Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19
20 = 1. Introduction =
21
22 == 1.1 What is the LT-22222-L I/O Controller? ==
23
24 (((
25 (((
26 {{info}}
27 **This manual is also applicable to the LT-33222-L.**
28 {{/info}}
29
30 The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN end device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
31
32 The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
33 )))
34 )))
35
36 (((
37 With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
38 )))
39
40 (((
41 You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
42
43 * If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Stack Community Network), you can select a network and register the LT-22222-L I/O controller with it.
44 * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
45 * Setup your own private LoRaWAN network.
46 )))
47
48 (((
49
50
51 The network diagram below illustrates how the LT-22222-L communicates with a typical LoRaWAN network.
52 )))
53
54 (% class="wikigeneratedid" %)
55 [[image:lorawan-nw.jpg||height="354" width="900"]]
56
57
58 == 1.2 Specifications ==
59
60
61 (% style="color:#037691" %)**Hardware System:**
62
63 * STM32L072xxxx MCU
64 * SX1276/78 Wireless Chip 
65 * Power Consumption:
66 ** Idle: 4mA@12V
67 ** 20dB Transmit: 34mA@12V
68 * Operating Temperature: -40 ~~ 85 Degrees, No Dew
69
70 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
71
72 * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50V, or 220V with optional external resistor)
73 * 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
74 * 2 x Relay Output (5A@250VAC / 30VDC)
75 * 2 x 0~~20mA Analog Input (res:0.01mA)
76 * 2 x 0~~30V Analog Input (res:0.01V)
77 * Power Input 7~~ 24V DC. 
78
79 (% style="color:#037691" %)**LoRa Spec:**
80
81 * Frequency Range:
82 ** Band 1 (HF): 862 ~~ 1020 MHz
83 ** Band 2 (LF): 410 ~~ 528 MHz
84 * 168 dB maximum link budget.
85 * +20 dBm - 100 mW constant RF output vs.
86 * +14 dBm high-efficiency PA.
87 * Programmable bit rate up to 300 kbps.
88 * High sensitivity: down to -148 dBm.
89 * Bullet-proof front end: IIP3 = -12.5 dBm.
90 * Excellent blocking immunity.
91 * Low RX current of 10.3 mA, 200 nA register retention.
92 * Fully integrated synthesizer with a resolution of 61 Hz.
93 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
94 * Built-in bit synchronizer for clock recovery.
95 * Preamble detection.
96 * 127 dB Dynamic Range RSSI.
97 * Automatic RF Sense and CAD with ultra-fast AFC.
98 * Packet engine up to 256 bytes with CRC.
99
100 == 1.3 Features ==
101
102 * LoRaWAN Class A & Class C modes
103 * Optional Customized LoRa Protocol
104 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
105 * AT Commands to change parameters
106 * Remotely configure parameters via LoRaWAN Downlink
107 * Firmware upgradable via program port
108 * Counting
109
110 == 1.4 Applications ==
111
112 * Smart buildings & home automation
113 * Logistics and supply chain management
114 * Smart metering
115 * Smart agriculture
116 * Smart cities
117 * Smart factory
118
119 == 1.5 Hardware Variants ==
120
121
122 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
123 |(% style="background-color:#4f81bd; color:white; width:94px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:172px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:244px" %)**Description**
124 |(% style="width:94px" %)**LT-22222-L**|(% style="width:172px" %)(((
125 (% style="text-align:center" %)
126 [[image:lt33222-l.jpg||height="116" width="100"]]
127 )))|(% style="width:256px" %)(((
128 * 3 x Digital Input (Bi-direction)
129 * 3 x Digital Output
130 * 2 x Relay Output (5A@250VAC / 30VDC)
131 * 2 x 0~~20mA Analog Input (res:0.01mA)
132 * 2 x 0~~30V Analog Input (res:0.01v)
133 * 1 x Counting Port
134 )))
135
136 = 2. Assembling the device =
137
138 == 2.1 Connecting the antenna ==
139
140 Connect the LoRa antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper screw terminal block. Secure the antenna by tightening it clockwise.
141
142 {{warning}}
143 **Warning! Do not power on the device without connecting the antenna.**
144 {{/warning}}
145
146 == 2.2 Terminals ==
147
148 The  LT-22222-L has two screw terminal blocks. The upper screw treminal block has 6 screw terminals and the lower screw terminal block has 10 screw terminals.
149
150 **Upper screw terminal block (from left to right):**
151
152 (% style="width:634px" %)
153 |=(% style="width: 295px;" %)Screw Terminal|=(% style="width: 338px;" %)Function
154 |(% style="width:295px" %)GND|(% style="width:338px" %)Ground
155 |(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
156 |(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
157 |(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
158 |(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
159 |(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
160
161 **Lower screw terminal block (from left to right):**
162
163 (% style="width:633px" %)
164 |=(% style="width: 296px;" %)Screw Terminal|=(% style="width: 334px;" %)Function
165 |(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
166 |(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
167 |(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
168 |(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
169 |(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
170 |(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
171 |(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
172 |(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
173 |(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
174 |(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
175
176 == 2.3 Connecting LT-22222-L to a Power Source ==
177
178 The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect your power supply’s **positive wire** to the **VIN** and the **negative wire** to the **GND** screw terminals. The power indicator **(PWR) LED** will turn on when the device is properly powered.
179
180 {{warning}}
181 **We recommend that you power on the LT-22222-L after configuring its registration information with a LoRaWAN network server. Otherwise, the device will continuously send join-request messages to attempt to join a LoRaWAN network but will fail.**
182 {{/warning}}
183
184
185 [[image:1653297104069-180.png]]
186
187
188 = 3. Registering LT-22222-L with a LoRaWAN Network Server =
189
190 The LT-22222-L supports both OTAA (Over-the-Air Activation) and ABP (Activation By Personalization) methods to activate with a LoRaWAN Network Server. However, OTAA is the most secure method for activating a device with a LoRaWAN Network Server. OTAA regenerates session keys upon initial registration and regenerates new session keys after any subsequent reboots. By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode.
191
192
193 === 3.2.1 Prerequisites ===
194
195 The LT-22222-L comes with device registration information such as DevEUI, AppEUI, and AppKey that allows you to register it with a LoRaWAN network. These registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
196
197 [[image:image-20230425173427-2.png||height="246" width="530"]]
198
199 {{info}}
200 In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
201 {{/info}}
202
203 The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
204
205 === 3.2.2 The Things Stack ===
206
207 This section guides you through how to register your LT-22222-L with The Things Stack Sandbox.
208
209 {{info}}
210 The Things Stack Sandbox was formally called The Things Stack Community Edition.
211 {{/info}}
212
213
214 The network diagram below illustrates the connection between the LT-22222-L and The Things Stack, as well as how the data can be integrated with the ThingsEye IoT platform.
215
216
217 [[image:dragino-lorawan-nw-lt-22222-n.jpg]]
218
219 {{info}}
220 You can use a LoRaWAN gateway, such as the [[Dragino LPS8N>>https://www.dragino.com/products/lora-lorawan-gateway/item/200-lps8n.html]], to expand or create LoRaWAN coverage in your area.
221 {{/info}}
222
223
224 ==== 3.2.2.1 Setting up ====
225
226 * Sign up for a free account with [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] if you do not have one yet.
227 * Log in to your The Things Stack Sandbox account.
228 * Create an **application** with The Things Stack if you do not have one yet (E.g., dragino-docs).
229 * Go to your application's page and click on the **End devices** in the left menu.
230 * On the End devices page, click on **+ Register end device**. Two registration options are available:
231
232 ==== 3.2.2.2 Using the LoRaWAN Device Repository ====
233
234 * On the **Register end device** page:
235 ** Select the option **Select the end device in the LoRaWAN Device Repository **under **Input method**.
236 ** Select the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)** from the respective dropdown lists.
237 *** **End device brand**: Dragino Technology Co., Limited
238 *** **Model**: LT22222-L I/O Controller
239 *** **Hardware ver**: Unknown
240 *** **Firmware ver**: 1.6.0
241 *** **Profile (Region)**: Select the region that matches your device.
242 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
243
244 [[image:lt-22222-l-dev-repo-reg-p1.png]]
245
246
247 * Register end device page continued...
248 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'.
249 ** In the **DevEUI** field, enter the **DevEUI**.
250 ** In the **AppKey** field, enter the **AppKey.**
251 ** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
252 ** Under **After registration**, select the **View registered end device** option.
253
254 [[image:lt-22222-l-dev-repo-reg-p2.png]]
255
256
257 ==== 3.2.2.3 Adding device manually ====
258
259 * On the **Register end device** page:
260 ** Select the option **Enter end device specifies manually** under **Input method**.
261 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
262 ** Select the **LoRaWAN version** as **LoRaWAN Specification 1.0.3**
263 ** Select the **Regional Parameters version** as** RP001 Regional Parameters 1.0.3 revision A**
264 ** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the hidden section.
265 ** Select the option **Over the air activation (OTAA)** under the **Activation mode.**
266 ** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities** dropdown list.
267
268 [[image:lt-22222-l-manually-p1.png]]
269
270
271 * Register end device page continued...
272 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message '//**This end device can be registered on the network**//'
273 ** In the **DevEUI** field, enter the **DevEUI**.
274 ** In the **AppKey** field, enter the **AppKey**.
275 ** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
276 ** Under **After registration**, select the **View registered end device** option.
277 ** Click the **Register end device** button.
278
279 [[image:lt-22222-l-manually-p2.png]]
280
281
282 You will be navigated to the **Device overview** page.
283
284
285 [[image:lt-22222-device-overview.png]]
286
287
288 ==== 3.2.2.4 Joining ====
289
290 On the Device's page, click on **Live data** tab. The Live data panel for your device will display.
291
292 Now power on your LT-22222-L. The **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** The Things Stack network server. The **TX LED** will be on for **5 seconds** after joining the network. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server.
293
294
295 [[image:lt-22222-l-joining.png]]
296
297
298
299 ==== 3.2.2.5 Uplinks ====
300
301
302 After successfully joining, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**). When the LT-22222-L sends an uplink message to the server, the **TX LED** turns on for **1 second**. By default, you will receive an uplink data message from the device every 10 minutes.
303
304 Click on one of a **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the decode_payload {} JSON object.
305
306 [[image:lt-22222-ul-payload-decoded.png]]
307
308
309 If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **Applications > your application > End devices** > **your end device** > **Payload formatters** > **Uplink**. Then  select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
310
311 {{info}}
312 The Things Stack provides two levels of payload formatters: application level and device level. The device-level payload formatters **override **the application-level payload formatters.
313 {{/info}}
314
315 [[image:lt-22222-ul-payload-fmt.png]]
316
317
318 ==== 3.2.2.6 Downlinks ====
319
320 When the LT-22222-L receives a downlink message from the server, the **RX LED** turns on for **1 second**.
321
322
323 == 3.3 Working Modes and Uplink Payload formats ==
324
325
326 The LT-22222-L has 5 **working modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
327
328 * (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
329
330 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
331
332 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
333
334 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
335
336 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
337
338 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
339
340 The uplink messages are sent over LoRaWAN FPort=2. By default, an uplink message is sent every 10 minutes.
341
342 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
343
344 (((
345 This is the default mode.
346
347 The uplink payload is 11 bytes long.
348
349 (% style="color:red" %)**Note:The maximum count depends on the bytes number of bytes.
350 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
351 It starts counting again when it reaches the maximum value.**(% style="display:none" wfd-invisible="true" %)
352
353 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
354 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
355 |Value|(((
356 AVI1 voltage
357 )))|(((
358 AVI2 voltage
359 )))|(((
360 ACI1 Current
361 )))|(((
362 ACI2 Current
363 )))|**DIDORO***|(((
364 Reserve
365 )))|MOD
366 )))
367
368 (((
369 (% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
370
371 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
372 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
373 |RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
374 )))
375
376 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
377 * DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
378 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
379
380 (% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
381
382 For example, if the payload is: [[image:image-20220523175847-2.png]]
383
384
385 **The interface values can be calculated as follows:  **
386
387 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
388
389 AVI2 channel voltage is 0x04AC/1000=1.196V
390
391 ACI1 channel current is 0x1310/1000=4.880mA
392
393 ACI2 channel current is 0x1300/1000=4.864mA
394
395 The last byte 0xAA= **10101010**(b) means,
396
397 * [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
398 * [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
399 * **[1] DI3 - not used for LT-22222-L.**
400 * [0] DI2 channel input is LOW, and the DI2 LED is OFF.
401 * [1] DI1 channel input state:
402 ** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
403 ** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
404 ** DI1 LED is ON in both cases.
405 * **[0] DO3 - not used for LT-22222-L.**
406 * [1] DO2 channel output is LOW, and the DO2 LED is ON.
407 * [0] DO1 channel output state:
408 ** DO1 is FLOATING when there is no load between DO1 and V+.
409 ** DO1 is HIGH and there is a load between DO1 and V+.
410 ** DO1 LED is OFF in both cases.
411
412 Reserve = 0
413
414 MOD = 1
415
416 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
417
418
419 (((
420 **For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
421 )))
422
423 (((
424 The uplink payload is 11 bytes long.
425
426 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
427 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
428 It starts counting again when it reaches the maximum value.**
429
430 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
431 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
432 |Value|COUNT1|COUNT2 |DIDORO*|(((
433 Reserve
434 )))|MOD
435 )))
436
437 (((
438 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
439
440 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
441 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
442 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
443
444 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
445 )))
446
447 * FIRST: Indicates that this is the first packet after joining the network.
448 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
449
450 (((
451 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
452
453
454 )))
455
456 (((
457 **To activate this mode, run the following AT commands:**
458 )))
459
460 (((
461 (% class="box infomessage" %)
462 (((
463 **AT+MOD=2**
464
465 **ATZ**
466 )))
467 )))
468
469 (((
470
471
472 (% style="color:#4f81bd" %)**AT Commands for counting:**
473 )))
474
475 (((
476 **For LT22222-L:**
477
478 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
479
480 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
481
482 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
483
484 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
485
486 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
487
488 (% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
489 )))
490
491
492 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
493
494 (% style="color:red" %)**Note: The maximum count depends on the bytes it is.
495 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
496 It starts counting again when it reaches the maximum value.**
497
498 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
499
500 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
501 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
502 |Value|COUNT1|(((
503 ACI1 Current
504 )))|(((
505 ACI2 Current
506 )))|DIDORO*|Reserve|MOD
507
508 (((
509 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
510
511 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
512 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
513 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
514 )))
515
516 * RO is for the relay. ROx=1: closed, ROx=0 always open.
517 * FIRST: Indicates that this is the first packet after joining the network.
518 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
519
520 (((
521 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
522 )))
523
524
525 (((
526 **To activate this mode, run the following AT commands:**
527 )))
528
529 (((
530 (% class="box infomessage" %)
531 (((
532 **AT+MOD=3**
533
534 **ATZ**
535 )))
536 )))
537
538 (((
539 AT Commands for counting:
540
541 The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
542 )))
543
544
545 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
546
547 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
548 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
549 It starts counting again when it reaches the maximum value.**
550
551
552 (((
553 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
554 )))
555
556 (((
557 The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
558
559 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
560 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
561 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
562 Reserve
563 )))|MOD
564 )))
565
566 (((
567 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
568
569 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
570 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
571 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
572 )))
573
574 * RO is for the relay. ROx=1: closed, ROx=0 always open.
575 * FIRST: Indicates that this is the first packet after joining the network.
576 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
577
578 (((
579 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
580
581
582 )))
583
584 (((
585 **To activate this mode, run the following AT commands:**
586 )))
587
588 (((
589 (% class="box infomessage" %)
590 (((
591 **AT+MOD=4**
592
593 **ATZ**
594 )))
595 )))
596
597 (((
598 AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
599 )))
600
601 (((
602 **In addition to that, below are the commands for AVI1 Counting:**
603
604 (% style="color:blue" %)**AT+SETCNT=3,60 **(%%)**(Sets AVI1 Count to 60)**
605
606 (% style="color:blue" %)**AT+VOLMAX=20000 **(%%)**(If the AVI1 voltage is higher than VOLMAX (20000mV =20V), the counter increases by 1)**
607
608 (% style="color:blue" %)**AT+VOLMAX=20000,0 **(%%)**(If the AVI1 voltage is lower than VOLMAX (20000mV =20V), counter increases by 1)**
609
610 (% style="color:blue" %)**AT+VOLMAX=20000,1 **(%%)**(If the AVI1 voltage is higher than VOLMAX (20000mV =20V), counter increases by 1)**
611 )))
612
613
614 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
615
616 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
617 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
618 It starts counting again when it reaches the maximum value.**
619
620
621 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
622
623 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
624 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
625 |Value|(((
626 AVI1 voltage
627 )))|(((
628 AVI2 voltage
629 )))|(((
630 ACI1 Current
631 )))|COUNT1|DIDORO*|(((
632 Reserve
633 )))|MOD
634
635 (((
636 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
637
638 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
639 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
640 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
641 )))
642
643 * RO is for the relay. ROx=1: closed, ROx=0 always open.
644 * FIRST: Indicates that this is the first packet after joining the network.
645 * (((
646 DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
647 )))
648
649 (((
650 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
651 )))
652
653 (((
654 **To activate this mode, run the following AT commands:**
655 )))
656
657 (((
658 (% class="box infomessage" %)
659 (((
660 **AT+MOD=5**
661
662 **ATZ**
663 )))
664 )))
665
666 (((
667 Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
668 )))
669
670
671 === 3.3.6 AT+ADDMOD~=6 (Trigger Mode, Optional) ===
672
673
674 (% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate __alongside__ with other modes.**
675
676 For example, if you configure the following commands:
677
678 * **AT+MOD=1 ** **~-~->**  Sets the default working mode
679 * **AT+ADDMOD6=1**   **~-~->**  Enables trigger mode
680
681 The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. It will send uplink packets in two cases:
682
683 1. Periodic uplink: Based on TDC time. The payload is the same as in normal mode (MOD=1 as set above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
684 1. (((
685 Trigger uplink: sent when a trigger condition is met. In this case, LT will send two packets
686
687 * The first uplink uses the payload specified in trigger mode (MOD=6).
688 * The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**confirmed uplinks.**
689 )))
690
691 (% style="color:#037691" %)**AT Commands to set Trigger Conditions**:
692
693 (% style="color:#4f81bd" %)**Trigger based on voltage**:
694
695 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
696
697
698 **Example:**
699
700 AT+AVLIM=3000,6000,0,2000 (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
701
702 AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
703
704
705 (% style="color:#4f81bd" %)**Trigger based on current**:
706
707 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
708
709
710 **Example:**
711
712 AT+ACLIM=10000,15000,0,0 (triggers an uplink if AC1 current is lower than 10mA or higher than 15mA)
713
714
715 (% style="color:#4f81bd" %)**Trigger based on DI status**:
716
717 DI status triggers Flag.
718
719 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
720
721
722 **Example:**
723
724 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
725
726
727 (% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
728
729 **Type Code**: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
730
731 **Format**: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
732
733 AA: Type Code for this downlink Command:
734
735 xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
736
737 yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
738
739 yy2 yy2: AC1 or AV1 HIGH limit.
740
741 yy3 yy3: AC2 or AV2 LOW limit.
742
743 Yy4 yy4: AC2 or AV2 HIGH limit.
744
745
746 **Example 1**: AA 00 13 88 00 00 00 00 00 00
747
748 Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
749
750
751 **Example 2**: AA 02 01 00
752
753 Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
754
755
756 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
757
758 MOD6 Payload: total of 11 bytes
759
760 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
761 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
762 |Value|(((
763 TRI_A FLAG
764 )))|(((
765 TRI_A Status
766 )))|(((
767 TRI_DI FLAG+STA
768 )))|Reserve|Enable/Disable MOD6|(((
769 MOD(6)
770 )))
771
772 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
773
774 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
775 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
776 |(((
777 AV1_LOW
778 )))|(((
779 AV1_HIGH
780 )))|(((
781 AV2_LOW
782 )))|(((
783 AV2_HIGH
784 )))|(((
785 AC1_LOW
786 )))|(((
787 AC1_HIGH
788 )))|(((
789 AC2_LOW
790 )))|(((
791 AC2_HIGH
792 )))
793
794 * Each bit shows if the corresponding trigger has been configured.
795
796 **Example:**
797
798 10100000: This means the system is configured to use the triggers AV1_LOW and AV2_LOW.
799
800
801 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
802
803 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
804 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
805 |(((
806 AV1_LOW
807 )))|(((
808 AV1_HIGH
809 )))|(((
810 AV2_LOW
811 )))|(((
812 AV2_HIGH
813 )))|(((
814 AC1_LOW
815 )))|(((
816 AC1_HIGH
817 )))|(((
818 AC2_LOW
819 )))|(((
820 AC2_HIGH
821 )))
822
823 * Each bit shows which status has been triggered on this uplink.
824
825 **Example:**
826
827 10000000: The uplink is triggered by AV1_LOW, indicating that the voltage is too low.
828
829
830 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
831
832 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:674px" %)
833 |(% style="width:64px" %)**bit 7**|(% style="width:68px" %)**bit 6**|(% style="width:63px" %)**bit 5**|(% style="width:66px" %)**bit 4**|(% style="width:109px" %)**bit 3**|(% style="width:93px" %)**bit 2**|(% style="width:109px" %)**bit 1**|(% style="width:99px" %)**bit 0**
834 |(% style="width:64px" %)N/A|(% style="width:68px" %)N/A|(% style="width:63px" %)N/A|(% style="width:66px" %)N/A|(% style="width:109px" %)DI2_STATUS|(% style="width:93px" %)DI2_FLAG|(% style="width:109px" %)DI1_STATUS|(% style="width:99px" %)DI1_FLAG
835
836 * Each bit shows which status has been triggered on this uplink.
837
838 **Example:**
839
840 00000111: This means both DI1 and DI2 triggers are enabled, and this packet is trigger by DI1.
841
842 00000101: This means both DI1 and DI2 triggers are enabled.
843
844
845 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enabled. 0x00: MOD6 is disabled.
846
847 Downlink command to poll/request MOD6 status:
848
849 **AB 06**
850
851 When device receives this command, it will send the MOD6 payload.
852
853
854 === 3.3.7 Payload Decoder ===
855
856 (((
857
858
859 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
860 )))
861
862
863 == 3.4 ​Configure LT-22222-L via AT Commands or Downlinks ==
864
865 (((
866 You can configure LT-22222-L I/O Controller via AT Commands or LoRaWAN Downlinks.
867 )))
868
869 (((
870 (((
871 There are two tytes of commands:
872 )))
873 )))
874
875 * (% style="color:blue" %)**Common commands**(%%):
876
877 * (% style="color:blue" %)**Sensor-related commands**(%%):
878
879 === 3.4.1 Common commands ===
880
881 (((
882 These are available for each sensors and include actions such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]s.
883 )))
884
885 === 3.4.2 Sensor-related commands ===
886
887 These commands are specially designed for the LT-22222-L. Commands can be sent to the device using options such as an AT command or a LoRaWAN downlink payload.
888
889
890 ==== 3.4.2.1 Set Transmit/Uplink Interval ====
891
892 Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
893
894 (% style="color:#037691" %)**AT command**
895
896 (% border="2" style="width:500px" %)
897 |**Command**|AT+TDC=<time>
898 |**Response**|
899 |**Parameters**|**time** : uplink interval is in **milliseconds**
900 |**Example**|(((
901 AT+TDC=30000
902
903 Sets the uplink interval to **30 seconds** (30000 milliseconds)
904 )))
905
906 (% style="color:#037691" %)**Downlink payload**
907
908 (% border="2" style="width:500px" %)
909 |**Payload**|(((
910 <prefix><time>
911 )))
912 |**Parameters**|(((
913 **prefix** : 0x01
914
915 **time** : uplink interval is in **seconds**, represented by **3  bytes** in **hexadecimal**.
916 )))
917 |**Example**|(((
918 01 **00 00 1E**
919
920 Sets the uplink interval to **30 seconds**
921
922 Conversion: 30 (dec) = 00 00 1E (hex)
923
924 See [[RapidTables>>https://www.rapidtables.com/convert/number/decimal-to-hex.html?x=30]]
925
926 [[image:Screenshot 2024-11-23 at 18.27.11.png]]
927 )))
928
929 ==== 3.4.2.2 Set the Working Mode (AT+MOD) ====
930
931 Sets the working mode.
932
933 (% style="color:#037691" %)**AT command**
934
935 (% border="2" style="width:500px" %)
936 |(% style="width:97px" %)**Command**|(% style="width:413px" %)AT+MODE=<working_mode>
937 |(% style="width:97px" %)**Response**|(% style="width:413px" %)
938 |(% style="width:97px" %)**Parameters**|(% style="width:413px" %)(((
939 **working_mode** :
940
941 1 = (Default mode/factory set):  2ACI + 2AVI + DI + DO + RO
942
943 2 = Double DI Counting + DO + RO
944
945 3 = Single DI Counting + 2 x ACI + DO + RO
946
947 4 = Single DI Counting + 1 x Voltage Counting + DO + RO
948
949 5 = Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
950
951 6 = Trigger Mode, Optional, used together with MOD1 ~~ MOD5
952 )))
953 |(% style="width:97px" %)**Example**|(% style="width:413px" %)(((
954 AT+MOD=2
955
956 Sets the device to working mode 2 (Double DI Counting + DO + RO)
957 )))
958
959 (% class="wikigeneratedid" %)
960 (% style="color:#037691" %)**Downlink payload**
961
962 (% border="2" style="width:500px" %)
963 |(% style="width:98px" %)**Payload**|(% style="width:400px" %)<prefix><working_mode>
964 |(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
965 **prefix** : 0x0A
966
967 **working_mode** : Working mode, represented by 1 byte in hexadecimal.
968 )))
969 |(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
970 0A **02**
971
972 Sets the device to working mode 2 (Double DI Counting + DO + RO)
973 )))
974
975 ==== 3.4.2.3 Request an uplink from the device ====
976
977 Requests an uplink from LT-22222-L. The content of the uplink payload varies based on the device's current working mode.
978
979 (% style="color:#037691" %)**AT command**
980
981 There is no AT Command available for this feature.
982
983 (% style="color:#037691" %)**Downlink payload**
984
985 (% border="2" style="width:500px" %)
986 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix>FF
987 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)**prefix** : 0x08
988 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
989 08 **FF**
990
991 Requests an uplink from LT-22222-L.
992 )))
993
994 ==== 3.4.2.4 Enable/Disable Trigger Mode ====
995
996 Enable or disable the trigger mode for the current working mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
997
998 (% style="color:#037691" %)**AT Command**
999
1000 (% border="2" style="width:500px" %)
1001 |(% style="width:95px" %)**Command**|(% style="width:403px" %)AT+ADDMOD6=<enable/disable trigger_mode>
1002 |(% style="width:95px" %)**Response**|(% style="width:403px" %)
1003 |(% style="width:95px" %)**Parameters**|(% style="width:403px" %)(((
1004 **enable/disable trigger_mode** :
1005
1006 1 = enable trigger mode
1007
1008 0 = disable trigger mode
1009 )))
1010 |(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1011 AT+ADDMOD6=1
1012
1013 Enable trigger mode for the current working mode
1014 )))
1015
1016 (% style="color:#037691" %)**Downlink payload**
1017
1018 (% border="2" style="width:500px" %)
1019 |(% style="width:97px" %)**Payload**|(% style="width:401px" %)<prefix><enable/disable trigger_mode>
1020 |(% style="width:97px" %)**Parameters**|(% style="width:401px" %)(((
1021 **prefix** : 0x0A 06 (two bytes in hexadecimal)
1022
1023 **enable/disable trigger_mode** : enable (1) or disable (0), represented by 1 byte in hexadecimal.
1024 )))
1025 |(% style="width:97px" %)**Example**|(% style="width:401px" %)(((
1026 0A 06 **01**
1027
1028 Enable trigger mode for the current working mode
1029 )))
1030
1031 ==== 3.4.2.5 Request trigger settings ====
1032
1033 Requests the trigger settings.
1034
1035 (% style="color:#037691" %)**AT Command:**
1036
1037 There is no AT Command available for this feature.
1038
1039 (% style="color:#037691" %)**Downlink Payload**
1040
1041 (% border="2" style="width:500px" %)
1042 |(% style="width:95px" %)**Payload**|(% style="width:403px" %)<prefix>
1043 |(% style="width:95px" %)**Parameters**|(% style="width:403px" %)**prefix **: AB 06 (two bytes in hexadecimal)
1044 |(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1045 AB 06
1046
1047 Uplinks the trigger settings.
1048 )))
1049
1050 ==== 3.4.2.6 Enable/Disable DI1/DI2/DI3 as a trigger ====
1051
1052 Enable or disable DI1/DI2/DI3 as a trigger.
1053
1054 (% style="color:#037691" %)**AT Command**
1055
1056 (% border="2" style="width:500px" %)
1057 |(% style="width:98px" %)**Command**|(% style="width:400px" %)AT+DTRI=<DI1_trigger>,<DI2_trigger>
1058 |(% style="width:98px" %)**Response**|(% style="width:400px" %)
1059 |(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
1060 **DI1_trigger:**
1061
1062 1 = enable DI1 trigger
1063
1064 0 = disable DI1 trigger
1065
1066 **DI2 _trigger**
1067
1068 1 = enable DI2 trigger
1069
1070 0 = disable DI2 trigger
1071 )))
1072 |(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
1073 AT+DTRI=1,0
1074
1075 Enable DI1 trigger, disable DI2 trigger
1076 )))
1077
1078 (% class="wikigeneratedid" %)
1079 (% style="color:#037691" %)**Downlink Payload**
1080
1081 (% border="2" style="width:500px" %)
1082 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><DI1_trigger><DI2_trigger>
1083 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1084 **prefix :** AA 02 (two bytes in hexadecimal)
1085
1086 **DI1_trigger:**
1087
1088 1 = enable DI1 trigger, represented by 1 byte in hexadecimal.
1089
1090 0 = disable DI1 trigger, represented by 1 byte in hexadecimal.
1091
1092 **DI2 _trigger**
1093
1094 1 = enable DI2 trigger, represented by 1 byte in hexadecimal.
1095
1096 0 = disable DI2 trigger, represented by 1 byte in hexadecimal.
1097 )))
1098 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1099 AA 02 **01 00**
1100
1101 Enable DI1 trigger, disable DI2 trigger
1102 )))
1103
1104 ==== 3.4.2.7 Trigger1 – Set DI or DI3 as a trigger ====
1105
1106 Sets DI1 or DI3 (for LT-33222-L) as a trigger.
1107
1108
1109 (% style="color:#037691" %)**AT Command**
1110
1111 (% border="2" style="width:500px" %)
1112 |(% style="width:101px" %)**Command**|(% style="width:397px" %)AT+TRIG1=<interrupt_mode>,<minimum_signal_duration>
1113 |(% style="width:101px" %)**Response**|(% style="width:397px" %)
1114 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1115 **interrupt_mode** :  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1116
1117 **minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1118 )))
1119 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1120 AT+TRIG1=1,100
1121
1122 Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1123 )))
1124
1125 (% class="wikigeneratedid" %)
1126 (% style="color:#037691" %)**Downlink Payload**
1127
1128 (% border="2" style="width:500px" %)
1129 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><interrupt_mode><minimum_signal_duration>
1130 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1131 **prefix** : 09 01 (hexadecimal)
1132
1133 **interrupt_mode** : 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1134
1135 **minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal.
1136 )))
1137 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1138 09 01 **01 00 64**
1139
1140 Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1141 )))
1142
1143 ==== 3.4.2.8 Trigger2 – Set DI2 as a trigger ====
1144
1145 Sets DI2 as a trigger.
1146
1147
1148 (% style="color:#037691" %)**AT Command**
1149
1150 (% border="2" style="width:500px" %)
1151 |(% style="width:94px" %)**Command**|(% style="width:404px" %)AT+TRIG2=<interrupt_mode>,<minimum_signal_duration>
1152 |(% style="width:94px" %)**Response**|(% style="width:404px" %)
1153 |(% style="width:94px" %)**Parameters**|(% style="width:404px" %)(((
1154 **interrupt_mode **:  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1155
1156 **minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1157 )))
1158 |(% style="width:94px" %)**Example**|(% style="width:404px" %)(((
1159 AT+TRIG2=0,100
1160
1161 Set the DI1 port to trigger on a falling edge; the valid signal duration is 100 ms.
1162 )))
1163
1164 (% style="color:#037691" %)**Downlink Payload**
1165
1166 (% border="2" style="width:500px" %)
1167 |(% style="width:96px" %)**Payload**|(% style="width:402px" %)<prefix><interrupt_mode><minimum_signal_duration>
1168 |(% style="width:96px" %)**Parameters**|(% style="width:402px" %)(((
1169 **prefix** : 09 02 (hexadecimal)
1170
1171 **interrupt_mode **: 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1172
1173 **minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal
1174 )))
1175 |(% style="width:96px" %)**Example**|(% style="width:402px" %)09 02 **00 00 64**
1176
1177 ==== 3.4.2.9 Trigger – Set AC (current) as a trigger ====
1178
1179 Sets the current trigger based on the AC port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1180
1181 (% style="color:#037691" %)**AT Command**
1182
1183 (% border="2" style="width:500px" %)
1184 |(% style="width:104px" %)**Command**|(% style="width:394px" %)(((
1185 AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1186 )))
1187 |(% style="width:104px" %)**Response**|(% style="width:394px" %)
1188 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1189 **AC1_LIMIT_LOW** : lower limit of the current to be checked
1190
1191 **AC1_LIMIT_HIGH **: higher limit of the current to be checked
1192
1193 **AC2_LIMIT_HIGH **: lower limit of the current to be checked
1194
1195 **AC2_LIMIT_LOW** : higher limit of the current to be checked
1196 )))
1197 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1198 AT+ACLIM=10000,15000,0,0
1199
1200 Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA
1201 )))
1202 |(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1203
1204 (% style="color:#037691" %)**Downlink Payload**
1205
1206 (% border="2" style="width:500px" %)
1207 |(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1208 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1209 **prefix **: AA 01 (hexadecimal)
1210
1211 **AC1_LIMIT_LOW** : lower limit of the current to be checked, two bytes in hexadecimal
1212
1213 **AC1_LIMIT_HIGH **: higher limit of the current to be checked, two bytes in hexadecimal
1214
1215 **AC2_LIMIT_HIGH **: lower limit of the current to be checked, two bytes in hexadecimal
1216
1217 **AC2_LIMIT_LOW** : higher limit of the current to be checked, two bytes in hexadecimal
1218 )))
1219 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1220 AA 01 **27** **10 3A** **98** 00 00 00 00
1221
1222 Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA. Set all values to zero for AC2 limits because we are only checking AC1 limits.
1223 )))
1224 |(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1225
1226 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
1227
1228 Sets the current trigger based on the AV port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1229
1230 (% style="color:#037691" %)**AT Command**
1231
1232 (% border="2" style="width:500px" %)
1233 |(% style="width:104px" %)**Command**|(% style="width:387px" %)AT+AVLIM= AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1234 |(% style="width:104px" %)**Response**|(% style="width:387px" %)
1235 |(% style="width:104px" %)**Parameters**|(% style="width:387px" %)(((
1236 **AC1_LIMIT_LOW** : lower limit of the current to be checked
1237
1238 **AC1_LIMIT_HIGH **: higher limit of the current to be checked
1239
1240 **AC2_LIMIT_HIGH **: lower limit of the current to be checked
1241
1242 **AC2_LIMIT_LOW** : higher limit of the current to be checked
1243 )))
1244 |(% style="width:104px" %)**Example**|(% style="width:387px" %)(((
1245 AT+AVLIM=3000,6000,0,2000
1246
1247 Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V
1248 )))
1249 |(% style="width:104px" %)**Note**|(% style="width:387px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1250
1251 (% style="color:#037691" %)**Downlink Payload**
1252
1253 (% border="2" style="width:500px" %)
1254 |(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1255 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1256 **prefix **: AA 00 (hexadecimal)
1257
1258 **AV1_LIMIT_LOW** : lower limit of the voltage to be checked, two bytes in hexadecimal
1259
1260 **AV1_LIMIT_HIGH **: higher limit of the voltage to be checked, two bytes in hexadecimal
1261
1262 **AV2_LIMIT_HIGH **: lower limit of the voltage to be checked, two bytes in hexadecimal
1263
1264 **AV2_LIMIT_LOW** : higher limit of the voltage to be checked, two bytes in hexadecimal
1265 )))
1266 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1267 AA 00 **0B B8 17 70 00 00 07 D0**
1268
1269 Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V.
1270 )))
1271 |(% style="width:104px" %)**Note**|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1272
1273 ==== 3.4.2.11 Trigger – Set minimum interval ====
1274
1275 Sets the AV and AC trigger minimum interval. The device won't respond to a second trigger within this set time after the first trigger.
1276
1277 (% style="color:#037691" %)**AT Command**
1278
1279 (% border="2" style="width:500px" %)
1280 |(% style="width:113px" %)**Command**|(% style="width:385px" %)AT+ATDC=<time>
1281 |(% style="width:113px" %)**Response**|(% style="width:385px" %)
1282 |(% style="width:113px" %)**Parameters**|(% style="width:385px" %)(((
1283 **time** : in minutes
1284 )))
1285 |(% style="width:113px" %)**Example**|(% style="width:385px" %)(((
1286 AT+ATDC=5
1287
1288 The device won't respond to the second trigger within 5 minutes after the first trigger.
1289 )))
1290 |(% style="width:113px" %)Note|(% style="width:385px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1291
1292 (% style="color:#037691" %)**Downlink Payload**
1293
1294 (% border="2" style="width:500px" %)
1295 |(% style="width:112px" %)**Payload**|(% style="width:386px" %)<prefix><time>
1296 |(% style="width:112px" %)**Parameters**|(% style="width:386px" %)(((
1297 **prefix** : AC (hexadecimal)
1298
1299 **time **: in minutes (two bytes in hexadecimal)
1300 )))
1301 |(% style="width:112px" %)**Example**|(% style="width:386px" %)(((
1302 AC **00 05**
1303
1304 The device won't respond to the second trigger within 5 minutes after the first trigger.
1305 )))
1306 |(% style="width:112px" %)Note|(% style="width:386px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1307
1308 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1309
1310 Controls the digital outputs DO1, DO2, and DO3
1311
1312 (% style="color:#037691" %)**AT Command**
1313
1314 There is no AT Command to control the Digital Output.
1315
1316
1317 (% style="color:#037691" %)**Downlink Payload**
1318
1319 (% border="2" style="width:500px" %)
1320 |(% style="width:115px" %)**Payload**|(% style="width:383px" %)<prefix><DO1><DO2><DO3>
1321 |(% style="width:115px" %)**Parameters**|(% style="width:383px" %)(((
1322 **prefix** : 02 (hexadecimal)
1323
1324 **DOI** : 01: Low,  00: High, 11: No action (1 byte in hex)
1325
1326 **DO2** : 01: Low,  00: High, 11: No action (1 byte in hex)
1327
1328 **DO3 **: 01: Low,  00: High, 11: No action (1 byte in hex)
1329 )))
1330 |(% style="width:115px" %)**Examples**|(% style="width:383px" %)(((
1331 02 **01 00 01**
1332
1333 If there is a load between V+ and DOx, it means DO1 is set to low, DO2 is set to high, and DO3 is set to low.
1334
1335 **More examples:**
1336
1337 (((
1338 01: Low,  00: High,  11: No action
1339
1340 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:383px" %)
1341 |(% style="background-color:#4f81bd; color:white; width:126px" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white; width:85px" %)**DO1**|(% style="background-color:#4f81bd; color:white; width:86px" %)**DO2**|(% style="background-color:#4f81bd; color:white; width:86px" %)**DO3**
1342 |(% style="width:126px" %)02  01  00  11|(% style="width:85px" %)Low|(% style="width:86px" %)High|(% style="width:86px" %)No Action
1343 |(% style="width:126px" %)02  00  11  01|(% style="width:85px" %)High|(% style="width:86px" %)No Action|(% style="width:86px" %)Low
1344 |(% style="width:126px" %)02  11  01  00|(% style="width:85px" %)No Action|(% style="width:86px" %)Low|(% style="width:86px" %)High
1345 )))
1346
1347 (((
1348 (((
1349 (% style="color:red" %)**Note: For the LT-22222-L, there is no DO3; the last byte can have any value.**
1350 )))
1351
1352 (((
1353 (% style="color:red" %)**The device will upload a packet if downlink code executes successfully.**
1354 )))
1355 )))
1356 )))
1357
1358 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1359
1360
1361 * (% style="color:#037691" %)**AT Command**
1362
1363 There is no AT command to control the digital output.
1364
1365
1366 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1367
1368 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Sets DO1/DO2/DO3 outputs with time control
1369
1370 This is to control the digital output time of DO pin. Include four bytes:
1371
1372 (% style="color:#4f81bd" %)**First byte**(%%)**:** Type code (0xA9)
1373
1374 (% style="color:#4f81bd" %)**Second byte**(%%): Inverter Mode
1375
1376 **01:** DO pins revert to their original state after the timeout.
1377 **00:** DO pins switch to an inverted state after the timeout.
1378
1379
1380 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Port status:
1381
1382 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1383 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1384 |0x01|DO1 set to low
1385 |0x00|DO1 set to high
1386 |0x11|DO1 NO Action
1387
1388 (% style="color:#4f81bd" %)**Fourth byte**(%%): Control Method and Port status:
1389
1390 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1391 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1392 |0x01|DO2 set to low
1393 |0x00|DO2 set to high
1394 |0x11|DO2 NO Action
1395
1396 (% style="color:#4f81bd" %)**Fifth byte**(%%): Control Method and Port status:
1397
1398 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1399 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1400 |0x01|DO3 set to low
1401 |0x00|DO3 set to high
1402 |0x11|DO3 NO Action
1403
1404 (% style="color:#4f81bd" %)**Sixth, Seventh, Eighth, and Ninth bytes**:(%%) Latching time (Unit: ms)
1405
1406
1407 (% style="color:red" %)**Note: **
1408
1409 Since firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1410
1411 Before firmware v1.6.0, the latch time only supported 2 bytes.
1412
1413 (% style="color:red" %)**The device will uplink a packet if the downlink code executes successfully.**
1414
1415
1416 **Example payload:**
1417
1418 **~1. A9 01 01 01 01 07 D0**
1419
1420 DO1 pin, DO2 pin, and DO3 pin will be set to low, last for 2 seconds, and then revert to their original state.
1421
1422 **2. A9 01 00 01 11 07 D0**
1423
1424 DO1 pin is set to high, DO2 pin is set to low, and DO3 pin takes no action. This lasts for 2 seconds and then reverts to the original state.
1425
1426 **3. A9 00 00 00 00 07 D0**
1427
1428 DO1 pin, DO2 pin, and DO3 pin will be set to high, last for 2 seconds, and then all change to low.
1429
1430 **4. A9 00 11 01 00 07 D0**
1431
1432 DO1 pin takes no action, DO2 pin is set to low, and DO3 pin is set to high. This lasts for 2 seconds, after which DO1 pin takes no action, DO2 pin is set to high, and DO3 pin is set to low.
1433
1434
1435 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1436
1437
1438 * (% style="color:#037691" %)**AT Command:**
1439
1440 There is no AT Command to control the Relay Output
1441
1442
1443 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1444
1445 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Sets RO1/RO2 output
1446
1447
1448 (((
1449 If the payload is 0x030100, it means setting RO1 to close and RO2 to open.
1450 )))
1451
1452 (((
1453 00: Close ,  01: Open , 11: No action
1454
1455 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1456 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1457 |03  00  11|Open|No Action
1458 |03  01  11|Close|No Action
1459 |03  11  00|No Action|Open
1460 |03  11  01|No Action|Close
1461 |03  00  00|Open|Open
1462 |03  01  01|Close|Close
1463 |03  01  00|Close|Open
1464 |03  00  01|Open|Close
1465 )))
1466
1467 (% style="color:red" %)**The device will uplink a packet if the downlink code executes successfully.**
1468
1469
1470 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1471
1472 Controls the relay output time.
1473
1474 * (% style="color:#037691" %)**AT Command:**
1475
1476 There is no AT Command to control the Relay Output
1477
1478
1479 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1480
1481 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Sets RO1/RO2 relays with time control
1482
1483
1484 This controls the relay output time and includes 4 bytes:
1485
1486 (% style="color:#4f81bd" %)**First byte **(%%)**:** Type code (0x05)
1487
1488 (% style="color:#4f81bd" %)**Second byte (aa)**(%%): Inverter Mode
1489
1490 01: Relays will change back to their original state after timeout.
1491
1492 00: Relays will change to the inverter state after timeout.
1493
1494
1495 (% style="color:#4f81bd" %)**Third byte (bb)**(%%): Control Method and Ports status:
1496
1497 [[image:image-20221008095908-1.png||height="364" width="564"]]
1498
1499
1500 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh bytes (cc)**(%%): Latching time. Unit: ms
1501
1502
1503 (% style="color:red" %)**Note:**
1504
1505 Since firmware v1.6.0, the latch time supports both 4 bytes and 2 bytes.
1506
1507 Before firmware v1.6.0, the latch time only supported 2 bytes.
1508
1509
1510 (% style="color:red" %)**The device will uplink a packet if the downlink code executes successfully.**
1511
1512
1513 **Example payload:**
1514
1515 **~1. 05 01 11 07 D0**
1516
1517 Relay1 and Relay2 will be set to NC, lasting 2 seconds, then revert to their original state
1518
1519 **2. 05 01 10 07 D0**
1520
1521 Relay1 will change to NC, Relay2 will change to NO, lasting 2 seconds, then both will revert to their original state.
1522
1523 **3. 05 00 01 07 D0**
1524
1525 Relay1 will change to NO, Relay2 will change to NC, lasting 2 seconds, then Relay1 will change to NC, and Relay2 will change to NO.
1526
1527 **4. 05 00 00 07 D0**
1528
1529 Relay1 and Relay2 will change to NO, lasting 2 seconds, then both will change to NC.
1530
1531
1532
1533 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1534
1535
1536 When the voltage exceeds the threshold, counting begins. For details, see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1537
1538 (% style="color:#037691" %)**AT Command**
1539
1540 (% border="2" style="width:500px" %)
1541 |(% style="width:137px" %)**Command**|(% style="width:361px" %)AT+VOLMAX=<voltage>,<logic>
1542 |(% style="width:137px" %)**Response**|(% style="width:361px" %)
1543 |(% style="width:137px" %)**Parameters**|(% style="width:361px" %)(((
1544 **voltage** : voltage threshold in mV
1545
1546 **logic**:
1547
1548 **0** : lower than
1549
1550 **1**: higher than
1551
1552 if you leave logic parameter blank, it is considered 0
1553 )))
1554 |(% style="width:137px" %)**Examples**|(% style="width:361px" %)(((
1555 AT+VOLMAX=20000
1556
1557 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1558
1559 AT+VOLMAX=20000,0
1560
1561 If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1562
1563 AT+VOLMAX=20000,1
1564
1565 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1566 )))
1567
1568 (% style="color:#037691" %)**Downlink Payload**
1569
1570 (% border="2" style="width:500px" %)
1571 |(% style="width:140px" %)**Payload**|(% style="width:358px" %)<prefix><voltage><logic>
1572 |(% style="width:140px" %)**Parameters**|(% style="width:358px" %)(((
1573 **prefix** : A5 (hex)
1574
1575 **voltage** : voltage threshold in mV (2 bytes in hex)
1576
1577 **logic**: (1 byte in hexadecimal)
1578
1579 **0** : lower than
1580
1581 **1**: higher than
1582
1583 if you leave logic parameter blank, it is considered 1 (higher than)
1584 )))
1585 |(% style="width:140px" %)**Example**|(% style="width:358px" %)(((
1586 A5 **4E 20**
1587
1588 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1589
1590 A5 **4E 20 00**
1591
1592 If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1593
1594 A5 **4E 20 01**
1595
1596 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1597 )))
1598
1599 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1600
1601 This command allows users to pre-configure specific count numbers for various counting parameters such as Count1, Count2, or AVI1 Count. Use the AT command to set the desired count number for each configuration.
1602
1603 (% style="color:#037691" %)**AT Command**
1604
1605 (% border="2" style="width:500px" %)
1606 |(% style="width:134px" %)**Command**|(% style="width:364px" %)AT+SETCNT=<counting_parameter>,<number>
1607 |(% style="width:134px" %)**Response**|(% style="width:364px" %)
1608 |(% style="width:134px" %)**Parameters**|(% style="width:364px" %)(((
1609 **counting_parameter** :
1610
1611 1: COUNT1
1612
1613 2: COUNT2
1614
1615 3: AVI1 Count
1616
1617 **number** : Start number
1618 )))
1619 |(% style="width:134px" %)**Example**|(% style="width:364px" %)(((
1620 AT+SETCNT=1,10
1621
1622 Sets the COUNT1 to 10.
1623 )))
1624
1625 (% style="color:#037691" %)**Downlink Payload**
1626
1627 (% border="2" style="width:500px" %)
1628 |(% style="width:135px" %)**Payload**|(% style="width:363px" %)<prefix><counting_parameter><number>
1629 |(% style="width:135px" %)**Parameters**|(% style="width:363px" %)(((
1630 prefix : A8 (hex)
1631
1632 **counting_parameter** : (1 byte in hexadecimal)
1633
1634 1: COUNT1
1635
1636 2: COUNT2
1637
1638 3: AVI1 Count
1639
1640 **number** : Start number, 4 bytes in hexadecimal
1641 )))
1642 |(% style="width:135px" %)**Example**|(% style="width:363px" %)(((
1643 A8 **01 00 00 00 0A**
1644
1645 Sets the COUNT1 to 10.
1646 )))
1647
1648 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1649
1650 This command clears the counting in counting mode.
1651
1652 (% style="color:#037691" %)**AT Command**
1653
1654 (% border="2" style="width:500px" %)
1655 |(% style="width:142px" %)**Command**|(% style="width:356px" %)AT+CLRCOUNT
1656 |(% style="width:142px" %)**Response**|(% style="width:356px" %)-
1657
1658 (% style="color:#037691" %)**Downlink Payload**
1659
1660 (% border="2" style="width:500px" %)
1661 |(% style="width:141px" %)**Payload**|(% style="width:357px" %)<prefix><clear?>
1662 |(% style="width:141px" %)**Parameters**|(% style="width:357px" %)(((
1663 prefix : A6 (hex)
1664
1665 clear? : 01 (hex)
1666 )))
1667 |(% style="width:141px" %)**Example**|(% style="width:357px" %)A6 **01**
1668
1669 ==== 3.4.2.19 Counting ~-~- Set Saving Interval for 'Counting Result' ====
1670
1671 This command allows you to configure the device to save its counting result to internal flash memory at specified intervals. By setting a save time, the device will periodically store the counting data to prevent loss in case of power failure. The save interval can be adjusted to suit your requirements, with a minimum value of 30 seconds.
1672
1673 (% style="color:#037691" %)**AT Command**
1674
1675 (% border="2" style="width:500px" %)
1676 |(% style="width:124px" %)**Command**|(% style="width:374px" %)AT+COUTIME=<time>
1677 |(% style="width:124px" %)**Response**|(% style="width:374px" %)
1678 |(% style="width:124px" %)**Parameters**|(% style="width:374px" %)time : seconds (0 to 16777215)
1679 |(% style="width:124px" %)**Example**|(% style="width:374px" %)(((
1680 AT+COUTIME=60
1681
1682 Sets the device to save its counting results to the memory every 60 seconds.
1683 )))
1684
1685 (% style="color:#037691" %)**Downlink Payload**
1686
1687 (% border="2" style="width:500px" %)
1688 |(% style="width:123px" %)**Payload**|(% style="width:375px" %)<prefix><time>
1689 |(% style="width:123px" %)**Parameters**|(% style="width:375px" %)(((
1690 prefix : A7
1691
1692 time : seconds, 3 bytes in hexadecimal
1693 )))
1694 |(% style="width:123px" %)**Example**|(% style="width:375px" %)(((
1695 A7 **00 00 3C**
1696
1697 Sets the device to save its counting results to the memory every 60 seconds.
1698 )))
1699
1700 ==== 3.4.2.20 Reset saved RO and DO states ====
1701
1702 This command allows you to reset the saved relay output (RO) and digital output (DO) states when the device joins the network. By configuring this setting, you can control whether the device should retain or reset the relay states after a reset and rejoin to the network.
1703
1704 (% style="color:#037691" %)**AT Command**
1705
1706 (% border="2" style="width:500px" %)
1707 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+RODORESET=<state>
1708 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1709 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1710 **state** :
1711
1712 **0** : RODO will close when the device joins the network. (default)
1713
1714 **1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1715 )))
1716 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1717 (% style="color:blue" %)**AT+RODORESET=1 **
1718
1719 RODO will close when the device joins the network. (default)
1720
1721 (% style="color:blue" %)**AT+RODORESET=0 **
1722
1723 After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1724 )))
1725
1726 (% style="color:#037691" %)**Downlink Payload**
1727
1728 (% border="2" style="width:500px" %)
1729 |(% style="width:127px" %)**Payload**|(% style="width:371px" %)<prefix><state>
1730 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1731 **prefix** : AD
1732
1733 **state** :
1734
1735 **0** : RODO will close when the device joins the network. (default), represents as 1 byte in hexadecimal.
1736
1737 **1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network. - represents as 1 byte in hexadecimal
1738 )))
1739 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1740 AD **01**
1741
1742 RODO will close when the device joins the network. (default)
1743
1744 AD **00**
1745
1746 After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1747 )))
1748
1749 ==== 3.4.2.21 Encrypted payload ====
1750
1751 This command allows you to configure whether the device should upload data in an encrypted format or in plaintext. By default, the device encrypts the payload before uploading. You can toggle this setting to either upload encrypted data or transmit it without encryption.
1752
1753 (% style="color:#037691" %)**AT Command:**
1754
1755 (% border="2" style="width:500px" %)
1756 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DECRYPT=<state>
1757 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1758 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1759 **state** :
1760
1761 **1** : The payload is uploaded without encryption
1762
1763 **0** : The payload is encrypted when uploaded (default)
1764 )))
1765 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1766 AT+DECRYPT=1
1767
1768 The payload is uploaded without encryption
1769
1770 AT+DECRYPT=0
1771
1772 The payload is encrypted when uploaded (default)
1773 )))
1774
1775 There is no downlink payload for this configuration.
1776
1777
1778 ==== 3.4.2.22 Get sensor value ====
1779
1780 This command allows you to retrieve and optionally uplink sensor readings through the serial port.
1781
1782 (% style="color:#037691" %)**AT Command**
1783
1784 (% border="2" style="width:500px" %)
1785 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+GETSENSORVALUE=<state>
1786 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1787 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1788 **state** :
1789
1790 **0 **: Retrieves the current sensor reading via the serial port.
1791
1792 **1 **: Retrieves and uploads the current sensor reading via the serial port.
1793 )))
1794 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1795 AT+GETSENSORVALUE=0
1796
1797 Retrieves the current sensor reading via the serial port.
1798
1799 AT+GETSENSORVALUE=1
1800
1801 Retrieves and uplinks the current sensor reading via the serial port.
1802 )))
1803
1804 There is no downlink payload for this configuration.
1805
1806
1807 ==== 3.4.2.23 Resetting the downlink packet count ====
1808
1809 This command manages how the node handles mismatched downlink packet counts. It offers two modes: one disables the reception of further downlink packets if discrepancies occur, while the other resets the downlink packet count to align with the server, ensuring continued communication.
1810
1811 (% style="color:#037691" %)**AT Command**
1812
1813 (% border="2" style="width:500px" %)
1814 |(% style="width:130px" %)**Command**|(% style="width:368px" %)AT+DISFCNTCHECK=<state>
1815 |(% style="width:130px" %)**Response**|(% style="width:368px" %)(((
1816
1817 )))
1818 |(% style="width:130px" %)**Parameters**|(% style="width:368px" %)(((
1819 **state **:
1820
1821 **0** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default).
1822
1823
1824 **1** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency.
1825 )))
1826 |(% style="width:130px" %)**Example**|(% style="width:368px" %)(((
1827 AT+DISFCNTCHECK=0
1828
1829 When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default).
1830
1831 AT+DISFCNTCHECK=1
1832
1833 When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency.
1834 )))
1835
1836 There is no downlink payload for this configuration.
1837
1838
1839 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1840
1841
1842 This command controls the behavior of the node when the combined size of the MAC commands (MACANS) from the server and the payload exceeds the allowed byte limit for the current data rate (DR). The command provides two modes: one enables splitting the data into batches to ensure compliance with the byte limit, while the other prioritizes the payload and ignores the MACANS in cases of overflow.
1843
1844 (% style="color:#037691" %)**AT Command**
1845
1846 (% border="2" style="width:500px" %)
1847 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DISMACANS=<state>
1848 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1849 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1850 **state** :
1851
1852 **0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1853
1854 **1** : When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1855 )))
1856 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1857 AT+DISMACANS=0
1858
1859 When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1860
1861 AT+DISMACANS=1
1862
1863 When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1864 )))
1865
1866 (% style="color:#037691" %)**Downlink Payload**
1867
1868 (% border="2" style="width:500px" %)
1869 |(% style="width:126px" %)**Payload**|(% style="width:372px" %)<prefix><state>
1870 |(% style="width:126px" %)**Parameters**|(% style="width:372px" %)(((
1871 **prefix** : 21
1872
1873 **state** : (2 bytes in hexadecimal)
1874
1875 **0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1876
1877 **1 **: When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1878 )))
1879 |(% style="width:126px" %)**Example**|(% style="width:372px" %)(((
1880 21 **00 01**
1881
1882 Set DISMACANS=1
1883 )))
1884
1885 ==== 3.4.2.25 Copy downlink to uplink ====
1886
1887 This command enables the device to immediately uplink the content of a received downlink packet back to the server. The command allows for quick data replication from downlink to uplink, with a fixed port number of 100.
1888
1889 * (% style="color:#037691" %)**AT Command**(%%)**:**
1890
1891 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1892
1893 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1894
1895
1896 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1897
1898 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1899
1900 (% border="2" style="width:500px" %)
1901 |(% style="width:122px" %)**Command**|(% style="width:376px" %)(((
1902 AT+RPL=5
1903
1904 After receiving a downlink packet from the server, the node immediately uplinks the content of the packet back to the server using port number 100.
1905 )))
1906 |(% style="width:122px" %)**Example**|(% style="width:376px" %)(((
1907 Downlink:
1908
1909 01 00 02 58
1910
1911 Uplink:
1912
1913 01 01 00 02 58
1914 )))
1915
1916 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1917
1918 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1919
1920
1921
1922 ==== 3.4.2.26 Query firmware version, frequency band, sub band, and TDC time ====
1923
1924 This command is used to query key information about the device, including its firmware version, frequency band, sub band, and TDC time. By sending the specified payload as a downlink, the server can retrieve this essential data from the device.
1925
1926 * (((
1927 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1928
1929 (% style="color:blue" %)**26 01  ** (%%) ~/~/  The downlink payload 26 01 is used to query the device's firmware version, frequency band, sub band, and TDC time.
1930
1931
1932
1933 )))
1934
1935 **Example:**
1936
1937 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1938
1939
1940 == 3.5 Integrating with ThingsEye.io ==
1941
1942 The Things Stack application supports integration with ThingsEye.io. Once integrated, ThingsEye.io acts as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1943
1944 === 3.5.1 Configuring The Things Stack ===
1945
1946 We use The Things Stack Sandbox in this example:
1947
1948 * In **The Things Stack Sandbox**, go to the **Application **for the LT-22222-L you added.
1949 * Select **MQTT** under **Integrations** in the left menu.
1950 * In the **Connection information **section, under **Connection credentials**, The Things Stack displays an auto-generated **username**. You can use it or provide a new one.
1951 * Click the **Generate new API key** button to generate a password. You can view it by clicking on the **visibility toggle/eye** icon. The API key works as the password.
1952
1953 {{info}}
1954 The username and  password (API key) you created here are required in the next section.
1955 {{/info}}
1956
1957 [[image:tts-mqtt-integration.png]]
1958
1959 === 3.5.2 Configuring ThingsEye.io ===
1960
1961 The ThingsEye.io IoT platform is not open for self-registration at the moment. If you are interested in testing the platform, please send your project information to admin@thingseye.io, and we will create an account for you.
1962
1963 * Login to your [[ThingsEye.io >>https://thingseye.io]]account.
1964 * Under the **Integrations center**, click **Integrations**.
1965 * Click the **Add integration** button (the button with the **+** symbol).
1966
1967 [[image:thingseye-io-step-1.png]]
1968
1969
1970 On the **Add integration** window, configure the following:
1971
1972 **Basic settings:**
1973
1974 * Select **The Things Stack Community** from the **Integration type** list.
1975 * Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
1976 * Ensure the following options are turned on.
1977 ** Enable integration
1978 ** Debug mode
1979 ** Allow create devices or assets
1980 * Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
1981
1982 [[image:thingseye-io-step-2.png]]
1983
1984
1985 **Uplink data converter:**
1986
1987 * Click the **Create new** button if it is not selected by default.
1988 * Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
1989 * Click the **JavaScript** button.
1990 * Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
1991 * Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
1992
1993 [[image:thingseye-io-step-3.png]]
1994
1995
1996 **Downlink data converter (this is an optional step):**
1997
1998 * Click the **Create new** button if it is not selected by default.
1999 * Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name.
2000 * Click the **JavaScript** button.
2001 * Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Downlink_Converter.js]].
2002 * Click the **Next** button. You will be navigated to the **Connection** tab.
2003
2004 [[image:thingseye-io-step-4.png]]
2005
2006
2007 **Connection:**
2008
2009 * Choose **Region** from the **Host type**.
2010 * Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
2011 * Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The **username **and **password **can be found on the MQTT integration page of your The Things Stack account (see **3.5.1 Configuring The Things Stack**).
2012 * Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
2013
2014 [[image:message-1.png]]
2015
2016
2017 * Click the **Add** button.
2018
2019 [[image:thingseye-io-step-5.png]]
2020
2021
2022 Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings and correct any errors.
2023
2024
2025 [[image:thingseye.io_integrationsCenter_integrations.png]]
2026
2027
2028 ==== 3.5.2.1 Viewing integration details ====
2029
2030 Click on your integration from the list. The **Integration details** window will appear with the **Details **tab selected. The **Details **tab shows all the settings you have provided for this integration.
2031
2032 [[image:integration-details.png]]
2033
2034
2035 If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
2036
2037 {{info}}
2038 See also [[ThingsEye documentation>>https://wiki.thingseye.io/xwiki/bin/view/Main/]].
2039 {{/info}}
2040
2041 ==== **3.5.2.2 Viewing events** ====
2042
2043 The **Events **tab displays all the uplink messages from the LT-22222-L.
2044
2045 * Select **Debug **from the **Event type** dropdown.
2046 * Select the** time frame** from the **time window**.
2047
2048 [[image:thingseye-events.png]]
2049
2050
2051 * To view the **JSON payload** of a message, click on the **three dots (...)** in the Message column of the desired message.
2052
2053 [[image:thingseye-json.png]]
2054
2055
2056 ==== **3.5.2.3 Deleting an integration** ====
2057
2058 If you want to delete an integration, click the **Delete integratio**n button on the Integrations page.
2059
2060
2061 ==== 3.5.2.4 Creating a Dashboard to Display and Analyze LT-22222-L Data ====
2062
2063 This will be added soon.
2064
2065
2066 == 3.6 Interface Details ==
2067
2068 === 3.6.1 Digital Input Ports: DI1/DI2/DI3 (For LT-33222-L, Low Active) ===
2069
2070
2071 Supports** NPN-type **sensors.
2072
2073 [[image:1653356991268-289.png]]
2074
2075
2076 === 3.6.2 Digital Input Ports: DI1/DI2 ===
2077
2078
2079 (((
2080 The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
2081 )))
2082
2083 (((
2084 (((
2085 The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
2086
2087
2088 )))
2089 )))
2090
2091 [[image:1653357170703-587.png]]
2092
2093 (((
2094 (((
2095 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
2096 )))
2097 )))
2098
2099 (((
2100
2101 )))
2102
2103 (((
2104 (% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
2105 )))
2106
2107 (((
2108 This type of sensor outputs a low (GND) signal when active.
2109 )))
2110
2111 * (((
2112 Connect the sensor's output to DI1-
2113 )))
2114 * (((
2115 Connect the sensor's VCC to DI1+.
2116 )))
2117
2118 (((
2119 When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be:
2120 )))
2121
2122 (((
2123 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
2124 )))
2125
2126 (((
2127 For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
2128 )))
2129
2130 (((
2131
2132 )))
2133
2134 (((
2135 (% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
2136 )))
2137
2138 (((
2139 This type of sensor outputs a high signal (e.g., 24V) when active.
2140 )))
2141
2142 * (((
2143 Connect the sensor's output to DI1+
2144 )))
2145 * (((
2146 Connect the sensor's GND DI1-.
2147 )))
2148
2149 (((
2150 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
2151 )))
2152
2153 (((
2154 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
2155 )))
2156
2157 (((
2158 If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
2159 )))
2160
2161 (((
2162
2163 )))
2164
2165 (((
2166 (% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
2167 )))
2168
2169 (((
2170 Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
2171 )))
2172
2173 * (((
2174 Connect the sensor's output to DI1+ with a 50K resistor in series.
2175 )))
2176 * (((
2177 Connect the sensor's GND DI1-.
2178 )))
2179
2180 (((
2181 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
2182 )))
2183
2184 (((
2185 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
2186 )))
2187
2188 (((
2189 If the sensor output is 220V, then [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
2190 )))
2191
2192
2193 (% style="color:blue" %)**Example 4**(%%): Connecting to a Dry Contact sensor
2194
2195 From the DI port circuit above, activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference on its own.
2196
2197 To detect a Dry Contact, you can supply a power source to one of the pins of the Dry Contact. A reference circuit diagram is shown below.
2198
2199 [[image:image-20230616235145-1.png]]
2200
2201 (% style="color:blue" %)**Example 5**(%%): Connecting to an Open Collector
2202
2203 [[image:image-20240219115718-1.png]]
2204
2205
2206 === 3.6.3 Digital Output Ports: DO1/DO2 ===
2207
2208
2209 (% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
2210
2211 (% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
2212
2213 [[image:1653357531600-905.png]]
2214
2215
2216 === 3.6.4 Analog Input Interfaces ===
2217
2218
2219 The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
2220
2221
2222 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
2223
2224 [[image:1653357592296-182.png]]
2225
2226 Example: Connecting a 4~~20mA sensor
2227
2228 We will use the wind speed sensor as an example for reference only.
2229
2230
2231 (% style="color:blue" %)**Specifications of the wind speed sensor:**
2232
2233 (% style="color:red" %)**Red:  12~~24V**
2234
2235 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
2236
2237 **Black:  GND**
2238
2239 **Connection diagram:**
2240
2241 [[image:1653357640609-758.png]]
2242
2243 [[image:1653357648330-671.png||height="155" width="733"]]
2244
2245
2246 Example: Connecting to a regulated power supply to measure voltage
2247
2248 [[image:image-20230608101532-1.png||height="606" width="447"]]
2249
2250 [[image:image-20230608101608-2.jpeg||height="379" width="284"]]
2251
2252 [[image:image-20230608101722-3.png||height="102" width="1139"]]
2253
2254
2255 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
2256
2257 (% style="color:red" %)**Red:  12~~24v**
2258
2259 **Black:  GND**
2260
2261
2262 === 3.6.5 Relay Output ===
2263
2264
2265 (((
2266 The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
2267
2268 **Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
2269 )))
2270
2271 [[image:image-20220524100215-9.png]]
2272
2273
2274 [[image:image-20220524100215-10.png||height="382" width="723"]]
2275
2276
2277 == 3.7 LED Indicators ==
2278
2279 The table below lists the behavior of LED indicators for each port function.
2280
2281 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
2282 |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
2283 |**PWR**|Always on when there is power
2284 |**TX**|(((
2285 (((
2286 Device boot: TX blinks 5 times.
2287 )))
2288
2289 (((
2290 Successful network join: TX remains ON for 5 seconds.
2291 )))
2292
2293 (((
2294 Transmit a LoRa packet: TX blinks once
2295 )))
2296 )))
2297 |**RX**|RX blinks once when a packet is received.
2298 |**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
2299 |**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
2300 |**DI1**|(((
2301 For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
2302 )))
2303 |**DI2**|(((
2304 For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
2305 )))
2306 |**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
2307 |**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
2308
2309 = 4. Using AT Commands =
2310
2311 The LT-22222-L supports programming using AT Commands.
2312
2313 == 4.1 Connecting the LT-22222-L to a PC ==
2314
2315 (((
2316 You can use a USB-to-TTL adapter/converter along with a 3.5mm Program Cable to connect the LT-22222-L to a PC, as shown below.
2317
2318 [[image:usb-ttl-audio-jack-connection.jpg]]
2319
2320
2321 )))
2322
2323
2324 (((
2325 On the PC, you need to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate of (% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-L. Access to AT commands is disabled by default, and a password (default: (% style="color:green" %)**123456**)(%%) must be entered to enable AT command access, as shown below:
2326 )))
2327
2328 [[image:1653358355238-883.png]]
2329
2330
2331 (((
2332 You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
2333
2334 == 4.2 LT-22222-L related AT commands ==
2335 )))
2336
2337 (((
2338 The following is the list of all the AT commands related to the LT-22222-L, except for those used for switching between working modes.
2339
2340 * **##AT##+<CMD>?** : Help on <CMD>
2341 * **##AT##+<CMD>** : Run <CMD>
2342 * **##AT##+<CMD>=<value>** : Set the value
2343 * **##AT##+<CMD>=?** : Get the value
2344 * ##**ATZ**##: Trigger a reset of the MCU
2345 * ##**AT+FDR**##: Reset Parameters to factory default, reserve keys 
2346 * **##AT+DEUI##**: Get or set the Device EUI (DevEUI)
2347 * **##AT+DADDR##**: Get or set the Device Address (DevAddr)
2348 * **##AT+APPKEY##**: Get or set the Application Key (AppKey)
2349 * ##**AT+NWKSKEY**##: Get or set the Network Session Key (NwkSKey)
2350 * **##AT+APPSKEY##**: Get or set the Application Session Key (AppSKey)
2351 * **##AT+APPEUI##**: Get or set the Application EUI (AppEUI)
2352 * **##AT+ADR##**: Get or set the Adaptive Data Rate setting. (0: OFF, 1: ON)
2353 * ##**AT+TXP**##: Get or set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Specification)
2354 * **##AT+DR##**:  Get or set the Data Rate. (0-7 corresponding to DR_X)  
2355 * **##AT+DCS##**: Get or set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
2356 * ##**AT+PNM**##: Get or set the public network mode. (0: off, 1: on)
2357 * ##**AT+RX2FQ**##: Get or set the Rx2 window frequency
2358 * ##**AT+RX2DR**##: Get or set the Rx2 window data rate (0-7 corresponding to DR_X)
2359 * ##**AT+RX1DL**##: Get or set the delay between the end of the Tx and the Rx Window 1 in ms
2360 * ##**AT+RX2DL**##: Get or set the delay between the end of the Tx and the Rx Window 2 in ms
2361 * ##**AT+JN1DL**##: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
2362 * ##**AT+JN2DL**##: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
2363 * ##**AT+NJM**##: Get or set the Network Join Mode. (0: ABP, 1: OTAA)
2364 * ##**AT+NWKID**##: Get or set the Network ID
2365 * ##**AT+FCU**##: Get or set the Frame Counter Uplink (FCntUp)
2366 * ##**AT+FCD**##: Get or set the Frame Counter Downlink (FCntDown)
2367 * ##**AT+CLASS**##: Get or set the Device Class
2368 * ##**AT+JOIN**##: Join network
2369 * ##**AT+NJS**##: Get OTAA Join Status
2370 * ##**AT+SENDB**##: Send hexadecimal data along with the application port
2371 * ##**AT+SEND**##: Send text data along with the application port
2372 * ##**AT+RECVB**##: Print last received data in binary format (with hexadecimal values)
2373 * ##**AT+RECV**##: Print last received data in raw format
2374 * ##**AT+VER**##: Get current image version and Frequency Band
2375 * ##**AT+CFM**##: Get or Set the confirmation mode (0-1)
2376 * ##**AT+CFS**##: Get confirmation status of the last AT+SEND (0-1)
2377 * ##**AT+SNR**##: Get the SNR of the last received packet
2378 * ##**AT+RSSI**##: Get the RSSI of the last received packet
2379 * ##**AT+TDC**##: Get or set the application data transmission interval in ms
2380 * ##**AT+PORT**##: Get or set the application port
2381 * ##**AT+DISAT**##: Disable AT commands
2382 * ##**AT+PWORD**##: Set password, max 9 digits
2383 * ##**AT+CHS**##: Get or set the Frequency (Unit: Hz) for Single Channel Mode
2384 * ##**AT+CHE**##: Get or set eight channels mode, Only for US915, AU915, CN470
2385 * ##**AT+CFG**##: Print all settings
2386 )))
2387
2388
2389 == 4.2 Common AT Command Sequence ==
2390
2391 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
2392
2393 (((
2394
2395
2396 (((
2397 (% style="color:blue" %)**If the device has not yet joined the network:**
2398 )))
2399 )))
2400
2401 (((
2402 (% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT commands access**##
2403 )))
2404
2405 (((
2406 (% style="background-color:#dcdcdc" %)##**AT+FDR ~/~/Reset parameters to factory default, Reserve keys**##
2407 )))
2408
2409 (((
2410 (% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT commands access**##
2411 )))
2412
2413 (((
2414 (% style="background-color:#dcdcdc" %)##**AT+NJM=0 ~/~/Set to ABP mode**##
2415 )))
2416
2417 (((
2418 (% style="background-color:#dcdcdc" %)##**ATZ ~/~/Reset MCU**##
2419 )))
2420
2421
2422 (((
2423 (% style="color:blue" %)**If the device has already joined the network:**
2424 )))
2425
2426 (((
2427 (% style="background-color:#dcdcdc" %)##**AT+NJM=0**##
2428 )))
2429
2430 (((
2431 (% style="background-color:#dcdcdc" %)##**ATZ**##
2432 )))
2433
2434
2435 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
2436
2437 (((
2438
2439
2440 (((
2441 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter password to enable AT commands access
2442 )))
2443 )))
2444
2445 (((
2446 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset parameters to Factory Default, Reserve keys
2447 )))
2448
2449 (((
2450 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter password to enable AT commands access
2451 )))
2452
2453 (((
2454 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to CLASS C mode
2455 )))
2456
2457 (((
2458 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
2459 )))
2460
2461 (((
2462 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
2463 )))
2464
2465 (((
2466 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
2467 )))
2468
2469 (((
2470 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
2471 )))
2472
2473 (((
2474 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4 MHz
2475 )))
2476
2477 (((
2478 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2 frequency to 868.4 MHz (according to the result from the server)
2479 )))
2480
2481 (((
2482 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2 DR to match the downlink DR from the server. See below.
2483 )))
2484
2485 (((
2486 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address. The Device Address can be found in the application on the LoRaWAN NS.
2487 )))
2488
2489 (((
2490 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
2491
2492
2493 )))
2494
2495 (((
2496 (% style="color:red" %)**Note:**
2497 )))
2498
2499 (((
2500 **~1. Ensure that the device is set to ABP mode in the LoRaWAN Network Server.**
2501
2502 **2. Verify that the LG01/02 gateway RX frequency matches the AT+CHS setting exactly.**
2503
2504 **3. Make sure the SF/bandwidth settings in the LG01/LG02 match the settings of AT+DR. Refer to [[this link>>url:http://www.dragino.com/downloads/index.php?
2505 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
2506
2507 **4. The commands AT+RX2FQ and AT+RX2DR enable downlink functionality. To set the correct parameters, you can check the actual downlink parameters to be used as shown below. Here, RX2FQ should be set to 868400000 and RX2DR should be set to 5.**
2508 )))
2509
2510 (((
2511 [[image:1653359097980-169.png||height="188" width="729"]]
2512 )))
2513
2514
2515 === 4.2.3 Change to Class A ===
2516
2517
2518 (((
2519 (% style="color:blue" %)**If the sensor has JOINED:**
2520
2521 (% style="background-color:#dcdcdc" %)**AT+CLASS=A**
2522
2523 (% style="background-color:#dcdcdc" %)**ATZ**
2524 )))
2525
2526
2527 = 5. Case Study =
2528
2529 == 5.1 Counting how many objects pass through the flow line ==
2530
2531 See [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
2532
2533
2534 = 6. FAQ =
2535
2536 This section contains some frequently asked questions, which can help you resolve common issues and find solutions quickly.
2537
2538
2539 == 6.1 How to update the firmware? ==
2540
2541 Dragino frequently releases firmware updates for the LT-22222-L. Updating your LT-22222-L with the latest firmware version helps to:
2542
2543 * Support new features
2544 * Fix bugs
2545 * Change LoRaWAN frequency bands
2546
2547 You will need the following things before proceeding:
2548
2549 * 3.5mm programming cable (included with the LT-22222-L as an additional accessory)
2550 * USB to TTL adapter/converter
2551 * Download and install the [[STM32 Flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. (replaced by STM32CubeProgrammer)
2552 * Download the latest firmware image from [[LT-22222-L firmware image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. Check the file name of the firmware to find the correct region.
2553
2554 {{info}}
2555 As of this writing, the latest firmware version available for the LT-22222-L is v1.6.1.
2556 {{/info}}
2557
2558 Below is the hardware setup for uploading a firmware image to the LT-22222-L:
2559
2560 [[image:usb-ttl-audio-jack-connection.jpg]]
2561
2562
2563
2564 Start the STM32 Flash Loader and choose the correct COM port to update.
2565
2566 (((
2567 (((
2568 (% style="color:blue" %)**For LT-22222-L**(%%):
2569
2570 Hold down the **PRO** button, then briefly press the **RST** button. The **DO1** LED will change from OFF to ON. When the **DO1** LED is ON, it indicates that the device is in firmware download mode.
2571 )))
2572
2573
2574 )))
2575
2576 [[image:image-20220524103407-12.png]]
2577
2578
2579 [[image:image-20220524103429-13.png]]
2580
2581
2582 [[image:image-20220524104033-15.png]]
2583
2584
2585 (% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5 mm cable. The pin mapping is as follows:
2586
2587 [[image:1653360054704-518.png||height="186" width="745"]]
2588
2589
2590 (((
2591 (((
2592 == 6.2 How to change the LoRaWAN frequency band/region? ==
2593 )))
2594 )))
2595
2596 (((
2597 You can follow the introductions on [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2598 )))
2599
2600 (((
2601
2602
2603 == 6.3 How to setup LT-22222-L to work with a Single Channel Gateway, such as LG01/LG02? ==
2604 )))
2605
2606 (((
2607 (((
2608 In this case, you need to set the LT-22222-L to work in ABP mode and transmit on only one frequency.
2609 )))
2610 )))
2611
2612 (((
2613 (((
2614 We assume you have an LG01/LG02 working on the frequency 868400000. Below are the steps.
2615
2616
2617 )))
2618 )))
2619
2620 (((
2621 (% style="color:#0000ff" %)**Step 1**(%%): Log in to The Things Stack Sandbox account and create an ABP device in the application. To do this, use the manual registration option as explained in section 3.2.2.2, //Adding a Device Manually//. Select //Activation by Personalization (ABP)// under Activation Mode. Enter the DevEUI exactly as shown on the registration information sticker, then generate the Device Address, Application Session Key (AppSKey), and Network Session Key (NwkSKey).
2622
2623 [[image:lt-22222-l-abp.png||height="686" width="1000"]]
2624 )))
2625
2626 (((
2627
2628 )))
2629
2630 {{warning}}
2631 Ensure that the Device Address (DevAddr) and the two keys match between the LT-22222-L and The Things Stack. You can modify them either in The Things Stack or on the LT-22222-L to make them align. In The Things Stack, you can configure the NwkSKey and AppSKey on the settings page, but note that the Device Address is generated by The Things Stack.
2632 {{/warning}}
2633
2634
2635 (((
2636 (% style="color:blue" %)**Step 2**(%%)**:  **(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)Run AT commands to configure the LT-22222-L to operate in single-frequency and ABP mode. The AT commands are as follows:
2637
2638
2639 )))
2640
2641 (((
2642 (% style="background-color:#dcdcdc" %)**123456** (%%) : Enter the password to enable AT access.
2643
2644 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Reset parameters to factory default, keeping keys reserved.
2645
2646 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) : Set to ABP mode.
2647
2648 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) : Disable the Adaptive Data Rate (ADR).
2649
2650 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) : Set Data Rate (Use AT+DR=3 for the 915 MHz band).
2651
2652 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) : Set transmit interval to 60 seconds.
2653
2654 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4 MHz.
2655
2656 (% style="background-color:#dcdcdc" %)**AT+DADDR=xxxx**(%%) : Set the Device Address (DevAddr)
2657
2658 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:700; text-decoration:none; white-space:pre-wrap" %)**AT+APPKEY=xxxx**(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %): Get or set the Application Key (AppKey)
2659
2660 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+NWKSKEY=xxxx**: Get or set the Network Session Key (NwkSKey)
2661
2662 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+APPSKEY=xxxx**: Get or set the Application Session Key (AppSKey)
2663
2664 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) : Reset MCU.
2665 )))
2666
2667
2668 (((
2669 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)The following figure shows the screenshot of the command set above, issued using a serial tool:
2670 )))
2671
2672 [[image:1653360498588-932.png||height="485" width="726"]]
2673
2674
2675 == 6.4 How to change the uplink interval? ==
2676
2677 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2678
2679
2680 == 6.5 Can I see the counting event in the serial output? ==
2681
2682 (((
2683 You can run the AT command **AT+DEBUG** to view the counting event in the serial output. If the firmware is too old and doesn’t support AT+DEBUG, update to the latest firmware first.
2684
2685
2686 == 6.6 Can I use point-to-point communication with LT-22222-L? ==
2687
2688 Yes, you can. Please refer to the [[Point-to-Point Communication of LT-22222-L>>https://wiki.dragino.com/xwiki/bin/view/Main/%20Point%20to%20Point%20Communication%20of%20LT-22222-L/]] page. The firmware that supports point-to-point communication can be found [[here>>https://github.com/dragino/LT-22222-L/releases]].
2689
2690
2691 )))
2692
2693 (((
2694 == 6.7 Why does the relay output default to an open relay after the LT-22222-L is powered off? ==
2695
2696 * If the device is not properly shut down and is directly powered off.
2697 * It will default to a power-off state.
2698 * In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2699 * After a restart, the status before the power failure will be read from flash.
2700
2701 == 6.8 Can I setup LT-22222-L as a NC (Normally Closed) relay? ==
2702
2703 The LT-22222-L's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
2704
2705
2706 [[image:image-20221006170630-1.png||height="610" width="945"]]
2707
2708
2709 == 6.9 Can the LT-22222-L save the RO state? ==
2710
2711 To enable this feature, the firmware version must be 1.6.0 or higher.
2712
2713
2714 == 6.10 Why does the LT-22222-L always report 15.585V when measuring the AVI? ==
2715
2716 It is likely that the GND is not connected during the measurement, or that the wire connected to the GND is loose.
2717
2718
2719 = 7. Troubleshooting =
2720
2721 This section provides some known troubleshooting tips.
2722
2723
2724 )))
2725
2726 (((
2727 (((
2728 == 7.1 Downlink isn't working. How can I solve this? ==
2729 )))
2730 )))
2731
2732 (((
2733 Please refer to this link for debugging instructions: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2734 )))
2735
2736 (((
2737
2738
2739 == 7.2 Having trouble uploading an image? ==
2740 )))
2741
2742 (((
2743 Please refer to this link for troubleshooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2744 )))
2745
2746 (((
2747
2748
2749 == 7.3 Why can't I join TTN in the US915 /AU915 bands? ==
2750 )))
2751
2752 (((
2753 It might be related to the channel mapping. [[Please refer to this link for details.>>https://github.com/dragino/LT-22222-L/releases]]
2754 )))
2755
2756
2757 == 7.4 Why can the LT-22222-L perform uplink normally, but cannot receive downlink? ==
2758
2759 The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue.
2760 Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2761
2762
2763 = 8. Ordering information =
2764
2765 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2766
2767 (% style="color:#4f81bd" %)**XXX:**
2768
2769 * (% style="color:red" %)**EU433**(%%): LT with frequency bands EU433
2770 * (% style="color:red" %)**EU868**(%%): LT with frequency bands EU868
2771 * (% style="color:red" %)**KR920**(%%): LT with frequency bands KR920
2772 * (% style="color:red" %)**CN470**(%%): LT with frequency bands CN470
2773 * (% style="color:red" %)**AS923**(%%): LT with frequency bands AS923
2774 * (% style="color:red" %)**AU915**(%%): LT with frequency bands AU915
2775 * (% style="color:red" %)**US915**(%%): LT with frequency bands US915
2776 * (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2777 * (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2778
2779 = 9. Package information =
2780
2781 **Package includes**:
2782
2783 * 1 x LT-22222-L I/O Controller
2784 * 1 x LoRa antenna matched to the frequency of the LT-22222-L
2785 * 1 x bracket for DIN rail mounting
2786 * 1 x 3.5 mm programming cable
2787
2788 **Dimension and weight**:
2789
2790 * Device Size: 13.5 x 7 x 3 cm
2791 * Device Weight: 105 g
2792 * Package Size / pcs : 14.5 x 8 x 5 cm
2793 * Weight / pcs : 170 g
2794
2795 = 10. Support =
2796
2797 * (((
2798 Support is available Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule.
2799 )))
2800 * (((
2801 Please provide as much information as possible regarding your inquiry (e.g., product models, a detailed description of the problem, steps to replicate it, etc.) and send an email to [[support@dragino.cc>>mailto:support@dragino.cc]]
2802
2803
2804 )))
2805
2806 = 11. Reference​​​​​ =
2807
2808 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2809 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2810 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0