT+DECRYPT=0
1838
1839 The payload is encrypted when uploaded (default)
1840 )))
1841
1842 There is no downlink payload for this configuration.
1843
1844
1845 ==== 3.4.2.22 Get sensor value ====
1846
1847
1848 This command allows you to retrieve and optionally uplink sensor readings through the serial port.
1849
1850 (% style="color:#037691" %)**AT Command**
1851
1852 (% border="2" style="width:500px" %)
1853 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+GETSENSORVALUE=<state>
1854 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1855 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1856 **state** :
1857
1858 **0 **: Retrieves the current sensor reading via the serial port.
1859
1860 **1 **: Retrieves and uploads the current sensor reading via the serial port.
1861 )))
1862 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1863 AT+GETSENSORVALUE=0
1864
1865 Retrieves the current sensor reading via the serial port.
1866
1867 AT+GETSENSORVALUE=1
1868
1869 Retrieves and uplinks the current sensor reading via the serial port.
1870 )))
1871
1872 There is no downlink payload for this configuration.
1873
1874
1875 ==== 3.4.2.23 Resetting the downlink packet count ====
1876
1877
1878 This command manages how the node handles mismatched downlink packet counts. It offers two modes: one disables the reception of further downlink packets if discrepancies occur, while the other resets the downlink packet count to align with the server, ensuring continued communication.
1879
1880 (% style="color:#037691" %)**AT Command**
1881
1882 (% border="2" style="width:500px" %)
1883 |(% style="width:130px" %)**Command**|(% style="width:368px" %)AT+DISFCNTCHECK=<state>
1884 |(% style="width:130px" %)**Response**|(% style="width:368px" %)(((
1885
1886 )))
1887 |(% style="width:130px" %)**Parameters**|(% style="width:368px" %)(((
1888 **state **:
1889
1890 **0** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default).
1891
1892
1893 **1** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency.
1894 )))
1895 |(% style="width:130px" %)**Example**|(% style="width:368px" %)(((
1896 AT+DISFCNTCHECK=0
1897
1898 When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default).
1899
1900 AT+DISFCNTCHECK=1
1901
1902 When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency.
1903 )))
1904
1905 There is no downlink payload for this configuration.
1906
1907
1908 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1909
1910
1911 This command controls the behavior of the node when the combined size of the MAC commands (MACANS) from the server and the payload exceeds the allowed byte limit for the current data rate (DR). The command provides two modes: one enables splitting the data into batches to ensure compliance with the byte limit, while the other prioritizes the payload and ignores the MACANS in cases of overflow.
1912
1913 (% style="color:#037691" %)**AT Command**
1914
1915 (% border="2" style="width:500px" %)
1916 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DISMACANS=<state>
1917 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1918 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1919 **state** :
1920
1921 **0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1922
1923 **1** : When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1924 )))
1925 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1926 AT+DISMACANS=0
1927
1928 When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1929
1930 AT+DISMACANS=1
1931
1932 When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1933 )))
1934
1935 (% style="color:#037691" %)**Downlink Payload**
1936
1937 (% border="2" style="width:500px" %)
1938 |(% style="width:126px" %)**Payload**|(% style="width:372px" %)<prefix><state>
1939 |(% style="width:126px" %)**Parameters**|(% style="width:372px" %)(((
1940 **prefix** : 21
1941
1942 **state** : (2 bytes in hexadecimal)
1943
1944 **0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1945
1946 **1 **: When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1947 )))
1948 |(% style="width:126px" %)**Example**|(% style="width:372px" %)(((
1949 21 **00 01**
1950
1951 Set DISMACANS=1
1952 )))
1953
1954 ==== 3.4.2.25 Copy downlink to uplink ====
1955
1956
1957 This command enables the device to immediately uplink the payload of a received downlink packet back to the server. The command allows for quick data replication from downlink to uplink, with a fixed port number of 100.
1958
1959 (% style="color:#037691" %)**AT Command**(%%)**:**
1960
1961 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving a downlink payload from the server, the device will immediately uplink the payload back to the server using port number 100.
1962
1963 Example:**aa xx xx xx xx**         ~/~/ **aa** indicates whether the configuration has changed: **00** means YES, and **01** means NO. **xx xx xx xx** are the bytes uplinked back.
1964
1965
1966 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1967
1968 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1969
1970 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1971
1972 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1973
1974
1975 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1976
1977 There is no downlink option available for this feature.
1978
1979
1980 ==== 3.4.2.26 Query firmware version, frequency band, sub band, and TDC time ====
1981
1982
1983 This command is used to query key information about the device, including its firmware version, frequency band, sub band, and TDC time. By sending the specified payload as a downlink, the server can retrieve this essential data from the device.
1984
1985 * (((
1986 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1987
1988 (% style="color:blue" %)**26 01  ** (%%) ~/~/  The downlink payload 26 01 is used to query the device's firmware version, frequency band, sub band, and TDC time.
1989
1990
1991
1992 )))
1993
1994 **Example:**
1995
1996 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1997
1998
1999 == 3.5 Integrating with ThingsEye.io ==
2000
2001
2002 The Things Stack application supports integration with ThingsEye.io. Once integrated, ThingsEye.io acts as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
2003
2004
2005 === 3.5.1 Configuring The Things Stack ===
2006
2007
2008 We use The Things Stack Sandbox in this example:
2009
2010 * In **The Things Stack Sandbox**, go to the **Application **for the LT-22222-L you added.
2011 * Select **MQTT** under **Integrations** in the left menu.
2012 * In the **Connection information **section, under **Connection credentials**, The Things Stack displays an auto-generated **username**. You can use it or provide a new one.
2013 * Click the **Generate new API key** button to generate a password. You can view it by clicking on the **visibility toggle/eye** icon. The API key works as the password.
2014
2015 {{info}}
2016 The username and  password (API key) you created here are required in the next section.
2017 {{/info}}
2018
2019 [[image:tts-mqtt-integration.png]]
2020
2021
2022 === 3.5.2 Configuring ThingsEye.io ===
2023
2024
2025 The ThingsEye.io IoT platform is not open for self-registration at the moment. If you are interested in testing the platform, please send your project information to admin@thingseye.io, and we will create an account for you.
2026
2027 * Login to your [[ThingsEye.io >>https://thingseye.io]]account.
2028 * Under the **Integrations center**, click **Integrations**.
2029 * Click the **Add integration** button (the button with the **+** symbol).
2030
2031 [[image:thingseye-io-step-1.png]]
2032
2033
2034 On the **Add integration** window, configure the following:
2035
2036 **Basic settings:**
2037
2038 * Select **The Things Stack Community** from the **Integration type** list.
2039 * Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
2040 * Ensure the following options are turned on.
2041 ** Enable integration
2042 ** Debug mode
2043 ** Allow create devices or assets
2044 * Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
2045
2046 [[image:thingseye-io-step-2.png]]
2047
2048
2049 **Uplink data converter:**
2050
2051 * Click the **Create new** button if it is not selected by default.
2052 * Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
2053 * Click the **JavaScript** button.
2054 * Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
2055 * Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
2056
2057 [[image:thingseye-io-step-3.png]]
2058
2059
2060 **Downlink data converter (this is an optional step):**
2061
2062 * Click the **Create new** button if it is not selected by default.
2063 * Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name.
2064 * Click the **JavaScript** button.
2065 * Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Downlink_Converter.js]].
2066 * Click the **Next** button. You will be navigated to the **Connection** tab.
2067
2068 [[image:thingseye-io-step-4.png]]
2069
2070
2071 **Connection:**
2072
2073 * Choose **Region** from the **Host type**.
2074 * Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
2075 * Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The **username **and **password **can be found on the MQTT integration page of your The Things Stack account (see **3.5.1 Configuring The Things Stack**).
2076 * Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
2077
2078 [[image:message-1.png]]
2079
2080
2081 * Click the **Add** button.
2082
2083 [[image:thingseye-io-step-5.png]]
2084
2085
2086 Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings and correct any errors.
2087
2088
2089 [[image:thingseye.io_integrationsCenter_integrations.png]]
2090
2091
2092 ==== 3.5.2.1 Viewing integration details ====
2093
2094
2095 Click on your integration from the list. The **Integration details** window will appear with the **Details **tab selected. The **Details **tab shows all the settings you have provided for this integration.
2096
2097 [[image:integration-details.png]]
2098
2099
2100 If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
2101
2102 {{info}}
2103 See also [[ThingsEye documentation>>https://wiki.thingseye.io/xwiki/bin/view/Main/]].
2104 {{/info}}
2105
2106
2107 ==== 3.5.2.2 Viewing events ====
2108
2109
2110 The **Events **tab displays all the uplink messages from the LT-22222-L.
2111
2112 * Select **Debug **from the **Event type** dropdown.
2113 * Select the** time frame** from the **time window**.
2114
2115 [[image:thingseye-events.png]]
2116
2117
2118 * To view the **JSON payload** of a message, click on the **three dots (...)** in the Message column of the desired message.
2119
2120 [[image:thingseye-json.png]]
2121
2122
2123 ==== 3.5.2.3 Deleting an integration ====
2124
2125
2126 If you want to delete an integration, click the **Delete integratio**n button on the Integrations page.
2127
2128
2129 ==== 3.5.2.4 Creating a Dashboard to Display and Analyze LT-22222-L Data ====
2130
2131
2132 This will be added soon.
2133
2134
2135 == 3.6 Interface Details ==
2136
2137 === 3.6.1 Digital Input Ports: DI1/DI2/DI3 (For LT-33222-L, Low Active) ===
2138
2139
2140 Supports** NPN-type **sensors.
2141
2142 [[image:1653356991268-289.png]]
2143
2144
2145 === 3.6.2 Digital Input Ports: DI1/DI2 ===
2146
2147
2148 (((
2149 The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
2150 )))
2151
2152 (((
2153 (((
2154 The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
2155
2156
2157 )))
2158 )))
2159
2160 [[image:1653357170703-587.png]]
2161
2162 (((
2163 (((
2164 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
2165 )))
2166 )))
2167
2168 (((
2169
2170 )))
2171
2172 (((
2173 (% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
2174 )))
2175
2176 (((
2177 This type of sensor outputs a low (GND) signal when active.
2178 )))
2179
2180 * (((
2181 Connect the sensor's output to DI1-
2182 )))
2183 * (((
2184 Connect the sensor's VCC to DI1+.
2185 )))
2186
2187 (((
2188 When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be:
2189 )))
2190
2191 (((
2192 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
2193 )))
2194
2195 (((
2196 For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
2197 )))
2198
2199 (((
2200
2201 )))
2202
2203 (((
2204 (% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
2205 )))
2206
2207 (((
2208 This type of sensor outputs a high signal (e.g., 24V) when active.
2209 )))
2210
2211 * (((
2212 Connect the sensor's output to DI1+
2213 )))
2214 * (((
2215 Connect the sensor's GND DI1-.
2216 )))
2217
2218 (((
2219 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
2220 )))
2221
2222 (((
2223 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
2224 )))
2225
2226 (((
2227 If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
2228 )))
2229
2230 (((
2231
2232 )))
2233
2234 (((
2235 (% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
2236 )))
2237
2238 (((
2239 Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
2240 )))
2241
2242 * (((
2243 Connect the sensor's output to DI1+ with a 50K resistor in series.
2244 )))
2245 * (((
2246 Connect the sensor's GND DI1-.
2247 )))
2248
2249 (((
2250 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
2251 )))
2252
2253 (((
2254 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
2255 )))
2256
2257 (((
2258 If the sensor output is 220V, then [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
2259 )))
2260
2261
2262 (% style="color:blue" %)**Example 4**(%%): Connecting to a Dry Contact sensor
2263
2264 From the DI port circuit above, activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference on its own.
2265
2266 To detect a Dry Contact, you can supply a power source to one of the pins of the Dry Contact. A reference circuit diagram is shown below.
2267
2268 [[image:image-20230616235145-1.png]]
2269
2270 (% style="color:blue" %)**Example 5**(%%): Connecting to an Open Collector
2271
2272 [[image:image-20240219115718-1.png]]
2273
2274
2275 === 3.6.3 Digital Output Ports: DO1/DO2 ===
2276
2277
2278 (% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
2279
2280 (% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
2281
2282 [[image:1653357531600-905.png]]
2283
2284
2285 === 3.6.4 Analog Input Interfaces ===
2286
2287
2288 The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
2289
2290
2291 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
2292
2293 [[image:1653357592296-182.png]]
2294
2295 Example: Connecting a 4~~20mA sensor
2296
2297 We will use the wind speed sensor as an example for reference only.
2298
2299
2300 (% style="color:blue" %)**Specifications of the wind speed sensor:**
2301
2302 (% style="color:red" %)**Red:  12~~24V**
2303
2304 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
2305
2306 **Black:  GND**
2307
2308 **Connection diagram:**
2309
2310 [[image:1653357640609-758.png]]
2311
2312 [[image:1653357648330-671.png||height="155" width="733"]]
2313
2314
2315 Example: Connecting to a regulated power supply to measure voltage
2316
2317 [[image:image-20230608101532-1.png||height="606" width="447"]]
2318
2319 [[image:image-20230608101608-2.jpeg||height="379" width="284"]]
2320
2321 [[image:image-20230608101722-3.png||height="102" width="1139"]]
2322
2323
2324 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
2325
2326 (% style="color:red" %)**Red:  12~~24v**
2327
2328 **Black:  GND**
2329
2330
2331 === 3.6.5 Relay Output ===
2332
2333
2334 (((
2335 The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
2336
2337 **Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
2338 )))
2339
2340 [[image:image-20220524100215-9.png]]
2341
2342
2343 [[image:image-20220524100215-10.png||height="382" width="723"]]
2344
2345
2346 == 3.7 LED Indicators ==
2347
2348
2349 The table below lists the behavior of LED indicators for each port function.
2350
2351 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
2352 |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
2353 |**PWR**|Always on when there is power
2354 |**TX**|(((
2355 (((
2356 Device boot: TX blinks 5 times.
2357 )))
2358
2359 (((
2360 Successful network join: TX remains ON for 5 seconds.
2361 )))
2362
2363 (((
2364 Transmit a LoRa packet: TX blinks once
2365 )))
2366 )))
2367 |**RX**|RX blinks once when a packet is received.
2368 |**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
2369 |**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
2370 |**DI1**|(((
2371 For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
2372 )))
2373 |**DI2**|(((
2374 For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
2375 )))
2376 |**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
2377 |**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
2378
2379 = 4. Using AT Commands =
2380
2381
2382 The LT-22222-L supports programming using AT Commands.
2383
2384
2385 == 4.1 Connecting the LT-22222-L to a PC ==
2386
2387
2388 (((
2389 You can use a USB-to-TTL adapter/converter along with a 3.5mm Program Cable to connect the LT-22222-L to a PC, as shown below.
2390
2391 [[image:usb-ttl-audio-jack-connection.jpg]]
2392
2393
2394 )))
2395
2396
2397 (((
2398 On the PC, you need to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate of (% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-L. Access to AT commands is disabled by default, and a password (default: (% style="color:green" %)**123456**)(%%) must be entered to enable AT command access, as shown below:
2399 )))
2400
2401 [[image:1653358355238-883.png]]
2402
2403
2404 (((
2405 You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
2406
2407
2408 == 4.2 LT-22222-L related AT commands ==
2409
2410
2411 )))
2412
2413 (((
2414 The following is the list of all the AT commands related to the LT-22222-L, except for those used for switching between working modes.
2415
2416 * **##AT##+<CMD>?** : Help on <CMD>
2417 * **##AT##+<CMD>** : Run <CMD>
2418 * **##AT##+<CMD>=<value>** : Set the value
2419 * **##AT##+<CMD>=?** : Get the value
2420 * ##**ATZ**##: Trigger a reset of the MCU
2421 * ##**AT+FDR**##: Reset Parameters to factory default, reserve keys 
2422 * **##AT+DEUI##**: Get or set the Device EUI (DevEUI)
2423 * **##AT+DADDR##**: Get or set the Device Address (DevAddr)
2424 * **##AT+APPKEY##**: Get or set the Application Key (AppKey)
2425 * ##**AT+NWKSKEY**##: Get or set the Network Session Key (NwkSKey)
2426 * **##AT+APPSKEY##**: Get or set the Application Session Key (AppSKey)
2427 * **##AT+APPEUI##**: Get or set the Application EUI (AppEUI)
2428 * **##AT+ADR##**: Get or set the Adaptive Data Rate setting. (0: OFF, 1: ON)
2429 * ##**AT+TXP**##: Get or set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Specification)
2430 * **##AT+DR##**:  Get or set the Data Rate. (0-7 corresponding to DR_X)  
2431 * **##AT+DCS##**: Get or set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
2432 * ##**AT+PNM**##: Get or set the public network mode. (0: off, 1: on)
2433 * ##**AT+RX2FQ**##: Get or set the Rx2 window frequency
2434 * ##**AT+RX2DR**##: Get or set the Rx2 window data rate (0-7 corresponding to DR_X)
2435 * ##**AT+RX1DL**##: Get or set the delay between the end of the Tx and the Rx Window 1 in ms
2436 * ##**AT+RX2DL**##: Get or set the delay between the end of the Tx and the Rx Window 2 in ms
2437 * ##**AT+JN1DL**##: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
2438 * ##**AT+JN2DL**##: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
2439 * ##**AT+NJM**##: Get or set the Network Join Mode. (0: ABP, 1: OTAA)
2440 * ##**AT+NWKID**##: Get or set the Network ID
2441 * ##**AT+FCU**##: Get or set the Frame Counter Uplink (FCntUp)
2442 * ##**AT+FCD**##: Get or set the Frame Counter Downlink (FCntDown)
2443 * ##**AT+CLASS**##: Get or set the Device Class
2444 * ##**AT+JOIN**##: Join network
2445 * ##**AT+NJS**##: Get OTAA Join Status
2446 * ##**AT+SENDB**##: Send hexadecimal data along with the application port
2447 * ##**AT+SEND**##: Send text data along with the application port
2448 * ##**AT+RECVB**##: Print last received data in binary format (with hexadecimal values)
2449 * ##**AT+RECV**##: Print last received data in raw format
2450 * ##**AT+VER**##: Get current image version and Frequency Band
2451 * ##**AT+CFM**##: Get or Set the confirmation mode (0-1)
2452 * ##**AT+CFS**##: Get confirmation status of the last AT+SEND (0-1)
2453 * ##**AT+SNR**##: Get the SNR of the last received packet
2454 * ##**AT+RSSI**##: Get the RSSI of the last received packet
2455 * ##**AT+TDC**##: Get or set the application data transmission interval in ms
2456 * ##**AT+PORT**##: Get or set the application port
2457 * ##**AT+DISAT**##: Disable AT commands
2458 * ##**AT+PWORD**##: Set password, max 9 digits
2459 * ##**AT+CHS**##: Get or set the Frequency (Unit: Hz) for Single Channel Mode
2460 * ##**AT+CHE**##: Get or set eight channels mode, Only for US915, AU915, CN470
2461 * ##**AT+CFG**##: Print all settings
2462 )))
2463
2464
2465 == 4.2 Common AT Command Sequence ==
2466
2467 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
2468
2469 (((
2470
2471
2472 (((
2473 (% style="color:blue" %)**If the device has not yet joined the network:**
2474 )))
2475 )))
2476
2477 (((
2478 (% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT commands access**##
2479 )))
2480
2481 (((
2482 (% style="background-color:#dcdcdc" %)##**AT+FDR ~/~/Reset parameters to factory default, Reserve keys**##
2483 )))
2484
2485 (((
2486 (% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT commands access**##
2487 )))
2488
2489 (((
2490 (% style="background-color:#dcdcdc" %)##**AT+NJM=0 ~/~/Set to ABP mode**##
2491 )))
2492
2493 (((
2494 (% style="background-color:#dcdcdc" %)##**ATZ ~/~/Reset MCU**##
2495 )))
2496
2497
2498 (((
2499 (% style="color:blue" %)**If the device has already joined the network:**
2500 )))
2501
2502 (((
2503 (% style="background-color:#dcdcdc" %)##**AT+NJM=0**##
2504 )))
2505
2506 (((
2507 (% style="background-color:#dcdcdc" %)##**ATZ**##
2508 )))
2509
2510
2511 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
2512
2513 (((
2514
2515
2516 (((
2517 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter password to enable AT commands access
2518 )))
2519 )))
2520
2521 (((
2522 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset parameters to Factory Default, Reserve keys
2523 )))
2524
2525 (((
2526 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter password to enable AT commands access
2527 )))
2528
2529 (((
2530 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to CLASS C mode
2531 )))
2532
2533 (((
2534 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
2535 )))
2536
2537 (((
2538 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
2539 )))
2540
2541 (((
2542 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
2543 )))
2544
2545 (((
2546 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
2547 )))
2548
2549 (((
2550 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4 MHz
2551 )))
2552
2553 (((
2554 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2 frequency to 868.4 MHz (according to the result from the server)
2555 )))
2556
2557 (((
2558 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2 DR to match the downlink DR from the server. See below.
2559 )))
2560
2561 (((
2562 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address. The Device Address can be found in the application on the LoRaWAN NS.
2563 )))
2564
2565 (((
2566 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
2567
2568
2569 )))
2570
2571 (((
2572 (% style="color:red" %)**Note:**
2573 )))
2574
2575 (((
2576 **~1. Ensure that the device is set to ABP mode in the LoRaWAN Network Server.**
2577
2578 **2. Verify that the LG01/02 gateway RX frequency matches the AT+CHS setting exactly.**
2579
2580 **3. Make sure the SF/bandwidth settings in the LG01/LG02 match the settings of AT+DR. Refer to [[this link>>url:http://www.dragino.com/downloads/index.php?
2581 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
2582
2583 **4. The commands AT+RX2FQ and AT+RX2DR enable downlink functionality. To set the correct parameters, you can check the actual downlink parameters to be used as shown below. Here, RX2FQ should be set to 868400000 and RX2DR should be set to 5.**
2584 )))
2585
2586 (((
2587 [[image:1653359097980-169.png||height="188" width="729"]]
2588 )))
2589
2590
2591 === 4.2.3 Change to Class A ===
2592
2593
2594 (((
2595 (% style="color:blue" %)**If the sensor has JOINED:**
2596
2597 (% style="background-color:#dcdcdc" %)**AT+CLASS=A**
2598
2599 (% style="background-color:#dcdcdc" %)**ATZ**
2600 )))
2601
2602
2603 = 5. Case Study =
2604
2605 == 5.1 Counting how many objects pass through the flow line ==
2606
2607
2608 See [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
2609
2610
2611 = 6. FAQ =
2612
2613
2614 This section contains some frequently asked questions, which can help you resolve common issues and find solutions quickly.
2615
2616
2617 == 6.1 How to update the firmware? ==
2618
2619
2620 Dragino frequently releases firmware updates for the LT-22222-L. Updating your LT-22222-L with the latest firmware version helps to:
2621
2622 * Support new features
2623 * Fix bugs
2624 * Change LoRaWAN frequency bands
2625
2626 You will need the following things before proceeding:
2627
2628 * 3.5mm programming cable (included with the LT-22222-L as an additional accessory)
2629 * USB to TTL adapter/converter
2630 * Download and install the [[STM32 Flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. (replaced by STM32CubeProgrammer)
2631 * Download the latest firmware image from [[LT-22222-L firmware image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. Check the file name of the firmware to find the correct region.
2632
2633 {{info}}
2634 As of this writing, the latest firmware version available for the LT-22222-L is v1.6.1.
2635 {{/info}}
2636
2637 Below is the hardware setup for uploading a firmware image to the LT-22222-L:
2638
2639 [[image:usb-ttl-audio-jack-connection.jpg]]
2640
2641
2642
2643 Start the STM32 Flash Loader and choose the correct COM port to update.
2644
2645 (((
2646 (((
2647 (% style="color:blue" %)**For LT-22222-L**(%%):
2648
2649 Hold down the **PRO** button, then briefly press the **RST** button. The **DO1** LED will change from OFF to ON. When the **DO1** LED is ON, it indicates that the device is in firmware download mode.
2650 )))
2651
2652
2653 )))
2654
2655 [[image:image-20220524103407-12.png]]
2656
2657
2658 [[image:image-20220524103429-13.png]]
2659
2660
2661 [[image:image-20220524104033-15.png]]
2662
2663
2664 (% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5 mm cable. The pin mapping is as follows:
2665
2666 [[image:1653360054704-518.png||height="186" width="745"]]
2667
2668
2669 (((
2670 (((
2671 == 6.2 How to change the LoRaWAN frequency band/region? ==
2672
2673
2674 )))
2675 )))
2676
2677 (((
2678 You can follow the introductions on [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2679 )))
2680
2681 (((
2682
2683
2684 == 6.3 How to setup LT-22222-L to work with a Single Channel Gateway, such as LG01/LG02? ==
2685
2686
2687 )))
2688
2689 (((
2690 (((
2691 In this case, you need to set the LT-22222-L to work in ABP mode and transmit on only one frequency.
2692 )))
2693 )))
2694
2695 (((
2696 (((
2697 We assume you have an LG01/LG02 working on the frequency 868400000. Below are the steps.
2698
2699
2700 )))
2701 )))
2702
2703 (((
2704 (% style="color:#0000ff" %)**Step 1**(%%): Log in to The Things Stack Sandbox account and create an ABP device in the application. To do this, use the manual registration option as explained in section 3.2.2.2, //Adding a Device Manually//. Select //Activation by Personalization (ABP)// under Activation Mode. Enter the DevEUI exactly as shown on the registration information sticker, then generate the Device Address, Application Session Key (AppSKey), and Network Session Key (NwkSKey).
2705
2706 [[image:lt-22222-l-abp.png||height="686" width="1000"]]
2707 )))
2708
2709 (((
2710
2711 )))
2712
2713 {{warning}}
2714 Ensure that the Device Address (DevAddr) and the two keys match between the LT-22222-L and The Things Stack. You can modify them either in The Things Stack or on the LT-22222-L to make them align. In The Things Stack, you can configure the NwkSKey and AppSKey on the settings page, but note that the Device Address is generated by The Things Stack.
2715 {{/warning}}
2716
2717
2718 (((
2719 (% style="color:blue" %)**Step 2**(%%)**:  **(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)Run AT commands to configure the LT-22222-L to operate in single-frequency and ABP mode. The AT commands are as follows:
2720
2721
2722 )))
2723
2724 (((
2725 (% style="background-color:#dcdcdc" %)**123456** (%%) : Enter the password to enable AT access.
2726
2727 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Reset parameters to factory default, keeping keys reserved.
2728
2729 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) : Set to ABP mode.
2730
2731 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) : Disable the Adaptive Data Rate (ADR).
2732
2733 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) : Set Data Rate (Use AT+DR=3 for the 915 MHz band).
2734
2735 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) : Set transmit interval to 60 seconds.
2736
2737 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4 MHz.
2738
2739 (% style="background-color:#dcdcdc" %)**AT+DADDR=xxxx**(%%) : Set the Device Address (DevAddr)
2740
2741 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:700; text-decoration:none; white-space:pre-wrap" %)**AT+APPKEY=xxxx**(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %): Get or set the Application Key (AppKey)
2742
2743 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+NWKSKEY=xxxx**: Get or set the Network Session Key (NwkSKey)
2744
2745 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+APPSKEY=xxxx**: Get or set the Application Session Key (AppSKey)
2746
2747 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) : Reset MCU.
2748 )))
2749
2750
2751 (((
2752 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)The following figure shows the screenshot of the command set above, issued using a serial tool:
2753 )))
2754
2755 [[image:1653360498588-932.png||height="485" width="726"]]
2756
2757
2758 == 6.4 How to change the uplink interval? ==
2759
2760
2761 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2762
2763
2764 == 6.5 Can I see the counting event in the serial output? ==
2765
2766
2767 (((
2768 You can run the AT command **AT+DEBUG** to view the counting event in the serial output. If the firmware is too old and doesn’t support AT+DEBUG, update to the latest firmware first.
2769
2770
2771 == 6.6 Can I use point-to-point communication with LT-22222-L? ==
2772
2773
2774 Yes, you can. Please refer to the [[Point-to-Point Communication of LT-22222-L>>https://wiki.dragino.com/xwiki/bin/view/Main/%20Point%20to%20Point%20Communication%20of%20LT-22222-L/]] page. The firmware that supports point-to-point communication can be found [[here>>https://github.com/dragino/LT-22222-L/releases]].
2775
2776
2777 )))
2778
2779 (((
2780 == 6.7 Why does the relay output default to an open relay after the LT-22222-L is powered off? ==
2781
2782
2783 * If the device is not properly shut down and is directly powered off.
2784 * It will default to a power-off state.
2785 * In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2786 * After a restart, the status before the power failure will be read from flash.
2787
2788 == 6.8 Can I setup LT-22222-L as a NC (Normally Closed) relay? ==
2789
2790
2791 The LT-22222-L's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
2792
2793
2794 [[image:image-20221006170630-1.png||height="610" width="945"]]
2795
2796
2797 == 6.9 Can the LT-22222-L save the RO state? ==
2798
2799
2800 To enable this feature, the firmware version must be 1.6.0 or higher.
2801
2802
2803 == 6.10 Why does the LT-22222-L always report 15.585V when measuring the AVI? ==
2804
2805
2806 It is likely that the GND is not connected during the measurement, or that the wire connected to the GND is loose.
2807
2808
2809 = 7. Troubleshooting =
2810
2811
2812 This section provides some known troubleshooting tips.
2813
2814
2815 )))
2816
2817 (((
2818 (((
2819 == 7.1 Downlink isn't working. How can I solve this? ==
2820
2821
2822 )))
2823 )))
2824
2825 (((
2826 Please refer to this link for debugging instructions: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2827 )))
2828
2829 (((
2830
2831
2832 == 7.2 Having trouble uploading an image? ==
2833
2834
2835 )))
2836
2837 (((
2838 Please refer to this link for troubleshooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2839 )))
2840
2841 (((
2842
2843
2844 == 7.3 Why can't I join TTN in the US915 /AU915 bands? ==
2845
2846
2847 )))
2848
2849 (((
2850 It might be related to the channel mapping. [[Please refer to this link for details.>>https://github.com/dragino/LT-22222-L/releases]]
2851 )))
2852
2853
2854 == 7.4 Why can the LT-22222-L perform uplink normally, but cannot receive downlink? ==
2855
2856
2857 The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue.
2858 Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2859
2860
2861 = 8. Ordering information =
2862
2863
2864 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2865
2866 (% style="color:#4f81bd" %)**XXX:**
2867
2868 * (% style="color:red" %)**EU433**(%%): LT with frequency bands EU433
2869 * (% style="color:red" %)**EU868**(%%): LT with frequency bands EU868
2870 * (% style="color:red" %)**KR920**(%%): LT with frequency bands KR920
2871 * (% style="color:red" %)**CN470**(%%): LT with frequency bands CN470
2872 * (% style="color:red" %)**AS923**(%%): LT with frequency bands AS923
2873 * (% style="color:red" %)**AU915**(%%): LT with frequency bands AU915
2874 * (% style="color:red" %)**US915**(%%): LT with frequency bands US915
2875 * (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2876 * (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2877
2878 = 9. Package information =
2879
2880
2881 **Package includes**:
2882
2883 * 1 x LT-22222-L I/O Controller
2884 * 1 x LoRa antenna matched to the frequency of the LT-22222-L
2885 * 1 x bracket for DIN rail mounting
2886 * 1 x 3.5 mm programming cable
2887
2888 **Dimension and weight**:
2889
2890 * Device Size: 13.5 x 7 x 3 cm
2891 * Device Weight: 105 g
2892 * Package Size / pcs : 14.5 x 8 x 5 cm
2893 * Weight / pcs : 170 g
2894
2895 = 10. Support =
2896
2897
2898 * (((
2899 Support is available Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule.
2900 )))
2901 * (((
2902 Please provide as much information as possible regarding your inquiry (e.g., product models, a detailed description of the problem, steps to replicate it, etc.) and send an email to [[support@dragino.cc>>mailto:support@dragino.cc]]
2903
2904
2905 )))
2906
2907 = 11. Reference​​​​​ =
2908
2909
2910 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2911 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2912 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0