Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19
20 = 1. Introduction =
21
22 == 1.1 What is the LT-22222-L I/O Controller? ==
23
24 (((
25 (((
26 {{info}}
27 **This manual is also applicable to the LT-33222-L.**
28 {{/info}}
29
30 The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN end device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
31
32 The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
33 )))
34 )))
35
36 (((
37 With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
38 )))
39
40 (((
41 You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
42
43 * If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Stack Community Network), you can select a network and register the LT-22222-L I/O controller with it.
44 * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
45 * Setup your own private LoRaWAN network.
46 )))
47
48 (((
49
50
51 The network diagram below illustrates how the LT-22222-L communicates with a typical LoRaWAN network.
52 )))
53
54 (% class="wikigeneratedid" %)
55 [[image:lorawan-nw.jpg||height="354" width="900"]]
56
57 == 1.2 Specifications ==
58
59 (% style="color:#037691" %)**Hardware System:**
60
61 * STM32L072xxxx MCU
62 * SX1276/78 Wireless Chip 
63 * Power Consumption:
64 ** Idle: 4mA@12V
65 ** 20dB Transmit: 34mA@12V
66 * Operating Temperature: -40 ~~ 85 Degrees, No Dew
67
68 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
69
70 * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50V, or 220V with optional external resistor)
71 * 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
72 * 2 x Relay Output (5A@250VAC / 30VDC)
73 * 2 x 0~~20mA Analog Input (res:0.01mA)
74 * 2 x 0~~30V Analog Input (res:0.01V)
75 * Power Input 7~~ 24V DC. 
76
77 (% style="color:#037691" %)**LoRa Spec:**
78
79 * Frequency Range:
80 ** Band 1 (HF): 862 ~~ 1020 MHz
81 ** Band 2 (LF): 410 ~~ 528 MHz
82 * 168 dB maximum link budget.
83 * +20 dBm - 100 mW constant RF output vs.
84 * +14 dBm high-efficiency PA.
85 * Programmable bit rate up to 300 kbps.
86 * High sensitivity: down to -148 dBm.
87 * Bullet-proof front end: IIP3 = -12.5 dBm.
88 * Excellent blocking immunity.
89 * Low RX current of 10.3 mA, 200 nA register retention.
90 * Fully integrated synthesizer with a resolution of 61 Hz.
91 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
92 * Built-in bit synchronizer for clock recovery.
93 * Preamble detection.
94 * 127 dB Dynamic Range RSSI.
95 * Automatic RF Sense and CAD with ultra-fast AFC.
96 * Packet engine up to 256 bytes with CRC.
97
98 == 1.3 Features ==
99
100 * LoRaWAN Class A & Class C modes
101 * Optional Customized LoRa Protocol
102 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
103 * AT Commands to change parameters
104 * Remotely configure parameters via LoRaWAN Downlink
105 * Firmware upgradable via program port
106 * Counting
107
108 == 1.4 Applications ==
109
110 * Smart buildings & home automation
111 * Logistics and supply chain management
112 * Smart metering
113 * Smart agriculture
114 * Smart cities
115 * Smart factory
116
117 == 1.5 Hardware Variants ==
118
119 (% style="width:524px" %)
120 |(% style="width:94px" %)**Model**|(% style="width:98px" %)**Photo**|(% style="width:329px" %)**Description**
121 |(% style="width:94px" %)**LT33222-L**|(% style="width:98px" %)(((
122
123 )))|(% style="width:329px" %)(((
124 * 2 x Digital Input (Bi-direction)
125 * 2 x Digital Output
126 * 2 x Relay Output (5A@250VAC / 30VDC)
127 * 2 x 0~~20mA Analog Input (res:0.01mA)
128 * 2 x 0~~30V Analog Input (res:0.01v)
129 * 1 x Counting Port
130 )))
131
132 = 2. Assembling the device =
133
134 == 2.1 Connecting the antenna ==
135
136 Connect the LoRa antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper screw terminal block. Secure the antenna by tightening it clockwise.
137
138 {{warning}}
139 **Warning! Do not power on the device without connecting the antenna.**
140 {{/warning}}
141
142 == 2.2 Terminals ==
143
144 The  LT-22222-L has two screw terminal blocks. The upper screw treminal block has 6 screw terminals and the lower screw terminal block has 10 screw terminals.
145
146 **Upper screw terminal block (from left to right):**
147
148 (% style="width:634px" %)
149 |=(% style="width: 295px;" %)Screw Terminal|=(% style="width: 338px;" %)Function
150 |(% style="width:295px" %)GND|(% style="width:338px" %)Ground
151 |(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
152 |(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
153 |(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
154 |(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
155 |(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
156
157 **Lower screw terminal block (from left to right):**
158
159 (% style="width:633px" %)
160 |=(% style="width: 296px;" %)Screw Terminal|=(% style="width: 334px;" %)Function
161 |(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
162 |(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
163 |(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
164 |(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
165 |(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
166 |(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
167 |(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
168 |(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
169 |(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
170 |(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
171
172 == 2.3 Connecting LT-22222-L to a Power Source ==
173
174 The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect your power supply’s **positive wire** to the **VIN** and the **negative wire** to the **GND** screw terminals. The power indicator **(PWR) LED** will turn on when the device is properly powered.
175
176 {{warning}}
177 **We recommend that you power on the LT-22222-L after configuring its registration information with a LoRaWAN network server. Otherwise, the device will continuously send join-request messages to attempt to join a LoRaWAN network but will fail.**
178 {{/warning}}
179
180
181 [[image:1653297104069-180.png]]
182
183
184 = 3. Registering LT-22222-L with a LoRaWAN Network Server =
185
186 The LT-22222-L supports both OTAA (Over-the-Air Activation) and ABP (Activation By Personalization) methods to activate with a LoRaWAN Network Server. However, OTAA is the most secure method for activating a device with a LoRaWAN Network Server. OTAA regenerates session keys upon initial registration and regenerates new session keys after any subsequent reboots. By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode.
187
188
189 === 3.2.1 Prerequisites ===
190
191 The LT-22222-L comes with device registration information such as DevEUI, AppEUI, and AppKey that allows you to register it with a LoRaWAN network. These registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
192
193 [[image:image-20230425173427-2.png||height="246" width="530"]]
194
195 {{info}}
196 In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
197 {{/info}}
198
199 The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
200
201 === 3.2.2 The Things Stack ===
202
203 This section guides you through how to register your LT-22222-L with The Things Stack Sandbox.
204
205 {{info}}
206 The Things Stack Sandbox was formally called The Things Stack Community Edition.
207 {{/info}}
208
209
210 The network diagram below illustrates the connection between the LT-22222-L and The Things Stack, as well as how the data can be integrated with the ThingsEye IoT platform.
211
212
213 [[image:dragino-lorawan-nw-lt-22222-n.jpg]]
214
215 {{info}}
216 You can use a LoRaWAN gateway, such as the [[Dragino LPS8N>>https://www.dragino.com/products/lora-lorawan-gateway/item/200-lps8n.html]], to expand or create LoRaWAN coverage in your area.
217 {{/info}}
218
219
220 ==== 3.2.2.1 Setting up ====
221
222 * Sign up for a free account with [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] if you do not have one yet.
223 * Log in to your The Things Stack Sandbox account.
224 * Create an **application** with The Things Stack if you do not have one yet (E.g., dragino-docs).
225 * Go to your application's page and click on the **End devices** in the left menu.
226 * On the End devices page, click on **+ Register end device**. Two registration options are available:
227
228 ==== 3.2.2.2 Using the LoRaWAN Device Repository ====
229
230 * On the **Register end device** page:
231 ** Select the option **Select the end device in the LoRaWAN Device Repository **under **Input method**.
232 ** Select the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)** from the respective dropdown lists.
233 *** **End device brand**: Dragino Technology Co., Limited
234 *** **Model**: LT22222-L I/O Controller
235 *** **Hardware ver**: Unknown
236 *** **Firmware ver**: 1.6.0
237 *** **Profile (Region)**: Select the region that matches your device.
238 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
239
240 [[image:lt-22222-l-dev-repo-reg-p1.png]]
241
242
243 * Register end device page continued...
244 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'.
245 ** In the **DevEUI** field, enter the **DevEUI**.
246 ** In the **AppKey** field, enter the **AppKey.**
247 ** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
248 ** Under **After registration**, select the **View registered end device** option.
249
250 [[image:lt-22222-l-dev-repo-reg-p2.png]]
251
252
253 ==== 3.2.2.3 Adding device manually ====
254
255 * On the **Register end device** page:
256 ** Select the option **Enter end device specifies manually** under **Input method**.
257 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
258 ** Select the **LoRaWAN version** as **LoRaWAN Specification 1.0.3**
259 ** Select the **Regional Parameters version** as** RP001 Regional Parameters 1.0.3 revision A**
260 ** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the hidden section.
261 ** Select the option **Over the air activation (OTAA)** under the **Activation mode.**
262 ** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities** dropdown list.
263
264 [[image:lt-22222-l-manually-p1.png]]
265
266
267 * Register end device page continued...
268 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message '//**This end device can be registered on the network**//'
269 ** In the **DevEUI** field, enter the **DevEUI**.
270 ** In the **AppKey** field, enter the **AppKey**.
271 ** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
272 ** Under **After registration**, select the **View registered end device** option.
273 ** Click the **Register end device** button.
274
275 [[image:lt-22222-l-manually-p2.png]]
276
277
278 You will be navigated to the **Device overview** page.
279
280
281 [[image:lt-22222-device-overview.png]]
282
283
284 ==== 3.2.2.4 Joining ====
285
286 On the Device's page, click on **Live data** tab. The Live data panel for your device will display.
287
288 Now power on your LT-22222-L. The **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** The Things Stack network server. The **TX LED** will be on for **5 seconds** after joining the network. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server.
289
290
291 [[image:lt-22222-l-joining.png]]
292
293
294
295 ==== 3.2.2.5 Uplinks ====
296
297
298 After successfully joining, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**). When the LT-22222-L sends an uplink message to the server, the **TX LED** turns on for **1 second**. By default, you will receive an uplink data message from the device every 10 minutes.
299
300 Click on one of a **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the decode_payload {} JSON object.
301
302 [[image:lt-22222-ul-payload-decoded.png]]
303
304
305 If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **Applications > your application > End devices** > **your end device** > **Payload formatters** > **Uplink**. Then  select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
306
307 {{info}}
308 The Things Stack provides two levels of payload formatters: application level and device level. The device-level payload formatters **override **the application-level payload formatters.
309 {{/info}}
310
311 [[image:lt-22222-ul-payload-fmt.png]]
312
313
314 ==== 3.2.2.6 Downlinks ====
315
316 When the LT-22222-L receives a downlink message from the server, the **RX LED** turns on for **1 second**.
317
318
319 == 3.3 Working Modes and Uplink Payload formats ==
320
321
322 The LT-22222-L has 5 **working modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
323
324 * (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
325
326 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
327
328 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
329
330 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
331
332 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
333
334 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
335
336 The uplink messages are sent over LoRaWAN FPort=2. By default, an uplink message is sent every 10 minutes.
337
338 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
339
340 (((
341 This is the default mode.
342
343 The uplink payload is 11 bytes long.
344
345 (% style="color:red" %)**Note:The maximum count depends on the bytes number of bytes.
346 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
347 It starts counting again when it reaches the maximum value.**(% style="display:none" wfd-invisible="true" %)
348
349 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
350 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
351 |Value|(((
352 AVI1 voltage
353 )))|(((
354 AVI2 voltage
355 )))|(((
356 ACI1 Current
357 )))|(((
358 ACI2 Current
359 )))|**DIDORO***|(((
360 Reserve
361 )))|MOD
362 )))
363
364 (((
365 (% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
366
367 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
368 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
369 |RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
370 )))
371
372 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
373 * DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
374 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
375
376 (% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
377
378 For example, if the payload is: [[image:image-20220523175847-2.png]]
379
380
381 **The interface values can be calculated as follows:  **
382
383 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
384
385 AVI2 channel voltage is 0x04AC/1000=1.196V
386
387 ACI1 channel current is 0x1310/1000=4.880mA
388
389 ACI2 channel current is 0x1300/1000=4.864mA
390
391 The last byte 0xAA= **10101010**(b) means,
392
393 * [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
394 * [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
395 * **[1] DI3 - not used for LT-22222-L.**
396 * [0] DI2 channel input is LOW, and the DI2 LED is OFF.
397 * [1] DI1 channel input state:
398 ** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
399 ** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
400 ** DI1 LED is ON in both cases.
401 * **[0] DO3 - not used for LT-22222-L.**
402 * [1] DO2 channel output is LOW, and the DO2 LED is ON.
403 * [0] DO1 channel output state:
404 ** DO1 is FLOATING when there is no load between DO1 and V+.
405 ** DO1 is HIGH and there is a load between DO1 and V+.
406 ** DO1 LED is OFF in both cases.
407
408 Reserve = 0
409
410 MOD = 1
411
412 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
413
414
415 (((
416 **For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
417 )))
418
419 (((
420 The uplink payload is 11 bytes long.
421
422 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
423 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
424 It starts counting again when it reaches the maximum value.**
425
426 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
427 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
428 |Value|COUNT1|COUNT2 |DIDORO*|(((
429 Reserve
430 )))|MOD
431 )))
432
433 (((
434 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
435
436 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
437 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
438 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
439
440 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
441 )))
442
443 * FIRST: Indicates that this is the first packet after joining the network.
444 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
445
446 (((
447 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
448
449
450 )))
451
452 (((
453 **To activate this mode, run the following AT commands:**
454 )))
455
456 (((
457 (% class="box infomessage" %)
458 (((
459 **AT+MOD=2**
460
461 **ATZ**
462 )))
463 )))
464
465 (((
466
467
468 (% style="color:#4f81bd" %)**AT Commands for counting:**
469 )))
470
471 (((
472 **For LT22222-L:**
473
474 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
475
476 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
477
478 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
479
480 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
481
482 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
483
484 (% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
485 )))
486
487
488 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
489
490 (% style="color:red" %)**Note: The maximum count depends on the bytes it is.
491 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
492 It starts counting again when it reaches the maximum value.**
493
494 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
495
496 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
497 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
498 |Value|COUNT1|(((
499 ACI1 Current
500 )))|(((
501 ACI2 Current
502 )))|DIDORO*|Reserve|MOD
503
504 (((
505 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
506
507 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
508 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
509 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
510 )))
511
512 * RO is for the relay. ROx=1: closed, ROx=0 always open.
513 * FIRST: Indicates that this is the first packet after joining the network.
514 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
515
516 (((
517 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
518 )))
519
520
521 (((
522 **To activate this mode, run the following AT commands:**
523 )))
524
525 (((
526 (% class="box infomessage" %)
527 (((
528 **AT+MOD=3**
529
530 **ATZ**
531 )))
532 )))
533
534 (((
535 AT Commands for counting:
536
537 The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
538 )))
539
540
541 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
542
543 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
544 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
545 It starts counting again when it reaches the maximum value.**
546
547
548 (((
549 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
550 )))
551
552 (((
553 The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
554
555 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
556 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
557 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
558 Reserve
559 )))|MOD
560 )))
561
562 (((
563 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
564
565 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
566 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
567 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
568 )))
569
570 * RO is for the relay. ROx=1: closed, ROx=0 always open.
571 * FIRST: Indicates that this is the first packet after joining the network.
572 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
573
574 (((
575 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
576
577
578 )))
579
580 (((
581 **To activate this mode, run the following AT commands:**
582 )))
583
584 (((
585 (% class="box infomessage" %)
586 (((
587 **AT+MOD=4**
588
589 **ATZ**
590 )))
591 )))
592
593 (((
594 AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
595 )))
596
597 (((
598 **In addition to that, below are the commands for AVI1 Counting:**
599
600 (% style="color:blue" %)**AT+SETCNT=3,60 **(%%)**(Sets AVI1 Count to 60)**
601
602 (% style="color:blue" %)**AT+VOLMAX=20000 **(%%)**(If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
603
604 (% style="color:blue" %)**AT+VOLMAX=20000,0 **(%%)**(If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
605
606 (% style="color:blue" %)**AT+VOLMAX=20000,1 **(%%)**(If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
607 )))
608
609
610 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
611
612 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
613 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
614 It starts counting again when it reaches the maximum value.**
615
616
617 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
618
619 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
620 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
621 |Value|(((
622 AVI1 voltage
623 )))|(((
624 AVI2 voltage
625 )))|(((
626 ACI1 Current
627 )))|COUNT1|DIDORO*|(((
628 Reserve
629 )))|MOD
630
631 (((
632 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
633
634 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
635 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
636 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
637 )))
638
639 * RO is for the relay. ROx=1: closed, ROx=0 always open.
640 * FIRST: Indicates that this is the first packet after joining the network.
641 * (((
642 DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
643 )))
644
645 (((
646 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
647 )))
648
649 (((
650 **To activate this mode, run the following AT commands:**
651 )))
652
653 (((
654 (% class="box infomessage" %)
655 (((
656 **AT+MOD=5**
657
658 **ATZ**
659 )))
660 )))
661
662 (((
663 Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
664 )))
665
666
667 === 3.3.6 AT+ADDMOD~=6 (Trigger Mode, Optional) ===
668
669
670 (% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate __alongside__ with other modes.**
671
672 For example, if you configure the following commands:
673
674 * **AT+MOD=1 ** **~-~->**  Sets the default working mode
675 * **AT+ADDMOD6=1**   **~-~->**  Enables trigger mode
676
677 The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. It will send uplink packets in two cases:
678
679 1. Periodic uplink: Based on TDC time. The payload is the same as in normal mode (MOD=1 as set above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
680 1. (((
681 Trigger uplink: sent when a trigger condition is met. In this case, LT will send two packets
682
683 * The first uplink uses the payload specified in trigger mode (MOD=6).
684 * The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**confirmed uplinks.**
685 )))
686
687 (% style="color:#037691" %)**AT Commands to set Trigger Conditions**:
688
689 (% style="color:#4f81bd" %)**Trigger based on voltage**:
690
691 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
692
693
694 **Example:**
695
696 AT+AVLIM=3000,6000,0,2000 (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
697
698 AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
699
700
701 (% style="color:#4f81bd" %)**Trigger based on current**:
702
703 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
704
705
706 **Example:**
707
708 AT+ACLIM=10000,15000,0,0 (triggers an uplink if AC1 current is lower than 10mA or higher than 15mA)
709
710
711 (% style="color:#4f81bd" %)**Trigger based on DI status**:
712
713 DI status triggers Flag.
714
715 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
716
717
718 **Example:**
719
720 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
721
722
723 (% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
724
725 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
726
727 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
728
729 AA: Type Code for this downlink Command:
730
731 xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
732
733 yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
734
735 yy2 yy2: AC1 or AV1 HIGH limit.
736
737 yy3 yy3: AC2 or AV2 LOW limit.
738
739 Yy4 yy4: AC2 or AV2 HIGH limit.
740
741
742 **Example 1**: AA 00 13 88 00 00 00 00 00 00
743
744 Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
745
746
747 **Example 2**: AA 02 01 00
748
749 Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
750
751
752 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
753
754 MOD6 Payload: total of 11 bytes
755
756 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
757 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
758 |Value|(((
759 TRI_A FLAG
760 )))|(((
761 TRI_A Status
762 )))|(((
763 TRI_DI FLAG+STA
764 )))|Reserve|Enable/Disable MOD6|(((
765 MOD(6)
766 )))
767
768 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
769
770 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
771 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
772 |(((
773 AV1_LOW
774 )))|(((
775 AV1_HIGH
776 )))|(((
777 AV2_LOW
778 )))|(((
779 AV2_HIGH
780 )))|(((
781 AC1_LOW
782 )))|(((
783 AC1_HIGH
784 )))|(((
785 AC2_LOW
786 )))|(((
787 AC2_HIGH
788 )))
789
790 * Each bit shows if the corresponding trigger has been configured.
791
792 **Example:**
793
794 10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW
795
796
797 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
798
799 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
800 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
801 |(((
802 AV1_LOW
803 )))|(((
804 AV1_HIGH
805 )))|(((
806 AV2_LOW
807 )))|(((
808 AV2_HIGH
809 )))|(((
810 AC1_LOW
811 )))|(((
812 AC1_HIGH
813 )))|(((
814 AC2_LOW
815 )))|(((
816 AC2_HIGH
817 )))
818
819 * Each bit shows which status has been triggered on this uplink.
820
821 **Example:**
822
823 10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low.
824
825
826 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
827
828 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:674px" %)
829 |(% style="width:64px" %)**bit 7**|(% style="width:68px" %)**bit 6**|(% style="width:63px" %)**bit 5**|(% style="width:66px" %)**bit 4**|(% style="width:109px" %)**bit 3**|(% style="width:93px" %)**bit 2**|(% style="width:109px" %)**bit 1**|(% style="width:99px" %)**bit 0**
830 |(% style="width:64px" %)N/A|(% style="width:68px" %)N/A|(% style="width:63px" %)N/A|(% style="width:66px" %)N/A|(% style="width:109px" %)DI2_STATUS|(% style="width:93px" %)DI2_FLAG|(% style="width:109px" %)DI1_STATUS|(% style="width:99px" %)DI1_FLAG
831
832 * Each bits shows which status has been triggered on this uplink.
833
834 **Example:**
835
836 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
837
838 00000101: Means both DI1 and DI2 trigger are enabled.
839
840
841 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
842
843 Downlink command to poll MOD6 status:
844
845 **AB 06**
846
847 When device got this command, it will send the MOD6 payload.
848
849
850 === 3.3.7 Payload Decoder ===
851
852 (((
853
854
855 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
856 )))
857
858
859 == 3.4 ​Configure LT-22222-L via AT Commands or Downlinks ==
860
861 (((
862 You can configure LT-22222-L I/O Controller via AT Commands or LoRaWAN Downlinks.
863 )))
864
865 (((
866 (((
867 There are two tytes of commands:
868 )))
869 )))
870
871 * (% style="color:blue" %)**Common commands**(%%):
872
873 * (% style="color:blue" %)**Sensor-related commands**(%%):
874
875 === 3.4.1 Common commands ===
876
877 (((
878 These are available for each sensors and include actions such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]s.
879 )))
880
881 === 3.4.2 Sensor-related commands ===
882
883 These commands are specially designed for the LT-22222-L. Commands can be sent to the device using options such as an AT command or a LoRaWAN downlink payload.
884
885
886 ==== 3.4.2.1 Set Transmit/Uplink Interval ====
887
888 Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
889
890 (% style="color:#037691" %)**AT command**
891
892 (% border="2" style="width:500px" %)
893 |**Command**|AT+TDC=<time>
894 |**Response**|
895 |**Parameters**|**time** : uplink interval is in **milliseconds**
896 |**Example**|(((
897 AT+TDC=30000
898
899 Sets the uplink interval to **30 seconds** (30000 milliseconds)
900 )))
901
902 (% style="color:#037691" %)**Downlink payload**
903
904 (% border="2" style="width:500px" %)
905 |**Payload**|(((
906 <prefix><time>
907 )))
908 |**Parameters**|(((
909 **prefix** : 0x01
910
911 **time** : uplink interval is in **seconds**, represented by **3  bytes** in **hexadecimal**.
912 )))
913 |**Example**|(((
914 01 **00 00 1E**
915
916 Sets the uplink interval to **30 seconds**
917
918 Conversion: 30 (dec) = 00 00 1E (hex)
919
920 See [[RapidTables>>https://www.rapidtables.com/convert/number/decimal-to-hex.html?x=30]]
921
922 [[image:Screenshot 2024-11-23 at 18.27.11.png]]
923 )))
924
925 ==== 3.4.2.2 Set the Working Mode (AT+MOD) ====
926
927 Sets the working mode.
928
929 (% style="color:#037691" %)**AT command**
930
931 (% border="2" style="width:500px" %)
932 |(% style="width:97px" %)**Command**|(% style="width:413px" %)AT+MODE=<working_mode>
933 |(% style="width:97px" %)**Response**|(% style="width:413px" %)
934 |(% style="width:97px" %)**Parameters**|(% style="width:413px" %)(((
935 **working_mode** :
936
937 1 = (Default mode/factory set):  2ACI + 2AVI + DI + DO + RO
938
939 2 = Double DI Counting + DO + RO
940
941 3 = Single DI Counting + 2 x ACI + DO + RO
942
943 4 = Single DI Counting + 1 x Voltage Counting + DO + RO
944
945 5 = Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
946
947 6 = Trigger Mode, Optional, used together with MOD1 ~~ MOD5
948 )))
949 |(% style="width:97px" %)**Example**|(% style="width:413px" %)(((
950 AT+MOD=2
951
952 Sets the device to working mode 2 (Double DI Counting + DO + RO)
953 )))
954
955 (% class="wikigeneratedid" %)
956 (% style="color:#037691" %)**Downlink payload**
957
958 (% border="2" style="width:500px" %)
959 |(% style="width:98px" %)**Payload**|(% style="width:400px" %)<prefix><working_mode>
960 |(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
961 **prefix** : 0x0A
962
963 **working_mode** : Working mode, represented by 1 byte in hexadecimal.
964 )))
965 |(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
966 0A **02**
967
968 Sets the device to working mode 2 (Double DI Counting + DO + RO)
969 )))
970
971 ==== 3.4.2.3 Poll an uplink ====
972
973 Requests an uplink from LT-22222-L. The content of the uplink payload varies based on the device's current working mode.
974
975 (% style="color:#037691" %)**AT command**
976
977 There is no AT Command available for this feature.
978
979 (% style="color:#037691" %)**Downlink payload**
980
981 (% border="2" style="width:500px" %)
982 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix>FF
983 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)**prefix** : 0x08
984 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
985 08 **FF**
986
987 Requests an uplink from LT-22222-L.
988 )))
989
990 ==== 3.4.2.4 Enable/Disable Trigger Mode ====
991
992 Enable or disable the trigger mode for the current working mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
993
994 (% style="color:#037691" %)**AT Command**
995
996 (% border="2" style="width:500px" %)
997 |(% style="width:95px" %)**Command**|(% style="width:403px" %)AT+ADDMOD6=<enable/disable trigger_mode>
998 |(% style="width:95px" %)**Response**|(% style="width:403px" %)
999 |(% style="width:95px" %)**Parameters**|(% style="width:403px" %)(((
1000 **enable/disable trigger_mode** :
1001
1002 1 = enable trigger mode
1003
1004 0 = disable trigger mode
1005 )))
1006 |(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1007 AT+ADDMOD6=1
1008
1009 Enable trigger mode for the current working mode
1010 )))
1011
1012 (% style="color:#037691" %)**Downlink payload**
1013
1014 (% border="2" style="width:500px" %)
1015 |(% style="width:97px" %)**Payload**|(% style="width:401px" %)<prefix><enable/disable trigger_mode>
1016 |(% style="width:97px" %)**Parameters**|(% style="width:401px" %)(((
1017 **prefix** : 0x0A 06 (two bytes in hexadecimal)
1018
1019 **enable/disable trigger_mode** : enable (1) or disable (0), represented by 1 byte in hexadecimal.
1020 )))
1021 |(% style="width:97px" %)**Example**|(% style="width:401px" %)(((
1022 0A 06 **01**
1023
1024 Enable trigger mode for the current working mode
1025 )))
1026
1027 ==== 3.4.2.5 Poll trigger settings ====
1028
1029 Polls the trigger settings.
1030
1031 (% style="color:#037691" %)**AT Command:**
1032
1033 There is no AT Command available for this feature.
1034
1035 (% style="color:#037691" %)**Downlink Payload**
1036
1037 (% border="2" style="width:500px" %)
1038 |(% style="width:95px" %)**Payload**|(% style="width:403px" %)<prefix>
1039 |(% style="width:95px" %)**Parameters**|(% style="width:403px" %)**prefix **: AB 06 (two bytes in hexadecimal)
1040 |(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1041 AB 06
1042
1043 Uplinks the trigger settings.
1044 )))
1045
1046 ==== 3.4.2.6 Enable/Disable DI1/DI2/DI3 as a trigger ====
1047
1048 Enable or disable DI1/DI2/DI3 as a trigger.
1049
1050 (% style="color:#037691" %)**AT Command**
1051
1052 (% border="2" style="width:500px" %)
1053 |(% style="width:98px" %)**Command**|(% style="width:400px" %)AT+DTRI=<DI1_trigger>,<DI2_trigger>
1054 |(% style="width:98px" %)**Response**|(% style="width:400px" %)
1055 |(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
1056 **DI1_trigger:**
1057
1058 1 = enable DI1 trigger
1059
1060 0 = disable DI1 trigger
1061
1062 **DI2 _trigger**
1063
1064 1 = enable DI2 trigger
1065
1066 0 = disable DI2 trigger
1067 )))
1068 |(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
1069 AT+DTRI=1,0
1070
1071 Enable DI1 trigger, disable DI2 trigger
1072 )))
1073
1074 (% class="wikigeneratedid" %)
1075 (% style="color:#037691" %)**Downlink Payload**
1076
1077 (% border="2" style="width:500px" %)
1078 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><DI1_trigger><DI2_trigger>
1079 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1080 **prefix :** AA 02 (two bytes in hexadecimal)
1081
1082 **DI1_trigger:**
1083
1084 1 = enable DI1 trigger, represented by 1 byte in hexadecimal.
1085
1086 0 = disable DI1 trigger, represented by 1 byte in hexadecimal.
1087
1088 **DI2 _trigger**
1089
1090 1 = enable DI2 trigger, represented by 1 byte in hexadecimal.
1091
1092 0 = disable DI2 trigger, represented by 1 byte in hexadecimal.
1093 )))
1094 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1095 AA 02 **01 00**
1096
1097 Enable DI1 trigger, disable DI2 trigger
1098 )))
1099
1100 ==== 3.4.2.7 Trigger1 – Set DI or DI3 as a trigger ====
1101
1102 Sets DI1 or DI3 (for LT-33222-L) as a trigger.
1103
1104
1105 (% style="color:#037691" %)**AT Command**
1106
1107 (% border="2" style="width:500px" %)
1108 |(% style="width:101px" %)**Command**|(% style="width:397px" %)AT+TRIG1=<interrupt_mode>,<minimum_signal_duration>
1109 |(% style="width:101px" %)**Response**|(% style="width:397px" %)
1110 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1111 **interrupt_mode** :  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1112
1113 **minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1114 )))
1115 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1116 AT+TRIG1=1,100
1117
1118 Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1119 )))
1120
1121 (% class="wikigeneratedid" %)
1122 (% style="color:#037691" %)**Downlink Payload**
1123
1124 (% border="2" style="width:500px" %)
1125 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><interrupt_mode><minimum_signal_duration>
1126 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1127 **prefix** : 09 01 (hexadecimal)
1128
1129 **interrupt_mode** : 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1130
1131 **minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal.
1132 )))
1133 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1134 09 01 **01 00 64**
1135
1136 Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1137 )))
1138
1139 ==== 3.4.2.8 Trigger2 – Set DI2 as a trigger ====
1140
1141 Sets DI2 as a trigger.
1142
1143
1144 (% style="color:#037691" %)**AT Command**
1145
1146 (% border="2" style="width:500px" %)
1147 |(% style="width:94px" %)**Command**|(% style="width:404px" %)AT+TRIG2=<interrupt_mode>,<minimum_signal_duration>
1148 |(% style="width:94px" %)**Response**|(% style="width:404px" %)
1149 |(% style="width:94px" %)**Parameters**|(% style="width:404px" %)(((
1150 **interrupt_mode **:  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1151
1152 **minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1153 )))
1154 |(% style="width:94px" %)**Example**|(% style="width:404px" %)(((
1155 AT+TRIG2=0,100
1156
1157 Set the DI1 port to trigger on a falling edge; the valid signal duration is 100 ms.
1158 )))
1159
1160 (% style="color:#037691" %)**Downlink Payload**
1161
1162 (% border="2" style="width:500px" %)
1163 |(% style="width:96px" %)**Payload**|(% style="width:402px" %)<prefix><interrupt_mode><minimum_signal_duration>
1164 |(% style="width:96px" %)**Parameters**|(% style="width:402px" %)(((
1165 **prefix** : 09 02 (hexadecimal)
1166
1167 **interrupt_mode **: 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1168
1169 **minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal
1170 )))
1171 |(% style="width:96px" %)**Example**|(% style="width:402px" %)09 02 **00 00 64**
1172
1173 ==== 3.4.2.9 Trigger – Set AC (current) as a trigger ====
1174
1175 Sets the current trigger based on the AC port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1176
1177 (% style="color:#037691" %)**AT Command**
1178
1179 (% border="2" style="width:500px" %)
1180 |(% style="width:104px" %)**Command**|(% style="width:394px" %)(((
1181 AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1182 )))
1183 |(% style="width:104px" %)**Response**|(% style="width:394px" %)
1184 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1185 **AC1_LIMIT_LOW** : lower limit of the current to be checked
1186
1187 **AC1_LIMIT_HIGH **: higher limit of the current to be checked
1188
1189 **AC2_LIMIT_HIGH **: lower limit of the current to be checked
1190
1191 **AC2_LIMIT_LOW** : higher limit of the current to be checked
1192 )))
1193 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1194 AT+ACLIM=10000,15000,0,0
1195
1196 Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA
1197 )))
1198 |(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1199
1200 (% style="color:#037691" %)**Downlink Payload**
1201
1202 (% border="2" style="width:500px" %)
1203 |(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1204 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1205 **prefix **: AA 01 (hexadecimal)
1206
1207 **AC1_LIMIT_LOW** : lower limit of the current to be checked, two bytes in hexadecimal
1208
1209 **AC1_LIMIT_HIGH **: higher limit of the current to be checked, two bytes in hexadecimal
1210
1211 **AC2_LIMIT_HIGH **: lower limit of the current to be checked, two bytes in hexadecimal
1212
1213 **AC2_LIMIT_LOW** : higher limit of the current to be checked, two bytes in hexadecimal
1214 )))
1215 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1216 AA 01 **27** **10 3A** **98** 00 00 00 00
1217
1218 Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA. Set all values to zero for AC2 limits because we are only checking AC1 limits.
1219 )))
1220 |(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1221
1222 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
1223
1224 Sets the current trigger based on the AV port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1225
1226 (% style="color:#037691" %)**AT Command**
1227
1228 (% border="2" style="width:500px" %)
1229 |(% style="width:104px" %)**Command**|(% style="width:387px" %)AT+AVLIM= AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1230 |(% style="width:104px" %)**Response**|(% style="width:387px" %)
1231 |(% style="width:104px" %)**Parameters**|(% style="width:387px" %)(((
1232 **AC1_LIMIT_LOW** : lower limit of the current to be checked
1233
1234 **AC1_LIMIT_HIGH **: higher limit of the current to be checked
1235
1236 **AC2_LIMIT_HIGH **: lower limit of the current to be checked
1237
1238 **AC2_LIMIT_LOW** : higher limit of the current to be checked
1239 )))
1240 |(% style="width:104px" %)**Example**|(% style="width:387px" %)(((
1241 AT+AVLIM=3000,6000,0,2000
1242
1243 Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V
1244 )))
1245 |(% style="width:104px" %)**Note**|(% style="width:387px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1246
1247 (% style="color:#037691" %)**Downlink Payload**
1248
1249 (% border="2" style="width:500px" %)
1250 |(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1251 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1252 **prefix **: AA 00 (hexadecimal)
1253
1254 **AV1_LIMIT_LOW** : lower limit of the voltage to be checked, two bytes in hexadecimal
1255
1256 **AV1_LIMIT_HIGH **: higher limit of the voltage to be checked, two bytes in hexadecimal
1257
1258 **AV2_LIMIT_HIGH **: lower limit of the voltage to be checked, two bytes in hexadecimal
1259
1260 **AV2_LIMIT_LOW** : higher limit of the voltage to be checked, two bytes in hexadecimal
1261 )))
1262 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1263 AA 00 **0B B8 17 70 00 00 07 D0**
1264
1265 Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V.
1266 )))
1267 |(% style="width:104px" %)**Note**|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1268
1269 ==== 3.4.2.11 Trigger – Set minimum interval ====
1270
1271 Sets the AV and AC trigger minimum interval. The device won't respond to a second trigger within this set time after the first trigger.
1272
1273 (% style="color:#037691" %)**AT Command**
1274
1275 (% border="2" style="width:500px" %)
1276 |(% style="width:113px" %)**Command**|(% style="width:385px" %)AT+ATDC=<time>
1277 |(% style="width:113px" %)**Response**|(% style="width:385px" %)
1278 |(% style="width:113px" %)**Parameters**|(% style="width:385px" %)(((
1279 **time** : in minutes
1280 )))
1281 |(% style="width:113px" %)**Example**|(% style="width:385px" %)(((
1282 AT+ATDC=5
1283
1284 The device won't respond to the second trigger within 5 minutes after the first trigger.
1285 )))
1286 |(% style="width:113px" %)Note|(% style="width:385px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1287
1288 (% style="color:#037691" %)**Downlink Payload**
1289
1290 (% border="2" style="width:500px" %)
1291 |(% style="width:112px" %)**Payload**|(% style="width:386px" %)<prefix><time>
1292 |(% style="width:112px" %)**Parameters**|(% style="width:386px" %)(((
1293 **prefix** : AC (hexadecimal)
1294
1295 **time **: in minutes (two bytes in hexadecimal)
1296 )))
1297 |(% style="width:112px" %)**Example**|(% style="width:386px" %)(((
1298 AC **00 05**
1299
1300 The device won't respond to the second trigger within 5 minutes after the first trigger.
1301 )))
1302 |(% style="width:112px" %)Note|(% style="width:386px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1303
1304 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1305
1306 Controls the digital outputs DO1, DO2, and DO3
1307
1308 (% style="color:#037691" %)**AT Command**
1309
1310 There is no AT Command to control the Digital Output.
1311
1312
1313 (% style="color:#037691" %)**Downlink Payload**
1314
1315 (% border="2" style="width:500px" %)
1316 |(% style="width:115px" %)**Payload**|(% style="width:383px" %)<prefix><DO1><DO2><DO3>
1317 |(% style="width:115px" %)**Parameters**|(% style="width:383px" %)(((
1318 **prefix** : 02 (hexadecimal)
1319
1320 **DOI** : 01: Low,  00: High, 11: No action (1 byte in hex)
1321
1322 **DO2** : 01: Low,  00: High, 11: No action (1 byte in hex)
1323
1324 **DO3 **: 01: Low,  00: High, 11: No action (1 byte in hex)
1325 )))
1326 |(% style="width:115px" %)**Examples**|(% style="width:383px" %)(((
1327 02 **01 00 01**
1328
1329 If there is a load between V+ and DOx, it means DO1 is set to low, DO2 is set to high, and DO3 is set to low.
1330
1331 **More examples:**
1332
1333 (((
1334 01: Low,  00: High,  11: No action
1335
1336 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1337 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
1338 |02  01  00  11|Low|High|No Action
1339 |02  00  11  01|High|No Action|Low
1340 |02  11  01  00|No Action|Low|High
1341 )))
1342
1343 (((
1344 (((
1345 (% style="color:red" %)**Note: For the LT-22222-L, there is no DO3; the last byte can have any value.**
1346 )))
1347
1348 (((
1349 (% style="color:red" %)**The device will upload a packet if downlink code executes successfully.**
1350 )))
1351 )))
1352 )))
1353
1354 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1355
1356
1357 * (% style="color:#037691" %)**AT Command**
1358
1359 There is no AT Command to control Digital Output
1360
1361
1362 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1363
1364 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1365
1366
1367 This is to control the digital output time of DO pin. Include four bytes:
1368
1369 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1370
1371 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1372
1373 01: DO pins will change back to original state after timeout.
1374
1375 00: DO pins will change to an inverter state after timeout 
1376
1377
1378 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Port status:
1379
1380 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1381 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1382 |0x01|DO1 set to low
1383 |0x00|DO1 set to high
1384 |0x11|DO1 NO Action
1385
1386 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Port status:
1387
1388 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1389 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1390 |0x01|DO2 set to low
1391 |0x00|DO2 set to high
1392 |0x11|DO2 NO Action
1393
1394 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Port status:
1395
1396 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1397 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1398 |0x01|DO3 set to low
1399 |0x00|DO3 set to high
1400 |0x11|DO3 NO Action
1401
1402 (% style="color:#4f81bd" %)**Sixth, Seventh, Eighth, and Ninth Bytes**:(%%) Latching time (Unit: ms)
1403
1404
1405 (% style="color:red" %)**Note: **
1406
1407 Since firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1408
1409 Before firmware v1.6.0, the latch time only supported 2 bytes.
1410
1411 (% style="color:red" %)**Device will upload a packet if the downlink code executes successfully.**
1412
1413
1414 **Example payload:**
1415
1416 **~1. A9 01 01 01 01 07 D0**
1417
1418 DO1 pin, DO2 pin, and DO3 pin will be set to low, last for 2 seconds, and then revert to their original state.
1419
1420 **2. A9 01 00 01 11 07 D0**
1421
1422 DO1 pin is set to high, DO2 pin is set to low, and DO3 pin takes no action. This lasts for 2 seconds and then reverts to the original state.
1423
1424 **3. A9 00 00 00 00 07 D0**
1425
1426 DO1 pin, DO2 pin, and DO3 pin will be set to high, last for 2 seconds, and then all change to low.
1427
1428 **4. A9 00 11 01 00 07 D0**
1429
1430 DO1 pin takes no action, DO2 pin is set to low, and DO3 pin is set to high. This lasts for 2 seconds, after which DO1 pin takes no action, DO2 pin is set to high, and DO3 pin is set to low.
1431
1432
1433 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1434
1435
1436 * (% style="color:#037691" %)**AT Command:**
1437
1438 There is no AT Command to control Relay Output
1439
1440
1441 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1442
1443 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1444
1445
1446 (((
1447 If payload is 0x030100, it means setting RO1 to close and RO2 to open.
1448 )))
1449
1450 (((
1451 00: Close ,  01: Open , 11: No action
1452
1453 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1454 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1455 |03  00  11|Open|No Action
1456 |03  01  11|Close|No Action
1457 |03  11  00|No Action|Open
1458 |03  11  01|No Action|Close
1459 |03  00  00|Open|Open
1460 |03  01  01|Close|Close
1461 |03  01  00|Close|Open
1462 |03  00  01|Open|Close
1463 )))
1464
1465 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1466
1467
1468 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1469
1470 Controls the relay output time.
1471
1472 * (% style="color:#037691" %)**AT Command:**
1473
1474 There is no AT Command to control Relay Output
1475
1476
1477 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1478
1479 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1480
1481
1482 This is to control the relay output time. It includes four bytes:
1483
1484 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1485
1486 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1487
1488 01: Relays will change back to their original state after timeout.
1489
1490 00: Relays will change to the inverter state after timeout.
1491
1492
1493 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1494
1495 [[image:image-20221008095908-1.png||height="364" width="564"]]
1496
1497
1498 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1499
1500
1501 (% style="color:red" %)**Note:**
1502
1503 Since firmware v1.6.0, the latch time supports both 4 bytes and 2 bytes.
1504
1505 Before firmware v1.6.0, the latch time only supported 2 bytes.
1506
1507
1508 (% style="color:red" %)**Device will upload a packet if the downlink code executes successfully.**
1509
1510
1511 **Example payload:**
1512
1513 **~1. 05 01 11 07 D0**
1514
1515 Relay1 and Relay2 will be set to NC, lasting 2 seconds, then revert to their original state
1516
1517 **2. 05 01 10 07 D0**
1518
1519 Relay1 will change to NC, Relay2 will change to NO, lasting 2 seconds, then both will revert to their original state.
1520
1521 **3. 05 00 01 07 D0**
1522
1523 Relay1 will change to NO, Relay2 will change to NC, lasting 2 seconds, then Relay1 will change to NC, and Relay2 will change to NO.
1524
1525 **4. 05 00 00 07 D0**
1526
1527 Relay1 and Relay2 will change to NO, lasting 2 seconds, then both will change to NC.
1528
1529
1530
1531 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1532
1533
1534 When the voltage exceeds the threshold, counting begins. For details, see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1535
1536 (% style="color:#037691" %)**AT Command**
1537
1538 (% border="2" style="width:500px" %)
1539 |(% style="width:137px" %)**Command**|(% style="width:361px" %)AT+VOLMAX=<voltage>,<logic>
1540 |(% style="width:137px" %)**Response**|(% style="width:361px" %)
1541 |(% style="width:137px" %)**Parameters**|(% style="width:361px" %)(((
1542 **voltage** : voltage threshold in mV
1543
1544 **logic**:
1545
1546 **0** : lower than
1547
1548 **1**: higher than
1549
1550 if you leave logic parameter blank, it is considered 0
1551 )))
1552 |(% style="width:137px" %)**Examples**|(% style="width:361px" %)(((
1553 AT+VOLMAX=20000
1554
1555 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1556
1557 AT+VOLMAX=20000,0
1558
1559 If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1560
1561 AT+VOLMAX=20000,1
1562
1563 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1564 )))
1565
1566 (% style="color:#037691" %)**Downlink Payload**
1567
1568 (% border="2" style="width:500px" %)
1569 |(% style="width:140px" %)**Payload**|(% style="width:358px" %)<prefix><voltage><logic>
1570 |(% style="width:140px" %)**Parameters**|(% style="width:358px" %)(((
1571 **prefix** : A5 (hex)
1572
1573 **voltage** : voltage threshold in mV (2 bytes in hex)
1574
1575 **logic**: (1 byte in hexadecimal)
1576
1577 **0** : lower than
1578
1579 **1**: higher than
1580
1581 if you leave logic parameter blank, it is considered 1 (higher than)
1582 )))
1583 |(% style="width:140px" %)**Example**|(% style="width:358px" %)(((
1584 A5 **4E 20**
1585
1586 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1587
1588 A5 **4E 20 00**
1589
1590 If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1591
1592 A5 **4E 20 01**
1593
1594 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1595 )))
1596
1597 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1598
1599 This command allows users to pre-configure specific count numbers for various counting parameters such as Count1, Count2, or AVI1 Count. Use the AT command to set the desired count number for each configuration.
1600
1601 (% style="color:#037691" %)**AT Command**
1602
1603 (% border="2" style="width:500px" %)
1604 |(% style="width:134px" %)**Command**|(% style="width:364px" %)AT+SETCNT=<counting_parameter>,<number>
1605 |(% style="width:134px" %)**Response**|(% style="width:364px" %)
1606 |(% style="width:134px" %)**Parameters**|(% style="width:364px" %)(((
1607 **counting_parameter** :
1608
1609 1: COUNT1
1610
1611 2: COUNT2
1612
1613 3: AVI1 Count
1614
1615 **number** : Start number
1616 )))
1617 |(% style="width:134px" %)**Example**|(% style="width:364px" %)(((
1618 AT+SETCNT=1,10
1619
1620 Sets the COUNT1 to 10.
1621 )))
1622
1623 (% style="color:#037691" %)**Downlink Payload**
1624
1625 (% border="2" style="width:500px" %)
1626 |(% style="width:135px" %)**Payload**|(% style="width:363px" %)<prefix><counting_parameter><number>
1627 |(% style="width:135px" %)**Parameters**|(% style="width:363px" %)(((
1628 prefix : A8 (hex)
1629
1630 **counting_parameter** : (1 byte in hexadecimal)
1631
1632 1: COUNT1
1633
1634 2: COUNT2
1635
1636 3: AVI1 Count
1637
1638 **number** : Start number, 4 bytes in hexadecimal
1639 )))
1640 |(% style="width:135px" %)**Example**|(% style="width:363px" %)(((
1641 A8 **01 00 00 00 0A**
1642
1643 Sets the COUNT1 to 10.
1644 )))
1645
1646 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1647
1648 This command clears the counting in counting mode.
1649
1650 (% style="color:#037691" %)**AT Command**
1651
1652 (% border="2" style="width:500px" %)
1653 |(% style="width:142px" %)**Command**|(% style="width:356px" %)AT+CLRCOUNT
1654 |(% style="width:142px" %)**Response**|(% style="width:356px" %)-
1655
1656 (% style="color:#037691" %)**Downlink Payload**
1657
1658 (% border="2" style="width:500px" %)
1659 |(% style="width:141px" %)**Payload**|(% style="width:357px" %)<prefix><clear?>
1660 |(% style="width:141px" %)**Parameters**|(% style="width:357px" %)(((
1661 prefix : A6 (hex)
1662
1663 clear? : 01 (hex)
1664 )))
1665 |(% style="width:141px" %)**Example**|(% style="width:357px" %)A6 **01**
1666
1667 ==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1668
1669 This command allows you to configure the device to save its counting result to internal flash memory at specified intervals. By setting a save time, the device will periodically store the counting data to prevent loss in case of power failure. The save interval can be adjusted to suit your requirements, with a minimum value of 30 seconds.
1670
1671 (% style="color:#037691" %)**AT Command**
1672
1673 (% border="2" style="width:500px" %)
1674 |(% style="width:124px" %)**Command**|(% style="width:374px" %)AT+COUTIME=<time>
1675 |(% style="width:124px" %)**Response**|(% style="width:374px" %)
1676 |(% style="width:124px" %)**Parameters**|(% style="width:374px" %)time : seconds (0 to 16777215)
1677 |(% style="width:124px" %)**Example**|(% style="width:374px" %)(((
1678 AT+COUTIME=60
1679
1680 Sets the device to save its counting results to the memory every 60 seconds.
1681 )))
1682
1683 (% style="color:#037691" %)**Downlink Payload**
1684
1685 (% border="2" style="width:500px" %)
1686 |(% style="width:123px" %)**Payload**|(% style="width:375px" %)<prefix><time>
1687 |(% style="width:123px" %)**Parameters**|(% style="width:375px" %)(((
1688 prefix : A7
1689
1690 time : seconds, 3 bytes in hexadecimal
1691 )))
1692 |(% style="width:123px" %)**Example**|(% style="width:375px" %)(((
1693 A7 **00 00 3C**
1694
1695 Sets the device to save its counting results to the memory every 60 seconds.
1696 )))
1697
1698 ==== 3.4.2.20 Reset save RO DO state ====
1699
1700 This command allows you to reset the saved relay output (RO) and digital output (DO) states when the device joins the network. By configuring this setting, you can control whether the device should retain or reset the relay states after a reset and rejoin to the network.
1701
1702 (% style="color:#037691" %)**AT Command**
1703
1704 (% border="2" style="width:500px" %)
1705 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+RODORESET=<state>
1706 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1707 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1708 **state** :
1709
1710 **0** : RODO will close when the device joins the network. (default)
1711
1712 **1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1713 )))
1714 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1715 (% style="color:blue" %)**AT+RODORESET=1 **
1716
1717 RODO will close when the device joins the network. (default)
1718
1719 (% style="color:blue" %)**AT+RODORESET=0 **
1720
1721 After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1722 )))
1723
1724 (% style="color:#037691" %)**Downlink Payload**
1725
1726 (% border="2" style="width:500px" %)
1727 |(% style="width:127px" %)**Payload**|(% style="width:371px" %)<prefix><state>
1728 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1729 **prefix** : AD
1730
1731 **state** :
1732
1733 **0** : RODO will close when the device joins the network. (default), represents as 1 byte in hexadecimal.
1734
1735 **1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network. - represents as 1 byte in hexadecimal
1736 )))
1737 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1738 AD **01**
1739
1740 RODO will close when the device joins the network. (default)
1741
1742 AD **00**
1743
1744 After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1745 )))
1746
1747 ==== 3.4.2.21 Encrypted payload ====
1748
1749 This command allows you to configure whether the device should upload data in an encrypted format or in plaintext. By default, the device encrypts the payload before uploading. You can toggle this setting to either upload encrypted data or transmit it without encryption.
1750
1751 (% style="color:#037691" %)**AT Command:**
1752
1753 (% border="2" style="width:500px" %)
1754 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DECRYPT=<state>
1755 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1756 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1757 **state** :
1758
1759 **1** : The payload is uploaded without encryption
1760
1761 **0** : The payload is encrypted when uploaded (default)
1762 )))
1763 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1764 AT+DECRYPT=1
1765
1766 The payload is uploaded without encryption
1767
1768 AT+DECRYPT=0
1769
1770 The payload is encrypted when uploaded (default)
1771 )))
1772
1773 There is no downlink payload for this configuration.
1774
1775
1776 ==== 3.4.2.22 Get sensor value ====
1777
1778 This command allows you to retrieve and optionally uplink sensor readings through the serial port.
1779
1780 (% style="color:#037691" %)**AT Command**
1781
1782 (% border="2" style="width:500px" %)
1783 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+GETSENSORVALUE=<state>
1784 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1785 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1786 **state** :
1787
1788 **0 **: Retrieves the current sensor reading via the serial port.
1789
1790 **1 **: Retrieves and uploads the current sensor reading via the serial port.
1791 )))
1792 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1793 AT+GETSENSORVALUE=0
1794
1795 Retrieves the current sensor reading via the serial port.
1796
1797 AT+GETSENSORVALUE=1
1798
1799 Retrieves and uplinks the current sensor reading via the serial port.
1800 )))
1801
1802 There is no downlink payload for this configuration.
1803
1804
1805 ==== 3.4.2.23 Resetting the downlink packet count ====
1806
1807 This command manages how the node handles mismatched downlink packet counts. It offers two modes: one disables the reception of further downlink packets if discrepancies occur, while the other resets the downlink packet count to align with the server, ensuring continued communication.
1808
1809 (% style="color:#037691" %)**AT Command**
1810
1811 (% border="2" style="width:500px" %)
1812 |(% style="width:130px" %)**Command**|(% style="width:368px" %)AT+DISFCNTCHECK=<state>
1813 |(% style="width:130px" %)**Response**|(% style="width:368px" %)(((
1814
1815 )))
1816 |(% style="width:130px" %)**Parameters**|(% style="width:368px" %)(((
1817 **state **:
1818
1819 **0** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default).
1820
1821
1822 **1** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency.
1823 )))
1824 |(% style="width:130px" %)**Example**|(% style="width:368px" %)(((
1825 AT+DISFCNTCHECK=0
1826
1827 When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default).
1828
1829 AT+DISFCNTCHECK=1
1830
1831 When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency.
1832 )))
1833
1834 There is no downlink payload for this configuration.
1835
1836
1837 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1838
1839
1840 This command controls the behavior of the node when the combined size of the MAC commands (MACANS) from the server and the payload exceeds the allowed byte limit for the current data rate (DR). The command provides two modes: one enables splitting the data into batches to ensure compliance with the byte limit, while the other prioritizes the payload and ignores the MACANS in cases of overflow.
1841
1842 (% style="color:#037691" %)**AT Command**
1843
1844 (% border="2" style="width:500px" %)
1845 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DISMACANS=<state>
1846 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1847 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1848 **state** :
1849
1850 **0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1851
1852 **1** : When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1853 )))
1854 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1855 AT+DISMACANS=0
1856
1857 When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1858
1859 AT+DISMACANS=1
1860
1861 When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1862 )))
1863
1864 (% style="color:#037691" %)**Downlink Payload**
1865
1866 (% border="2" style="width:500px" %)
1867 |(% style="width:126px" %)**Payload**|(% style="width:372px" %)<prefix><state>
1868 |(% style="width:126px" %)**Parameters**|(% style="width:372px" %)(((
1869 **prefix** : 21
1870
1871 **state** : (2 bytes in hexadecimal)
1872
1873 **0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1874
1875 **1 **: When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1876 )))
1877 |(% style="width:126px" %)**Example**|(% style="width:372px" %)(((
1878 21 **00 01**
1879
1880 Set DISMACANS=1
1881 )))
1882
1883 ==== 3.4.2.25 Copy downlink to uplink ====
1884
1885 This command enables the device to immediately uplink the content of a received downlink packet back to the server. The command allows for quick data replication from downlink to uplink, with a fixed port number of 100.
1886
1887 * (% style="color:#037691" %)**AT Command**(%%)**:**
1888
1889 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1890
1891 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1892
1893
1894 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1895
1896 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1897
1898 (% border="2" style="width:500px" %)
1899 |(% style="width:122px" %)**Command**|(% style="width:376px" %)(((
1900 AT+RPL=5
1901
1902 After receiving a downlink packet from the server, the node immediately uplinks the content of the packet back to the server using port number 100.
1903 )))
1904 |(% style="width:122px" %)**Example**|(% style="width:376px" %)(((
1905 Downlink:
1906
1907 01 00 02 58
1908
1909 Uplink:
1910
1911 01 01 00 02 58
1912 )))
1913
1914 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1915
1916 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1917
1918
1919
1920 ==== 3.4.2.26 Query firmware version, frequency band, sub band, and TDC time ====
1921
1922 This command is used to query key information about the device, including its firmware version, frequency band, sub band, and TDC time. By sending the specified payload as a downlink, the server can retrieve this essential data from the device.
1923
1924 * (((
1925 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1926
1927 (% style="color:blue" %)**26 01  ** (%%) ~/~/  The downlink payload 26 01 is used to query the device's firmware version, frequency band, sub band, and TDC time.
1928
1929
1930
1931 )))
1932
1933 **Example:**
1934
1935 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1936
1937
1938 == 3.5 Integrating with ThingsEye.io ==
1939
1940 The Things Stack application supports integration with ThingsEye.io. Once integrated, ThingsEye.io acts as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1941
1942 === 3.5.1 Configuring The Things Stack ===
1943
1944 We use The Things Stack Sandbox in this example:
1945
1946 * In **The Things Stack Sandbox**, go to the **Application **for the LT-22222-L you added.
1947 * Select **MQTT** under **Integrations** in the left menu.
1948 * In the **Connection information **section, under **Connection credentials**, The Things Stack displays an auto-generated **username**. You can use it or provide a new one.
1949 * Click the **Generate new API key** button to generate a password. You can view it by clicking on the **visibility toggle/eye** icon. The API key works as the password.
1950
1951 {{info}}
1952 The username and  password (API key) you created here are required in the next section.
1953 {{/info}}
1954
1955 [[image:tts-mqtt-integration.png]]
1956
1957 === 3.5.2 Configuring ThingsEye.io ===
1958
1959 The ThingsEye.io IoT platform is not open for self-registration at the moment. If you are interested in testing the platform, please send your project information to admin@thingseye.io, and we will create an account for you.
1960
1961 * Login to your [[ThingsEye.io >>https://thingseye.io]]account.
1962 * Under the **Integrations center**, click **Integrations**.
1963 * Click the **Add integration** button (the button with the **+** symbol).
1964
1965 [[image:thingseye-io-step-1.png]]
1966
1967
1968 On the **Add integration** window, configure the following:
1969
1970 **Basic settings:**
1971
1972 * Select **The Things Stack Community** from the **Integration type** list.
1973 * Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
1974 * Ensure the following options are turned on.
1975 ** Enable integration
1976 ** Debug mode
1977 ** Allow create devices or assets
1978 * Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
1979
1980 [[image:thingseye-io-step-2.png]]
1981
1982
1983 **Uplink data converter:**
1984
1985 * Click the **Create new** button if it is not selected by default.
1986 * Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
1987 * Click the **JavaScript** button.
1988 * Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
1989 * Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
1990
1991 [[image:thingseye-io-step-3.png]]
1992
1993
1994 **Downlink data converter (this is an optional step):**
1995
1996 * Click the **Create new** button if it is not selected by default.
1997 * Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name.
1998 * Click the **JavaScript** button.
1999 * Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Downlink_Converter.js]].
2000 * Click the **Next** button. You will be navigated to the **Connection** tab.
2001
2002 [[image:thingseye-io-step-4.png]]
2003
2004
2005 **Connection:**
2006
2007 * Choose **Region** from the **Host type**.
2008 * Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
2009 * Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The **username **and **password **can be found on the MQTT integration page of your The Things Stack account (see **3.5.1 Configuring The Things Stack**).
2010 * Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
2011
2012 [[image:message-1.png]]
2013
2014
2015 * Click the **Add** button.
2016
2017 [[image:thingseye-io-step-5.png]]
2018
2019
2020 Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings and correct any errors.
2021
2022
2023 [[image:thingseye.io_integrationsCenter_integrations.png]]
2024
2025
2026 ==== 3.5.2.1 Viewing integration details ====
2027
2028 Click on your integration from the list. The **Integration details** window will appear with the **Details **tab selected. The **Details **tab shows all the settings you have provided for this integration.
2029
2030 [[image:integration-details.png]]
2031
2032
2033 If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
2034
2035 {{info}}
2036 See also [[ThingsEye documentation>>https://wiki.thingseye.io/xwiki/bin/view/Main/]].
2037 {{/info}}
2038
2039 ==== **3.5.2.2 Viewing events** ====
2040
2041 The **Events **tab displays all the uplink messages from the LT-22222-L.
2042
2043 * Select **Debug **from the **Event type** dropdown.
2044 * Select the** time frame** from the **time window**.
2045
2046 [[image:thingseye-events.png]]
2047
2048
2049 * To view the **JSON payload** of a message, click on the **three dots (...)** in the Message column of the desired message.
2050
2051 [[image:thingseye-json.png]]
2052
2053
2054 ==== **3.5.2.3 Deleting an integration** ====
2055
2056 If you want to delete an integration, click the **Delete integratio**n button on the Integrations page.
2057
2058
2059 ==== 3.5.2.4 Creating a Dashboard to Display and Analyze LT-22222-L Data ====
2060
2061 This will be added soon.
2062
2063
2064 == 3.6 Interface Details ==
2065
2066 === 3.6.1 Digital Input Ports: DI1/DI2/DI3 (For LT-33222-L, Low Active) ===
2067
2068
2069 Supports** NPN-type **sensors.
2070
2071 [[image:1653356991268-289.png]]
2072
2073
2074 === 3.6.2 Digital Input Ports: DI1/DI2 ===
2075
2076
2077 (((
2078 The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
2079 )))
2080
2081 (((
2082 (((
2083 The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
2084
2085
2086 )))
2087 )))
2088
2089 [[image:1653357170703-587.png]]
2090
2091 (((
2092 (((
2093 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
2094 )))
2095 )))
2096
2097 (((
2098
2099 )))
2100
2101 (((
2102 (% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
2103 )))
2104
2105 (((
2106 This type of sensor outputs a low (GND) signal when active.
2107 )))
2108
2109 * (((
2110 Connect the sensor's output to DI1-
2111 )))
2112 * (((
2113 Connect the sensor's VCC to DI1+.
2114 )))
2115
2116 (((
2117 When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be:
2118 )))
2119
2120 (((
2121 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
2122 )))
2123
2124 (((
2125 For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
2126 )))
2127
2128 (((
2129
2130 )))
2131
2132 (((
2133 (% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
2134 )))
2135
2136 (((
2137 This type of sensor outputs a high signal (e.g., 24V) when active.
2138 )))
2139
2140 * (((
2141 Connect the sensor's output to DI1+
2142 )))
2143 * (((
2144 Connect the sensor's GND DI1-.
2145 )))
2146
2147 (((
2148 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
2149 )))
2150
2151 (((
2152 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
2153 )))
2154
2155 (((
2156 If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
2157 )))
2158
2159 (((
2160
2161 )))
2162
2163 (((
2164 (% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
2165 )))
2166
2167 (((
2168 Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
2169 )))
2170
2171 * (((
2172 Connect the sensor's output to DI1+ with a 50K resistor in series.
2173 )))
2174 * (((
2175 Connect the sensor's GND DI1-.
2176 )))
2177
2178 (((
2179 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
2180 )))
2181
2182 (((
2183 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
2184 )))
2185
2186 (((
2187 If the sensor output is 220V, then [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
2188 )))
2189
2190
2191 (% style="color:blue" %)**Example 4**(%%): Connecting to a Dry Contact sensor
2192
2193 From the DI port circuit above, activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference on its own.
2194
2195 To detect a Dry Contact, you can supply a power source to one of the pins of the Dry Contact. A reference circuit diagram is shown below.
2196
2197 [[image:image-20230616235145-1.png]]
2198
2199 (% style="color:blue" %)**Example 5**(%%): Connecting to an Open Collector
2200
2201 [[image:image-20240219115718-1.png]]
2202
2203
2204 === 3.6.3 Digital Output Ports: DO1/DO2 ===
2205
2206
2207 (% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
2208
2209 (% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
2210
2211 [[image:1653357531600-905.png]]
2212
2213
2214 === 3.6.4 Analog Input Interfaces ===
2215
2216
2217 The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
2218
2219
2220 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
2221
2222 [[image:1653357592296-182.png]]
2223
2224 Example: Connecting a 4~~20mA sensor
2225
2226 We will use the wind speed sensor as an example for reference only.
2227
2228
2229 (% style="color:blue" %)**Specifications of the wind speed sensor:**
2230
2231 (% style="color:red" %)**Red:  12~~24V**
2232
2233 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
2234
2235 **Black:  GND**
2236
2237 **Connection diagram:**
2238
2239 [[image:1653357640609-758.png]]
2240
2241 [[image:1653357648330-671.png||height="155" width="733"]]
2242
2243
2244 Example: Connecting to a regulated power supply to measure voltage
2245
2246 [[image:image-20230608101532-1.png||height="606" width="447"]]
2247
2248 [[image:image-20230608101608-2.jpeg||height="379" width="284"]]
2249
2250 [[image:image-20230608101722-3.png||height="102" width="1139"]]
2251
2252
2253 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
2254
2255 (% style="color:red" %)**Red:  12~~24v**
2256
2257 **Black:  GND**
2258
2259
2260 === 3.6.5 Relay Output ===
2261
2262
2263 (((
2264 The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
2265
2266 **Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
2267 )))
2268
2269 [[image:image-20220524100215-9.png]]
2270
2271
2272 [[image:image-20220524100215-10.png||height="382" width="723"]]
2273
2274
2275 == 3.7 LED Indicators ==
2276
2277 The table below lists the behavior of LED indicators for each port function.
2278
2279 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
2280 |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
2281 |**PWR**|Always on when there is power
2282 |**TX**|(((
2283 (((
2284 Device boot: TX blinks 5 times.
2285 )))
2286
2287 (((
2288 Successful network join: TX remains ON for 5 seconds.
2289 )))
2290
2291 (((
2292 Transmit a LoRa packet: TX blinks once
2293 )))
2294 )))
2295 |**RX**|RX blinks once when a packet is received.
2296 |**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
2297 |**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
2298 |**DI1**|(((
2299 For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
2300 )))
2301 |**DI2**|(((
2302 For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
2303 )))
2304 |**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
2305 |**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
2306
2307 = 4. Using AT Commands =
2308
2309 The LT-22222-L supports programming using AT Commands.
2310
2311 == 4.1 Connecting the LT-22222-L to a PC ==
2312
2313 (((
2314 You can use a USB-to-TTL adapter/converter along with a 3.5mm Program Cable to connect the LT-22222-L to a PC, as shown below.
2315
2316 [[image:usb-ttl-audio-jack-connection.jpg]]
2317
2318
2319 )))
2320
2321
2322 (((
2323 On the PC, you need to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate of (% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-L. Access to AT commands is disabled by default, and a password (default: (% style="color:green" %)**123456**)(%%) must be entered to enable AT command access, as shown below:
2324 )))
2325
2326 [[image:1653358355238-883.png]]
2327
2328
2329 (((
2330 You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
2331
2332 == 4.2 LT-22222-L related AT commands ==
2333 )))
2334
2335 (((
2336 The following is the list of all the AT commands related to the LT-22222-L, except for those used for switching between working modes.
2337
2338 * **##AT##+<CMD>?** : Help on <CMD>
2339 * **##AT##+<CMD>** : Run <CMD>
2340 * **##AT##+<CMD>=<value>** : Set the value
2341 * **##AT##+<CMD>=?** : Get the value
2342 * ##**ATZ**##: Trigger a reset of the MCU
2343 * ##**AT+FDR**##: Reset Parameters to factory default, reserve keys 
2344 * **##AT+DEUI##**: Get or set the Device EUI (DevEUI)
2345 * **##AT+DADDR##**: Get or set the Device Address (DevAddr)
2346 * **##AT+APPKEY##**: Get or set the Application Key (AppKey)
2347 * ##**AT+NWKSKEY**##: Get or set the Network Session Key (NwkSKey)
2348 * **##AT+APPSKEY##**: Get or set the Application Session Key (AppSKey)
2349 * **##AT+APPEUI##**: Get or set the Application EUI (AppEUI)
2350 * **##AT+ADR##**: Get or set the Adaptive Data Rate setting. (0: OFF, 1: ON)
2351 * ##**AT+TXP**##: Get or set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Specification)
2352 * **##AT+DR##**:  Get or set the Data Rate. (0-7 corresponding to DR_X)  
2353 * **##AT+DCS##**: Get or set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
2354 * ##**AT+PNM**##: Get or set the public network mode. (0: off, 1: on)
2355 * ##**AT+RX2FQ**##: Get or set the Rx2 window frequency
2356 * ##**AT+RX2DR**##: Get or set the Rx2 window data rate (0-7 corresponding to DR_X)
2357 * ##**AT+RX1DL**##: Get or set the delay between the end of the Tx and the Rx Window 1 in ms
2358 * ##**AT+RX2DL**##: Get or set the delay between the end of the Tx and the Rx Window 2 in ms
2359 * ##**AT+JN1DL**##: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
2360 * ##**AT+JN2DL**##: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
2361 * ##**AT+NJM**##: Get or set the Network Join Mode. (0: ABP, 1: OTAA)
2362 * ##**AT+NWKID**##: Get or set the Network ID
2363 * ##**AT+FCU**##: Get or set the Frame Counter Uplink (FCntUp)
2364 * ##**AT+FCD**##: Get or set the Frame Counter Downlink (FCntDown)
2365 * ##**AT+CLASS**##: Get or set the Device Class
2366 * ##**AT+JOIN**##: Join network
2367 * ##**AT+NJS**##: Get OTAA Join Status
2368 * ##**AT+SENDB**##: Send hexadecimal data along with the application port
2369 * ##**AT+SEND**##: Send text data along with the application port
2370 * ##**AT+RECVB**##: Print last received data in binary format (with hexadecimal values)
2371 * ##**AT+RECV**##: Print last received data in raw format
2372 * ##**AT+VER**##: Get current image version and Frequency Band
2373 * ##**AT+CFM**##: Get or Set the confirmation mode (0-1)
2374 * ##**AT+CFS**##: Get confirmation status of the last AT+SEND (0-1)
2375 * ##**AT+SNR**##: Get the SNR of the last received packet
2376 * ##**AT+RSSI**##: Get the RSSI of the last received packet
2377 * ##**AT+TDC**##: Get or set the application data transmission interval in ms
2378 * ##**AT+PORT**##: Get or set the application port
2379 * ##**AT+DISAT**##: Disable AT commands
2380 * ##**AT+PWORD**##: Set password, max 9 digits
2381 * ##**AT+CHS**##: Get or set the Frequency (Unit: Hz) for Single Channel Mode
2382 * ##**AT+CHE**##: Get or set eight channels mode, Only for US915, AU915, CN470
2383 * ##**AT+CFG**##: Print all settings
2384 )))
2385
2386
2387 == 4.2 Common AT Command Sequence ==
2388
2389 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
2390
2391 (((
2392
2393
2394 (((
2395 (% style="color:blue" %)**If the device has not yet joined the network:**
2396 )))
2397 )))
2398
2399 (((
2400 (% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT commands access**##
2401 )))
2402
2403 (((
2404 (% style="background-color:#dcdcdc" %)##**AT+FDR ~/~/Reset parameters to factory default, Reserve keys**##
2405 )))
2406
2407 (((
2408 (% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT commands access**##
2409 )))
2410
2411 (((
2412 (% style="background-color:#dcdcdc" %)##**AT+NJM=0 ~/~/Set to ABP mode**##
2413 )))
2414
2415 (((
2416 (% style="background-color:#dcdcdc" %)##**ATZ ~/~/Reset MCU**##
2417 )))
2418
2419
2420 (((
2421 (% style="color:blue" %)**If the device has already joined the network:**
2422 )))
2423
2424 (((
2425 (% style="background-color:#dcdcdc" %)##**AT+NJM=0**##
2426 )))
2427
2428 (((
2429 (% style="background-color:#dcdcdc" %)##**ATZ**##
2430 )))
2431
2432
2433 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
2434
2435 (((
2436
2437
2438 (((
2439 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter password to enable AT commands access
2440 )))
2441 )))
2442
2443 (((
2444 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset parameters to Factory Default, Reserve keys
2445 )))
2446
2447 (((
2448 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter password to enable AT commands access
2449 )))
2450
2451 (((
2452 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to CLASS C mode
2453 )))
2454
2455 (((
2456 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
2457 )))
2458
2459 (((
2460 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
2461 )))
2462
2463 (((
2464 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
2465 )))
2466
2467 (((
2468 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
2469 )))
2470
2471 (((
2472 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4 MHz
2473 )))
2474
2475 (((
2476 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2 frequency to 868.4 MHz (according to the result from the server)
2477 )))
2478
2479 (((
2480 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2 DR to match the downlink DR from the server. See below.
2481 )))
2482
2483 (((
2484 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address. The Device Address can be found in the application on the LoRaWAN NS.
2485 )))
2486
2487 (((
2488 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
2489
2490
2491 )))
2492
2493 (((
2494 (% style="color:red" %)**Note:**
2495 )))
2496
2497 (((
2498 **~1. Ensure that the device is set to ABP mode in the LoRaWAN Network Server.**
2499
2500 **2. Verify that the LG01/02 gateway RX frequency matches the AT+CHS setting exactly.**
2501
2502 **3. Make sure the SF/bandwidth settings in the LG01/LG02 match the settings of AT+DR. Refer to [[this link>>url:http://www.dragino.com/downloads/index.php?
2503 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
2504
2505 **4. The commands AT+RX2FQ and AT+RX2DR enable downlink functionality. To set the correct parameters, you can check the actual downlink parameters to be used as shown below. Here, RX2FQ should be set to 868400000 and RX2DR should be set to 5.**
2506 )))
2507
2508 (((
2509 [[image:1653359097980-169.png||height="188" width="729"]]
2510 )))
2511
2512
2513 === 4.2.3 Change to Class A ===
2514
2515
2516 (((
2517 (% style="color:blue" %)**If the sensor has JOINED:**
2518
2519 (% style="background-color:#dcdcdc" %)**AT+CLASS=A**
2520
2521 (% style="background-color:#dcdcdc" %)**ATZ**
2522 )))
2523
2524
2525 = 5. Case Study =
2526
2527 == 5.1 Counting how many objects pass through the flow line ==
2528
2529 See [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
2530
2531
2532 = 6. FAQ =
2533
2534 This section contains some frequently asked questions, which can help you resolve common issues and find solutions quickly.
2535
2536
2537 == 6.1 How to update the firmware? ==
2538
2539 Dragino frequently releases firmware updates for the LT-22222-L. Updating your LT-22222-L with the latest firmware version helps to:
2540
2541 * Support new features
2542 * Fix bugs
2543 * Change LoRaWAN frequency bands
2544
2545 You will need the following things before proceeding:
2546
2547 * 3.5mm programming cable (included with the LT-22222-L as an additional accessory)
2548 * USB to TTL adapter/converter
2549 * Download and install the [[STM32 Flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. (replaced by STM32CubeProgrammer)
2550 * Download the latest firmware image from [[LT-22222-L firmware image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. Check the file name of the firmware to find the correct region.
2551
2552 {{info}}
2553 As of this writing, the latest firmware version available for the LT-22222-L is v1.6.1.
2554 {{/info}}
2555
2556 Below is the hardware setup for uploading a firmware image to the LT-22222-L:
2557
2558 [[image:usb-ttl-audio-jack-connection.jpg]]
2559
2560
2561
2562 Start the STM32 Flash Loader and choose the correct COM port to update.
2563
2564 (((
2565 (((
2566 (% style="color:blue" %)**For LT-22222-L**(%%):
2567
2568 Hold down the **PRO** button, then briefly press the **RST** button. The **DO1** LED will change from OFF to ON. When the **DO1** LED is ON, it indicates that the device is in firmware download mode.
2569 )))
2570
2571
2572 )))
2573
2574 [[image:image-20220524103407-12.png]]
2575
2576
2577 [[image:image-20220524103429-13.png]]
2578
2579
2580 [[image:image-20220524104033-15.png]]
2581
2582
2583 (% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5 mm cable. The pin mapping is as follows:
2584
2585 [[image:1653360054704-518.png||height="186" width="745"]]
2586
2587
2588 (((
2589 (((
2590 == 6.2 How to change the LoRaWAN frequency band/region? ==
2591 )))
2592 )))
2593
2594 (((
2595 You can follow the introductions on [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2596 )))
2597
2598 (((
2599
2600
2601 == 6.3 How to setup LT-22222-L to work with a Single Channel Gateway, such as LG01/LG02? ==
2602 )))
2603
2604 (((
2605 (((
2606 In this case, you need to set the LT-22222-L to work in ABP mode and transmit on only one frequency.
2607 )))
2608 )))
2609
2610 (((
2611 (((
2612 We assume you have an LG01/LG02 working on the frequency 868400000. Below are the steps.
2613
2614
2615 )))
2616 )))
2617
2618 (((
2619 (% style="color:#0000ff" %)**Step 1**(%%): Log in to The Things Stack Sandbox account and create an ABP device in the application. To do this, use the manual registration option as explained in section 3.2.2.2, //Adding a Device Manually//. Select //Activation by Personalization (ABP)// under Activation Mode. Enter the DevEUI exactly as shown on the registration information sticker, then generate the Device Address, Application Session Key (AppSKey), and Network Session Key (NwkSKey).
2620
2621 [[image:lt-22222-l-abp.png||height="686" width="1000"]]
2622 )))
2623
2624 (((
2625
2626 )))
2627
2628 {{warning}}
2629 Ensure that the Device Address (DevAddr) and the two keys match between the LT-22222-L and The Things Stack. You can modify them either in The Things Stack or on the LT-22222-L to make them align. In The Things Stack, you can configure the NwkSKey and AppSKey on the settings page, but note that the Device Address is generated by The Things Stack.
2630 {{/warning}}
2631
2632
2633 (((
2634 (% style="color:blue" %)**Step 2**(%%)**:  **(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)Run AT commands to configure the LT-22222-L to operate in single-frequency and ABP mode. The AT commands are as follows:
2635
2636
2637 )))
2638
2639 (((
2640 (% style="background-color:#dcdcdc" %)**123456** (%%) : Enter the password to enable AT access.
2641
2642 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Reset parameters to factory default, keeping keys reserved.
2643
2644 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) : Set to ABP mode.
2645
2646 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) : Disable the Adaptive Data Rate (ADR).
2647
2648 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) : Set Data Rate (Use AT+DR=3 for the 915 MHz band).
2649
2650 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) : Set transmit interval to 60 seconds.
2651
2652 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4 MHz.
2653
2654 (% style="background-color:#dcdcdc" %)**AT+DADDR=xxxx**(%%) : Set the Device Address (DevAddr)
2655
2656 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:700; text-decoration:none; white-space:pre-wrap" %)**AT+APPKEY=xxxx**(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %): Get or set the Application Key (AppKey)
2657
2658 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+NWKSKEY=xxxx**: Get or set the Network Session Key (NwkSKey)
2659
2660 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+APPSKEY=xxxx**: Get or set the Application Session Key (AppSKey)
2661
2662 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) : Reset MCU.
2663 )))
2664
2665
2666 (((
2667 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)The following figure shows the screenshot of the command set above, issued using a serial tool:
2668 )))
2669
2670 [[image:1653360498588-932.png||height="485" width="726"]]
2671
2672
2673 == 6.4 How to change the uplink interval? ==
2674
2675 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2676
2677
2678 == 6.5 Can I see the counting event in the serial output? ==
2679
2680 (((
2681 You can run the AT command **AT+DEBUG** to view the counting event in the serial output. If the firmware is too old and doesn’t support AT+DEBUG, update to the latest firmware first.
2682
2683
2684 == 6.6 Can I use point-to-point communication with LT-22222-L? ==
2685
2686 Yes, you can. Please refer to the [[Point-to-Point Communication of LT-22222-L>>https://wiki.dragino.com/xwiki/bin/view/Main/%20Point%20to%20Point%20Communication%20of%20LT-22222-L/]] page. The firmware that supports point-to-point communication can be found [[here>>https://github.com/dragino/LT-22222-L/releases]].
2687
2688
2689 )))
2690
2691 (((
2692 == 6.7 Why does the relay output default to an open relay after the LT-22222-L is powered off? ==
2693
2694 * If the device is not properly shut down and is directly powered off.
2695 * It will default to a power-off state.
2696 * In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2697 * After a restart, the status before the power failure will be read from flash.
2698
2699 == 6.8 Can I setup LT-22222-L as a NC (Normally Closed) relay? ==
2700
2701 The LT-22222-L's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
2702
2703
2704 [[image:image-20221006170630-1.png||height="610" width="945"]]
2705
2706
2707 == 6.9 Can the LT-22222-L save the RO state? ==
2708
2709 To enable this feature, the firmware version must be 1.6.0 or higher.
2710
2711
2712 == 6.10 Why does the LT-22222-L always report 15.585V when measuring the AVI? ==
2713
2714 It is likely that the GND is not connected during the measurement, or that the wire connected to the GND is loose.
2715
2716
2717 = 7. Troubleshooting =
2718
2719 This section provides some known troubleshooting tips.
2720
2721
2722 )))
2723
2724 (((
2725 (((
2726 == 7.1 Downlink isn't working. How can I solve this? ==
2727 )))
2728 )))
2729
2730 (((
2731 Please refer to this link for debugging instructions: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2732 )))
2733
2734 (((
2735
2736
2737 == 7.2 Having trouble uploading an image? ==
2738 )))
2739
2740 (((
2741 Please refer to this link for troubleshooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2742 )))
2743
2744 (((
2745
2746
2747 == 7.3 Why can't I join TTN in the US915 /AU915 bands? ==
2748 )))
2749
2750 (((
2751 It might be related to the channel mapping. [[Please refer to this link for details.>>https://github.com/dragino/LT-22222-L/releases]]
2752 )))
2753
2754
2755 == 7.4 Why can the LT-22222-L perform uplink normally, but cannot receive downlink? ==
2756
2757 The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue.
2758 Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2759
2760
2761 = 8. Ordering information =
2762
2763 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2764
2765 (% style="color:#4f81bd" %)**XXX:**
2766
2767 * (% style="color:red" %)**EU433**(%%): LT with frequency bands EU433
2768 * (% style="color:red" %)**EU868**(%%): LT with frequency bands EU868
2769 * (% style="color:red" %)**KR920**(%%): LT with frequency bands KR920
2770 * (% style="color:red" %)**CN470**(%%): LT with frequency bands CN470
2771 * (% style="color:red" %)**AS923**(%%): LT with frequency bands AS923
2772 * (% style="color:red" %)**AU915**(%%): LT with frequency bands AU915
2773 * (% style="color:red" %)**US915**(%%): LT with frequency bands US915
2774 * (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2775 * (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2776
2777 = 9. Package information =
2778
2779 **Package includes**:
2780
2781 * 1 x LT-22222-L I/O Controller
2782 * 1 x LoRa antenna matched to the frequency of the LT-22222-L
2783 * 1 x bracket for DIN rail mounting
2784 * 1 x 3.5 mm programming cable
2785
2786 **Dimension and weight**:
2787
2788 * Device Size: 13.5 x 7 x 3 cm
2789 * Device Weight: 105 g
2790 * Package Size / pcs : 14.5 x 8 x 5 cm
2791 * Weight / pcs : 170 g
2792
2793 = 10. Support =
2794
2795 * (((
2796 Support is available Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule.
2797 )))
2798 * (((
2799 Please provide as much information as possible regarding your inquiry (e.g., product models, a detailed description of the problem, steps to replicate it, etc.) and send an email to [[support@dragino.cc>>mailto:support@dragino.cc]]
2800
2801
2802 )))
2803
2804 = 11. Reference​​​​​ =
2805
2806 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2807 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2808 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0