Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19
20 = 1. Introduction =
21
22 == 1.1 What is the LT-22222-L I/O Controller? ==
23
24 (((
25 (((
26 {{info}}
27 **This manual is also applicable to the LT-33222-L.**
28 {{/info}}
29
30 The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN end device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
31
32 The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
33 )))
34 )))
35
36 (((
37 With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
38 )))
39
40 (((
41 You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
42
43 * If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Stack Community Network), you can select a network and register the LT-22222-L I/O controller with it.
44 * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
45 * Setup your own private LoRaWAN network.
46 )))
47
48 (((
49
50
51 The network diagram below illustrates how the LT-22222-L communicates with a typical LoRaWAN network.
52 )))
53
54 (% class="wikigeneratedid" %)
55 [[image:lorawan-nw.jpg||height="354" width="900"]]
56
57
58 == 1.2 Specifications ==
59
60
61 (% style="color:#037691" %)**Hardware System:**
62
63 * STM32L072xxxx MCU
64 * SX1276/78 Wireless Chip 
65 * Power Consumption:
66 ** Idle: 4mA@12V
67 ** 20dB Transmit: 34mA@12V
68 * Operating Temperature: -40 ~~ 85 Degrees, No Dew
69
70 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
71
72 * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50V, or 220V with optional external resistor)
73 * 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
74 * 2 x Relay Output (5A@250VAC / 30VDC)
75 * 2 x 0~~20mA Analog Input (res:0.01mA)
76 * 2 x 0~~30V Analog Input (res:0.01V)
77 * Power Input 7~~ 24V DC. 
78
79 (% style="color:#037691" %)**LoRa Spec:**
80
81 * Frequency Range:
82 ** Band 1 (HF): 862 ~~ 1020 MHz
83 ** Band 2 (LF): 410 ~~ 528 MHz
84 * 168 dB maximum link budget.
85 * +20 dBm - 100 mW constant RF output vs.
86 * +14 dBm high-efficiency PA.
87 * Programmable bit rate up to 300 kbps.
88 * High sensitivity: down to -148 dBm.
89 * Bullet-proof front end: IIP3 = -12.5 dBm.
90 * Excellent blocking immunity.
91 * Low RX current of 10.3 mA, 200 nA register retention.
92 * Fully integrated synthesizer with a resolution of 61 Hz.
93 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
94 * Built-in bit synchronizer for clock recovery.
95 * Preamble detection.
96 * 127 dB Dynamic Range RSSI.
97 * Automatic RF Sense and CAD with ultra-fast AFC.
98 * Packet engine up to 256 bytes with CRC.
99
100 == 1.3 Features ==
101
102 * LoRaWAN Class A & Class C modes
103 * Optional Customized LoRa Protocol
104 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
105 * AT Commands to change parameters
106 * Remotely configure parameters via LoRaWAN Downlink
107 * Firmware upgradable via program port
108 * Counting
109
110 == 1.4 Applications ==
111
112 * Smart buildings & home automation
113 * Logistics and supply chain management
114 * Smart metering
115 * Smart agriculture
116 * Smart cities
117 * Smart factory
118
119 == 1.5 Hardware Variants ==
120
121
122 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
123 |(% style="background-color:#4f81bd; color:white; width:94px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:172px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:244px" %)**Description**
124 |(% style="width:94px" %)**LT-22222-L**|(% style="width:172px" %)(((
125 (% style="text-align:center" %)
126 [[image:lt33222-l.jpg||height="116" width="100"]]
127 )))|(% style="width:256px" %)(((
128 * 2 x Digital Input (Bi-direction)
129 * 2 x Digital Output
130 * 2 x Relay Output (5A@250VAC / 30VDC)
131 * 2 x 0~~20mA Analog Input (res:0.01mA)
132 * 2 x 0~~30V Analog Input (res:0.01v)
133 * 1 x Counting Port
134 )))
135
136 = 2. Assembling the device =
137
138 == 2.1 Connecting the antenna ==
139
140 Connect the LoRa antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper screw terminal block. Secure the antenna by tightening it clockwise.
141
142 {{warning}}
143 **Warning! Do not power on the device without connecting the antenna.**
144 {{/warning}}
145
146 == 2.2 Terminals ==
147
148 The  LT-22222-L has two screw terminal blocks. The upper screw treminal block has 6 screw terminals and the lower screw terminal block has 10 screw terminals.
149
150 **Upper screw terminal block (from left to right):**
151
152 (% style="width:634px" %)
153 |=(% style="width: 295px;" %)Screw Terminal|=(% style="width: 338px;" %)Function
154 |(% style="width:295px" %)GND|(% style="width:338px" %)Ground
155 |(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
156 |(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
157 |(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
158 |(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
159 |(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
160
161 **Lower screw terminal block (from left to right):**
162
163 (% style="width:633px" %)
164 |=(% style="width: 296px;" %)Screw Terminal|=(% style="width: 334px;" %)Function
165 |(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
166 |(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
167 |(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
168 |(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
169 |(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
170 |(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
171 |(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
172 |(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
173 |(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
174 |(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
175
176 == 2.3 Connecting LT-22222-L to a Power Source ==
177
178 The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect your power supply’s **positive wire** to the **VIN** and the **negative wire** to the **GND** screw terminals. The power indicator **(PWR) LED** will turn on when the device is properly powered.
179
180 {{warning}}
181 **We recommend that you power on the LT-22222-L after adding its registration information to the LoRaWAN network server. Otherwise, the device will continuously send join-request messages to attempt to join a LoRaWAN network but will fail.**
182 {{/warning}}
183
184
185 [[image:1653297104069-180.png]]
186
187
188 = 3. Registering LT-22222-L with a LoRaWAN Network Server =
189
190 The LT-22222-L supports both OTAA (Over-the-Air Activation) and ABP (Activation By Personalization) methods to activate with a LoRaWAN Network Server. However, OTAA is the most secure method for activating a device with a LoRaWAN Network Server. OTAA regenerates session keys upon initial registration and regenerates new session keys after any subsequent reboots. By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode.
191
192
193 === 3.2.1 Prerequisites ===
194
195 The LT-22222-L comes with device registration information such as DevEUI, AppEUI, and AppKey that allows you to register it with a LoRaWAN network. These registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
196
197 [[image:image-20230425173427-2.png||height="246" width="530"]]
198
199 {{info}}
200 In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
201 {{/info}}
202
203 The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
204
205 === 3.2.2 The Things Stack ===
206
207 This section guides you through how to register your LT-22222-L with The Things Stack Sandbox.
208
209 {{info}}
210 The Things Stack Sandbox was formally called The Things Stack Community Edition.
211 {{/info}}
212
213
214 The network diagram below illustrates the connection between the LT-22222-L and The Things Stack, as well as how the data can be integrated with the ThingsEye IoT platform.
215
216
217 [[image:dragino-lorawan-nw-lt-22222-n.jpg]]
218
219 {{info}}
220 You can use a LoRaWAN gateway, such as the [[Dragino LPS8N>>https://www.dragino.com/products/lora-lorawan-gateway/item/200-lps8n.html]], to expand or create LoRaWAN coverage in your area.
221 {{/info}}
222
223
224 ==== 3.2.2.1 Setting up ====
225
226 * Sign up for a free account with [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] if you do not have one yet.
227 * Log in to your The Things Stack Sandbox account.
228 * Create an **application** with The Things Stack if you do not have one yet (E.g., dragino-docs).
229 * Go to your application's page and click on the **End devices** in the left menu.
230 * On the End devices page, click on **+ Register end device**. Two registration options are available:
231
232 ==== 3.2.2.2 Using the LoRaWAN Device Repository ====
233
234 * On the **Register end device** page:
235 ** Select the option **Select the end device in the LoRaWAN Device Repository **under **Input method**.
236 ** Select the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)** from the respective dropdown lists.
237 *** **End device brand**: Dragino Technology Co., Limited
238 *** **Model**: LT22222-L I/O Controller
239 *** **Hardware ver**: Unknown
240 *** **Firmware ver**: 1.6.0
241 *** **Profile (Region)**: Select the region that matches your device.
242 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
243
244 [[image:lt-22222-l-dev-repo-reg-p1.png]]
245
246
247 * Register end device page continued...
248 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'.
249 ** In the **DevEUI** field, enter the **DevEUI**.
250 ** In the **AppKey** field, enter the **AppKey.**
251 ** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
252 ** Under **After registration**, select the **View registered end device** option.
253
254 [[image:lt-22222-l-dev-repo-reg-p2.png]]
255
256
257 ==== 3.2.2.3 Adding device manually ====
258
259 * On the **Register end device** page:
260 ** Select the option **Enter end device specifies manually** under **Input method**.
261 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
262 ** Select the **LoRaWAN version** as **LoRaWAN Specification 1.0.3**
263 ** Select the **Regional Parameters version** as** RP001 Regional Parameters 1.0.3 revision A**
264 ** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the hidden section.
265 ** Select the option **Over the air activation (OTAA)** under the **Activation mode.**
266 ** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities** dropdown list.
267
268 [[image:lt-22222-l-manually-p1.png]]
269
270
271 * Register end device page continued...
272 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message '//**This end device can be registered on the network**//'
273 ** In the **DevEUI** field, enter the **DevEUI**.
274 ** In the **AppKey** field, enter the **AppKey**.
275 ** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
276 ** Under **After registration**, select the **View registered end device** option.
277 ** Click the **Register end device** button.
278
279 [[image:lt-22222-l-manually-p2.png]]
280
281
282 You will be navigated to the **Device overview** page.
283
284
285 [[image:lt-22222-device-overview.png]]
286
287
288 ==== 3.2.2.4 Joining ====
289
290 On the Device's page, click on **Live data** tab. The Live data panel for your device will display.
291
292 Now power on your LT-22222-L. The **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** The Things Stack network server. The **TX LED** will be on for **5 seconds** after joining the network. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server.
293
294
295 [[image:lt-22222-l-joining.png]]
296
297
298
299 ==== 3.2.2.5 Uplinks ====
300
301
302 After successfully joining, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**). When the LT-22222-L sends an uplink message to the server, the **TX LED** turns on for **1 second**. By default, you will receive an uplink data message from the device every 10 minutes.
303
304 Click on one of a **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the decode_payload {} JSON object.
305
306 [[image:lt-22222-ul-payload-decoded.png]]
307
308
309 If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **Applications > your application > End devices** > **your end device** > **Payload formatters** > **Uplink**. Then  select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
310
311 {{info}}
312 The Things Stack provides two levels of payload formatters: application level and device level. The device-level payload formatters **override **the application-level payload formatters.
313 {{/info}}
314
315 [[image:lt-22222-ul-payload-fmt.png]]
316
317
318 We also have a payload formatter that resolves some decoding issues present in the Device Repository formatter. You can add it under the Custom JavaScript formatter. It can be found [[here>>https://github.com/dragino/dragino-end-node-decoder/blob/main/LT22222-L/v1.6_decoder_ttn%20.txt]]:
319
320 (% class="wikigeneratedid" %)
321 [[image:lt-22222-l-js-custom-payload-formatter.png]]
322
323
324 ==== 3.2.2.6 Downlinks ====
325
326 When the LT-22222-L receives a downlink message from the server, the **RX LED** turns on for **1 second**.
327
328
329 == 3.3 Working Modes and Uplink Payload formats ==
330
331
332 The LT-22222-L has 5 **working modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
333
334 * (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
335
336 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
337
338 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
339
340 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
341
342 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
343
344 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
345
346 The uplink messages are sent over LoRaWAN FPort=2. By default, an uplink message is sent every 10 minutes.
347
348 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
349
350 (((
351 This is the default mode.
352
353 The uplink payload is 11 bytes long.
354
355 (% style="color:red" %)**Note:The maximum count depends on the bytes number of bytes.
356 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
357 It starts counting again when it reaches the maximum value.**(% style="display:none" wfd-invisible="true" %)
358
359 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
360 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
361 |Value|(((
362 AVI1 voltage
363 )))|(((
364 AVI2 voltage
365 )))|(((
366 ACI1 Current
367 )))|(((
368 ACI2 Current
369 )))|**DIDORO***|(((
370 Reserve
371 )))|MOD
372 )))
373
374 (((
375 (% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
376
377 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
378 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
379 |RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
380 )))
381
382 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
383 * DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
384 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
385
386 (% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
387
388 For example, if the payload is: [[image:image-20220523175847-2.png]]
389
390
391 **The interface values can be calculated as follows:  **
392
393 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
394
395 AVI2 channel voltage is 0x04AC/1000=1.196V
396
397 ACI1 channel current is 0x1310/1000=4.880mA
398
399 ACI2 channel current is 0x1300/1000=4.864mA
400
401 The last byte 0xAA= **10101010**(b) means,
402
403 * [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
404 * [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
405 * **[1] DI3 - not used for LT-22222-L.**
406 * [0] DI2 channel input is LOW, and the DI2 LED is OFF.
407 * [1] DI1 channel input state:
408 ** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
409 ** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
410 ** DI1 LED is ON in both cases.
411 * **[0] DO3 - not used for LT-22222-L.**
412 * [1] DO2 channel output is LOW, and the DO2 LED is ON.
413 * [0] DO1 channel output state:
414 ** DO1 is FLOATING when there is no load between DO1 and V+.
415 ** DO1 is HIGH and there is a load between DO1 and V+.
416 ** DO1 LED is OFF in both cases.
417
418 Reserve = 0
419
420 MOD = 1
421
422 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
423
424
425 (((
426 **For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
427 )))
428
429 (((
430 The uplink payload is 11 bytes long.
431
432 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
433 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
434 It starts counting again when it reaches the maximum value.**
435
436 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
437 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
438 |Value|COUNT1|COUNT2 |DIDORO*|(((
439 Reserve
440 )))|MOD
441 )))
442
443 (((
444 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
445
446 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
447 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
448 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
449
450 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
451 )))
452
453 * FIRST: Indicates that this is the first packet after joining the network.
454 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
455
456 (((
457 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
458
459
460 )))
461
462 (((
463 **To activate this mode, run the following AT commands:**
464 )))
465
466 (((
467 (% class="box infomessage" %)
468 (((
469 **AT+MOD=2**
470
471 **ATZ**
472 )))
473 )))
474
475 (((
476
477
478 (% style="color:#4f81bd" %)**AT Commands for counting:**
479 )))
480
481 (((
482 **For LT22222-L:**
483
484 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
485
486 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
487
488 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
489
490 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
491
492 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
493
494 (% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
495 )))
496
497
498 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
499
500 (% style="color:red" %)**Note: The maximum count depends on the bytes it is.
501 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
502 It starts counting again when it reaches the maximum value.**
503
504 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
505
506 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
507 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
508 |Value|COUNT1|(((
509 ACI1 Current
510 )))|(((
511 ACI2 Current
512 )))|DIDORO*|Reserve|MOD
513
514 (((
515 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
516
517 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
518 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
519 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
520 )))
521
522 * RO is for the relay. ROx=1: closed, ROx=0 always open.
523 * FIRST: Indicates that this is the first packet after joining the network.
524 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
525
526 (((
527 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
528 )))
529
530
531 (((
532 **To activate this mode, run the following AT commands:**
533 )))
534
535 (((
536 (% class="box infomessage" %)
537 (((
538 **AT+MOD=3**
539
540 **ATZ**
541 )))
542 )))
543
544 (((
545 AT Commands for counting:
546
547 The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
548 )))
549
550
551 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
552
553 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
554 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
555 It starts counting again when it reaches the maximum value.**
556
557
558 (((
559 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
560 )))
561
562 (((
563 The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
564
565 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
566 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
567 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
568 Reserve
569 )))|MOD
570 )))
571
572 (((
573 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
574
575 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
576 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
577 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
578 )))
579
580 * RO is for the relay. ROx=1: closed, ROx=0 always open.
581 * FIRST: Indicates that this is the first packet after joining the network.
582 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
583
584 (((
585 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
586
587
588 )))
589
590 (((
591 **To activate this mode, run the following AT commands:**
592 )))
593
594 (((
595 (% class="box infomessage" %)
596 (((
597 **AT+MOD=4**
598
599 **ATZ**
600 )))
601 )))
602
603 (((
604 AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
605 )))
606
607 (((
608 **In addition to that, below are the commands for AVI1 Counting:**
609
610 (% style="color:blue" %)**AT+SETCNT=3,60 **(%%)**(Sets AVI1 Count to 60)**
611
612 (% style="color:blue" %)**AT+VOLMAX=20000 **(%%)**(If the AVI1 voltage is higher than VOLMAX (20000mV =20V), the counter increases by 1)**
613
614 (% style="color:blue" %)**AT+VOLMAX=20000,0 **(%%)**(If the AVI1 voltage is lower than VOLMAX (20000mV =20V), counter increases by 1)**
615
616 (% style="color:blue" %)**AT+VOLMAX=20000,1 **(%%)**(If the AVI1 voltage is higher than VOLMAX (20000mV =20V), counter increases by 1)**
617 )))
618
619
620 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
621
622 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
623 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
624 It starts counting again when it reaches the maximum value.**
625
626
627 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
628
629 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
630 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
631 |Value|(((
632 AVI1 voltage
633 )))|(((
634 AVI2 voltage
635 )))|(((
636 ACI1 Current
637 )))|COUNT1|DIDORO*|(((
638 Reserve
639 )))|MOD
640
641 (((
642 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
643
644 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
645 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
646 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
647 )))
648
649 * RO is for the relay. ROx=1: closed, ROx=0 always open.
650 * FIRST: Indicates that this is the first packet after joining the network.
651 * (((
652 DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
653 )))
654
655 (((
656 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
657 )))
658
659 (((
660 **To activate this mode, run the following AT commands:**
661 )))
662
663 (((
664 (% class="box infomessage" %)
665 (((
666 **AT+MOD=5**
667
668 **ATZ**
669 )))
670 )))
671
672 (((
673 Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
674 )))
675
676
677 === 3.3.6 AT+ADDMOD~=6 (Trigger Mode, Optional) ===
678
679
680 (% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate __alongside__ with other modes.**
681
682 For example, if you configure the following commands:
683
684 * **AT+MOD=1 ** **~-~->**  Sets the default working mode
685 * **AT+ADDMOD6=1**   **~-~->**  Enables trigger mode
686
687 The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. It will send uplink packets in two cases:
688
689 1. Periodic uplink: Based on TDC time. The payload is the same as in normal mode (MOD=1 as set above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
690 1. (((
691 Trigger uplink: sent when a trigger condition is met. In this case, LT will send two packets
692
693 * The first uplink uses the payload specified in trigger mode (MOD=6).
694 * The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**confirmed uplinks.**
695 )))
696
697 (% style="color:#037691" %)**AT Commands to set Trigger Conditions**:
698
699 (% style="color:#4f81bd" %)**Trigger based on voltage**:
700
701 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
702
703
704 **Example:**
705
706 AT+AVLIM=3000,6000,0,2000 (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
707
708 AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
709
710
711 (% style="color:#4f81bd" %)**Trigger based on current**:
712
713 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
714
715
716 **Example:**
717
718 AT+ACLIM=10000,15000,0,0 (triggers an uplink if AC1 current is lower than 10mA or higher than 15mA)
719
720
721 (% style="color:#4f81bd" %)**Trigger based on DI status**:
722
723 DI status triggers Flag.
724
725 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
726
727
728 **Example:**
729
730 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
731
732
733 (% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
734
735 **Type Code**: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
736
737 **Format**: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
738
739 AA: Type Code for this downlink Command:
740
741 xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
742
743 yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
744
745 yy2 yy2: AC1 or AV1 HIGH limit.
746
747 yy3 yy3: AC2 or AV2 LOW limit.
748
749 Yy4 yy4: AC2 or AV2 HIGH limit.
750
751
752 **Example 1**: AA 00 13 88 00 00 00 00 00 00
753
754 Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
755
756
757 **Example 2**: AA 02 01 00
758
759 Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
760
761
762 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
763
764 MOD6 Payload: total of 11 bytes
765
766 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
767 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
768 |Value|(((
769 TRI_A FLAG
770 )))|(((
771 TRI_A Status
772 )))|(((
773 TRI_DI FLAG+STA
774 )))|Reserve|Enable/Disable MOD6|(((
775 MOD(6)
776 )))
777
778 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
779
780 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
781 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
782 |(((
783 AV1_LOW
784 )))|(((
785 AV1_HIGH
786 )))|(((
787 AV2_LOW
788 )))|(((
789 AV2_HIGH
790 )))|(((
791 AC1_LOW
792 )))|(((
793 AC1_HIGH
794 )))|(((
795 AC2_LOW
796 )))|(((
797 AC2_HIGH
798 )))
799
800 * Each bit shows if the corresponding trigger has been configured.
801
802 **Example:**
803
804 10100000: This means the system is configured to use the triggers AV1_LOW and AV2_LOW.
805
806
807 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
808
809 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
810 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
811 |(((
812 AV1_LOW
813 )))|(((
814 AV1_HIGH
815 )))|(((
816 AV2_LOW
817 )))|(((
818 AV2_HIGH
819 )))|(((
820 AC1_LOW
821 )))|(((
822 AC1_HIGH
823 )))|(((
824 AC2_LOW
825 )))|(((
826 AC2_HIGH
827 )))
828
829 * Each bit shows which status has been triggered on this uplink.
830
831 **Example:**
832
833 10000000: The uplink is triggered by AV1_LOW, indicating that the voltage is too low.
834
835
836 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
837
838 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:674px" %)
839 |(% style="width:64px" %)**bit 7**|(% style="width:68px" %)**bit 6**|(% style="width:63px" %)**bit 5**|(% style="width:66px" %)**bit 4**|(% style="width:109px" %)**bit 3**|(% style="width:93px" %)**bit 2**|(% style="width:109px" %)**bit 1**|(% style="width:99px" %)**bit 0**
840 |(% style="width:64px" %)N/A|(% style="width:68px" %)N/A|(% style="width:63px" %)N/A|(% style="width:66px" %)N/A|(% style="width:109px" %)DI2_STATUS|(% style="width:93px" %)DI2_FLAG|(% style="width:109px" %)DI1_STATUS|(% style="width:99px" %)DI1_FLAG
841
842 * Each bit shows which status has been triggered on this uplink.
843
844 **Example:**
845
846 00000111: This means both DI1 and DI2 triggers are enabled, and this packet is trigger by DI1.
847
848 00000101: This means both DI1 and DI2 triggers are enabled.
849
850
851 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enabled. 0x00: MOD6 is disabled.
852
853 Downlink command to poll/request MOD6 status:
854
855 **AB 06**
856
857 When device receives this command, it will send the MOD6 payload.
858
859
860 === 3.3.7 Payload Decoder ===
861
862 (((
863
864
865 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
866 )))
867
868
869 == 3.4 ​Configure LT-22222-L via AT Commands or Downlinks ==
870
871 (((
872 You can configure LT-22222-L I/O Controller via AT Commands or LoRaWAN Downlinks.
873 )))
874
875 (((
876 (((
877 There are two tytes of commands:
878 )))
879 )))
880
881 * (% style="color:blue" %)**Common commands**(%%):
882
883 * (% style="color:blue" %)**Sensor-related commands**(%%):
884
885 === 3.4.1 Common commands ===
886
887 (((
888 These are available for each sensors and include actions such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]s.
889 )))
890
891 === 3.4.2 Sensor-related commands ===
892
893 These commands are specially designed for the LT-22222-L. Commands can be sent to the device using options such as an AT command or a LoRaWAN downlink payload.
894
895
896 ==== 3.4.2.1 Set Transmit/Uplink Interval ====
897
898 Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
899
900 (% style="color:#037691" %)**AT command**
901
902 (% border="2" style="width:500px" %)
903 |**Command**|AT+TDC=<time>
904 |**Response**|
905 |**Parameters**|**time** : uplink interval is in **milliseconds**
906 |**Example**|(((
907 AT+TDC=30000
908
909 Sets the uplink interval to **30 seconds** (30000 milliseconds)
910 )))
911
912 (% style="color:#037691" %)**Downlink payload**
913
914 (% border="2" style="width:500px" %)
915 |**Payload**|(((
916 <prefix><time>
917 )))
918 |**Parameters**|(((
919 **prefix** : 0x01
920
921 **time** : uplink interval is in **seconds**, represented by **3  bytes** in **hexadecimal**.
922 )))
923 |**Example**|(((
924 01 **00 00 1E**
925
926 Sets the uplink interval to **30 seconds**
927
928 Conversion: 30 (dec) = 00 00 1E (hex)
929
930 See [[RapidTables>>https://www.rapidtables.com/convert/number/decimal-to-hex.html?x=30]]
931
932 [[image:Screenshot 2024-11-23 at 18.27.11.png]]
933 )))
934
935 ==== 3.4.2.2 Set the Working Mode (AT+MOD) ====
936
937 Sets the working mode.
938
939 (% style="color:#037691" %)**AT command**
940
941 (% border="2" style="width:500px" %)
942 |(% style="width:97px" %)**Command**|(% style="width:413px" %)AT+MODE=<working_mode>
943 |(% style="width:97px" %)**Response**|(% style="width:413px" %)
944 |(% style="width:97px" %)**Parameters**|(% style="width:413px" %)(((
945 **working_mode** :
946
947 1 = (Default mode/factory set):  2ACI + 2AVI + DI + DO + RO
948
949 2 = Double DI Counting + DO + RO
950
951 3 = Single DI Counting + 2 x ACI + DO + RO
952
953 4 = Single DI Counting + 1 x Voltage Counting + DO + RO
954
955 5 = Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
956
957 6 = Trigger Mode, Optional, used together with MOD1 ~~ MOD5
958 )))
959 |(% style="width:97px" %)**Example**|(% style="width:413px" %)(((
960 AT+MOD=2
961
962 Sets the device to working mode 2 (Double DI Counting + DO + RO)
963 )))
964
965 (% class="wikigeneratedid" %)
966 (% style="color:#037691" %)**Downlink payload**
967
968 (% border="2" style="width:500px" %)
969 |(% style="width:98px" %)**Payload**|(% style="width:400px" %)<prefix><working_mode>
970 |(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
971 **prefix** : 0x0A
972
973 **working_mode** : Working mode, represented by 1 byte in hexadecimal.
974 )))
975 |(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
976 0A **02**
977
978 Sets the device to working mode 2 (Double DI Counting + DO + RO)
979 )))
980
981 ==== 3.4.2.3 Request an uplink from the device ====
982
983 Requests an uplink from LT-22222-L. The content of the uplink payload varies based on the device's current working mode.
984
985 (% style="color:#037691" %)**AT command**
986
987 There is no AT Command available for this feature.
988
989 (% style="color:#037691" %)**Downlink payload**
990
991 (% border="2" style="width:500px" %)
992 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix>FF
993 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)**prefix** : 0x08
994 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
995 08 **FF**
996
997 Requests an uplink from LT-22222-L.
998 )))
999
1000 ==== 3.4.2.4 Enable/Disable Trigger Mode ====
1001
1002 Enable or disable the trigger mode for the current working mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
1003
1004 (% style="color:#037691" %)**AT Command**
1005
1006 (% border="2" style="width:500px" %)
1007 |(% style="width:95px" %)**Command**|(% style="width:403px" %)AT+ADDMOD6=<enable/disable trigger_mode>
1008 |(% style="width:95px" %)**Response**|(% style="width:403px" %)
1009 |(% style="width:95px" %)**Parameters**|(% style="width:403px" %)(((
1010 **enable/disable trigger_mode** :
1011
1012 1 = enable trigger mode
1013
1014 0 = disable trigger mode
1015 )))
1016 |(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1017 AT+ADDMOD6=1
1018
1019 Enable trigger mode for the current working mode
1020 )))
1021
1022 (% style="color:#037691" %)**Downlink payload**
1023
1024 (% border="2" style="width:500px" %)
1025 |(% style="width:97px" %)**Payload**|(% style="width:401px" %)<prefix><enable/disable trigger_mode>
1026 |(% style="width:97px" %)**Parameters**|(% style="width:401px" %)(((
1027 **prefix** : 0x0A 06 (two bytes in hexadecimal)
1028
1029 **enable/disable trigger_mode** : enable (1) or disable (0), represented by 1 byte in hexadecimal.
1030 )))
1031 |(% style="width:97px" %)**Example**|(% style="width:401px" %)(((
1032 0A 06 **01**
1033
1034 Enable trigger mode for the current working mode
1035 )))
1036
1037 ==== 3.4.2.5 Request trigger settings ====
1038
1039 Requests the trigger settings.
1040
1041 (% style="color:#037691" %)**AT Command:**
1042
1043 There is no AT Command available for this feature.
1044
1045 (% style="color:#037691" %)**Downlink Payload**
1046
1047 (% border="2" style="width:500px" %)
1048 |(% style="width:95px" %)**Payload**|(% style="width:403px" %)<prefix>
1049 |(% style="width:95px" %)**Parameters**|(% style="width:403px" %)**prefix **: AB 06 (two bytes in hexadecimal)
1050 |(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1051 AB 06
1052
1053 Uplinks the trigger settings.
1054 )))
1055
1056 ==== 3.4.2.6 Enable/Disable DI1/DI2/DI3 as a trigger ====
1057
1058 Enable or disable DI1/DI2/DI3 as a trigger.
1059
1060 (% style="color:#037691" %)**AT Command**
1061
1062 (% border="2" style="width:500px" %)
1063 |(% style="width:98px" %)**Command**|(% style="width:400px" %)AT+DTRI=<DI1_trigger>,<DI2_trigger>
1064 |(% style="width:98px" %)**Response**|(% style="width:400px" %)
1065 |(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
1066 **DI1_trigger:**
1067
1068 1 = enable DI1 trigger
1069
1070 0 = disable DI1 trigger
1071
1072 **DI2 _trigger**
1073
1074 1 = enable DI2 trigger
1075
1076 0 = disable DI2 trigger
1077 )))
1078 |(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
1079 AT+DTRI=1,0
1080
1081 Enable DI1 trigger, disable DI2 trigger
1082 )))
1083
1084 (% class="wikigeneratedid" %)
1085 (% style="color:#037691" %)**Downlink Payload**
1086
1087 (% border="2" style="width:500px" %)
1088 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><DI1_trigger><DI2_trigger>
1089 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1090 **prefix :** AA 02 (two bytes in hexadecimal)
1091
1092 **DI1_trigger:**
1093
1094 1 = enable DI1 trigger, represented by 1 byte in hexadecimal.
1095
1096 0 = disable DI1 trigger, represented by 1 byte in hexadecimal.
1097
1098 **DI2 _trigger**
1099
1100 1 = enable DI2 trigger, represented by 1 byte in hexadecimal.
1101
1102 0 = disable DI2 trigger, represented by 1 byte in hexadecimal.
1103 )))
1104 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1105 AA 02 **01 00**
1106
1107 Enable DI1 trigger, disable DI2 trigger
1108 )))
1109
1110 ==== 3.4.2.7 Trigger1 – Set DI or DI3 as a trigger ====
1111
1112 Sets DI1 or DI3 (for LT-33222-L) as a trigger.
1113
1114
1115 (% style="color:#037691" %)**AT Command**
1116
1117 (% border="2" style="width:500px" %)
1118 |(% style="width:101px" %)**Command**|(% style="width:397px" %)AT+TRIG1=<interrupt_mode>,<minimum_signal_duration>
1119 |(% style="width:101px" %)**Response**|(% style="width:397px" %)
1120 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1121 **interrupt_mode** :  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1122
1123 **minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1124 )))
1125 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1126 AT+TRIG1=1,100
1127
1128 Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1129 )))
1130
1131 (% class="wikigeneratedid" %)
1132 (% style="color:#037691" %)**Downlink Payload**
1133
1134 (% border="2" style="width:500px" %)
1135 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><interrupt_mode><minimum_signal_duration>
1136 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1137 **prefix** : 09 01 (hexadecimal)
1138
1139 **interrupt_mode** : 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1140
1141 **minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal.
1142 )))
1143 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1144 09 01 **01 00 64**
1145
1146 Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1147 )))
1148
1149 ==== 3.4.2.8 Trigger2 – Set DI2 as a trigger ====
1150
1151 Sets DI2 as a trigger.
1152
1153
1154 (% style="color:#037691" %)**AT Command**
1155
1156 (% border="2" style="width:500px" %)
1157 |(% style="width:94px" %)**Command**|(% style="width:404px" %)AT+TRIG2=<interrupt_mode>,<minimum_signal_duration>
1158 |(% style="width:94px" %)**Response**|(% style="width:404px" %)
1159 |(% style="width:94px" %)**Parameters**|(% style="width:404px" %)(((
1160 **interrupt_mode **:  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1161
1162 **minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1163 )))
1164 |(% style="width:94px" %)**Example**|(% style="width:404px" %)(((
1165 AT+TRIG2=0,100
1166
1167 Set the DI1 port to trigger on a falling edge; the valid signal duration is 100 ms.
1168 )))
1169
1170 (% style="color:#037691" %)**Downlink Payload**
1171
1172 (% border="2" style="width:500px" %)
1173 |(% style="width:96px" %)**Payload**|(% style="width:402px" %)<prefix><interrupt_mode><minimum_signal_duration>
1174 |(% style="width:96px" %)**Parameters**|(% style="width:402px" %)(((
1175 **prefix** : 09 02 (hexadecimal)
1176
1177 **interrupt_mode **: 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1178
1179 **minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal
1180 )))
1181 |(% style="width:96px" %)**Example**|(% style="width:402px" %)09 02 **00 00 64**
1182
1183 ==== 3.4.2.9 Trigger – Set AC (current) as a trigger ====
1184
1185 Sets the current trigger based on the AC port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1186
1187 (% style="color:#037691" %)**AT Command**
1188
1189 (% border="2" style="width:500px" %)
1190 |(% style="width:104px" %)**Command**|(% style="width:394px" %)(((
1191 AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1192 )))
1193 |(% style="width:104px" %)**Response**|(% style="width:394px" %)
1194 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1195 **AC1_LIMIT_LOW** : lower limit of the current to be checked
1196
1197 **AC1_LIMIT_HIGH **: higher limit of the current to be checked
1198
1199 **AC2_LIMIT_HIGH **: lower limit of the current to be checked
1200
1201 **AC2_LIMIT_LOW** : higher limit of the current to be checked
1202 )))
1203 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1204 AT+ACLIM=10000,15000,0,0
1205
1206 Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA
1207 )))
1208 |(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1209
1210 (% style="color:#037691" %)**Downlink Payload**
1211
1212 (% border="2" style="width:500px" %)
1213 |(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1214 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1215 **prefix **: AA 01 (hexadecimal)
1216
1217 **AC1_LIMIT_LOW** : lower limit of the current to be checked, two bytes in hexadecimal
1218
1219 **AC1_LIMIT_HIGH **: higher limit of the current to be checked, two bytes in hexadecimal
1220
1221 **AC2_LIMIT_HIGH **: lower limit of the current to be checked, two bytes in hexadecimal
1222
1223 **AC2_LIMIT_LOW** : higher limit of the current to be checked, two bytes in hexadecimal
1224 )))
1225 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1226 AA 01 **27** **10 3A** **98** 00 00 00 00
1227
1228 Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA. Set all values to zero for AC2 limits because we are only checking AC1 limits.
1229 )))
1230 |(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1231
1232 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
1233
1234 Sets the current trigger based on the AV port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1235
1236 (% style="color:#037691" %)**AT Command**
1237
1238 (% border="2" style="width:500px" %)
1239 |(% style="width:104px" %)**Command**|(% style="width:387px" %)AT+AVLIM= AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1240 |(% style="width:104px" %)**Response**|(% style="width:387px" %)
1241 |(% style="width:104px" %)**Parameters**|(% style="width:387px" %)(((
1242 **AC1_LIMIT_LOW** : lower limit of the current to be checked
1243
1244 **AC1_LIMIT_HIGH **: higher limit of the current to be checked
1245
1246 **AC2_LIMIT_HIGH **: lower limit of the current to be checked
1247
1248 **AC2_LIMIT_LOW** : higher limit of the current to be checked
1249 )))
1250 |(% style="width:104px" %)**Example**|(% style="width:387px" %)(((
1251 AT+AVLIM=3000,6000,0,2000
1252
1253 Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V
1254 )))
1255 |(% style="width:104px" %)**Note**|(% style="width:387px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1256
1257 (% style="color:#037691" %)**Downlink Payload**
1258
1259 (% border="2" style="width:500px" %)
1260 |(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1261 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1262 **prefix **: AA 00 (hexadecimal)
1263
1264 **AV1_LIMIT_LOW** : lower limit of the voltage to be checked, two bytes in hexadecimal
1265
1266 **AV1_LIMIT_HIGH **: higher limit of the voltage to be checked, two bytes in hexadecimal
1267
1268 **AV2_LIMIT_HIGH **: lower limit of the voltage to be checked, two bytes in hexadecimal
1269
1270 **AV2_LIMIT_LOW** : higher limit of the voltage to be checked, two bytes in hexadecimal
1271 )))
1272 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1273 AA 00 **0B B8 17 70 00 00 07 D0**
1274
1275 Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V.
1276 )))
1277 |(% style="width:104px" %)**Note**|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1278
1279 ==== 3.4.2.11 Trigger – Set minimum interval ====
1280
1281 Sets the AV and AC trigger minimum interval. The device won't respond to a second trigger within this set time after the first trigger.
1282
1283 (% style="color:#037691" %)**AT Command**
1284
1285 (% border="2" style="width:500px" %)
1286 |(% style="width:113px" %)**Command**|(% style="width:385px" %)AT+ATDC=<time>
1287 |(% style="width:113px" %)**Response**|(% style="width:385px" %)
1288 |(% style="width:113px" %)**Parameters**|(% style="width:385px" %)(((
1289 **time** : in minutes
1290 )))
1291 |(% style="width:113px" %)**Example**|(% style="width:385px" %)(((
1292 AT+ATDC=5
1293
1294 The device won't respond to the second trigger within 5 minutes after the first trigger.
1295 )))
1296 |(% style="width:113px" %)Note|(% style="width:385px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1297
1298 (% style="color:#037691" %)**Downlink Payload**
1299
1300 (% border="2" style="width:500px" %)
1301 |(% style="width:112px" %)**Payload**|(% style="width:386px" %)<prefix><time>
1302 |(% style="width:112px" %)**Parameters**|(% style="width:386px" %)(((
1303 **prefix** : AC (hexadecimal)
1304
1305 **time **: in minutes (two bytes in hexadecimal)
1306 )))
1307 |(% style="width:112px" %)**Example**|(% style="width:386px" %)(((
1308 AC **00 05**
1309
1310 The device won't respond to the second trigger within 5 minutes after the first trigger.
1311 )))
1312 |(% style="width:112px" %)Note|(% style="width:386px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1313
1314 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1315
1316 Controls the digital outputs DO1, DO2, and DO3
1317
1318 (% style="color:#037691" %)**AT Command**
1319
1320 There is no AT Command to control the Digital Output.
1321
1322
1323 (% style="color:#037691" %)**Downlink Payload**
1324
1325 (% border="2" style="width:500px" %)
1326 |(% style="width:115px" %)**Payload**|(% style="width:383px" %)<prefix><DO1><DO2><DO3>
1327 |(% style="width:115px" %)**Parameters**|(% style="width:383px" %)(((
1328 **prefix** : 02 (hexadecimal)
1329
1330 **DOI** : 01: Low,  00: High, 11: No action (1 byte in hex)
1331
1332 **DO2** : 01: Low,  00: High, 11: No action (1 byte in hex)
1333
1334 **DO3 **: 01: Low,  00: High, 11: No action (1 byte in hex)
1335 )))
1336 |(% style="width:115px" %)**Examples**|(% style="width:383px" %)(((
1337 02 **01 00 01**
1338
1339 If there is a load between V+ and DOx, it means DO1 is set to low, DO2 is set to high, and DO3 is set to low.
1340
1341 **More examples:**
1342
1343 (((
1344 01: Low,  00: High,  11: No action
1345
1346 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:383px" %)
1347 |(% style="background-color:#4f81bd; color:white; width:126px" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white; width:85px" %)**DO1**|(% style="background-color:#4f81bd; color:white; width:86px" %)**DO2**|(% style="background-color:#4f81bd; color:white; width:86px" %)**DO3**
1348 |(% style="width:126px" %)02  01  00  11|(% style="width:85px" %)Low|(% style="width:86px" %)High|(% style="width:86px" %)No Action
1349 |(% style="width:126px" %)02  00  11  01|(% style="width:85px" %)High|(% style="width:86px" %)No Action|(% style="width:86px" %)Low
1350 |(% style="width:126px" %)02  11  01  00|(% style="width:85px" %)No Action|(% style="width:86px" %)Low|(% style="width:86px" %)High
1351 )))
1352
1353 (((
1354 (((
1355 (% style="color:red" %)**Note: For the LT-22222-L, there is no DO3; the last byte can have any value.**
1356 )))
1357
1358 (((
1359 (% style="color:red" %)**The device will upload a packet if downlink code executes successfully.**
1360 )))
1361 )))
1362 )))
1363
1364 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1365
1366
1367 * (% style="color:#037691" %)**AT Command**
1368
1369 There is no AT command to control the digital output.
1370
1371
1372 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1373
1374 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Sets DO1/DO2/DO3 outputs with time control
1375
1376 This is to control the digital output time of DO pin. Include four bytes:
1377
1378 (% style="color:#4f81bd" %)**First byte**(%%)**:** Type code (0xA9)
1379
1380 (% style="color:#4f81bd" %)**Second byte**(%%): Inverter Mode
1381
1382 **01:** DO pins revert to their original state after the timeout.
1383 **00:** DO pins switch to an inverted state after the timeout.
1384
1385
1386 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Port status:
1387
1388 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1389 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1390 |0x01|DO1 set to low
1391 |0x00|DO1 set to high
1392 |0x11|DO1 NO Action
1393
1394 (% style="color:#4f81bd" %)**Fourth byte**(%%): Control Method and Port status:
1395
1396 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1397 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1398 |0x01|DO2 set to low
1399 |0x00|DO2 set to high
1400 |0x11|DO2 NO Action
1401
1402 (% style="color:#4f81bd" %)**Fifth byte**(%%): Control Method and Port status:
1403
1404 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1405 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1406 |0x01|DO3 set to low
1407 |0x00|DO3 set to high
1408 |0x11|DO3 NO Action
1409
1410 (% style="color:#4f81bd" %)**Sixth, Seventh, Eighth, and Ninth bytes**:(%%) Latching time (Unit: ms)
1411
1412
1413 (% style="color:red" %)**Note: **
1414
1415 Since firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1416
1417 Before firmware v1.6.0, the latch time only supported 2 bytes.
1418
1419 (% style="color:red" %)**The device will uplink a packet if the downlink code executes successfully.**
1420
1421
1422 **Example payload:**
1423
1424 **~1. A9 01 01 01 01 07 D0**
1425
1426 DO1 pin, DO2 pin, and DO3 pin will be set to low, last for 2 seconds, and then revert to their original state.
1427
1428 **2. A9 01 00 01 11 07 D0**
1429
1430 DO1 pin is set to high, DO2 pin is set to low, and DO3 pin takes no action. This lasts for 2 seconds and then reverts to the original state.
1431
1432 **3. A9 00 00 00 00 07 D0**
1433
1434 DO1 pin, DO2 pin, and DO3 pin will be set to high, last for 2 seconds, and then all change to low.
1435
1436 **4. A9 00 11 01 00 07 D0**
1437
1438 DO1 pin takes no action, DO2 pin is set to low, and DO3 pin is set to high. This lasts for 2 seconds, after which DO1 pin takes no action, DO2 pin is set to high, and DO3 pin is set to low.
1439
1440
1441 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1442
1443
1444 * (% style="color:#037691" %)**AT Command:**
1445
1446 There is no AT Command to control the Relay Output
1447
1448
1449 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1450
1451 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Sets RO1/RO2 output
1452
1453
1454 (((
1455 If the payload is 0x030100, it means setting RO1 to close and RO2 to open.
1456 )))
1457
1458 (((
1459 00: Close ,  01: Open , 11: No action
1460
1461 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1462 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1463 |03  00  11|Open|No Action
1464 |03  01  11|Close|No Action
1465 |03  11  00|No Action|Open
1466 |03  11  01|No Action|Close
1467 |03  00  00|Open|Open
1468 |03  01  01|Close|Close
1469 |03  01  00|Close|Open
1470 |03  00  01|Open|Close
1471 )))
1472
1473 (% style="color:red" %)**The device will uplink a packet if the downlink code executes successfully.**
1474
1475
1476 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1477
1478 Controls the relay output time.
1479
1480 * (% style="color:#037691" %)**AT Command:**
1481
1482 There is no AT Command to control the Relay Output
1483
1484
1485 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1486
1487 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Sets RO1/RO2 relays with time control
1488
1489
1490 This controls the relay output time and includes 4 bytes:
1491
1492 (% style="color:#4f81bd" %)**First byte **(%%)**:** Type code (0x05)
1493
1494 (% style="color:#4f81bd" %)**Second byte (aa)**(%%): Inverter Mode
1495
1496 01: Relays will change back to their original state after timeout.
1497
1498 00: Relays will change to the inverter state after timeout.
1499
1500
1501 (% style="color:#4f81bd" %)**Third byte (bb)**(%%): Control Method and Ports status:
1502
1503 [[image:image-20221008095908-1.png||height="364" width="564"]]
1504
1505
1506 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh bytes (cc)**(%%): Latching time. Unit: ms
1507
1508
1509 (% style="color:red" %)**Note:**
1510
1511 Since firmware v1.6.0, the latch time supports both 4 bytes and 2 bytes.
1512
1513 Before firmware v1.6.0, the latch time only supported 2 bytes.
1514
1515
1516 (% style="color:red" %)**The device will uplink a packet if the downlink code executes successfully.**
1517
1518
1519 **Example payload:**
1520
1521 **~1. 05 01 11 07 D0**
1522
1523 Relay1 and Relay2 will be set to NC, lasting 2 seconds, then revert to their original state
1524
1525 **2. 05 01 10 07 D0**
1526
1527 Relay1 will change to NC, Relay2 will change to NO, lasting 2 seconds, then both will revert to their original state.
1528
1529 **3. 05 00 01 07 D0**
1530
1531 Relay1 will change to NO, Relay2 will change to NC, lasting 2 seconds, then Relay1 will change to NC, and Relay2 will change to NO.
1532
1533 **4. 05 00 00 07 D0**
1534
1535 Relay1 and Relay2 will change to NO, lasting 2 seconds, then both will change to NC.
1536
1537
1538
1539 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1540
1541
1542 When the voltage exceeds the threshold, counting begins. For details, see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1543
1544 (% style="color:#037691" %)**AT Command**
1545
1546 (% border="2" style="width:500px" %)
1547 |(% style="width:137px" %)**Command**|(% style="width:361px" %)AT+VOLMAX=<voltage>,<logic>
1548 |(% style="width:137px" %)**Response**|(% style="width:361px" %)
1549 |(% style="width:137px" %)**Parameters**|(% style="width:361px" %)(((
1550 **voltage** : voltage threshold in mV
1551
1552 **logic**:
1553
1554 **0** : lower than
1555
1556 **1**: higher than
1557
1558 if you leave logic parameter blank, it is considered 0
1559 )))
1560 |(% style="width:137px" %)**Examples**|(% style="width:361px" %)(((
1561 AT+VOLMAX=20000
1562
1563 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1564
1565 AT+VOLMAX=20000,0
1566
1567 If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1568
1569 AT+VOLMAX=20000,1
1570
1571 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1572 )))
1573
1574 (% style="color:#037691" %)**Downlink Payload**
1575
1576 (% border="2" style="width:500px" %)
1577 |(% style="width:140px" %)**Payload**|(% style="width:358px" %)<prefix><voltage><logic>
1578 |(% style="width:140px" %)**Parameters**|(% style="width:358px" %)(((
1579 **prefix** : A5 (hex)
1580
1581 **voltage** : voltage threshold in mV (2 bytes in hex)
1582
1583 **logic**: (1 byte in hexadecimal)
1584
1585 **0** : lower than
1586
1587 **1**: higher than
1588
1589 if you leave logic parameter blank, it is considered 1 (higher than)
1590 )))
1591 |(% style="width:140px" %)**Example**|(% style="width:358px" %)(((
1592 A5 **4E 20**
1593
1594 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1595
1596 A5 **4E 20 00**
1597
1598 If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1599
1600 A5 **4E 20 01**
1601
1602 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1603 )))
1604
1605 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1606
1607 This command allows users to pre-configure specific count numbers for various counting parameters such as Count1, Count2, or AVI1 Count. Use the AT command to set the desired count number for each configuration.
1608
1609 (% style="color:#037691" %)**AT Command**
1610
1611 (% border="2" style="width:500px" %)
1612 |(% style="width:134px" %)**Command**|(% style="width:364px" %)AT+SETCNT=<counting_parameter>,<number>
1613 |(% style="width:134px" %)**Response**|(% style="width:364px" %)
1614 |(% style="width:134px" %)**Parameters**|(% style="width:364px" %)(((
1615 **counting_parameter** :
1616
1617 1: COUNT1
1618
1619 2: COUNT2
1620
1621 3: AVI1 Count
1622
1623 **number** : Start number
1624 )))
1625 |(% style="width:134px" %)**Example**|(% style="width:364px" %)(((
1626 AT+SETCNT=1,10
1627
1628 Sets the COUNT1 to 10.
1629 )))
1630
1631 (% style="color:#037691" %)**Downlink Payload**
1632
1633 (% border="2" style="width:500px" %)
1634 |(% style="width:135px" %)**Payload**|(% style="width:363px" %)<prefix><counting_parameter><number>
1635 |(% style="width:135px" %)**Parameters**|(% style="width:363px" %)(((
1636 prefix : A8 (hex)
1637
1638 **counting_parameter** : (1 byte in hexadecimal)
1639
1640 1: COUNT1
1641
1642 2: COUNT2
1643
1644 3: AVI1 Count
1645
1646 **number** : Start number, 4 bytes in hexadecimal
1647 )))
1648 |(% style="width:135px" %)**Example**|(% style="width:363px" %)(((
1649 A8 **01 00 00 00 0A**
1650
1651 Sets the COUNT1 to 10.
1652 )))
1653
1654 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1655
1656 This command clears the counting in counting mode.
1657
1658 (% style="color:#037691" %)**AT Command**
1659
1660 (% border="2" style="width:500px" %)
1661 |(% style="width:142px" %)**Command**|(% style="width:356px" %)AT+CLRCOUNT
1662 |(% style="width:142px" %)**Response**|(% style="width:356px" %)-
1663
1664 (% style="color:#037691" %)**Downlink Payload**
1665
1666 (% border="2" style="width:500px" %)
1667 |(% style="width:141px" %)**Payload**|(% style="width:357px" %)<prefix><clear?>
1668 |(% style="width:141px" %)**Parameters**|(% style="width:357px" %)(((
1669 prefix : A6 (hex)
1670
1671 clear? : 01 (hex)
1672 )))
1673 |(% style="width:141px" %)**Example**|(% style="width:357px" %)A6 **01**
1674
1675 ==== 3.4.2.19 Counting ~-~- Set Saving Interval for 'Counting Result' ====
1676
1677 This command allows you to configure the device to save its counting result to internal flash memory at specified intervals. By setting a save time, the device will periodically store the counting data to prevent loss in case of power failure. The save interval can be adjusted to suit your requirements, with a minimum value of 30 seconds.
1678
1679 (% style="color:#037691" %)**AT Command**
1680
1681 (% border="2" style="width:500px" %)
1682 |(% style="width:124px" %)**Command**|(% style="width:374px" %)AT+COUTIME=<time>
1683 |(% style="width:124px" %)**Response**|(% style="width:374px" %)
1684 |(% style="width:124px" %)**Parameters**|(% style="width:374px" %)time : seconds (0 to 16777215)
1685 |(% style="width:124px" %)**Example**|(% style="width:374px" %)(((
1686 AT+COUTIME=60
1687
1688 Sets the device to save its counting results to the memory every 60 seconds.
1689 )))
1690
1691 (% style="color:#037691" %)**Downlink Payload**
1692
1693 (% border="2" style="width:500px" %)
1694 |(% style="width:123px" %)**Payload**|(% style="width:375px" %)<prefix><time>
1695 |(% style="width:123px" %)**Parameters**|(% style="width:375px" %)(((
1696 prefix : A7
1697
1698 time : seconds, 3 bytes in hexadecimal
1699 )))
1700 |(% style="width:123px" %)**Example**|(% style="width:375px" %)(((
1701 A7 **00 00 3C**
1702
1703 Sets the device to save its counting results to the memory every 60 seconds.
1704 )))
1705
1706 ==== 3.4.2.20 Reset saved RO and DO states ====
1707
1708 This command allows you to reset the saved relay output (RO) and digital output (DO) states when the device joins the network. By configuring this setting, you can control whether the device should retain or reset the relay states after a reset and rejoin to the network.
1709
1710 (% style="color:#037691" %)**AT Command**
1711
1712 (% border="2" style="width:500px" %)
1713 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+RODORESET=<state>
1714 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1715 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1716 **state** :
1717
1718 **0** : RODO will close when the device joins the network. (default)
1719
1720 **1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1721 )))
1722 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1723 (% style="color:blue" %)**AT+RODORESET=1 **
1724
1725 RODO will close when the device joins the network. (default)
1726
1727 (% style="color:blue" %)**AT+RODORESET=0 **
1728
1729 After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1730 )))
1731
1732 (% style="color:#037691" %)**Downlink Payload**
1733
1734 (% border="2" style="width:500px" %)
1735 |(% style="width:127px" %)**Payload**|(% style="width:371px" %)<prefix><state>
1736 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1737 **prefix** : AD
1738
1739 **state** :
1740
1741 **0** : RODO will close when the device joins the network. (default), represents as 1 byte in hexadecimal.
1742
1743 **1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network. - represents as 1 byte in hexadecimal
1744 )))
1745 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1746 AD **01**
1747
1748 RODO will close when the device joins the network. (default)
1749
1750 AD **00**
1751
1752 After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1753 )))
1754
1755 ==== 3.4.2.21 Encrypted payload ====
1756
1757 This command allows you to configure whether the device should upload data in an encrypted format or in plaintext. By default, the device encrypts the payload before uploading. You can toggle this setting to either upload encrypted data or transmit it without encryption.
1758
1759 (% style="color:#037691" %)**AT Command:**
1760
1761 (% border="2" style="width:500px" %)
1762 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DECRYPT=<state>
1763 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1764 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1765 **state** :
1766
1767 **1** : The payload is uploaded without encryption
1768
1769 **0** : The payload is encrypted when uploaded (default)
1770 )))
1771 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1772 AT+DECRYPT=1
1773
1774 The payload is uploaded without encryption
1775
1776 AT+DECRYPT=0
1777
1778 The payload is encrypted when uploaded (default)
1779 )))
1780
1781 There is no downlink payload for this configuration.
1782
1783
1784 ==== 3.4.2.22 Get sensor value ====
1785
1786 This command allows you to retrieve and optionally uplink sensor readings through the serial port.
1787
1788 (% style="color:#037691" %)**AT Command**
1789
1790 (% border="2" style="width:500px" %)
1791 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+GETSENSORVALUE=<state>
1792 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1793 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1794 **state** :
1795
1796 **0 **: Retrieves the current sensor reading via the serial port.
1797
1798 **1 **: Retrieves and uploads the current sensor reading via the serial port.
1799 )))
1800 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1801 AT+GETSENSORVALUE=0
1802
1803 Retrieves the current sensor reading via the serial port.
1804
1805 AT+GETSENSORVALUE=1
1806
1807 Retrieves and uplinks the current sensor reading via the serial port.
1808 )))
1809
1810 There is no downlink payload for this configuration.
1811
1812
1813 ==== 3.4.2.23 Resetting the downlink packet count ====
1814
1815 This command manages how the node handles mismatched downlink packet counts. It offers two modes: one disables the reception of further downlink packets if discrepancies occur, while the other resets the downlink packet count to align with the server, ensuring continued communication.
1816
1817 (% style="color:#037691" %)**AT Command**
1818
1819 (% border="2" style="width:500px" %)
1820 |(% style="width:130px" %)**Command**|(% style="width:368px" %)AT+DISFCNTCHECK=<state>
1821 |(% style="width:130px" %)**Response**|(% style="width:368px" %)(((
1822
1823 )))
1824 |(% style="width:130px" %)**Parameters**|(% style="width:368px" %)(((
1825 **state **:
1826
1827 **0** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default).
1828
1829
1830 **1** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency.
1831 )))
1832 |(% style="width:130px" %)**Example**|(% style="width:368px" %)(((
1833 AT+DISFCNTCHECK=0
1834
1835 When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default).
1836
1837 AT+DISFCNTCHECK=1
1838
1839 When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency.
1840 )))
1841
1842 There is no downlink payload for this configuration.
1843
1844
1845 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1846
1847
1848 This command controls the behavior of the node when the combined size of the MAC commands (MACANS) from the server and the payload exceeds the allowed byte limit for the current data rate (DR). The command provides two modes: one enables splitting the data into batches to ensure compliance with the byte limit, while the other prioritizes the payload and ignores the MACANS in cases of overflow.
1849
1850 (% style="color:#037691" %)**AT Command**
1851
1852 (% border="2" style="width:500px" %)
1853 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DISMACANS=<state>
1854 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1855 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1856 **state** :
1857
1858 **0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1859
1860 **1** : When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1861 )))
1862 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1863 AT+DISMACANS=0
1864
1865 When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1866
1867 AT+DISMACANS=1
1868
1869 When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1870 )))
1871
1872 (% style="color:#037691" %)**Downlink Payload**
1873
1874 (% border="2" style="width:500px" %)
1875 |(% style="width:126px" %)**Payload**|(% style="width:372px" %)<prefix><state>
1876 |(% style="width:126px" %)**Parameters**|(% style="width:372px" %)(((
1877 **prefix** : 21
1878
1879 **state** : (2 bytes in hexadecimal)
1880
1881 **0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1882
1883 **1 **: When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1884 )))
1885 |(% style="width:126px" %)**Example**|(% style="width:372px" %)(((
1886 21 **00 01**
1887
1888 Set DISMACANS=1
1889 )))
1890
1891 ==== 3.4.2.25 Copy downlink to uplink ====
1892
1893 This command enables the device to immediately uplink the payload of a received downlink packet back to the server. The command allows for quick data replication from downlink to uplink, with a fixed port number of 100.
1894
1895 (% style="color:#037691" %)**AT Command**(%%)**:**
1896
1897 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving a downlink payload from the server, the device will immediately uplink the payload back to the server using port number 100.
1898
1899 Example:**aa xx xx xx xx**         ~/~/ **aa** indicates whether the configuration has changed: **00** means YES, and **01** means NO. **xx xx xx xx** are the bytes uplinked back.
1900
1901
1902 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1903
1904 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1905
1906 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1907
1908 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1909
1910
1911 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1912
1913 There is no downlink option available for this feature.
1914
1915
1916 ==== 3.4.2.26 Query firmware version, frequency band, sub band, and TDC time ====
1917
1918 This command is used to query key information about the device, including its firmware version, frequency band, sub band, and TDC time. By sending the specified payload as a downlink, the server can retrieve this essential data from the device.
1919
1920 * (((
1921 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1922
1923 (% style="color:blue" %)**26 01  ** (%%) ~/~/  The downlink payload 26 01 is used to query the device's firmware version, frequency band, sub band, and TDC time.
1924
1925
1926
1927 )))
1928
1929 **Example:**
1930
1931 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1932
1933
1934 == 3.5 Integrating with ThingsEye.io ==
1935
1936 The Things Stack application supports integration with ThingsEye.io. Once integrated, ThingsEye.io acts as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1937
1938 === 3.5.1 Configuring The Things Stack ===
1939
1940 We use The Things Stack Sandbox in this example:
1941
1942 * In **The Things Stack Sandbox**, go to the **Application **for the LT-22222-L you added.
1943 * Select **MQTT** under **Integrations** in the left menu.
1944 * In the **Connection information **section, under **Connection credentials**, The Things Stack displays an auto-generated **username**. You can use it or provide a new one.
1945 * Click the **Generate new API key** button to generate a password. You can view it by clicking on the **visibility toggle/eye** icon. The API key works as the password.
1946
1947 {{info}}
1948 The username and  password (API key) you created here are required in the next section.
1949 {{/info}}
1950
1951 [[image:tts-mqtt-integration.png]]
1952
1953 === 3.5.2 Configuring ThingsEye.io ===
1954
1955 The ThingsEye.io IoT platform is not open for self-registration at the moment. If you are interested in testing the platform, please send your project information to admin@thingseye.io, and we will create an account for you.
1956
1957 * Login to your [[ThingsEye.io >>https://thingseye.io]]account.
1958 * Under the **Integrations center**, click **Integrations**.
1959 * Click the **Add integration** button (the button with the **+** symbol).
1960
1961 [[image:thingseye-io-step-1.png]]
1962
1963
1964 On the **Add integration** window, configure the following:
1965
1966 **Basic settings:**
1967
1968 * Select **The Things Stack Community** from the **Integration type** list.
1969 * Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
1970 * Ensure the following options are turned on.
1971 ** Enable integration
1972 ** Debug mode
1973 ** Allow create devices or assets
1974 * Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
1975
1976 [[image:thingseye-io-step-2.png]]
1977
1978
1979 **Uplink data converter:**
1980
1981 * Click the **Create new** button if it is not selected by default.
1982 * Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
1983 * Click the **JavaScript** button.
1984 * Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
1985 * Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
1986
1987 [[image:thingseye-io-step-3.png]]
1988
1989
1990 **Downlink data converter (this is an optional step):**
1991
1992 * Click the **Create new** button if it is not selected by default.
1993 * Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name.
1994 * Click the **JavaScript** button.
1995 * Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Downlink_Converter.js]].
1996 * Click the **Next** button. You will be navigated to the **Connection** tab.
1997
1998 [[image:thingseye-io-step-4.png]]
1999
2000
2001 **Connection:**
2002
2003 * Choose **Region** from the **Host type**.
2004 * Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
2005 * Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The **username **and **password **can be found on the MQTT integration page of your The Things Stack account (see **3.5.1 Configuring The Things Stack**).
2006 * Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
2007
2008 [[image:message-1.png]]
2009
2010
2011 * Click the **Add** button.
2012
2013 [[image:thingseye-io-step-5.png]]
2014
2015
2016 Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings and correct any errors.
2017
2018
2019 [[image:thingseye.io_integrationsCenter_integrations.png]]
2020
2021
2022 ==== 3.5.2.1 Viewing integration details ====
2023
2024 Click on your integration from the list. The **Integration details** window will appear with the **Details **tab selected. The **Details **tab shows all the settings you have provided for this integration.
2025
2026 [[image:integration-details.png]]
2027
2028
2029 If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
2030
2031 {{info}}
2032 See also [[ThingsEye documentation>>https://wiki.thingseye.io/xwiki/bin/view/Main/]].
2033 {{/info}}
2034
2035 ==== **3.5.2.2 Viewing events** ====
2036
2037 The **Events **tab displays all the uplink messages from the LT-22222-L.
2038
2039 * Select **Debug **from the **Event type** dropdown.
2040 * Select the** time frame** from the **time window**.
2041
2042 [[image:thingseye-events.png]]
2043
2044
2045 * To view the **JSON payload** of a message, click on the **three dots (...)** in the Message column of the desired message.
2046
2047 [[image:thingseye-json.png]]
2048
2049
2050 ==== **3.5.2.3 Deleting an integration** ====
2051
2052 If you want to delete an integration, click the **Delete integratio**n button on the Integrations page.
2053
2054
2055 ==== 3.5.2.4 Creating a Dashboard to Display and Analyze LT-22222-L Data ====
2056
2057 This will be added soon.
2058
2059
2060 == 3.6 Interface Details ==
2061
2062 === 3.6.1 Digital Input Ports: DI1/DI2/DI3 (For LT-33222-L, Low Active) ===
2063
2064
2065 Supports** NPN-type **sensors.
2066
2067 [[image:1653356991268-289.png]]
2068
2069
2070 === 3.6.2 Digital Input Ports: DI1/DI2 ===
2071
2072
2073 (((
2074 The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
2075 )))
2076
2077 (((
2078 (((
2079 The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
2080
2081
2082 )))
2083 )))
2084
2085 [[image:1653357170703-587.png]]
2086
2087 (((
2088 (((
2089 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
2090 )))
2091 )))
2092
2093 (((
2094
2095 )))
2096
2097 (((
2098 (% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
2099 )))
2100
2101 (((
2102 This type of sensor outputs a low (GND) signal when active.
2103 )))
2104
2105 * (((
2106 Connect the sensor's output to DI1-
2107 )))
2108 * (((
2109 Connect the sensor's VCC to DI1+.
2110 )))
2111
2112 (((
2113 When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be:
2114 )))
2115
2116 (((
2117 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
2118 )))
2119
2120 (((
2121 For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
2122 )))
2123
2124 (((
2125
2126 )))
2127
2128 (((
2129 (% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
2130 )))
2131
2132 (((
2133 This type of sensor outputs a high signal (e.g., 24V) when active.
2134 )))
2135
2136 * (((
2137 Connect the sensor's output to DI1+
2138 )))
2139 * (((
2140 Connect the sensor's GND DI1-.
2141 )))
2142
2143 (((
2144 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
2145 )))
2146
2147 (((
2148 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
2149 )))
2150
2151 (((
2152 If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
2153 )))
2154
2155 (((
2156
2157 )))
2158
2159 (((
2160 (% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
2161 )))
2162
2163 (((
2164 Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
2165 )))
2166
2167 * (((
2168 Connect the sensor's output to DI1+ with a 50K resistor in series.
2169 )))
2170 * (((
2171 Connect the sensor's GND DI1-.
2172 )))
2173
2174 (((
2175 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
2176 )))
2177
2178 (((
2179 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
2180 )))
2181
2182 (((
2183 If the sensor output is 220V, then [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
2184 )))
2185
2186
2187 (% style="color:blue" %)**Example 4**(%%): Connecting to a Dry Contact sensor
2188
2189 From the DI port circuit above, activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference on its own.
2190
2191 To detect a Dry Contact, you can supply a power source to one of the pins of the Dry Contact. A reference circuit diagram is shown below.
2192
2193 [[image:image-20230616235145-1.png]]
2194
2195 (% style="color:blue" %)**Example 5**(%%): Connecting to an Open Collector
2196
2197 [[image:image-20240219115718-1.png]]
2198
2199
2200 === 3.6.3 Digital Output Ports: DO1/DO2 ===
2201
2202
2203 (% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
2204
2205 (% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
2206
2207 [[image:1653357531600-905.png]]
2208
2209
2210 === 3.6.4 Analog Input Interfaces ===
2211
2212
2213 The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
2214
2215
2216 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
2217
2218 [[image:1653357592296-182.png]]
2219
2220 Example: Connecting a 4~~20mA sensor
2221
2222 We will use the wind speed sensor as an example for reference only.
2223
2224
2225 (% style="color:blue" %)**Specifications of the wind speed sensor:**
2226
2227 (% style="color:red" %)**Red:  12~~24V**
2228
2229 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
2230
2231 **Black:  GND**
2232
2233 **Connection diagram:**
2234
2235 [[image:1653357640609-758.png]]
2236
2237 [[image:1653357648330-671.png||height="155" width="733"]]
2238
2239
2240 Example: Connecting to a regulated power supply to measure voltage
2241
2242 [[image:image-20230608101532-1.png||height="606" width="447"]]
2243
2244 [[image:image-20230608101608-2.jpeg||height="379" width="284"]]
2245
2246 [[image:image-20230608101722-3.png||height="102" width="1139"]]
2247
2248
2249 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
2250
2251 (% style="color:red" %)**Red:  12~~24v**
2252
2253 **Black:  GND**
2254
2255
2256 === 3.6.5 Relay Output ===
2257
2258
2259 (((
2260 The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
2261
2262 **Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
2263 )))
2264
2265 [[image:image-20220524100215-9.png]]
2266
2267
2268 [[image:image-20220524100215-10.png||height="382" width="723"]]
2269
2270
2271 == 3.7 LED Indicators ==
2272
2273 The table below lists the behavior of LED indicators for each port function.
2274
2275 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
2276 |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
2277 |**PWR**|Always on when there is power
2278 |**TX**|(((
2279 (((
2280 Device boot: TX blinks 5 times.
2281 )))
2282
2283 (((
2284 Successful network join: TX remains ON for 5 seconds.
2285 )))
2286
2287 (((
2288 Transmit a LoRa packet: TX blinks once
2289 )))
2290 )))
2291 |**RX**|RX blinks once when a packet is received.
2292 |**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
2293 |**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
2294 |**DI1**|(((
2295 For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
2296 )))
2297 |**DI2**|(((
2298 For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
2299 )))
2300 |**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
2301 |**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
2302
2303 = 4. Using AT Commands =
2304
2305 The LT-22222-L supports programming using AT Commands.
2306
2307 == 4.1 Connecting the LT-22222-L to a PC ==
2308
2309 (((
2310 You can use a USB-to-TTL adapter/converter along with a 3.5mm Program Cable to connect the LT-22222-L to a PC, as shown below.
2311
2312 [[image:usb-ttl-audio-jack-connection.jpg]]
2313
2314
2315 )))
2316
2317
2318 (((
2319 On the PC, you need to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate of (% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-L. Access to AT commands is disabled by default, and a password (default: (% style="color:green" %)**123456**)(%%) must be entered to enable AT command access, as shown below:
2320 )))
2321
2322 [[image:1653358355238-883.png]]
2323
2324
2325 (((
2326 You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
2327
2328 == 4.2 LT-22222-L related AT commands ==
2329 )))
2330
2331 (((
2332 The following is the list of all the AT commands related to the LT-22222-L, except for those used for switching between working modes.
2333
2334 * **##AT##+<CMD>?** : Help on <CMD>
2335 * **##AT##+<CMD>** : Run <CMD>
2336 * **##AT##+<CMD>=<value>** : Set the value
2337 * **##AT##+<CMD>=?** : Get the value
2338 * ##**ATZ**##: Trigger a reset of the MCU
2339 * ##**AT+FDR**##: Reset Parameters to factory default, reserve keys 
2340 * **##AT+DEUI##**: Get or set the Device EUI (DevEUI)
2341 * **##AT+DADDR##**: Get or set the Device Address (DevAddr)
2342 * **##AT+APPKEY##**: Get or set the Application Key (AppKey)
2343 * ##**AT+NWKSKEY**##: Get or set the Network Session Key (NwkSKey)
2344 * **##AT+APPSKEY##**: Get or set the Application Session Key (AppSKey)
2345 * **##AT+APPEUI##**: Get or set the Application EUI (AppEUI)
2346 * **##AT+ADR##**: Get or set the Adaptive Data Rate setting. (0: OFF, 1: ON)
2347 * ##**AT+TXP**##: Get or set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Specification)
2348 * **##AT+DR##**:  Get or set the Data Rate. (0-7 corresponding to DR_X)  
2349 * **##AT+DCS##**: Get or set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
2350 * ##**AT+PNM**##: Get or set the public network mode. (0: off, 1: on)
2351 * ##**AT+RX2FQ**##: Get or set the Rx2 window frequency
2352 * ##**AT+RX2DR**##: Get or set the Rx2 window data rate (0-7 corresponding to DR_X)
2353 * ##**AT+RX1DL**##: Get or set the delay between the end of the Tx and the Rx Window 1 in ms
2354 * ##**AT+RX2DL**##: Get or set the delay between the end of the Tx and the Rx Window 2 in ms
2355 * ##**AT+JN1DL**##: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
2356 * ##**AT+JN2DL**##: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
2357 * ##**AT+NJM**##: Get or set the Network Join Mode. (0: ABP, 1: OTAA)
2358 * ##**AT+NWKID**##: Get or set the Network ID
2359 * ##**AT+FCU**##: Get or set the Frame Counter Uplink (FCntUp)
2360 * ##**AT+FCD**##: Get or set the Frame Counter Downlink (FCntDown)
2361 * ##**AT+CLASS**##: Get or set the Device Class
2362 * ##**AT+JOIN**##: Join network
2363 * ##**AT+NJS**##: Get OTAA Join Status
2364 * ##**AT+SENDB**##: Send hexadecimal data along with the application port
2365 * ##**AT+SEND**##: Send text data along with the application port
2366 * ##**AT+RECVB**##: Print last received data in binary format (with hexadecimal values)
2367 * ##**AT+RECV**##: Print last received data in raw format
2368 * ##**AT+VER**##: Get current image version and Frequency Band
2369 * ##**AT+CFM**##: Get or Set the confirmation mode (0-1)
2370 * ##**AT+CFS**##: Get confirmation status of the last AT+SEND (0-1)
2371 * ##**AT+SNR**##: Get the SNR of the last received packet
2372 * ##**AT+RSSI**##: Get the RSSI of the last received packet
2373 * ##**AT+TDC**##: Get or set the application data transmission interval in ms
2374 * ##**AT+PORT**##: Get or set the application port
2375 * ##**AT+DISAT**##: Disable AT commands
2376 * ##**AT+PWORD**##: Set password, max 9 digits
2377 * ##**AT+CHS**##: Get or set the Frequency (Unit: Hz) for Single Channel Mode
2378 * ##**AT+CHE**##: Get or set eight channels mode, Only for US915, AU915, CN470
2379 * ##**AT+CFG**##: Print all settings
2380 )))
2381
2382
2383 == 4.2 Common AT Command Sequence ==
2384
2385 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
2386
2387 (((
2388
2389
2390 (((
2391 (% style="color:blue" %)**If the device has not yet joined the network:**
2392 )))
2393 )))
2394
2395 (((
2396 (% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT commands access**##
2397 )))
2398
2399 (((
2400 (% style="background-color:#dcdcdc" %)##**AT+FDR ~/~/Reset parameters to factory default, Reserve keys**##
2401 )))
2402
2403 (((
2404 (% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT commands access**##
2405 )))
2406
2407 (((
2408 (% style="background-color:#dcdcdc" %)##**AT+NJM=0 ~/~/Set to ABP mode**##
2409 )))
2410
2411 (((
2412 (% style="background-color:#dcdcdc" %)##**ATZ ~/~/Reset MCU**##
2413 )))
2414
2415
2416 (((
2417 (% style="color:blue" %)**If the device has already joined the network:**
2418 )))
2419
2420 (((
2421 (% style="background-color:#dcdcdc" %)##**AT+NJM=0**##
2422 )))
2423
2424 (((
2425 (% style="background-color:#dcdcdc" %)##**ATZ**##
2426 )))
2427
2428
2429 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
2430
2431 (((
2432
2433
2434 (((
2435 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter password to enable AT commands access
2436 )))
2437 )))
2438
2439 (((
2440 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset parameters to Factory Default, Reserve keys
2441 )))
2442
2443 (((
2444 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter password to enable AT commands access
2445 )))
2446
2447 (((
2448 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to CLASS C mode
2449 )))
2450
2451 (((
2452 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
2453 )))
2454
2455 (((
2456 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
2457 )))
2458
2459 (((
2460 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
2461 )))
2462
2463 (((
2464 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
2465 )))
2466
2467 (((
2468 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4 MHz
2469 )))
2470
2471 (((
2472 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2 frequency to 868.4 MHz (according to the result from the server)
2473 )))
2474
2475 (((
2476 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2 DR to match the downlink DR from the server. See below.
2477 )))
2478
2479 (((
2480 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address. The Device Address can be found in the application on the LoRaWAN NS.
2481 )))
2482
2483 (((
2484 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
2485
2486
2487 )))
2488
2489 (((
2490 (% style="color:red" %)**Note:**
2491 )))
2492
2493 (((
2494 **~1. Ensure that the device is set to ABP mode in the LoRaWAN Network Server.**
2495
2496 **2. Verify that the LG01/02 gateway RX frequency matches the AT+CHS setting exactly.**
2497
2498 **3. Make sure the SF/bandwidth settings in the LG01/LG02 match the settings of AT+DR. Refer to [[this link>>url:http://www.dragino.com/downloads/index.php?
2499 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
2500
2501 **4. The commands AT+RX2FQ and AT+RX2DR enable downlink functionality. To set the correct parameters, you can check the actual downlink parameters to be used as shown below. Here, RX2FQ should be set to 868400000 and RX2DR should be set to 5.**
2502 )))
2503
2504 (((
2505 [[image:1653359097980-169.png||height="188" width="729"]]
2506 )))
2507
2508
2509 === 4.2.3 Change to Class A ===
2510
2511
2512 (((
2513 (% style="color:blue" %)**If the sensor has JOINED:**
2514
2515 (% style="background-color:#dcdcdc" %)**AT+CLASS=A**
2516
2517 (% style="background-color:#dcdcdc" %)**ATZ**
2518 )))
2519
2520
2521 = 5. Case Study =
2522
2523 == 5.1 Counting how many objects pass through the flow line ==
2524
2525 See [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
2526
2527
2528 = 6. FAQ =
2529
2530 This section contains some frequently asked questions, which can help you resolve common issues and find solutions quickly.
2531
2532
2533 == 6.1 How to update the firmware? ==
2534
2535 Dragino frequently releases firmware updates for the LT-22222-L. Updating your LT-22222-L with the latest firmware version helps to:
2536
2537 * Support new features
2538 * Fix bugs
2539 * Change LoRaWAN frequency bands
2540
2541 You will need the following things before proceeding:
2542
2543 * 3.5mm programming cable (included with the LT-22222-L as an additional accessory)
2544 * USB to TTL adapter/converter
2545 * Download and install the [[STM32 Flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. (replaced by STM32CubeProgrammer)
2546 * Download the latest firmware image from [[LT-22222-L firmware image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. Check the file name of the firmware to find the correct region.
2547
2548 {{info}}
2549 As of this writing, the latest firmware version available for the LT-22222-L is v1.6.1.
2550 {{/info}}
2551
2552 Below is the hardware setup for uploading a firmware image to the LT-22222-L:
2553
2554 [[image:usb-ttl-audio-jack-connection.jpg]]
2555
2556
2557
2558 Start the STM32 Flash Loader and choose the correct COM port to update.
2559
2560 (((
2561 (((
2562 (% style="color:blue" %)**For LT-22222-L**(%%):
2563
2564 Hold down the **PRO** button, then briefly press the **RST** button. The **DO1** LED will change from OFF to ON. When the **DO1** LED is ON, it indicates that the device is in firmware download mode.
2565 )))
2566
2567
2568 )))
2569
2570 [[image:image-20220524103407-12.png]]
2571
2572
2573 [[image:image-20220524103429-13.png]]
2574
2575
2576 [[image:image-20220524104033-15.png]]
2577
2578
2579 (% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5 mm cable. The pin mapping is as follows:
2580
2581 [[image:1653360054704-518.png||height="186" width="745"]]
2582
2583
2584 (((
2585 (((
2586 == 6.2 How to change the LoRaWAN frequency band/region? ==
2587 )))
2588 )))
2589
2590 (((
2591 You can follow the introductions on [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2592 )))
2593
2594 (((
2595
2596
2597 == 6.3 How to setup LT-22222-L to work with a Single Channel Gateway, such as LG01/LG02? ==
2598 )))
2599
2600 (((
2601 (((
2602 In this case, you need to set the LT-22222-L to work in ABP mode and transmit on only one frequency.
2603 )))
2604 )))
2605
2606 (((
2607 (((
2608 We assume you have an LG01/LG02 working on the frequency 868400000. Below are the steps.
2609
2610
2611 )))
2612 )))
2613
2614 (((
2615 (% style="color:#0000ff" %)**Step 1**(%%): Log in to The Things Stack Sandbox account and create an ABP device in the application. To do this, use the manual registration option as explained in section 3.2.2.2, //Adding a Device Manually//. Select //Activation by Personalization (ABP)// under Activation Mode. Enter the DevEUI exactly as shown on the registration information sticker, then generate the Device Address, Application Session Key (AppSKey), and Network Session Key (NwkSKey).
2616
2617 [[image:lt-22222-l-abp.png||height="686" width="1000"]]
2618 )))
2619
2620 (((
2621
2622 )))
2623
2624 {{warning}}
2625 Ensure that the Device Address (DevAddr) and the two keys match between the LT-22222-L and The Things Stack. You can modify them either in The Things Stack or on the LT-22222-L to make them align. In The Things Stack, you can configure the NwkSKey and AppSKey on the settings page, but note that the Device Address is generated by The Things Stack.
2626 {{/warning}}
2627
2628
2629 (((
2630 (% style="color:blue" %)**Step 2**(%%)**:  **(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)Run AT commands to configure the LT-22222-L to operate in single-frequency and ABP mode. The AT commands are as follows:
2631
2632
2633 )))
2634
2635 (((
2636 (% style="background-color:#dcdcdc" %)**123456** (%%) : Enter the password to enable AT access.
2637
2638 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Reset parameters to factory default, keeping keys reserved.
2639
2640 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) : Set to ABP mode.
2641
2642 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) : Disable the Adaptive Data Rate (ADR).
2643
2644 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) : Set Data Rate (Use AT+DR=3 for the 915 MHz band).
2645
2646 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) : Set transmit interval to 60 seconds.
2647
2648 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4 MHz.
2649
2650 (% style="background-color:#dcdcdc" %)**AT+DADDR=xxxx**(%%) : Set the Device Address (DevAddr)
2651
2652 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:700; text-decoration:none; white-space:pre-wrap" %)**AT+APPKEY=xxxx**(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %): Get or set the Application Key (AppKey)
2653
2654 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+NWKSKEY=xxxx**: Get or set the Network Session Key (NwkSKey)
2655
2656 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+APPSKEY=xxxx**: Get or set the Application Session Key (AppSKey)
2657
2658 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) : Reset MCU.
2659 )))
2660
2661
2662 (((
2663 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)The following figure shows the screenshot of the command set above, issued using a serial tool:
2664 )))
2665
2666 [[image:1653360498588-932.png||height="485" width="726"]]
2667
2668
2669 == 6.4 How to change the uplink interval? ==
2670
2671 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2672
2673
2674 == 6.5 Can I see the counting event in the serial output? ==
2675
2676 (((
2677 You can run the AT command **AT+DEBUG** to view the counting event in the serial output. If the firmware is too old and doesn’t support AT+DEBUG, update to the latest firmware first.
2678
2679
2680 == 6.6 Can I use point-to-point communication with LT-22222-L? ==
2681
2682 Yes, you can. Please refer to the [[Point-to-Point Communication of LT-22222-L>>https://wiki.dragino.com/xwiki/bin/view/Main/%20Point%20to%20Point%20Communication%20of%20LT-22222-L/]] page. The firmware that supports point-to-point communication can be found [[here>>https://github.com/dragino/LT-22222-L/releases]].
2683
2684
2685 )))
2686
2687 (((
2688 == 6.7 Why does the relay output default to an open relay after the LT-22222-L is powered off? ==
2689
2690 * If the device is not properly shut down and is directly powered off.
2691 * It will default to a power-off state.
2692 * In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2693 * After a restart, the status before the power failure will be read from flash.
2694
2695 == 6.8 Can I setup LT-22222-L as a NC (Normally Closed) relay? ==
2696
2697 The LT-22222-L's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
2698
2699
2700 [[image:image-20221006170630-1.png||height="610" width="945"]]
2701
2702
2703 == 6.9 Can the LT-22222-L save the RO state? ==
2704
2705 To enable this feature, the firmware version must be 1.6.0 or higher.
2706
2707
2708 == 6.10 Why does the LT-22222-L always report 15.585V when measuring the AVI? ==
2709
2710 It is likely that the GND is not connected during the measurement, or that the wire connected to the GND is loose.
2711
2712
2713 = 7. Troubleshooting =
2714
2715 This section provides some known troubleshooting tips.
2716
2717
2718 )))
2719
2720 (((
2721 (((
2722 == 7.1 Downlink isn't working. How can I solve this? ==
2723 )))
2724 )))
2725
2726 (((
2727 Please refer to this link for debugging instructions: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2728 )))
2729
2730 (((
2731
2732
2733 == 7.2 Having trouble uploading an image? ==
2734 )))
2735
2736 (((
2737 Please refer to this link for troubleshooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2738 )))
2739
2740 (((
2741
2742
2743 == 7.3 Why can't I join TTN in the US915 /AU915 bands? ==
2744 )))
2745
2746 (((
2747 It might be related to the channel mapping. [[Please refer to this link for details.>>https://github.com/dragino/LT-22222-L/releases]]
2748 )))
2749
2750
2751 == 7.4 Why can the LT-22222-L perform uplink normally, but cannot receive downlink? ==
2752
2753 The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue.
2754 Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2755
2756
2757 = 8. Ordering information =
2758
2759 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2760
2761 (% style="color:#4f81bd" %)**XXX:**
2762
2763 * (% style="color:red" %)**EU433**(%%): LT with frequency bands EU433
2764 * (% style="color:red" %)**EU868**(%%): LT with frequency bands EU868
2765 * (% style="color:red" %)**KR920**(%%): LT with frequency bands KR920
2766 * (% style="color:red" %)**CN470**(%%): LT with frequency bands CN470
2767 * (% style="color:red" %)**AS923**(%%): LT with frequency bands AS923
2768 * (% style="color:red" %)**AU915**(%%): LT with frequency bands AU915
2769 * (% style="color:red" %)**US915**(%%): LT with frequency bands US915
2770 * (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2771 * (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2772
2773 = 9. Package information =
2774
2775 **Package includes**:
2776
2777 * 1 x LT-22222-L I/O Controller
2778 * 1 x LoRa antenna matched to the frequency of the LT-22222-L
2779 * 1 x bracket for DIN rail mounting
2780 * 1 x 3.5 mm programming cable
2781
2782 **Dimension and weight**:
2783
2784 * Device Size: 13.5 x 7 x 3 cm
2785 * Device Weight: 105 g
2786 * Package Size / pcs : 14.5 x 8 x 5 cm
2787 * Weight / pcs : 170 g
2788
2789 = 10. Support =
2790
2791 * (((
2792 Support is available Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule.
2793 )))
2794 * (((
2795 Please provide as much information as possible regarding your inquiry (e.g., product models, a detailed description of the problem, steps to replicate it, etc.) and send an email to [[support@dragino.cc>>mailto:support@dragino.cc]]
2796
2797
2798 )))
2799
2800 = 11. Reference​​​​​ =
2801
2802 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2803 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2804 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0