Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19
20 = 1. Introduction =
21
22 == 1.1 What is the LT-22222-L I/O Controller? ==
23
24 (((
25 (((
26 {{info}}
27 **This manual is also applicable to the LT-33222-L.**
28 {{/info}}
29
30 The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN end device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
31
32 The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
33 )))
34 )))
35
36 (((
37 With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
38 )))
39
40 (((
41 You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
42
43 * If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Stack Community Network), you can select a network and register the LT-22222-L I/O controller with it.
44 * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
45 * Setup your own private LoRaWAN network.
46 )))
47
48 (((
49
50
51 The network diagram below illustrates how the LT-22222-L communicates with a typical LoRaWAN network.
52 )))
53
54 (% class="wikigeneratedid" %)
55 [[image:lorawan-nw.jpg||height="354" width="900"]]
56
57 == 1.2 Specifications ==
58
59 (% style="color:#037691" %)**Hardware System:**
60
61 * STM32L072xxxx MCU
62 * SX1276/78 Wireless Chip 
63 * Power Consumption:
64 ** Idle: 4mA@12V
65 ** 20dB Transmit: 34mA@12V
66 * Operating Temperature: -40 ~~ 85 Degrees, No Dew
67
68 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
69
70 * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50V, or 220V with optional external resistor)
71 * 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
72 * 2 x Relay Output (5A@250VAC / 30VDC)
73 * 2 x 0~~20mA Analog Input (res:0.01mA)
74 * 2 x 0~~30V Analog Input (res:0.01V)
75 * Power Input 7~~ 24V DC. 
76
77 (% style="color:#037691" %)**LoRa Spec:**
78
79 * Frequency Range:
80 ** Band 1 (HF): 862 ~~ 1020 MHz
81 ** Band 2 (LF): 410 ~~ 528 MHz
82 * 168 dB maximum link budget.
83 * +20 dBm - 100 mW constant RF output vs.
84 * +14 dBm high-efficiency PA.
85 * Programmable bit rate up to 300 kbps.
86 * High sensitivity: down to -148 dBm.
87 * Bullet-proof front end: IIP3 = -12.5 dBm.
88 * Excellent blocking immunity.
89 * Low RX current of 10.3 mA, 200 nA register retention.
90 * Fully integrated synthesizer with a resolution of 61 Hz.
91 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
92 * Built-in bit synchronizer for clock recovery.
93 * Preamble detection.
94 * 127 dB Dynamic Range RSSI.
95 * Automatic RF Sense and CAD with ultra-fast AFC.
96 * Packet engine up to 256 bytes with CRC.
97
98 == 1.3 Features ==
99
100 * LoRaWAN Class A & Class C modes
101 * Optional Customized LoRa Protocol
102 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
103 * AT Commands to change parameters
104 * Remotely configure parameters via LoRaWAN Downlink
105 * Firmware upgradable via program port
106 * Counting
107
108 == 1.4 Applications ==
109
110 * Smart buildings & home automation
111 * Logistics and supply chain management
112 * Smart metering
113 * Smart agriculture
114 * Smart cities
115 * Smart factory
116
117 == 1.5 Hardware Variants ==
118
119 (% style="width:524px" %)
120 |(% style="width:94px" %)**Model**|(% style="width:98px" %)**Photo**|(% style="width:329px" %)**Description**
121 |(% style="width:94px" %)**LT33222-L**|(% style="width:98px" %)(((
122
123 )))|(% style="width:329px" %)(((
124 * 2 x Digital Input (Bi-direction)
125 * 2 x Digital Output
126 * 2 x Relay Output (5A@250VAC / 30VDC)
127 * 2 x 0~~20mA Analog Input (res:0.01mA)
128 * 2 x 0~~30V Analog Input (res:0.01v)
129 * 1 x Counting Port
130 )))
131
132 = 2. Assembling the device =
133
134 == 2.1 Connecting the antenna ==
135
136 Connect the LoRa antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper screw terminal block. Secure the antenna by tightening it clockwise.
137
138 {{warning}}
139 **Warning! Do not power on the device without connecting the antenna.**
140 {{/warning}}
141
142 == 2.2 Terminals ==
143
144 The  LT-22222-L has two screw terminal blocks. The upper screw treminal block has 6 screw terminals and the lower screw terminal block has 10 screw terminals.
145
146 **Upper screw terminal block (from left to right):**
147
148 (% style="width:634px" %)
149 |=(% style="width: 295px;" %)Screw Terminal|=(% style="width: 338px;" %)Function
150 |(% style="width:295px" %)GND|(% style="width:338px" %)Ground
151 |(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
152 |(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
153 |(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
154 |(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
155 |(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
156
157 **Lower screw terminal block (from left to right):**
158
159 (% style="width:633px" %)
160 |=(% style="width: 296px;" %)Screw Terminal|=(% style="width: 334px;" %)Function
161 |(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
162 |(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
163 |(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
164 |(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
165 |(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
166 |(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
167 |(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
168 |(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
169 |(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
170 |(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
171
172 == 2.3 Connecting LT-22222-L to a Power Source ==
173
174 The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect your power supply’s **positive wire** to the **VIN** and the **negative wire** to the **GND** screw terminals. The power indicator **(PWR) LED** will turn on when the device is properly powered.
175
176 {{warning}}
177 **We recommend that you power on the LT-22222-L after configuring its registration information with a LoRaWAN network server. Otherwise, the device will continuously send join-request messages to attempt to join a LoRaWAN network but will fail.**
178 {{/warning}}
179
180
181 [[image:1653297104069-180.png]]
182
183
184 = 3. Registering LT-22222-L with a LoRaWAN Network Server =
185
186 The LT-22222-L supports both OTAA (Over-the-Air Activation) and ABP (Activation By Personalization) methods to activate with a LoRaWAN Network Server. However, OTAA is the most secure method for activating a device with a LoRaWAN Network Server. OTAA regenerates session keys upon initial registration and regenerates new session keys after any subsequent reboots. By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode.
187
188
189 === 3.2.1 Prerequisites ===
190
191 The LT-22222-L comes with device registration information such as DevEUI, AppEUI, and AppKey that allows you to register it with a LoRaWAN network. These registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
192
193 [[image:image-20230425173427-2.png||height="246" width="530"]]
194
195 {{info}}
196 In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
197 {{/info}}
198
199 The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
200
201 === 3.2.2 The Things Stack ===
202
203 This section guides you through how to register your LT-22222-L with The Things Stack Sandbox.
204
205 {{info}}
206 The Things Stack Sandbox was formally called The Things Stack Community Edition.
207 {{/info}}
208
209
210 The network diagram below illustrates the connection between the LT-22222-L and The Things Stack, as well as how the data can be integrated with the ThingsEye IoT platform.
211
212
213 [[image:dragino-lorawan-nw-lt-22222-n.jpg]]
214
215 {{info}}
216 You can use a LoRaWAN gateway, such as the [[Dragino LPS8N>>https://www.dragino.com/products/lora-lorawan-gateway/item/200-lps8n.html]], to expand or create LoRaWAN coverage in your area.
217 {{/info}}
218
219
220 ==== 3.2.2.1 Setting up ====
221
222 * Sign up for a free account with [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] if you do not have one yet.
223 * Log in to your The Things Stack Sandbox account.
224 * Create an **application** with The Things Stack if you do not have one yet (E.g., dragino-docs).
225 * Go to your application's page and click on the **End devices** in the left menu.
226 * On the End devices page, click on **+ Register end device**. Two registration options are available:
227
228 ==== 3.2.2.2 Using the LoRaWAN Device Repository ====
229
230 * On the **Register end device** page:
231 ** Select the option **Select the end device in the LoRaWAN Device Repository **under **Input method**.
232 ** Select the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)** from the respective dropdown lists.
233 *** **End device brand**: Dragino Technology Co., Limited
234 *** **Model**: LT22222-L I/O Controller
235 *** **Hardware ver**: Unknown
236 *** **Firmware ver**: 1.6.0
237 *** **Profile (Region)**: Select the region that matches your device.
238 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
239
240 [[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
241
242
243 * Register end device page continued...
244 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'.
245 ** In the **DevEUI** field, enter the **DevEUI**.
246 ** In the **AppKey** field, enter the **AppKey.**
247 ** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
248 ** Under **After registration**, select the **View registered end device** option.
249
250 [[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
251
252
253 ==== 3.2.2.3 Adding device manually ====
254
255 * On the **Register end device** page:
256 ** Select the option **Enter end device specifies manually** under **Input method**.
257 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
258 ** Select the **LoRaWAN version** as **LoRaWAN Specification 1.0.3**
259 ** Select the **Regional Parameters version** as** RP001 Regional Parameters 1.0.3 revision A**
260 ** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the hidden section.
261 ** Select the option **Over the air activation (OTAA)** under the **Activation mode.**
262 ** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities** dropdown list.
263
264 [[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
265
266
267 * Register end device page continued...
268 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message '//**This end device can be registered on the network**//'
269 ** In the **DevEUI** field, enter the **DevEUI**.
270 ** In the **AppKey** field, enter the **AppKey**.
271 ** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
272 ** Under **After registration**, select the **View registered end device** option.
273 ** Click the **Register end device** button.
274
275 [[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
276
277
278 You will be navigated to the **Device overview** page.
279
280
281 [[image:lt-22222-device-overview.png||height="625" width="1000"]]
282
283
284 ==== 3.2.2.4 Joining ====
285
286 On the Device's page, click on **Live data** tab. The Live data panel for your device will display.
287
288 Now power on your LT-22222-L. The **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** The Things Stack network server. The **TX LED** will be on for **5 seconds** after joining the network. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server.
289
290
291 [[image:lt-22222-join-network.png||height="625" width="1000"]]
292
293
294 ==== 3.2.2.5 Uplinks ====
295
296
297 After successfully joining, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**). When the LT-22222-L sends an uplink message to the server, the **TX LED** turns on for **1 second**. By default, you will receive an uplink data message from the device every 10 minutes.
298
299 Click on one of a **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the decode_payload {} JSON object.
300
301 [[image:lt-22222-ul-payload-decoded.png]]
302
303
304 If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **Applications > your application > End devices** > **your end device** > **Payload formatters** > **Uplink**. Then  select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
305
306 {{info}}
307 The Things Stack provides two levels of payload formatters: application level and device level. The device-level payload formatters **override **the application-level payload formatters.
308 {{/info}}
309
310 [[image:lt-22222-ul-payload-fmt.png||height="686" width="1000"]]
311
312
313 ==== 3.2.2.6 Downlinks ====
314
315 When the LT-22222-L receives a downlink message from the server, the **RX LED** turns on for **1 second**.
316
317
318 == 3.3 Working Modes and Uplink Payload formats ==
319
320
321 The LT-22222-L has 5 **working modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
322
323 * (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
324
325 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
326
327 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
328
329 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
330
331 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
332
333 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
334
335 The uplink messages are sent over LoRaWAN FPort=2. By default, an uplink message is sent every 10 minutes.
336
337 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
338
339 (((
340 This is the default mode.
341
342 The uplink payload is 11 bytes long.
343
344 (% style="color:red" %)**Note:The maximum count depends on the bytes number of bytes.
345 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
346 It starts counting again when it reaches the maximum value.**(% style="display:none" wfd-invisible="true" %)
347
348 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
349 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
350 |Value|(((
351 AVI1 voltage
352 )))|(((
353 AVI2 voltage
354 )))|(((
355 ACI1 Current
356 )))|(((
357 ACI2 Current
358 )))|**DIDORO***|(((
359 Reserve
360 )))|MOD
361 )))
362
363 (((
364 (% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
365
366 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
367 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
368 |RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
369 )))
370
371 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
372 * DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
373 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
374
375 (% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
376
377 For example, if the payload is: [[image:image-20220523175847-2.png]]
378
379
380 **The interface values can be calculated as follows:  **
381
382 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
383
384 AVI2 channel voltage is 0x04AC/1000=1.196V
385
386 ACI1 channel current is 0x1310/1000=4.880mA
387
388 ACI2 channel current is 0x1300/1000=4.864mA
389
390 The last byte 0xAA= **10101010**(b) means,
391
392 * [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
393 * [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
394 * **[1] DI3 - not used for LT-22222-L.**
395 * [0] DI2 channel input is LOW, and the DI2 LED is OFF.
396 * [1] DI1 channel input state:
397 ** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
398 ** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
399 ** DI1 LED is ON in both cases.
400 * **[0] DO3 - not used for LT-22222-L.**
401 * [1] DO2 channel output is LOW, and the DO2 LED is ON.
402 * [0] DO1 channel output state:
403 ** DO1 is FLOATING when there is no load between DO1 and V+.
404 ** DO1 is HIGH and there is a load between DO1 and V+.
405 ** DO1 LED is OFF in both cases.
406
407 Reserve = 0
408
409 MOD = 1
410
411 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
412
413
414 (((
415 **For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
416 )))
417
418 (((
419 The uplink payload is 11 bytes long.
420
421 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
422 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
423 It starts counting again when it reaches the maximum value.**
424
425 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
426 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
427 |Value|COUNT1|COUNT2 |DIDORO*|(((
428 Reserve
429 )))|MOD
430 )))
431
432 (((
433 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
434
435 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
436 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
437 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
438
439 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
440 )))
441
442 * FIRST: Indicates that this is the first packet after joining the network.
443 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
444
445 (((
446 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
447
448
449 )))
450
451 (((
452 **To activate this mode, run the following AT commands:**
453 )))
454
455 (((
456 (% class="box infomessage" %)
457 (((
458 **AT+MOD=2**
459
460 **ATZ**
461 )))
462 )))
463
464 (((
465
466
467 (% style="color:#4f81bd" %)**AT Commands for counting:**
468 )))
469
470 (((
471 **For LT22222-L:**
472
473 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
474
475 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
476
477 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
478
479 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
480
481 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
482
483 (% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
484 )))
485
486
487 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
488
489 (% style="color:red" %)**Note: The maximum count depends on the bytes it is.
490 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
491 It starts counting again when it reaches the maximum value.**
492
493 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
494
495 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
496 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
497 |Value|COUNT1|(((
498 ACI1 Current
499 )))|(((
500 ACI2 Current
501 )))|DIDORO*|Reserve|MOD
502
503 (((
504 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
505
506 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
507 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
508 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
509 )))
510
511 * RO is for the relay. ROx=1: closed, ROx=0 always open.
512 * FIRST: Indicates that this is the first packet after joining the network.
513 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
514
515 (((
516 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
517 )))
518
519
520 (((
521 **To activate this mode, run the following AT commands:**
522 )))
523
524 (((
525 (% class="box infomessage" %)
526 (((
527 **AT+MOD=3**
528
529 **ATZ**
530 )))
531 )))
532
533 (((
534 AT Commands for counting:
535
536 The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
537 )))
538
539
540 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
541
542 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
543 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
544 It starts counting again when it reaches the maximum value.**
545
546
547 (((
548 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
549 )))
550
551 (((
552 The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
553
554 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
555 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
556 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
557 Reserve
558 )))|MOD
559 )))
560
561 (((
562 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
563
564 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
565 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
566 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
567 )))
568
569 * RO is for the relay. ROx=1: closed, ROx=0 always open.
570 * FIRST: Indicates that this is the first packet after joining the network.
571 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
572
573 (((
574 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
575
576
577 )))
578
579 (((
580 **To activate this mode, run the following AT commands:**
581 )))
582
583 (((
584 (% class="box infomessage" %)
585 (((
586 **AT+MOD=4**
587
588 **ATZ**
589 )))
590 )))
591
592 (((
593 AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
594 )))
595
596 (((
597 **In addition to that, below are the commands for AVI1 Counting:**
598
599 (% style="color:blue" %)**AT+SETCNT=3,60 **(%%)**(Sets AVI1 Count to 60)**
600
601 (% style="color:blue" %)**AT+VOLMAX=20000 **(%%)**(If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
602
603 (% style="color:blue" %)**AT+VOLMAX=20000,0 **(%%)**(If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
604
605 (% style="color:blue" %)**AT+VOLMAX=20000,1 **(%%)**(If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
606 )))
607
608
609 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
610
611 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
612 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
613 It starts counting again when it reaches the maximum value.**
614
615
616 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
617
618 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
619 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
620 |Value|(((
621 AVI1 voltage
622 )))|(((
623 AVI2 voltage
624 )))|(((
625 ACI1 Current
626 )))|COUNT1|DIDORO*|(((
627 Reserve
628 )))|MOD
629
630 (((
631 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
632
633 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
634 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
635 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
636 )))
637
638 * RO is for the relay. ROx=1: closed, ROx=0 always open.
639 * FIRST: Indicates that this is the first packet after joining the network.
640 * (((
641 DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
642 )))
643
644 (((
645 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
646 )))
647
648 (((
649 **To activate this mode, run the following AT commands:**
650 )))
651
652 (((
653 (% class="box infomessage" %)
654 (((
655 **AT+MOD=5**
656
657 **ATZ**
658 )))
659 )))
660
661 (((
662 Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
663 )))
664
665
666 === 3.3.6 AT+ADDMOD~=6 (Trigger Mode, Optional) ===
667
668
669 (% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate __alongside__ with other modes.**
670
671 For example, if you configure the following commands:
672
673 * **AT+MOD=1 ** **~-~->**  Sets the default working mode
674 * **AT+ADDMOD6=1**   **~-~->**  Enables trigger mode
675
676 The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. It will send uplink packets in two cases:
677
678 1. Periodic uplink: Based on TDC time. The payload is the same as in normal mode (MOD=1 as set above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
679 1. (((
680 Trigger uplink: sent when a trigger condition is met. In this case, LT will send two packets
681
682 * The first uplink uses the payload specified in trigger mode (MOD=6).
683 * The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**confirmed uplinks.**
684 )))
685
686 (% style="color:#037691" %)**AT Commands to set Trigger Conditions**:
687
688 (% style="color:#4f81bd" %)**Trigger based on voltage**:
689
690 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
691
692
693 **Example:**
694
695 AT+AVLIM=3000,6000,0,2000 (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
696
697 AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
698
699
700 (% style="color:#4f81bd" %)**Trigger based on current**:
701
702 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
703
704
705 **Example:**
706
707 AT+ACLIM=10000,15000,0,0 (triggers an uplink if AC1 current is lower than 10mA or higher than 15mA)
708
709
710 (% style="color:#4f81bd" %)**Trigger based on DI status**:
711
712 DI status triggers Flag.
713
714 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
715
716
717 **Example:**
718
719 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
720
721
722 (% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
723
724 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
725
726 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
727
728 AA: Type Code for this downlink Command:
729
730 xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
731
732 yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
733
734 yy2 yy2: AC1 or AV1 HIGH limit.
735
736 yy3 yy3: AC2 or AV2 LOW limit.
737
738 Yy4 yy4: AC2 or AV2 HIGH limit.
739
740
741 **Example 1**: AA 00 13 88 00 00 00 00 00 00
742
743 Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
744
745
746 **Example 2**: AA 02 01 00
747
748 Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
749
750
751 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
752
753 MOD6 Payload: total of 11 bytes
754
755 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
756 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
757 |Value|(((
758 TRI_A FLAG
759 )))|(((
760 TRI_A Status
761 )))|(((
762 TRI_DI FLAG+STA
763 )))|Reserve|Enable/Disable MOD6|(((
764 MOD(6)
765 )))
766
767 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
768
769 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
770 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
771 |(((
772 AV1_LOW
773 )))|(((
774 AV1_HIGH
775 )))|(((
776 AV2_LOW
777 )))|(((
778 AV2_HIGH
779 )))|(((
780 AC1_LOW
781 )))|(((
782 AC1_HIGH
783 )))|(((
784 AC2_LOW
785 )))|(((
786 AC2_HIGH
787 )))
788
789 * Each bit shows if the corresponding trigger has been configured.
790
791 **Example:**
792
793 10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW
794
795
796 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
797
798 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
799 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
800 |(((
801 AV1_LOW
802 )))|(((
803 AV1_HIGH
804 )))|(((
805 AV2_LOW
806 )))|(((
807 AV2_HIGH
808 )))|(((
809 AC1_LOW
810 )))|(((
811 AC1_HIGH
812 )))|(((
813 AC2_LOW
814 )))|(((
815 AC2_HIGH
816 )))
817
818 * Each bit shows which status has been triggered on this uplink.
819
820 **Example:**
821
822 10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low.
823
824
825 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
826
827 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:674px" %)
828 |(% style="width:64px" %)**bit 7**|(% style="width:68px" %)**bit 6**|(% style="width:63px" %)**bit 5**|(% style="width:66px" %)**bit 4**|(% style="width:109px" %)**bit 3**|(% style="width:93px" %)**bit 2**|(% style="width:109px" %)**bit 1**|(% style="width:99px" %)**bit 0**
829 |(% style="width:64px" %)N/A|(% style="width:68px" %)N/A|(% style="width:63px" %)N/A|(% style="width:66px" %)N/A|(% style="width:109px" %)DI2_STATUS|(% style="width:93px" %)DI2_FLAG|(% style="width:109px" %)DI1_STATUS|(% style="width:99px" %)DI1_FLAG
830
831 * Each bits shows which status has been triggered on this uplink.
832
833 **Example:**
834
835 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
836
837 00000101: Means both DI1 and DI2 trigger are enabled.
838
839
840 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
841
842 Downlink command to poll MOD6 status:
843
844 **AB 06**
845
846 When device got this command, it will send the MOD6 payload.
847
848
849 === 3.3.7 Payload Decoder ===
850
851 (((
852
853
854 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
855 )))
856
857
858 == 3.4 ​Configure LT-22222-L via AT Commands or Downlinks ==
859
860 (((
861 You can configure LT-22222-L I/O Controller via AT Commands or LoRaWAN Downlinks.
862 )))
863
864 (((
865 (((
866 There are two tytes of commands:
867 )))
868 )))
869
870 * (% style="color:blue" %)**Common commands**(%%):
871
872 * (% style="color:blue" %)**Sensor-related commands**(%%):
873
874 === 3.4.1 Common commands ===
875
876 (((
877 These are available for each sensors and include actions such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]s.
878 )))
879
880 === 3.4.2 Sensor-related commands ===
881
882 These commands are specially designed for the LT-22222-L. Commands can be sent to the device using options such as an AT command or a LoRaWAN downlink payload.
883
884
885 ==== 3.4.2.1 Set Transmit/Uplink Interval ====
886
887 Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
888
889 (% style="color:#037691" %)**AT command**
890
891 (% border="2" style="width:500px" %)
892 |**Command**|AT+TDC=<time>
893 |**Response**|
894 |**Parameters**|**time** : uplink interval is in **milliseconds**
895 |**Example**|(((
896 AT+TDC=30000
897
898 Sets the uplink interval to **30 seconds** (30000 milliseconds)
899 )))
900
901 (% style="color:#037691" %)**Downlink payload**
902
903 (% border="2" style="width:500px" %)
904 |**Payload**|(((
905 <prefix><time>
906 )))
907 |**Parameters**|(((
908 **prefix** : 0x01
909
910 **time** : uplink interval is in **seconds**, represented by **3  bytes** in **hexadecimal**.
911 )))
912 |**Example**|(((
913 01 **00 00 1E**
914
915 Sets the uplink interval to **30 seconds**
916
917 Conversion: 30 (dec) = 00 00 1E (hex)
918
919 See [[RapidTables>>https://www.rapidtables.com/convert/number/decimal-to-hex.html?x=30]]
920
921 [[image:Screenshot 2024-11-23 at 18.27.11.png]]
922 )))
923
924 ==== 3.4.2.2 Set the Working Mode (AT+MOD) ====
925
926 Sets the working mode.
927
928 (% style="color:#037691" %)**AT command**
929
930 (% border="2" style="width:500px" %)
931 |(% style="width:97px" %)**Command**|(% style="width:413px" %)AT+MODE=<working_mode>
932 |(% style="width:97px" %)**Response**|(% style="width:413px" %)
933 |(% style="width:97px" %)**Parameters**|(% style="width:413px" %)(((
934 **working_mode** :
935
936 1 = (Default mode/factory set):  2ACI + 2AVI + DI + DO + RO
937
938 2 = Double DI Counting + DO + RO
939
940 3 = Single DI Counting + 2 x ACI + DO + RO
941
942 4 = Single DI Counting + 1 x Voltage Counting + DO + RO
943
944 5 = Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
945
946 6 = Trigger Mode, Optional, used together with MOD1 ~~ MOD5
947 )))
948 |(% style="width:97px" %)**Example**|(% style="width:413px" %)(((
949 AT+MOD=2
950
951 Sets the device to working mode 2 (Double DI Counting + DO + RO)
952 )))
953
954 (% class="wikigeneratedid" %)
955 (% style="color:#037691" %)**Downlink payload**
956
957 (% border="2" style="width:500px" %)
958 |(% style="width:98px" %)**Payload**|(% style="width:400px" %)<prefix><working_mode>
959 |(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
960 **prefix** : 0x0A
961
962 **working_mode** : Working mode, represented by 1 byte in hexadecimal.
963 )))
964 |(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
965 0A **02**
966
967 Sets the device to working mode 2 (Double DI Counting + DO + RO)
968 )))
969
970 ==== 3.4.2.3 Poll an uplink ====
971
972 Requests an uplink from LT-22222-L. The content of the uplink payload varies based on the device's current working mode.
973
974 (% style="color:#037691" %)**AT command**
975
976 There is no AT Command available for this feature.
977
978 (% style="color:#037691" %)**Downlink payload**
979
980 (% border="2" style="width:500px" %)
981 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix>FF
982 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)**prefix** : 0x08
983 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
984 08 **FF**
985
986 Requests an uplink from LT-22222-L.
987 )))
988
989 ==== 3.4.2.4 Enable/Disable Trigger Mode ====
990
991 Enable or disable the trigger mode for the current working mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
992
993 (% style="color:#037691" %)**AT Command**
994
995 (% border="2" style="width:500px" %)
996 |(% style="width:95px" %)**Command**|(% style="width:403px" %)AT+ADDMOD6=<enable/disable trigger_mode>
997 |(% style="width:95px" %)**Response**|(% style="width:403px" %)
998 |(% style="width:95px" %)**Parameters**|(% style="width:403px" %)(((
999 **enable/disable trigger_mode** :
1000
1001 1 = enable trigger mode
1002
1003 0 = disable trigger mode
1004 )))
1005 |(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1006 AT+ADDMOD6=1
1007
1008 Enable trigger mode for the current working mode
1009 )))
1010
1011 (% style="color:#037691" %)**Downlink payload**
1012
1013 (% border="2" style="width:500px" %)
1014 |(% style="width:97px" %)**Payload**|(% style="width:401px" %)<prefix><enable/disable trigger_mode>
1015 |(% style="width:97px" %)**Parameters**|(% style="width:401px" %)(((
1016 **prefix** : 0x0A 06 (two bytes in hexadecimal)
1017
1018 **enable/disable trigger_mode** : enable (1) or disable (0), represented by 1 byte in hexadecimal.
1019 )))
1020 |(% style="width:97px" %)**Example**|(% style="width:401px" %)(((
1021 0A 06 **01**
1022
1023 Enable trigger mode for the current working mode
1024 )))
1025
1026 ==== 3.4.2.5 Poll trigger settings ====
1027
1028 Polls the trigger settings.
1029
1030 (% style="color:#037691" %)**AT Command:**
1031
1032 There is no AT Command available for this feature.
1033
1034 (% style="color:#037691" %)**Downlink Payload**
1035
1036 (% border="2" style="width:500px" %)
1037 |(% style="width:95px" %)**Payload**|(% style="width:403px" %)<prefix>
1038 |(% style="width:95px" %)**Parameters**|(% style="width:403px" %)**prefix **: AB 06 (two bytes in hexadecimal)
1039 |(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1040 AB 06
1041
1042 Uplinks the trigger settings.
1043 )))
1044
1045 ==== 3.4.2.6 Enable/Disable DI1/DI2/DI3 as a trigger ====
1046
1047 Enable or disable DI1/DI2/DI3 as a trigger.
1048
1049 (% style="color:#037691" %)**AT Command**
1050
1051 (% border="2" style="width:500px" %)
1052 |(% style="width:98px" %)**Command**|(% style="width:400px" %)AT+DTRI=<DI1_trigger>,<DI2_trigger>
1053 |(% style="width:98px" %)**Response**|(% style="width:400px" %)
1054 |(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
1055 **DI1_trigger:**
1056
1057 1 = enable DI1 trigger
1058
1059 0 = disable DI1 trigger
1060
1061 **DI2 _trigger**
1062
1063 1 = enable DI2 trigger
1064
1065 0 = disable DI2 trigger
1066 )))
1067 |(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
1068 AT+DTRI=1,0
1069
1070 Enable DI1 trigger, disable DI2 trigger
1071 )))
1072
1073 (% class="wikigeneratedid" %)
1074 (% style="color:#037691" %)**Downlink Payload**
1075
1076 (% border="2" style="width:500px" %)
1077 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><DI1_trigger><DI2_trigger>
1078 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1079 **prefix :** AA 02 (two bytes in hexadecimal)
1080
1081 **DI1_trigger:**
1082
1083 1 = enable DI1 trigger, represented by 1 byte in hexadecimal.
1084
1085 0 = disable DI1 trigger, represented by 1 byte in hexadecimal.
1086
1087 **DI2 _trigger**
1088
1089 1 = enable DI2 trigger, represented by 1 byte in hexadecimal.
1090
1091 0 = disable DI2 trigger, represented by 1 byte in hexadecimal.
1092 )))
1093 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1094 AA 02 **01 00**
1095
1096 Enable DI1 trigger, disable DI2 trigger
1097 )))
1098
1099 ==== 3.4.2.7 Trigger1 – Set DI or DI3 as a trigger ====
1100
1101 Sets DI1 or DI3 (for LT-33222-L) as a trigger.
1102
1103
1104 (% style="color:#037691" %)**AT Command**
1105
1106 (% border="2" style="width:500px" %)
1107 |(% style="width:101px" %)**Command**|(% style="width:397px" %)AT+TRIG1=<interrupt_mode>,<minimum_signal_duration>
1108 |(% style="width:101px" %)**Response**|(% style="width:397px" %)
1109 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1110 **interrupt_mode** :  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1111
1112 **minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1113 )))
1114 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1115 AT+TRIG1=1,100
1116
1117 Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1118 )))
1119
1120 (% class="wikigeneratedid" %)
1121 (% style="color:#037691" %)**Downlink Payload**
1122
1123 (% border="2" style="width:500px" %)
1124 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><interrupt_mode><minimum_signal_duration>
1125 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1126 **prefix** : 09 01 (hexadecimal)
1127
1128 **interrupt_mode** : 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1129
1130 **minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal.
1131 )))
1132 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1133 09 01 **01 00 64**
1134
1135 Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1136 )))
1137
1138 ==== 3.4.2.8 Trigger2 – Set DI2 as a trigger ====
1139
1140 Sets DI2 as a trigger.
1141
1142
1143 (% style="color:#037691" %)**AT Command**
1144
1145 (% border="2" style="width:500px" %)
1146 |(% style="width:94px" %)**Command**|(% style="width:404px" %)AT+TRIG2=<interrupt_mode>,<minimum_signal_duration>
1147 |(% style="width:94px" %)**Response**|(% style="width:404px" %)
1148 |(% style="width:94px" %)**Parameters**|(% style="width:404px" %)(((
1149 **interrupt_mode **:  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1150
1151 **minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1152 )))
1153 |(% style="width:94px" %)**Example**|(% style="width:404px" %)(((
1154 AT+TRIG2=0,100
1155
1156 Set the DI1 port to trigger on a falling edge; the valid signal duration is 100 ms.
1157 )))
1158
1159 (% style="color:#037691" %)**Downlink Payload**
1160
1161 (% border="2" style="width:500px" %)
1162 |(% style="width:96px" %)**Payload**|(% style="width:402px" %)<prefix><interrupt_mode><minimum_signal_duration>
1163 |(% style="width:96px" %)**Parameters**|(% style="width:402px" %)(((
1164 **prefix** : 09 02 (hexadecimal)
1165
1166 **interrupt_mode **: 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1167
1168 **minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal
1169 )))
1170 |(% style="width:96px" %)**Example**|(% style="width:402px" %)09 02 **00 00 64**
1171
1172 ==== 3.4.2.9 Trigger – Set AC (current) as a trigger ====
1173
1174 Sets the current trigger based on the AC port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1175
1176 (% style="color:#037691" %)**AT Command**
1177
1178 (% border="2" style="width:500px" %)
1179 |(% style="width:104px" %)**Command**|(% style="width:394px" %)(((
1180 AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1181 )))
1182 |(% style="width:104px" %)**Response**|(% style="width:394px" %)
1183 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1184 **AC1_LIMIT_LOW** : lower limit of the current to be checked
1185
1186 **AC1_LIMIT_HIGH **: higher limit of the current to be checked
1187
1188 **AC2_LIMIT_HIGH **: lower limit of the current to be checked
1189
1190 **AC2_LIMIT_LOW** : higher limit of the current to be checked
1191 )))
1192 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1193 AT+ACLIM=10000,15000,0,0
1194
1195 Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA
1196 )))
1197 |(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1198
1199 (% style="color:#037691" %)**Downlink Payload**
1200
1201 (% border="2" style="width:500px" %)
1202 |(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1203 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1204 **prefix **: AA 01 (hexadecimal)
1205
1206 **AC1_LIMIT_LOW** : lower limit of the current to be checked, two bytes in hexadecimal
1207
1208 **AC1_LIMIT_HIGH **: higher limit of the current to be checked, two bytes in hexadecimal
1209
1210 **AC2_LIMIT_HIGH **: lower limit of the current to be checked, two bytes in hexadecimal
1211
1212 **AC2_LIMIT_LOW** : higher limit of the current to be checked, two bytes in hexadecimal
1213 )))
1214 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1215 AA 01 **27** **10 3A** **98** 00 00 00 00
1216
1217 Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA. Set all values to zero for AC2 limits because we are only checking AC1 limits.
1218 )))
1219 |(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1220
1221 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
1222
1223 Sets the current trigger based on the AV port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1224
1225 (% style="color:#037691" %)**AT Command**
1226
1227 (% border="2" style="width:500px" %)
1228 |(% style="width:104px" %)**Command**|(% style="width:387px" %)AT+AVLIM= AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1229 |(% style="width:104px" %)**Response**|(% style="width:387px" %)
1230 |(% style="width:104px" %)**Parameters**|(% style="width:387px" %)(((
1231 **AC1_LIMIT_LOW** : lower limit of the current to be checked
1232
1233 **AC1_LIMIT_HIGH **: higher limit of the current to be checked
1234
1235 **AC2_LIMIT_HIGH **: lower limit of the current to be checked
1236
1237 **AC2_LIMIT_LOW** : higher limit of the current to be checked
1238 )))
1239 |(% style="width:104px" %)**Example**|(% style="width:387px" %)(((
1240 AT+AVLIM=3000,6000,0,2000
1241
1242 Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V
1243 )))
1244 |(% style="width:104px" %)**Note**|(% style="width:387px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1245
1246 (% style="color:#037691" %)**Downlink Payload**
1247
1248 (% border="2" style="width:500px" %)
1249 |(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1250 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1251 **prefix **: AA 00 (hexadecimal)
1252
1253 **AV1_LIMIT_LOW** : lower limit of the voltage to be checked, two bytes in hexadecimal
1254
1255 **AV1_LIMIT_HIGH **: higher limit of the voltage to be checked, two bytes in hexadecimal
1256
1257 **AV2_LIMIT_HIGH **: lower limit of the voltage to be checked, two bytes in hexadecimal
1258
1259 **AV2_LIMIT_LOW** : higher limit of the voltage to be checked, two bytes in hexadecimal
1260 )))
1261 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1262 AA 00 **0B B8 17 70 00 00 07 D0**
1263
1264 Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V.
1265 )))
1266 |(% style="width:104px" %)**Note**|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1267
1268 ==== 3.4.2.11 Trigger – Set minimum interval ====
1269
1270 Sets the AV and AC trigger minimum interval. The device won't respond to a second trigger within this set time after the first trigger.
1271
1272 (% style="color:#037691" %)**AT Command**
1273
1274 (% border="2" style="width:500px" %)
1275 |(% style="width:113px" %)**Command**|(% style="width:385px" %)AT+ATDC=<time>
1276 |(% style="width:113px" %)**Response**|(% style="width:385px" %)
1277 |(% style="width:113px" %)**Parameters**|(% style="width:385px" %)(((
1278 **time** : in minutes
1279 )))
1280 |(% style="width:113px" %)**Example**|(% style="width:385px" %)(((
1281 AT+ATDC=5
1282
1283 The device won't respond to the second trigger within 5 minutes after the first trigger.
1284 )))
1285 |(% style="width:113px" %)Note|(% style="width:385px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1286
1287 (% style="color:#037691" %)**Downlink Payload**
1288
1289 (% border="2" style="width:500px" %)
1290 |(% style="width:112px" %)**Payload**|(% style="width:386px" %)<prefix><time>
1291 |(% style="width:112px" %)**Parameters**|(% style="width:386px" %)(((
1292 **prefix** : AC (hexadecimal)
1293
1294 **time **: in minutes (two bytes in hexadecimal)
1295 )))
1296 |(% style="width:112px" %)**Example**|(% style="width:386px" %)(((
1297 AC **00 05**
1298
1299 The device won't respond to the second trigger within 5 minutes after the first trigger.
1300 )))
1301 |(% style="width:112px" %)Note|(% style="width:386px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1302
1303 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1304
1305 Controls the digital outputs DO1, DO2, and DO3
1306
1307 (% style="color:#037691" %)**AT Command**
1308
1309 There is no AT Command to control the Digital Output.
1310
1311
1312 (% style="color:#037691" %)**Downlink Payload**
1313
1314 (% border="2" style="width:500px" %)
1315 |(% style="width:115px" %)**Payload**|(% style="width:383px" %)<prefix><DO1><DO2><DO3>
1316 |(% style="width:115px" %)**Parameters**|(% style="width:383px" %)(((
1317 **prefix** : 02 (hexadecimal)
1318
1319 **DOI** : 01: Low,  00: High, 11: No action (1 byte in hex)
1320
1321 **DO2** : 01: Low,  00: High, 11: No action (1 byte in hex)
1322
1323 **DO3 **: 01: Low,  00: High, 11: No action (1 byte in hex)
1324 )))
1325 |(% style="width:115px" %)**Examples**|(% style="width:383px" %)(((
1326 02 **01 00 01**
1327
1328 If there is a load between V+ and DOx, it means DO1 is set to low, DO2 is set to high, and DO3 is set to low.
1329
1330 **More examples:**
1331
1332 (((
1333 01: Low,  00: High,  11: No action
1334
1335 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1336 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
1337 |02  01  00  11|Low|High|No Action
1338 |02  00  11  01|High|No Action|Low
1339 |02  11  01  00|No Action|Low|High
1340 )))
1341
1342 (((
1343 (((
1344 (% style="color:red" %)**Note: For the LT-22222-L, there is no DO3; the last byte can have any value.**
1345 )))
1346
1347 (((
1348 (% style="color:red" %)**The device will upload a packet if downlink code executes successfully.**
1349 )))
1350 )))
1351 )))
1352
1353 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1354
1355
1356 * (% style="color:#037691" %)**AT Command**
1357
1358 There is no AT Command to control Digital Output
1359
1360
1361 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1362
1363 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1364
1365
1366 This is to control the digital output time of DO pin. Include four bytes:
1367
1368 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1369
1370 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1371
1372 01: DO pins will change back to original state after timeout.
1373
1374 00: DO pins will change to an inverter state after timeout 
1375
1376
1377 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Port status:
1378
1379 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1380 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1381 |0x01|DO1 set to low
1382 |0x00|DO1 set to high
1383 |0x11|DO1 NO Action
1384
1385 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Port status:
1386
1387 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1388 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1389 |0x01|DO2 set to low
1390 |0x00|DO2 set to high
1391 |0x11|DO2 NO Action
1392
1393 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Port status:
1394
1395 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1396 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1397 |0x01|DO3 set to low
1398 |0x00|DO3 set to high
1399 |0x11|DO3 NO Action
1400
1401 (% style="color:#4f81bd" %)**Sixth, Seventh, Eighth, and Ninth Bytes**:(%%) Latching time (Unit: ms)
1402
1403
1404 (% style="color:red" %)**Note: **
1405
1406 Since firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1407
1408 Before firmware v1.6.0, the latch time only supported 2 bytes.
1409
1410 (% style="color:red" %)**Device will upload a packet if the downlink code executes successfully.**
1411
1412
1413 **Example payload:**
1414
1415 **~1. A9 01 01 01 01 07 D0**
1416
1417 DO1 pin, DO2 pin, and DO3 pin will be set to low, last for 2 seconds, and then revert to their original state.
1418
1419 **2. A9 01 00 01 11 07 D0**
1420
1421 DO1 pin is set to high, DO2 pin is set to low, and DO3 pin takes no action. This lasts for 2 seconds and then reverts to the original state.
1422
1423 **3. A9 00 00 00 00 07 D0**
1424
1425 DO1 pin, DO2 pin, and DO3 pin will be set to high, last for 2 seconds, and then all change to low.
1426
1427 **4. A9 00 11 01 00 07 D0**
1428
1429 DO1 pin takes no action, DO2 pin is set to low, and DO3 pin is set to high. This lasts for 2 seconds, after which DO1 pin takes no action, DO2 pin is set to high, and DO3 pin is set to low.
1430
1431
1432 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1433
1434
1435 * (% style="color:#037691" %)**AT Command:**
1436
1437 There is no AT Command to control Relay Output
1438
1439
1440 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1441
1442 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1443
1444
1445 (((
1446 If payload is 0x030100, it means setting RO1 to close and RO2 to open.
1447 )))
1448
1449 (((
1450 00: Close ,  01: Open , 11: No action
1451
1452 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1453 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1454 |03  00  11|Open|No Action
1455 |03  01  11|Close|No Action
1456 |03  11  00|No Action|Open
1457 |03  11  01|No Action|Close
1458 |03  00  00|Open|Open
1459 |03  01  01|Close|Close
1460 |03  01  00|Close|Open
1461 |03  00  01|Open|Close
1462 )))
1463
1464 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1465
1466
1467 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1468
1469 Controls the relay output time.
1470
1471 * (% style="color:#037691" %)**AT Command:**
1472
1473 There is no AT Command to control Relay Output
1474
1475
1476 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1477
1478 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1479
1480
1481 This is to control the relay output time. It includes four bytes:
1482
1483 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1484
1485 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1486
1487 01: Relays will change back to their original state after timeout.
1488
1489 00: Relays will change to the inverter state after timeout.
1490
1491
1492 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1493
1494 [[image:image-20221008095908-1.png||height="364" width="564"]]
1495
1496
1497 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1498
1499
1500 (% style="color:red" %)**Note:**
1501
1502 Since firmware v1.6.0, the latch time supports both 4 bytes and 2 bytes.
1503
1504 Before firmware v1.6.0, the latch time only supported 2 bytes.
1505
1506
1507 (% style="color:red" %)**Device will upload a packet if the downlink code executes successfully.**
1508
1509
1510 **Example payload:**
1511
1512 **~1. 05 01 11 07 D0**
1513
1514 Relay1 and Relay2 will be set to NC, lasting 2 seconds, then revert to their original state
1515
1516 **2. 05 01 10 07 D0**
1517
1518 Relay1 will change to NC, Relay2 will change to NO, lasting 2 seconds, then both will revert to their original state.
1519
1520 **3. 05 00 01 07 D0**
1521
1522 Relay1 will change to NO, Relay2 will change to NC, lasting 2 seconds, then Relay1 will change to NC, and Relay2 will change to NO.
1523
1524 **4. 05 00 00 07 D0**
1525
1526 Relay1 and Relay2 will change to NO, lasting 2 seconds, then both will change to NC.
1527
1528
1529
1530 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1531
1532
1533 When the voltage exceeds the threshold, counting begins. For details, see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1534
1535 (% style="color:#037691" %)**AT Command**
1536
1537 (% border="2" style="width:500px" %)
1538 |(% style="width:137px" %)**Command**|(% style="width:361px" %)AT+VOLMAX=<voltage>,<logic>
1539 |(% style="width:137px" %)**Response**|(% style="width:361px" %)
1540 |(% style="width:137px" %)**Parameters**|(% style="width:361px" %)(((
1541 **voltage** : voltage threshold in mV
1542
1543 **logic**:
1544
1545 **0** : lower than
1546
1547 **1**: higher than
1548
1549 if you leave logic parameter blank, it is considered 0
1550 )))
1551 |(% style="width:137px" %)**Examples**|(% style="width:361px" %)(((
1552 AT+VOLMAX=20000
1553
1554 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1555
1556 AT+VOLMAX=20000,0
1557
1558 If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1559
1560 AT+VOLMAX=20000,1
1561
1562 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1563 )))
1564
1565 (% style="color:#037691" %)**Downlink Payload**
1566
1567 (% border="2" style="width:500px" %)
1568 |(% style="width:140px" %)**Payload**|(% style="width:358px" %)<prefix><voltage><logic>
1569 |(% style="width:140px" %)**Parameters**|(% style="width:358px" %)(((
1570 **prefix** : A5 (hex)
1571
1572 **voltage** : voltage threshold in mV (2 bytes in hex)
1573
1574 **logic**: (1 byte in hexadecimal)
1575
1576 **0** : lower than
1577
1578 **1**: higher than
1579
1580 if you leave logic parameter blank, it is considered 1 (higher than)
1581 )))
1582 |(% style="width:140px" %)**Example**|(% style="width:358px" %)(((
1583 A5 **4E 20**
1584
1585 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1586
1587 A5 **4E 20 00**
1588
1589 If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1590
1591 A5 **4E 20 01**
1592
1593 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1594 )))
1595
1596 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1597
1598 This command allows users to pre-configure specific count numbers for various counting parameters such as Count1, Count2, or AVI1 Count. Use the AT command to set the desired count number for each configuration.
1599
1600 (% style="color:#037691" %)**AT Command**
1601
1602 (% border="2" style="width:500px" %)
1603 |(% style="width:134px" %)**Command**|(% style="width:364px" %)AT+SETCNT=<counting_parameter>,<number>
1604 |(% style="width:134px" %)**Response**|(% style="width:364px" %)
1605 |(% style="width:134px" %)**Parameters**|(% style="width:364px" %)(((
1606 **counting_parameter** :
1607
1608 1: COUNT1
1609
1610 2: COUNT2
1611
1612 3: AVI1 Count
1613
1614 **number** : Start number
1615 )))
1616 |(% style="width:134px" %)**Example**|(% style="width:364px" %)(((
1617 AT+SETCNT=1,10
1618
1619 Sets the COUNT1 to 10.
1620 )))
1621
1622 (% style="color:#037691" %)**Downlink Payload**
1623
1624 (% border="2" style="width:500px" %)
1625 |(% style="width:135px" %)**Payload**|(% style="width:363px" %)<prefix><counting_parameter><number>
1626 |(% style="width:135px" %)**Parameters**|(% style="width:363px" %)(((
1627 prefix : A8 (hex)
1628
1629 **counting_parameter** : (1 byte in hexadecimal)
1630
1631 1: COUNT1
1632
1633 2: COUNT2
1634
1635 3: AVI1 Count
1636
1637 **number** : Start number, 4 bytes in hexadecimal
1638 )))
1639 |(% style="width:135px" %)**Example**|(% style="width:363px" %)(((
1640 A8 **01 00 00 00 0A**
1641
1642 Sets the COUNT1 to 10.
1643 )))
1644
1645 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1646
1647 This command clears the counting in counting mode.
1648
1649 (% style="color:#037691" %)**AT Command**
1650
1651 (% border="2" style="width:500px" %)
1652 |(% style="width:142px" %)**Command**|(% style="width:356px" %)AT+CLRCOUNT
1653 |(% style="width:142px" %)**Response**|(% style="width:356px" %)-
1654
1655 (% style="color:#037691" %)**Downlink Payload**
1656
1657 (% border="2" style="width:500px" %)
1658 |(% style="width:141px" %)**Payload**|(% style="width:357px" %)<prefix><clear?>
1659 |(% style="width:141px" %)**Parameters**|(% style="width:357px" %)(((
1660 prefix : A6 (hex)
1661
1662 clear? : 01 (hex)
1663 )))
1664 |(% style="width:141px" %)**Example**|(% style="width:357px" %)A6 **01**
1665
1666 ==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1667
1668 This command allows you to configure the device to save its counting result to internal flash memory at specified intervals. By setting a save time, the device will periodically store the counting data to prevent loss in case of power failure. The save interval can be adjusted to suit your requirements, with a minimum value of 30 seconds.
1669
1670 (% style="color:#037691" %)**AT Command**
1671
1672 (% border="2" style="width:500px" %)
1673 |(% style="width:124px" %)**Command**|(% style="width:374px" %)AT+COUTIME=<time>
1674 |(% style="width:124px" %)**Response**|(% style="width:374px" %)
1675 |(% style="width:124px" %)**Parameters**|(% style="width:374px" %)time : seconds (0 to 16777215)
1676 |(% style="width:124px" %)**Example**|(% style="width:374px" %)(((
1677 AT+COUTIME=60
1678
1679 Sets the device to save its counting results to the memory every 60 seconds.
1680 )))
1681
1682 (% style="color:#037691" %)**Downlink Payload**
1683
1684 (% border="2" style="width:500px" %)
1685 |(% style="width:123px" %)**Payload**|(% style="width:375px" %)<prefix><time>
1686 |(% style="width:123px" %)**Parameters**|(% style="width:375px" %)(((
1687 prefix : A7
1688
1689 time : seconds, 3 bytes in hexadecimal
1690 )))
1691 |(% style="width:123px" %)**Example**|(% style="width:375px" %)(((
1692 A7 **00 00 3C**
1693
1694 Sets the device to save its counting results to the memory every 60 seconds.
1695 )))
1696
1697 ==== 3.4.2.20 Reset save RO DO state ====
1698
1699 This command allows you to reset the saved relay output (RO) and digital output (DO) states when the device joins the network. By configuring this setting, you can control whether the device should retain or reset the relay states after a reset and rejoin to the network.
1700
1701 (% style="color:#037691" %)**AT Command**
1702
1703 (% border="2" style="width:500px" %)
1704 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+RODORESET=<state>
1705 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1706 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1707 **state** :
1708
1709 **0** : RODO will close when the device joins the network. (default)
1710
1711 **1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1712 )))
1713 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1714 (% style="color:blue" %)**AT+RODORESET=1 **
1715
1716 RODO will close when the device joins the network. (default)
1717
1718 (% style="color:blue" %)**AT+RODORESET=0 **
1719
1720 After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1721 )))
1722
1723
1724 (% style="color:#037691" %)**Downlink Payload**
1725
1726 (% border="2" style="width:500px" %)
1727 |(% style="width:127px" %)**Payload**|(% style="width:371px" %)<prefix><state>
1728 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1729 **prefix** : AD
1730
1731 **state** :
1732
1733 **0** : RODO will close when the device joins the network. (default), represents as 1 byte in hexadecimal.
1734
1735 **1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network. - represents as 1 byte in hexadecimal
1736 )))
1737 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1738 AD **01**
1739
1740 RODO will close when the device joins the network. (default)
1741
1742 AD **00**
1743
1744 After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1745 )))
1746
1747 ==== 3.4.2.21 Encrypted payload ====
1748
1749 This command allows you to configure whether the device should upload data in an encrypted format or in plaintext. By default, the device encrypts the payload before uploading. You can toggle this setting to either upload encrypted data or transmit it without encryption.
1750
1751 (% style="color:#037691" %)**AT Command:**
1752
1753 (% border="2" style="width:500px" %)
1754 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DECRYPT=<state>
1755 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1756 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1757 **state** :
1758
1759 **1** : The payload is uploaded without encryption
1760
1761 **0** : The payload is encrypted when uploaded (default)
1762 )))
1763 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1764 AT+DECRYPT=1
1765
1766 The payload is uploaded without encryption
1767
1768 AT+DECRYPT=0
1769
1770 The payload is encrypted when uploaded (default)
1771 )))
1772
1773 There is no downlink payload for this configuration.
1774
1775
1776 ==== 3.4.2.22 Get sensor value ====
1777
1778 This command allows you to retrieve and optionally uplink sensor readings through the serial port.
1779
1780 (% style="color:#037691" %)**AT Command**
1781
1782 (% border="2" style="width:500px" %)
1783 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+GETSENSORVALUE=<state>
1784 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1785 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1786 **state** :
1787
1788 **0 **: Retrieves the current sensor reading via the serial port.
1789
1790 **1 **: Retrieves and uploads the current sensor reading via the serial port.
1791 )))
1792 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1793 AT+GETSENSORVALUE=0
1794
1795 Retrieves the current sensor reading via the serial port.
1796
1797 AT+GETSENSORVALUE=1
1798
1799 Retrieves and uplinks the current sensor reading via the serial port.
1800 )))
1801
1802 There is no downlink payload for this configuration.
1803
1804
1805 ==== 3.4.2.23 Resetting the downlink packet count ====
1806
1807 This command manages how the node handles mismatched downlink packet counts. It offers two modes: one disables the reception of further downlink packets if discrepancies occur, while the other resets the downlink packet count to align with the server, ensuring continued communication.
1808
1809 (% style="color:#037691" %)**AT Command**
1810
1811 (% border="2" style="width:500px" %)
1812 |(% style="width:130px" %)**Command**|(% style="width:368px" %)AT+DISFCNTCHECK=<state>
1813 |(% style="width:130px" %)**Response**|(% style="width:368px" %)(((
1814
1815 )))
1816 |(% style="width:130px" %)**Parameters**|(% style="width:368px" %)(((
1817 **state **:
1818
1819 **0** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default).
1820
1821
1822 **1** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency.
1823 )))
1824 |(% style="width:130px" %)**Example**|(% style="width:368px" %)(((
1825 AT+DISFCNTCHECK=0
1826
1827 When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default).
1828
1829 AT+DISFCNTCHECK=1
1830
1831 When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency.
1832 )))
1833
1834 There is no downlink payload for this configuration.
1835
1836
1837 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1838
1839
1840 This command controls the behavior of the node when the combined size of the MAC commands (MACANS) from the server and the payload exceeds the allowed byte limit for the current data rate (DR). The command provides two modes: one enables splitting the data into batches to ensure compliance with the byte limit, while the other prioritizes the payload and ignores the MACANS in cases of overflow.
1841
1842 (% style="color:#037691" %)**AT Command**
1843
1844 (% border="2" style="width:500px" %)
1845 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DISMACANS=<state>
1846 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1847 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1848 **state** :
1849
1850 **0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1851
1852 **1** : When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1853 )))
1854 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1855 AT+DISMACANS=0
1856
1857 When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1858
1859 AT+DISMACANS=1
1860
1861 When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1862 )))
1863
1864 (% style="color:#037691" %)**Downlink Payload**
1865
1866 (% border="2" style="width:500px" %)
1867 |(% style="width:126px" %)**Payload**|(% style="width:372px" %)<prefix><state>
1868 |(% style="width:126px" %)**Parameters**|(% style="width:372px" %)(((
1869 **prefix** : 21
1870
1871 **state** : (2 bytes in hexadecimal)
1872
1873 **0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1874
1875 **1 **: When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1876 )))
1877 |(% style="width:126px" %)**Example**|(% style="width:372px" %)(((
1878 21 **00 01**
1879
1880 Set DISMACANS=1
1881 )))
1882
1883 ==== 3.4.2.25 Copy downlink to uplink ====
1884
1885 This command enables the device to immediately uplink the content of a received downlink packet back to the server. The command allows for quick data replication from downlink to uplink, with a fixed port number of 100.
1886
1887 * (% style="color:#037691" %)**AT Command**(%%)**:**
1888
1889 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1890
1891 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1892
1893
1894 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1895
1896 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1897
1898 (% border="2" style="width:500px" %)
1899 |(% style="width:122px" %)**Command**|(% style="width:376px" %)(((
1900 AT+RPL=5
1901
1902 After receiving a downlink packet from the server, the node immediately uplinks the content of the packet back to the server using port number 100.
1903 )))
1904 |(% style="width:122px" %)**Example**|(% style="width:376px" %)(((
1905 Downlink:
1906
1907 01 00 02 58
1908
1909 Uplink:
1910
1911 01 01 00 02 58
1912 )))
1913
1914 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1915
1916 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1917
1918
1919
1920 ==== 3.4.2.26 Query firmware version, frequency band, sub band, and TDC time ====
1921
1922 This command is used to query key information about the device, including its firmware version, frequency band, sub band, and TDC time. By sending the specified payload as a downlink, the server can retrieve this essential data from the device.
1923
1924 * (((
1925 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1926
1927 (% style="color:blue" %)**26 01  ** (%%) ~/~/  The downlink payload 26 01 is used to query the device's firmware version, frequency band, sub band, and TDC time.
1928
1929
1930
1931 )))
1932
1933 **Example:**
1934
1935 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1936
1937
1938 == 3.5 Integrating with ThingsEye.io ==
1939
1940 The Things Stack application supports integration with ThingsEye.io. Once integrated, ThingsEye.io acts as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1941
1942 === 3.5.1 Configuring The Things Stack ===
1943
1944 We use The Things Stack Sandbox in this example:
1945
1946 * In **The Things Stack Sandbox**, go to the **Application **for the LT-22222-L you added.
1947 * Select **MQTT** under **Integrations** in the left menu.
1948 * In the **Connection information **section, under **Connection credentials**, The Things Stack displays an auto-generated **username**. You can use it or provide a new one.
1949 * Click the **Generate new API key** button to generate a password. You can view it by clicking on the **visibility toggle/eye** icon. The API key works as the password.
1950
1951 {{info}}
1952 The username and  password (API key) you created here are required in the next section.
1953 {{/info}}
1954
1955 [[image:tts-mqtt-integration.png||height="625" width="1000"]]
1956
1957 === 3.5.2 Configuring ThingsEye.io ===
1958
1959 The ThingsEye.io IoT platform is not open for self-registration at the moment. If you are interested in testing the platform, please send your project information to admin@thingseye.io, and we will create an account for you.
1960
1961 * Login to your [[ThingsEye.io >>https://thingseye.io]]account.
1962 * Under the **Integrations center**, click **Integrations**.
1963 * Click the **Add integration** button (the button with the **+** symbol).
1964
1965 [[image:thingseye-io-step-1.png||height="625" width="1000"]]
1966
1967
1968 On the **Add integration** window, configure the following:
1969
1970 **Basic settings:**
1971
1972 * Select **The Things Stack Community** from the **Integration type** list.
1973 * Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
1974 * Ensure the following options are turned on.
1975 ** Enable integration
1976 ** Debug mode
1977 ** Allow create devices or assets
1978 * Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
1979
1980 [[image:thingseye-io-step-2.png||height="625" width="1000"]]
1981
1982
1983 **Uplink data converter:**
1984
1985 * Click the **Create new** button if it is not selected by default.
1986 * Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
1987 * Click the **JavaScript** button.
1988 * Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
1989 * Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
1990
1991 [[image:thingseye-io-step-3.png||height="625" width="1000"]]
1992
1993
1994 **Downlink data converter (this is an optional step):**
1995
1996 * Click the **Create new** button if it is not selected by default.
1997 * Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name.
1998 * Click the **JavaScript** button.
1999 * Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Downlink_Converter.js]].
2000 * Click the **Next** button. You will be navigated to the **Connection** tab.
2001
2002 [[image:thingseye-io-step-4.png||height="625" width="1000"]]
2003
2004
2005 **Connection:**
2006
2007 * Choose **Region** from the **Host type**.
2008 * Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
2009 * Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The **username **and **password **can be found on the MQTT integration page of your The Things Stack account (see **3.5.1 Configuring The Things Stack**).
2010 * Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
2011
2012 [[image:message-1.png]]
2013
2014
2015 * Click the **Add** button.
2016
2017 [[image:thingseye-io-step-5.png||height="625" width="1000"]]
2018
2019
2020 Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings and correct any errors.
2021
2022
2023 [[image:thingseye.io_integrationsCenter_integrations.png||height="686" width="1000"]]
2024
2025
2026 ==== 3.5.2.1 Viewing integration details ====
2027
2028 Click on your integration from the list. The **Integration details** window will appear with the **Details **tab selected. The **Details **tab shows all the settings you have provided for this integration.
2029
2030 [[image:integration-details.png||height="686" width="1000"]]
2031
2032
2033 If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
2034
2035 {{info}}
2036 See also [[ThingsEye documentation>>https://wiki.thingseye.io/xwiki/bin/view/Main/]].
2037 {{/info}}
2038
2039 ==== **3.5.2.2 Viewing events** ====
2040
2041 The **Events **tab displays all the uplink messages from the LT-22222-L.
2042
2043 * Select **Debug **from the **Event type** dropdown.
2044 * Select the** time frame** from the **time window**.
2045
2046 [[image:thingseye-events.png||height="686" width="1000"]]
2047
2048
2049 * To view the **JSON payload** of a message, click on the **three dots (...)** in the Message column of the desired message.
2050
2051 [[image:thingseye-json.png||width="1000"]]
2052
2053
2054 ==== **3.5.2.3 Deleting an integration** ====
2055
2056 If you want to delete an integration, click the **Delete integratio**n button on the Integrations page.
2057
2058
2059 ==== 3.5.2.4 Creating a Dashboard to Display and Analyze LT-22222-L Data ====
2060
2061 This will be added soon.
2062
2063
2064 == 3.6 Interface Details ==
2065
2066 === 3.6.1 Digital Input Ports: DI1/DI2/DI3 (For LT-33222-L, Low Active) ===
2067
2068
2069 Supports NPN-type sensors.
2070
2071 [[image:1653356991268-289.png]]
2072
2073
2074 === 3.6.2 Digital Input Ports: DI1/DI2 ===
2075
2076
2077 (((
2078 The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
2079 )))
2080
2081 (((
2082 (((
2083 The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
2084
2085
2086 )))
2087 )))
2088
2089 [[image:1653357170703-587.png]]
2090
2091 (((
2092 (((
2093 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
2094 )))
2095 )))
2096
2097 (((
2098
2099 )))
2100
2101 (((
2102 (% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
2103 )))
2104
2105 (((
2106 This type of sensor outputs a low (GND) signal when active.
2107 )))
2108
2109 * (((
2110 Connect the sensor's output to DI1-
2111 )))
2112 * (((
2113 Connect the sensor's VCC to DI1+.
2114 )))
2115
2116 (((
2117 When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be:
2118 )))
2119
2120 (((
2121 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
2122 )))
2123
2124 (((
2125 For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
2126 )))
2127
2128 (((
2129
2130 )))
2131
2132 (((
2133 (% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
2134 )))
2135
2136 (((
2137 This type of sensor outputs a high signal (e.g., 24V) when active.
2138 )))
2139
2140 * (((
2141 Connect the sensor's output to DI1+
2142 )))
2143 * (((
2144 Connect the sensor's GND DI1-.
2145 )))
2146
2147 (((
2148 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
2149 )))
2150
2151 (((
2152 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
2153 )))
2154
2155 (((
2156 If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
2157 )))
2158
2159 (((
2160
2161 )))
2162
2163 (((
2164 (% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
2165 )))
2166
2167 (((
2168 Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
2169 )))
2170
2171 * (((
2172 Connect the sensor's output to DI1+ with a 50K resistor in series.
2173 )))
2174 * (((
2175 Connect the sensor's GND DI1-.
2176 )))
2177
2178 (((
2179 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
2180 )))
2181
2182 (((
2183 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
2184 )))
2185
2186 (((
2187 If the sensor output is 220V, then [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
2188 )))
2189
2190
2191 (% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
2192
2193 From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
2194
2195 To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
2196
2197 [[image:image-20230616235145-1.png]]
2198
2199 (% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
2200
2201 [[image:image-20240219115718-1.png]]
2202
2203
2204 === 3.6.3 Digital Output Ports: DO1/DO2 ===
2205
2206
2207 (% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
2208
2209 (% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
2210
2211 [[image:1653357531600-905.png]]
2212
2213
2214 === 3.6.4 Analog Input Interfaces ===
2215
2216
2217 The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
2218
2219
2220 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
2221
2222 [[image:1653357592296-182.png]]
2223
2224 Example: Connecting a 4~~20mA sensor
2225
2226 We will use the wind speed sensor as an example for reference only.
2227
2228
2229 (% style="color:blue" %)**Specifications of the wind speed sensor:**
2230
2231 (% style="color:red" %)**Red:  12~~24V**
2232
2233 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
2234
2235 **Black:  GND**
2236
2237 **Connection diagram:**
2238
2239 [[image:1653357640609-758.png]]
2240
2241 [[image:1653357648330-671.png||height="155" width="733"]]
2242
2243
2244 Example: Connecting to a regulated power supply to measure voltage
2245
2246 [[image:image-20230608101532-1.png||height="606" width="447"]]
2247
2248 [[image:image-20230608101608-2.jpeg||height="379" width="284"]]
2249
2250 [[image:image-20230608101722-3.png||height="102" width="1139"]]
2251
2252
2253 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
2254
2255 (% style="color:red" %)**Red:  12~~24v**
2256
2257 **Black:  GND**
2258
2259
2260 === 3.6.5 Relay Output ===
2261
2262
2263 (((
2264 The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
2265
2266 **Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
2267 )))
2268
2269 [[image:image-20220524100215-9.png]]
2270
2271
2272 [[image:image-20220524100215-10.png||height="382" width="723"]]
2273
2274
2275 == 3.7 LEDs Indicators ==
2276
2277 The table below lists the behavior of LED indicators for each port function.
2278
2279 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
2280 |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
2281 |**PWR**|Always on when there is power
2282 |**TX**|(((
2283 (((
2284 Device boot: TX blinks 5 times.
2285 )))
2286
2287 (((
2288 Successful network join: TX remains ON for 5 seconds.
2289 )))
2290
2291 (((
2292 Transmit a LoRa packet: TX blinks once
2293 )))
2294 )))
2295 |**RX**|RX blinks once when a packet is received.
2296 |**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
2297 |**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
2298 |**DI1**|(((
2299 For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
2300 )))
2301 |**DI2**|(((
2302 For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
2303 )))
2304 |**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
2305 |**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
2306
2307 = 4. Using AT Commands =
2308
2309 The LT-22222-L supports programming using AT Commands.
2310
2311 == 4.1 Connecting the LT-22222-L to a PC ==
2312
2313 (((
2314 You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a PC, as shown below.
2315
2316 [[image:usb-ttl-programming.png]]
2317 )))
2318
2319
2320
2321 (((
2322 On the PC, you need to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate of (% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-L. Access to AT commands is disabled by default, and a password (default: (% style="color:green" %)**123456**)(%%) must be entered to enable AT command access, as shown below:
2323 )))
2324
2325 [[image:1653358355238-883.png]]
2326
2327
2328 (((
2329 You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
2330
2331 == 4.2 LT-22222-L related AT commands ==
2332 )))
2333
2334 (((
2335 The following is the list of all the AT commands related to the LT-22222-L, except for those used for switching between working modes.
2336
2337 * **##AT##+<CMD>?** : Help on <CMD>
2338 * **##AT##+<CMD>** : Run <CMD>
2339 * **##AT##+<CMD>=<value>** : Set the value
2340 * **##AT##+<CMD>=?** : Get the value
2341 * ##**ATZ**##: Trigger a reset of the MCU
2342 * ##**AT+FDR**##: Reset Parameters to factory default, reserve keys 
2343 * **##AT+DEUI##**: Get or set the Device EUI (DevEUI)
2344 * **##AT+DADDR##**: Get or set the Device Address (DevAddr)
2345 * **##AT+APPKEY##**: Get or set the Application Key (AppKey)
2346 * ##**AT+NWKSKEY**##: Get or set the Network Session Key (NwkSKey)
2347 * **##AT+APPSKEY##**: Get or set the Application Session Key (AppSKey)
2348 * **##AT+APPEUI##**: Get or set the Application EUI (AppEUI)
2349 * **##AT+ADR##**: Get or set the Adaptive Data Rate setting. (0: OFF, 1: ON)
2350 * AT+TXP: Get or set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Specification)
2351 * AT+DR:  Get or set the Data Rate. (0-7 corresponding to DR_X)  
2352 * AT+DCS: Get or set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
2353 * AT+PNM: Get or set the public network mode. (0: off, 1: on)
2354 * AT+RX2FQ: Get or set the Rx2 window frequency
2355 * AT+RX2DR: Get or set the Rx2 window data rate (0-7 corresponding to DR_X)
2356 * AT+RX1DL: Get or set the delay between the end of the Tx and the Rx Window 1 in ms
2357 * AT+RX2DL: Get or set the delay between the end of the Tx and the Rx Window 2 in ms
2358 * AT+JN1DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
2359 * AT+JN2DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
2360 * AT+NJM: Get or set the Network Join Mode. (0: ABP, 1: OTAA)
2361 * AT+NWKID: Get or set the Network ID
2362 * AT+FCU: Get or set the Frame Counter Uplink (FCntUp)
2363 * AT+FCD: Get or set the Frame Counter Downlink (FCntDown)
2364 * AT+CLASS: Get or set the Device Class
2365 * AT+JOIN: Join network
2366 * AT+NJS: Get OTAA Join Status
2367 * AT+SENDB: Send hexadecimal data along with the application port
2368 * AT+SEND: Send text data along with the application port
2369 * AT+RECVB: Print last received data in binary format (with hexadecimal values)
2370 * AT+RECV: Print last received data in raw format
2371 * AT+VER: Get current image version and Frequency Band
2372 * AT+CFM: Get or Set the confirmation mode (0-1)
2373 * AT+CFS: Get confirmation status of the last AT+SEND (0-1)
2374 * AT+SNR: Get the SNR of the last received packet
2375 * AT+RSSI: Get the RSSI of the last received packet
2376 * AT+TDC: Get or set the application data transmission interval in ms
2377 * AT+PORT: Get or set the application port
2378 * AT+DISAT: Disable AT commands
2379 * AT+PWORD: Set password, max 9 digits
2380 * AT+CHS: Get or set the Frequency (Unit: Hz) for Single Channel Mode
2381 * AT+CHE: Get or set eight channels mode, Only for US915, AU915, CN470
2382 * AT+CFG: Print all settings
2383 )))
2384
2385
2386 == 4.2 Common AT Command Sequence ==
2387
2388 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
2389
2390 (((
2391
2392
2393 (((
2394 (% style="color:blue" %)**If the device has not yet joined the network:**
2395 )))
2396 )))
2397
2398 (((
2399 (% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT commands access**##
2400 )))
2401
2402 (((
2403 (% style="background-color:#dcdcdc" %)##**AT+FDR ~/~/Reset parameters to factory default, Reserve keys**##
2404 )))
2405
2406 (((
2407 (% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT commands access**##
2408 )))
2409
2410 (((
2411 (% style="background-color:#dcdcdc" %)##**AT+NJM=0 ~/~/Set to ABP mode**##
2412 )))
2413
2414 (((
2415 (% style="background-color:#dcdcdc" %)##**ATZ ~/~/Reset MCU**##
2416 )))
2417
2418
2419 (((
2420 (% style="color:blue" %)**If the device has already joined the network:**
2421 )))
2422
2423 (((
2424 (% style="background-color:#dcdcdc" %)##**AT+NJM=0**##
2425 )))
2426
2427 (((
2428 (% style="background-color:#dcdcdc" %)##**ATZ**##
2429 )))
2430
2431
2432 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
2433
2434 (((
2435
2436
2437 (((
2438 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter password to enable AT commands access
2439 )))
2440 )))
2441
2442 (((
2443 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset parameters to Factory Default, Reserve keys
2444 )))
2445
2446 (((
2447 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter password to enable AT commands access
2448 )))
2449
2450 (((
2451 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to CLASS C mode
2452 )))
2453
2454 (((
2455 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
2456 )))
2457
2458 (((
2459 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
2460 )))
2461
2462 (((
2463 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
2464 )))
2465
2466 (((
2467 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
2468 )))
2469
2470 (((
2471 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4 MHz
2472 )))
2473
2474 (((
2475 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2 frequency to 868.4 MHz (according to the result from the server)
2476 )))
2477
2478 (((
2479 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2 DR to match the downlink DR from the server. See below.
2480 )))
2481
2482 (((
2483 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address. The Device Address can be found in the application on the LoRaWAN NS.
2484 )))
2485
2486 (((
2487 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
2488
2489
2490 )))
2491
2492 (((
2493 (% style="color:red" %)**Note:**
2494 )))
2495
2496 (((
2497 **~1. Ensure that the device is set to ABP mode in the LoRaWAN Network Server.**
2498
2499 **2. Verify that the LG01/02 gateway RX frequency matches the AT+CHS setting exactly.**
2500
2501 **3. Make sure the SF/bandwidth settings in the LG01/LG02 match the settings of AT+DR. Refer to [[this link>>url:http://www.dragino.com/downloads/index.php?
2502 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
2503
2504 **4. The commands AT+RX2FQ and AT+RX2DR enable downlink functionality. To set the correct parameters, you can check the actual downlink parameters to be used as shown below. Here, RX2FQ should be set to 868400000 and RX2DR should be set to 5.**
2505 )))
2506
2507 (((
2508 [[image:1653359097980-169.png||height="188" width="729"]]
2509 )))
2510
2511
2512 === 4.2.3 Change to Class A ===
2513
2514
2515 (((
2516 (% style="color:blue" %)**If the sensor has JOINED:**
2517
2518 (% style="background-color:#dcdcdc" %)**AT+CLASS=A**
2519
2520 (% style="background-color:#dcdcdc" %)**ATZ**
2521 )))
2522
2523
2524 = 5. Case Study =
2525
2526 == 5.1 Counting how many objects pass through the flow line ==
2527
2528 See [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
2529
2530
2531 = 6. FAQ =
2532
2533 This section contains some frequently asked questions, which can help you resolve common issues and find solutions quickly.
2534
2535
2536 == 6.1 How to update the firmware? ==
2537
2538 Dragino frequently releases firmware updates for the LT-22222-L. Updating your LT-22222-L with the latest firmware version helps to:
2539
2540 * Support new features
2541 * Fix bugs
2542 * Change LoRaWAN frequency bands
2543
2544 You will need the following things before proceeding:
2545
2546 * 3.5mm programming cable (included with the LT-22222-L as an additional accessory)
2547 * USB to TTL adapter
2548 * Download and install the [[STM32 Flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. (replaced by STM32CubeProgrammer)
2549 * Download the latest firmware image from [[LT-22222-L firmware image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. Check the file name of the firmware to find the correct region.
2550
2551 {{info}}
2552 As of this writing, the latest firmware version available for the LT-22222-L is v1.6.1.
2553 {{/info}}
2554
2555 Below is the hardware setup for uploading a firmware image to the LT-22222-L:
2556
2557 [[image:usb-ttl-programming.png]]
2558
2559
2560
2561 Start the STM32 Flash Loader and choose the correct COM port to update.
2562
2563 (((
2564 (((
2565 (% style="color:blue" %)**For LT-22222-L**(%%):
2566
2567 Hold down the **PRO** button, then briefly press the **RST** button. The **DO1** LED will change from OFF to ON. When the **DO1** LED is ON, it indicates that the device is in firmware download mode.
2568 )))
2569
2570
2571 )))
2572
2573 [[image:image-20220524103407-12.png]]
2574
2575
2576 [[image:image-20220524103429-13.png]]
2577
2578
2579 [[image:image-20220524104033-15.png]]
2580
2581
2582 (% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5 mm cable. The pin mapping is as follows:
2583
2584 [[image:1653360054704-518.png||height="186" width="745"]]
2585
2586
2587 (((
2588 (((
2589 == 6.2 How to change the LoRaWAN frequency band/region? ==
2590 )))
2591 )))
2592
2593 (((
2594 You can follow the introductions on [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2595 )))
2596
2597 (((
2598
2599
2600 == 6.3 How to setup LT-22222-L to work with a Single Channel Gateway, such as LG01/LG02? ==
2601 )))
2602
2603 (((
2604 (((
2605 In this case, you need to set the LT-22222-L to work in ABP mode and transmit on only one frequency.
2606 )))
2607 )))
2608
2609 (((
2610 (((
2611 We assume you have an LG01/LG02 working on the frequency 868400000. Below are the steps.
2612
2613
2614 )))
2615 )))
2616
2617 (((
2618 (% style="color:#0000ff" %)**Step 1**(%%): Log in to The Things Stack Sandbox account and create an ABP device in the application. To do this, use the manual registration option as explained in section 3.2.2.2, //Adding a Device Manually//. Select //Activation by Personalization (ABP)// under Activation Mode. Enter the DevEUI exactly as shown on the registration information sticker, then generate the Device Address, Application Session Key (AppSKey), and Network Session Key (NwkSKey).
2619
2620 [[image:lt-22222-l-abp.png||height="686" width="1000"]]
2621 )))
2622
2623 (((
2624
2625 )))
2626
2627 {{warning}}
2628 Ensure that the Device Address (DevAddr) and the two keys match between the LT-22222-L and The Things Stack. You can modify them either in The Things Stack or on the LT-22222-L to make them align. In The Things Stack, you can configure the NwkSKey and AppSKey on the settings page, but note that the Device Address is generated by The Things Stack.
2629 {{/warning}}
2630
2631
2632 (((
2633 (% style="color:blue" %)**Step 2**(%%)**:  **(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)Run AT commands to configure the LT-22222-L to operate in single-frequency and ABP mode. The AT commands are as follows:
2634
2635
2636 )))
2637
2638 (((
2639 (% style="background-color:#dcdcdc" %)**123456** (%%) : Enter the password to enable AT access.
2640
2641 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Reset parameters to factory default, keeping keys reserved.
2642
2643 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) : Set to ABP mode.
2644
2645 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) : Disable the Adaptive Data Rate (ADR).
2646
2647 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) : Set Data Rate (Use AT+DR=3 for the 915 MHz band).
2648
2649 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) : Set transmit interval to 60 seconds.
2650
2651 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4 MHz.
2652
2653 (% style="background-color:#dcdcdc" %)**AT+DADDR=xxxx**(%%) : Set the Device Address (DevAddr)
2654
2655 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:700; text-decoration:none; white-space:pre-wrap" %)**AT+APPKEY=xxxx**(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %): Get or set the Application Key (AppKey)
2656
2657 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+NWKSKEY=xxxx**: Get or set the Network Session Key (NwkSKey)
2658
2659 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+APPSKEY=xxxx**: Get or set the Application Session Key (AppSKey)
2660
2661 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) : Reset MCU.
2662 )))
2663
2664
2665 (((
2666 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)The following figure shows the screenshot of the command set above, issued using a serial tool:
2667 )))
2668
2669 [[image:1653360498588-932.png||height="485" width="726"]]
2670
2671
2672 == 6.4 How to change the uplink interval? ==
2673
2674 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2675
2676
2677 == 6.5 Can I see the counting event in the serial output? ==
2678
2679 (((
2680 You can run the AT command **AT+DEBUG** to view the counting event in the serial output. If the firmware is too old and doesn’t support AT+DEBUG, update to the latest firmware first.
2681
2682
2683 == 6.6 Can I use point-to-point communication with LT-22222-L? ==
2684
2685 Yes, you can. Please refer to the [[Point-to-Point Communication of LT-22222-L>>https://wiki.dragino.com/xwiki/bin/view/Main/%20Point%20to%20Point%20Communication%20of%20LT-22222-L/]] page. The firmware that supports point-to-point communication can be found [[here>>https://github.com/dragino/LT-22222-L/releases]].
2686
2687
2688 )))
2689
2690 (((
2691 == 6.7 Why does the relay output default to an open relay after the LT-22222-L is powered off? ==
2692
2693 * If the device is not properly shut down and is directly powered off.
2694 * It will default to a power-off state.
2695 * In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2696 * After a restart, the status before the power failure will be read from flash.
2697
2698 == 6.8 Can I setup LT-22222-L as a NC (Normally Closed) relay? ==
2699
2700 The LT-22222-L's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
2701
2702
2703 [[image:image-20221006170630-1.png||height="610" width="945"]]
2704
2705
2706 == 6.9 Can the LT-22222-L save the RO state? ==
2707
2708 To enable this feature, the firmware version must be 1.6.0 or higher.
2709
2710
2711 == 6.10 Why does the LT-22222-L always report 15.585V when measuring the AVI? ==
2712
2713 It is likely that the GND is not connected during the measurement, or that the wire connected to the GND is loose.
2714
2715
2716 = 7. Troubleshooting =
2717
2718 This section provides some known troubleshooting tips.
2719
2720
2721 )))
2722
2723 (((
2724 (((
2725 == 7.1 Downlink isn't working. How can I solve this? ==
2726 )))
2727 )))
2728
2729 (((
2730 Please refer to this link for debugging instructions: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2731 )))
2732
2733 (((
2734
2735
2736 == 7.2 Having trouble uploading an image? ==
2737 )))
2738
2739 (((
2740 Please refer to this link for troubleshooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2741 )))
2742
2743 (((
2744
2745
2746 == 7.3 Why can't I join TTN in the US915 /AU915 bands? ==
2747 )))
2748
2749 (((
2750 It might be related to the channel mapping. [[Please refer to this link for details.>>https://github.com/dragino/LT-22222-L/releases]]
2751 )))
2752
2753
2754 == 7.4 Why can the LT-22222-L perform uplink normally, but cannot receive downlink? ==
2755
2756 The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue.
2757 Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2758
2759
2760 = 8. Ordering information =
2761
2762 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2763
2764 (% style="color:#4f81bd" %)**XXX:**
2765
2766 * (% style="color:red" %)**EU433**(%%): LT with frequency bands EU433
2767 * (% style="color:red" %)**EU868**(%%): LT with frequency bands EU868
2768 * (% style="color:red" %)**KR920**(%%): LT with frequency bands KR920
2769 * (% style="color:red" %)**CN470**(%%): LT with frequency bands CN470
2770 * (% style="color:red" %)**AS923**(%%): LT with frequency bands AS923
2771 * (% style="color:red" %)**AU915**(%%): LT with frequency bands AU915
2772 * (% style="color:red" %)**US915**(%%): LT with frequency bands US915
2773 * (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2774 * (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2775
2776 = 9. Package information =
2777
2778 **Package includes**:
2779
2780 * 1 x LT-22222-L I/O Controller
2781 * 1 x LoRa antenna matched to the frequency of the LT-22222-L
2782 * 1 x bracket for DIN rail mounting
2783 * 1 x 3.5 mm programming cable
2784
2785 **Dimension and weight**:
2786
2787 * Device Size: 13.5 x 7 x 3 cm
2788 * Device Weight: 105 g
2789 * Package Size / pcs : 14.5 x 8 x 5 cm
2790 * Weight / pcs : 170 g
2791
2792 = 10. Support =
2793
2794 * (((
2795 Support is available Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule.
2796 )))
2797 * (((
2798 Please provide as much information as possible regarding your inquiry (e.g., product models, a detailed description of the problem, steps to replicate it, etc.) and send an email to [[support@dragino.cc>>mailto:support@dragino.cc]]
2799
2800
2801 )))
2802
2803 = 11. Reference​​​​​ =
2804
2805 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2806 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2807 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0