Version 21.3 by Xiaoling on 2022/05/23 18:22

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4 **LT-22222-L LoRa IO Controller User Manual **
5
6
7
8
9 = 1.Introduction =
10
11 == 1.1 What is LT Series I/O Controller ==
12
13 (((
14 The Dragino LT series I/O Modules are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as: analog current Input, analog voltage input, relay output, digital input and digital output etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
15 )))
16
17 (((
18 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
19 )))
20
21 (((
22 The LT I/O Controllers is aiming to provide a simple plug and play, low cost installation by using LoRaWAN wireless technology.
23 )))
24
25 (((
26 The use environment includes:
27 )))
28
29 (((
30 1) If user’s area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
31 )))
32
33 (((
34 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
35 )))
36
37 (((
38 [[image:1653295757274-912.png]]
39 )))
40
41 == 1.2  Specifications ==
42
43 **Hardware System:**
44
45 * STM32L072CZT6 MCU
46 * SX1276/78 Wireless Chip 
47 * Power Consumption:
48 ** Idle: 4mA@12v
49 ** 20dB Transmit: 34mA@12v
50
51 **Interface for Model: LT22222-L:**
52
53 * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
54 * 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
55 * 2 x Relay Output (5A@250VAC / 30VDC)
56 * 2 x 0~~20mA Analog Input (res:0.01mA)
57 * 2 x 0~~30V Analog Input (res:0.01v)
58 * Power Input 7~~ 24V DC. 
59
60 **LoRa Spec:**
61
62 * Frequency Range:
63 ** Band 1 (HF): 862 ~~ 1020 Mhz
64 ** Band 2 (LF): 410 ~~ 528 Mhz
65 * 168 dB maximum link budget.
66 * +20 dBm - 100 mW constant RF output vs.
67 * +14 dBm high efficiency PA.
68 * Programmable bit rate up to 300 kbps.
69 * High sensitivity: down to -148 dBm.
70 * Bullet-proof front end: IIP3 = -12.5 dBm.
71 * Excellent blocking immunity.
72 * Low RX current of 10.3 mA, 200 nA register retention.
73 * Fully integrated synthesizer with a resolution of 61 Hz.
74 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
75 * Built-in bit synchronizer for clock recovery.
76 * Preamble detection.
77 * 127 dB Dynamic Range RSSI.
78 * Automatic RF Sense and CAD with ultra-fast AFC.
79 * Packet engine up to 256 bytes with CRC.
80
81 == 1.3 Features ==
82
83 * LoRaWAN Class A & Class C protocol
84 * Optional Customized LoRa Protocol
85 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865
86 * AT Commands to change parameters
87 * Remote configure parameters via LoRa Downlink
88 * Firmware upgradable via program port
89 * Counting
90
91 == 1.4  Applications ==
92
93 * Smart Buildings & Home Automation
94 * Logistics and Supply Chain Management
95 * Smart Metering
96 * Smart Agriculture
97 * Smart Cities
98 * Smart Factory
99
100 == 1.5 Hardware Variants ==
101
102 (% border="1" style="background-color:#f7faff; width:500px" %)
103 |(% style="width:103px" %)**Model**|(% style="width:131px" %)**Photo**|(% style="width:334px" %)**Description**
104 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)[[image:1653296302983-697.png]]|(% style="width:334px" %)(((
105 * 2 x Digital Input (Bi-direction)
106 * 2 x Digital Output
107 * 2 x Relay Output (5A@250VAC / 30VDC)
108 * 2 x 0~~20mA Analog Input (res:0.01mA)
109 * 2 x 0~~30V Analog Input (res:0.01v)
110 * 1 x Counting Port
111 )))
112
113 = 2. Power ON Device =
114
115 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
116
117 (((
118 PWR will on when device is properly powered.
119 )))
120
121 [[image:1653297104069-180.png]]
122
123 = 3. Operation Mode =
124
125 == 3.1 How it works? ==
126
127 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on **TX LED** will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. **TX LED** will be on for 5 seconds after joined in network. When there is message from server, the **RX LED** will be on for 1 second. 
128
129 In case user can’t set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>path:#AT_Command]] to set the keys in the devices.
130
131 3.2 Example to join LoRaWAN network
132
133 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
134
135 [[image:image-20220523172350-1.png||height="266" width="864"]]
136
137
138 (((
139 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
140 )))
141
142 (((
143 **Step 1**: Create a device in TTN with the OTAA keys from LT IO controller.
144 )))
145
146 (((
147 Each LT is shipped with a sticker with the default device EUI as below:
148 )))
149
150 [[image:1653297924498-393.png]]
151
152 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
153
154 Add APP EUI in the application.
155
156 [[image:1653297955910-247.png||height="321" width="716"]]
157
158 Add APP KEY and DEV EUI
159
160 [[image:1653298023685-319.png]]
161
162 (((
163 **Step 2**: Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
164 )))
165
166 [[image:1653298044601-602.png||height="405" width="709"]]
167
168 == 3.3 Uplink Payload ==
169
170 There are five working modes + one interrupt mode on LT for different type application:
171
172 * **MOD1**: (default setting): 2 x ACI + 2AVI + DI + DO + RO
173 * **MOD2**: Double DI Counting + DO + RO
174 * **MOD3**: Single DI Counting + 2 x ACI + DO + RO
175 * **MOD4**: Single DI Counting + 1 x Voltage Counting + DO + RO
176 * **MOD5**: Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
177 * **ADDMOD6**: Trigger Mode, Optional, used together with MOD1 ~~ MOD5
178
179 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
180
181 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default.
182
183 [[image:image-20220523174024-3.png]]
184
185 (((
186 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
187 )))
188
189 [[image:image-20220523174254-4.png]]
190
191 * RO is for relay. ROx=1 : close,ROx=0 always open.
192 * DI is for digital input. DIx=1: high or float, DIx=0: low.
193 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
194
195 (% style="color:red" %)Note: DI3 and DO3 bit are not valid for LT-22222-L
196
197 For example if payload is: [[image:image-20220523175847-2.png]]
198
199 **The value for the interface is:  **
200
201 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
202
203 AVI2 channel voltage is 0x04AC/1000=1.196V
204
205 ACI1 channel current is 0x1310/1000=4.880mA
206
207 ACI2 channel current is 0x1300/1000=4.864mA
208
209 The last byte 0xAA= 10101010(B) means
210
211 * [1] RO1 relay channel is close and the RO1 LED is ON.
212 * [0] RO2 relay channel is open and RO2 LED is OFF;
213
214 **LT22222-L:**
215
216 * [1] DI2 channel is high input and DI2 LED is ON;
217 * [0] DI1 channel is low input;
218
219 * [0] DO3 channel output state
220 ** DO3 is float in case no load between DO3 and V+.;
221 ** DO3 is high in case there is load between DO3 and V+.
222 ** DO3 LED is off in both case
223 * [1] DO2 channel output is low and DO2 LED is ON.
224 * [0] DO1 channel output state
225 ** DO1 is float in case no load between DO1 and V+.;
226 ** DO1 is high in case there is load between DO1 and V+.
227 ** DO1 LED is off in both case
228
229 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
230
231 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
232
233 Total : 11 bytes payload
234
235 [[image:image-20220523180452-3.png]]
236
237 (((
238 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
239 )))
240
241 [[image:image-20220523180506-4.png]]
242
243 * RO is for relay. ROx=1 : close,ROx=0 always open.
244 * FIRST: Indicate this is the first packet after join network.
245 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
246
247 (% style="color:red" %)Note: DO3 bit is not valid for LT-22222-L.
248
249 **To use counting mode, please run:**
250
251 (% class="box infomessage" %)
252 (((
253 **AT+MOD=2**
254 )))
255
256 (% class="box infomessage" %)
257 (((
258 **ATZ**
259 )))
260
261 (% style="color:#4f81bd" %)**AT Commands for counting:**
262
263 **For LT22222-L:**
264
265 (% class="box infomessage" %)
266 (((
267 **AT+TRIG1=0,100 (set DI1 port to trigger on low level, valid signal is 100ms) **
268 )))
269
270 (% class="box infomessage" %)
271 (((
272 **AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms ) **
273 )))
274
275 (% class="box infomessage" %)
276 (((
277 **AT+TRIG2=0,100 (set DI2 port to trigger on low level, valid signal is 100ms) **
278 )))
279
280 (% class="box infomessage" %)
281 (((
282 **AT+TRIG2=1,100 (set DI2 port to trigger on high level, valid signal is 100ms ) **
283 )))
284
285 (% class="box infomessage" %)
286 (((
287 **AT+SETCNT=1,60   (Set COUNT1 value to 60)**
288 )))
289
290 (% class="box infomessage" %)
291 (((
292 **AT+SETCNT=2,60   (Set COUNT2 value to 60)**
293 )))
294
295 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
296
297 **LT22222-L**: This mode the DI1 is used as a counting pin.
298
299 [[image:image-20220523181246-5.png]]
300
301 (((
302 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
303 )))
304
305 [[image:image-20220523181301-6.png]]
306
307 * RO is for relay. ROx=1 : close,ROx=0 always open.
308 * FIRST: Indicate this is the first packet after join network.
309 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
310
311 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
312
313 **To use counting mode, please run:**
314
315 (% class="box infomessage" %)
316 (((
317 **AT+MOD=3**
318 )))
319
320 (% class="box infomessage" %)
321 (((
322 **ATZ**
323 )))
324
325 Other AT Commands for counting are similar to [[MOD2 Counting Command>>path:#COUNT_COMMAND]].
326
327 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
328
329 **LT22222-L**: This mode the DI1 is used as a counting pin.
330
331 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
332
333 [[image:image-20220523181903-8.png]]
334
335 (((
336 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
337 )))
338
339 [[image:image-20220523181727-7.png]]
340
341 * RO is for relay. ROx=1 : close,ROx=0 always open.
342 * FIRST: Indicate this is the first packet after join network.
343 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
344
345 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
346
347 **To use this mode, please run:**
348
349 (% class="box infomessage" %)
350 (((
351 **AT+MOD=4**
352 )))
353
354 (% class="box infomessage" %)
355 (((
356 **ATZ**
357 )))
358
359
360 Other AT Commands for counting are similar to [[MOD2 Counting Command>>path:#COUNT_COMMAND]].
361
362 **Plus below command for AVI1 Counting:**
363
364 (% class="box infomessage" %)
365 (((
366 **AT+SETCNT=3,60   (set AVI Count to 60)**
367 )))
368
369 (% class="box infomessage" %)
370 (((
371 **AT+VOLMAX=20000   (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
372 )))
373
374 (% class="box infomessage" %)
375 (((
376 **AT+VOLMAX=20000,0   (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
377 )))
378
379 (% class="box infomessage" %)
380 (((
381 **AT+VOLMAX=20000,1   (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
382 )))
383
384 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
385
386 **LT22222-L**: This mode the DI1 is used as a counting pin.
387
388 (% border="1" style="background-color:#f7faff" %)
389 |(% style="width:93px" %)Size(bytes)|(% style="width:112px" %)2|(% style="width:105px" %)2|(% style="width:449px" %)2|2|1|1|1
390 |(% style="width:93px" %)Value|(% style="width:112px" %)AVI1 voltage|(% style="width:105px" %)AVI2 voltage|(% style="width:449px" %)ACI1 Current| | | |
391 |(% style="width:93px" %)Value|(% style="width:112px" %)(((
392 AVI1 voltage
393 )))|(% style="width:105px" %)(((
394 AVI2 voltage
395 )))|(% style="width:449px" %)(((
396 ACI1 Current
397 )))|COUNT1|DIDORO*|(((
398 Reserve
399
400
401 )))|MOD
402
403 **DIDORO** is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
404
405 (% border="1" style="background-color:#f7faff" %)
406 |bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
407 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
408
409 * RO is for relay. ROx=1 : close,ROx=0 always open.
410 * FIRST: Indicate this is the first packet after join network.
411 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
412
413 Note: DO3 is not valid for LT-22222-L.
414
415
416 To use this mode, please run:
417
418 AT+MOD=5
419
420 ATZ
421
422
423 Other AT Commands for counting are similar to [[MOD2 Counting Command>>path:#COUNT_COMMAND]].
424
425
426
427
428
429 1.
430 11.
431 111. AT+ADDMOD=6. (Trigger Mode, Optional)
432
433 **This mode is an optional mode for trigger purpose. It can run together with other mode.**
434
435 For example, if user has configured below commands:
436
437 * AT+MOD=1   à The normal working mode
438 * AT+ADDMOD6=1    à Enable trigger
439
440 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
441
442 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN **unconfirmed** data type
443 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN **CONFIRMED data type.**
444
445 **AT Command to set Trigger Condition**:
446
447 **Trigger base on voltage**:
448
449 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
450
451 Example:
452
453 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
454
455 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
456
457
458 **Trigger base on current**:
459
460 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
461
462 Example:
463
464 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
465
466
467 **Trigger base on DI status**:
468
469 DI status trigger Flag.
470
471 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
472
473 Example:
474
475 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
476
477
478
479
480
481 **Downlink Command to set Trigger Condition**
482
483 Type Code: 0xAA. Downlink command same as AT Command [[AT+AVLIM, AT+ACLIM>>path:#AT_Trigger]]
484
485 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
486
487 AA: Code for this downlink Command:
488
489 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
490
491 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
492
493 yy2 yy2: AC1 or AV1 high limit.
494
495 yy3 yy3: AC2 or AV2 low limit.
496
497 Yy4 yy4: AC2 or AV2 high limit.
498
499
500 Example1: AA 00 13 88 00 00 00 00 00 00
501
502 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
503
504 Example2: AA 02 01 00
505
506 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
507
508
509
510
511 **Trigger Settings Payload Explanation:**
512
513 MOD6 Payload : total 11 bytes payload
514
515 (% border="1" style="background-color:#f7faff" %)
516 |Size(bytes)|1|1|1|6|1|1
517 |Value|(((
518 TRI_A
519
520 FLAG
521 )))|(((
522 TRI_A
523
524 Status
525 )))|(((
526 TRI_DI
527
528 FLAG+STA
529 )))|Reserve|Enable/Disable MOD6|(((
530 MOD
531
532 (6)
533 )))
534
535 **TRI FLAG1** is a combination to show if trigger is set for this part. Totally 1byte as below
536
537 (% border="1" style="background-color:#f7faff" %)
538 |bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
539 |(((
540 AV1_
541
542 LOW
543 )))|(((
544 AV1_
545
546 HIGH
547 )))|(((
548 AV2_
549
550 LOW
551 )))|(((
552 AV2_
553
554 HIGH
555 )))|(((
556 AC1_
557
558 LOW
559 )))|(((
560 AC1_
561
562 HIGH
563 )))|(((
564 AC2_
565
566 LOW
567 )))|(((
568 AC2_
569
570 HIGH
571 )))
572
573 * Each bits shows if the corresponding trigger has been configured.
574
575 Example:
576
577 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
578
579
580 **TRI Status1** is a combination to show which condition is trigger. Totally 1byte as below
581
582 (% border="1" style="background-color:#f7faff" %)
583 |bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
584 |(((
585 AV1_
586
587 LOW
588 )))|(((
589 AV1_
590
591 HIGH
592 )))|(((
593 AV2_
594
595 LOW
596 )))|(((
597 AV2_
598
599 HIGH
600 )))|(((
601 AC1_
602
603 LOW
604 )))|(((
605 AC1_
606
607 HIGH
608 )))|(((
609 AC2_
610
611 LOW
612 )))|(((
613 AC2_
614
615 HIGH
616 )))
617
618 * Each bits shows which status has been trigger on this uplink.
619
620 Example:
621
622 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
623
624
625
626
627 **TRI_DI FLAG+STA **is a combination to show which condition is trigger. Totally 1byte as below
628
629 (% border="1" style="background-color:#f7faff" %)
630 |bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
631 |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
632
633 * Each bits shows which status has been trigger on this uplink.
634
635 Example:
636
637 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
638
639 00000101: Means both DI1 and DI2 trigger are enabled.
640
641
642 **Enable/Disable MOD6 **: 0x01: MOD6 is enable. 0x00: MOD6 is disable.
643
644
645 Downlink command to poll MOD6 status:
646
647 AB 06
648
649 When device got this command, it will send the MOD6 payload.
650
651
652 1.
653 11.
654 111. Payload Decoder
655
656 **Decoder for TTN/loraserver/ChirpStack**: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/Payload_decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/Payload_decoder/]]
657
658
659
660
661
662
663
664 1.
665 11. ​Configure LT via AT or Downlink
666
667 User can configure LT I/O Controller via [[AT Commands >>path:#_​Using_the_AT]]or LoRaWAN Downlink Commands
668
669 There are two kinds of Commands:
670
671 * **Common Commands**: They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: http:~/~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands
672
673 * **Sensor Related Commands**: These commands are special designed for LT-22222-L.  User can see these commands below:
674
675 1.
676 11.
677 111. Common Commands:
678
679 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: http:~/~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands
680
681
682 1.
683 11.
684 111. Sensor related commands:
685
686 ==== Set Transmit Interval ====
687
688 Set device uplink interval.
689
690 * AT Command:
691
692 AT+TDC=N
693
694 Example: AT+TDC=30000. Means set interval to 30 seconds
695
696
697 * Downlink Payload (prefix 0x01):
698
699 0x01 aa bb cc     ~/~/ Same as AT+TDC=0x(aa bb cc)
700
701
702 ==== Set Work Mode (AT+MOD) ====
703
704 Set work mode.
705
706 * AT Command:
707
708 AT+MOD=N 
709
710 Example: AT+MOD=2. Set work mode to Double DI counting mode
711
712
713 * Downlink Payload (prefix 0x0A):
714
715 0x0A aa     ~/~/ Same as AT+MOD=aa
716
717
718
719 ==== Poll an uplink ====
720
721 * AT Command:
722
723 There is no AT Command to poll uplink
724
725
726 * Downlink Payload (prefix 0x08):
727
728 0x08 FF     ~/~/ Poll an uplink,
729
730 Example: 0x08FF, ask device to send an Uplink
731
732
733 ==== Enable Trigger Mode ====
734
735 Use of trigger mode, please check [[ADDMOD6>>path:#MOD6]]
736
737 * AT Command:
738
739 AT+ADDMOD6=1 or 0
740
741 1: Enable Trigger Mode
742
743 0: Disable Trigger Mode
744
745
746 * Downlink Payload (prefix 0x0A 06):
747
748 0x0A 06 aa     ~/~/ Same as AT+ADDMOD6=aa,
749
750
751 ==== Poll trigger settings ====
752
753 Poll trigger settings,
754
755 * AT Command:
756
757 There is no AT Command for this feature.
758
759
760 * Downlink Payload (prefix 0x AB 06):
761
762 0xAB 06  ~/~/ Poll trigger settings, device will uplink [[trigger settings>>path:#Trigger_Settings]] once receive this command
763
764
765 ==== Enable / Disable DI1/DI2/DI3 as trigger ====
766
767 Enable Disable DI1/DI2/DI2 as trigger,
768
769 * AT Command:
770
771 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
772
773 Example:
774
775 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
776
777
778
779 * Downlink Payload (prefix 0xAA 02):
780
781 0xAA 02 aa bb  ~/~/ Same as AT+DTRI=aa,bb
782
783
784
785 ==== Trigger1 – Set DI1 or DI3 as trigger ====
786
787 Set DI1 or DI3(for LT-33222-L) trigger.
788
789 * AT Command:
790
791 AT+TRIG1=a,b
792
793 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
794
795 b : delay timing.
796
797 Example:
798
799 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
800
801
802 * Downlink Payload (prefix 0x09 01 ):
803
804 0x09 01 aa bb cc ~/~/ same as AT+TRIG1=aa,0x(bb cc)
805
806
807 ==== Trigger2 – Set DI2 as trigger ====
808
809 Set DI2 trigger.
810
811 * AT Command:
812
813 AT+TRIG2=a,b
814
815 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
816
817 b : delay timing.
818
819 Example:
820
821 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
822
823
824 * Downlink Payload (prefix 0x09 02 ):
825
826 0x09 02 aa bb cc ~/~/ same as AT+TRIG1=aa,0x(bb cc)
827
828
829 ==== Trigger – Set AC (current) as trigger ====
830
831 Set current trigger , base on AC port. See [[trigger mode>>path:#MOD6]]
832
833 * AT Command:
834
835 AT+ACLIM. See [[trigger mode>>path:#MOD6]]
836
837
838 * Downlink Payload (prefix 0xAA 01 ):
839
840 0x AA 01 aa bb cc dd ee ff gg hh ~/~/ same as AT+ACLIM See [[trigger mode>>path:#MOD6]]
841
842
843 ==== Trigger – Set AV (voltage) as trigger ====
844
845 Set current trigger , base on AV port. See [[trigger mode>>path:#MOD6]]
846
847 * AT Command:
848
849 AT+AVLIM. See [[trigger mode>>path:#MOD6]]
850
851
852 * Downlink Payload (prefix 0xAA 00 ):
853
854 0x AA 00 aa bb cc dd ee ff gg hh ~/~/ same as AT+AVLIM See [[trigger mode>>path:#MOD6]]
855
856 ==== Trigger – Set minimum interval ====
857
858 Set AV and AC trigger minimum interval, system won’t response to the second trigger within this set time after the first trigger.
859
860 * AT Command:
861
862 AT+ATDC=5. Device won’t response the second trigger within 5 minute after the first trigger.
863
864
865 * Downlink Payload (prefix 0xAC ):
866
867 0x AC aa bb ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
868
869
870 ==== DO ~-~- Control Digital Output DO1/DO2/DO3 ====
871
872 * AT Command:
873
874 There is no AT Command to control Digital Output
875
876
877 * Downlink Payload (prefix 0x02):
878
879 0x02 aa bb cc     ~/~/ Set DO1/DO2/DO3 output
880
881 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
882
883 01: Low,  00: High ,  11: No action
884
885 (% border="1" style="background-color:#f7faff" %)
886 |Downlink Code|DO1|DO2|DO3
887 |02  01  00  11|Low|High|No Action
888 |02  00  11  01|High|No Action|Low
889 |02  11  01  00|No Action|Low|High
890
891 Note: For LT-22222-L, there is no DO3, the last byte can use any value.
892
893 Device will upload a packet if downlink code executes successfully.
894
895
896
897
898
899 ==== DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
900
901 * AT Command:
902
903 There is no AT Command to control Digital Output
904
905
906 * Downlink Payload (prefix 0xA9):
907
908 0xA9 aa bb cc     ~/~/ Set DO1/DO2/DO3 output with time control
909
910 This is to control the digital output time of DO pin. Include four bytes:
911
912 **First Byte:** Type code (0xA9)
913
914 **Second Byte**: Inverter Mode
915
916 01: DO pins will change back to original state after timeout.
917
918 00: DO pins will change to an inverter state after timeout 
919
920
921 **Third Byte**: Control Method and Ports status:
922
923 (% border="1" style="background-color:#f7faff" %)
924 |Second Byte|Status
925 |0x01|DO1 set to low
926 |0x00|DO1 set to high
927 |0x11|DO1 NO Action
928
929 **Fourth Byte**: Control Method and Ports status:
930
931 (% border="1" style="background-color:#f7faff" %)
932 |Second Byte|Status
933 |0x01|DO2 set to low
934 |0x00|DO2 set to high
935 |0x11|DO2 NO Action
936
937 **Fifth Byte**: Control Method and Ports status:
938
939 (% border="1" style="background-color:#f7faff" %)
940 |Second Byte|Status
941 |0x01|DO3 set to low
942 |0x00|DO3 set to high
943 |0x11|DO3 NO Action
944
945 **Sixth and Seventh Byte**:
946
947 Latching time. Unit: ms
948
949 Device will upload a packet if downlink code executes successfully.
950
951
952
953 Example payload:
954
955 1. A9 01 01 01 01 07 D0
956
957 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
958
959
960 1. A9 01 00 01 11 07 D0
961
962 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
963
964
965 1. A9 00 00 00 00 07 D0
966
967 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
968
969
970 1. A9 00 11 01 00 07 D0
971
972 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
973
974
975
976
977 ==== Relay ~-~- Control Relay Output RO1/RO2 ====
978
979 * AT Command:
980
981 There is no AT Command to control Relay Output
982
983
984 * Downlink Payload (prefix 0x03):
985
986 0x03 aa bb     ~/~/ Set RO1/RO2 output
987
988 If payload = 0x030100, it means set RO1 to close and RO2 to open.
989
990 01: Close ,  00: Open , 11: No action
991
992 (% border="1" style="background-color:#f7faff" %)
993 |Downlink Code|RO1|RO2
994 |03  00  11|Open|No Action
995 |03  01  11|Close|No Action
996 |03  11  00|No Action|Open
997 |03  11  01|No Action|Close
998 |03  00  00|Open|Open
999 |03  01  01|Close|Close
1000 |03  01  00|Close|Open
1001 |03  00  01|Open|Close
1002
1003 Device will upload a packet if downlink code executes successfully.
1004
1005
1006 ==== Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1007
1008 * AT Command:
1009
1010 There is no AT Command to control Relay Output
1011
1012
1013 * Downlink Payload (prefix 0x05):
1014
1015 0x05 aa bb cc dd     ~/~/ Set RO1/RO2 relay with time control:
1016
1017 This is to control the relay output time of relay. Include four bytes:
1018
1019 **First Byte:** Type code (0x05)
1020
1021 **Second Byte(aa)**: Inverter Mode
1022
1023 01: Relays will change back to original state after timeout.
1024
1025 00: Relays will change to an inverter state after timeout
1026
1027
1028 **Third Byte(bb)**: Control Method and Ports status:
1029
1030 (% border="1" style="background-color:#f7faff" %)
1031 |Value|Status
1032 |0x11|RO1 and RO2 to NO
1033 |0x10|RO2 to NO, RO1 to NC
1034 |0x01|RO2 to NC, RO1 to NO
1035 |0x00|RO1 and RO2 to NC.
1036 |0x20|RO1 No Action, RO2 to NC
1037 |0x21|RO1 No Action, RO2 to NO
1038 |0x02|RO1 to NC, RO2 No Action
1039 |0x12|RO1 to NO, RO2 No Action
1040
1041 **Fourth / Fifth Bytes (cc)**: Latching time. Unit: ms
1042
1043 Device will upload a packet if downlink code executes successfully.
1044
1045
1046
1047 **Example payload:**
1048
1049 1. 05 01 11 07 D0
1050
1051 Relay1 and Relay 2 will be set to NO , last 2 seconds, then change back to original state.
1052
1053
1054 1. 05 01 10 07 D0
1055
1056 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then both change back to original state.
1057
1058
1059 1. 05 00 01 07 D0
1060
1061 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then relay change to NO, Relay2 change to NC.
1062
1063
1064 1. 05 00 00 07 D0
1065
1066 Relay 1 & relay2 will change to NC, last 2 seconds, then both change to NO.
1067
1068
1069
1070
1071
1072
1073 ==== Counting ~-~- Voltage threshold counting ====
1074
1075 When voltage exceed the threshold, count. Feature see [[MOD4>>path:#MOD4]]
1076
1077 * AT Command:
1078
1079 AT+VOLMAX    ~/~/ See [[MOD4>>path:#MOD4]]
1080
1081
1082 * Downlink Payload (prefix 0xA5):
1083
1084 0xA5 aa bb cc   ~/~/ Same as AT+VOLMAX=(aa bb),cc
1085
1086
1087 ==== Counting ~-~- Pre-configure the Count Number ====
1088
1089 * AT Command:
1090
1091 AT+SETCNT=aa,(bb cc dd ee)
1092
1093 aa: 1: Set count1,
1094
1095 2: Set count2,
1096
1097 3: Set AV1 count
1098
1099 Bb cc dd ee: number to be set
1100
1101
1102 * Downlink Payload (prefix 0xA8):
1103
1104 0x A8 aa bb cc dd ee     ~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1105
1106
1107
1108
1109
1110 ==== Counting ~-~- Clear Counting ====
1111
1112 Clear counting for counting mode
1113
1114 * AT Command:
1115
1116 AT+CLRCOUNT ~/~/ clear all counting
1117
1118
1119 * Downlink Payload (prefix 0xA6):
1120
1121 0x A6 01     ~/~/ clear all counting,
1122
1123
1124
1125
1126 ==== Counting ~-~- Change counting mode save time ====
1127
1128 * AT Command:
1129
1130 AT+COUTIME=60  ~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1131
1132
1133 * Downlink Payload (prefix 0xA7):
1134
1135 0x A7 aa bb cc     ~/~/ same as AT+COUTIME =aa bb cc,
1136
1137 range: aa bb cc:0 to 16777215,  (unit:second)
1138
1139
1140
1141
1142 1.
1143 11. Integrate with Mydevice
1144
1145 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1146
1147
1148 Step 1: Be sure that your device is programmed and properly connected to the network at this time.
1149
1150 Step 2: To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1151
1152
1153 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]]
1154
1155
1156 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
1157
1158
1159 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]]
1160
1161
1162
1163 Step 3: Create an account or log in Mydevices.
1164
1165 Step 4: Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.
1166
1167 Search under The things network
1168
1169 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
1170
1171
1172 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1173
1174 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]]
1175
1176
1177 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
1178
1179
1180 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]
1181
1182
1183 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
1184
1185
1186 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
1187
1188
1189 1.
1190 11. Interface Detail
1191 111. Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active )
1192
1193 Support NPN Type sensor
1194
1195 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]]
1196
1197
1198
1199 1.
1200 11.
1201 111. Digital Input Port: DI1/DI2 ( For LT-22222-L)
1202
1203 The DI port of LT-22222-L can support NPN or PNP output sensor.
1204
1205 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high
1206
1207 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1208
1209 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1210
1211
1212 **Example1**: Connect to a Low active sensor.
1213
1214 This type of sensor will output a low signal GND when active.
1215
1216 * Connect sensor’s output to DI1-
1217 * Connect sensor’s VCC to DI1+.
1218
1219 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1220
1221 //IF//[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]] = DI1+ / 1K.
1222
1223 If DI1+ = 12v, the //IF//[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]] = 12mA , So the LT-22222-L will be able to detect this active signal.
1224
1225
1226 **Example2**: Connect to a High active sensor.
1227
1228 This type of sensor will output a high signal (example 24v) when active.
1229
1230 * Connect sensor’s output to DI1+
1231 * Connect sensor’s GND DI1-.
1232
1233 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1234
1235 //IF//[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]] = DI1+ / 1K.
1236
1237 If DI1+ = 24v, the //IF//[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]] = 24mA , So the LT-22222-L will be able to detect this high active signal.
1238
1239
1240 **Example3**: Connect to a 220v high active sensor.公司测试一下
1241
1242 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1243
1244 * Connect sensor’s output to DI1+ with a serial 50K resistor
1245 * Connect sensor’s GND DI1-.
1246
1247 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1248
1249 //IF//[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]] = DI1+ / 51K.
1250
1251 If sensor output is 220v, the //IF//[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]] = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1252
1253
1254 1.
1255 11.
1256 111. Digital Output Port: DO1/DO2 /DO3
1257
1258 NPN output: GND or Float. Max voltage can apply to output pin is 36v.
1259
1260 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
1261
1262
1263
1264
1265 1.
1266 11.
1267 111. Analog Input Interface
1268
1269 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1270
1271 AC2 = (IN2 voltage )/12
1272
1273 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image024.png]]
1274
1275
1276
1277 Example to connect a 4~~20mA sensor
1278
1279 We take the wind speed sensor as an example for reference only.
1280
1281 Specifications of the wind speed sensor:
1282
1283 Red:12~~24v
1284
1285 Yellow:4~~20mA
1286
1287 Black:GND
1288
1289
1290 Connection diagram:
1291
1292 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
1293
1294 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
1295
1296
1297
1298 1.
1299 11.
1300 111. Relay Output
1301
1302 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device’s Power Line to in serial of RO1_1 and RO_2. Such as below:
1303
1304 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png]]
1305
1306
1307 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png]]
1308
1309
1310
1311
1312
1313 1.
1314 11. LEDs Indicators
1315
1316 (% border="1" style="background-color:#f7faff" %)
1317 |**LEDs**|**Feature**
1318 |**PWR**|Always on if there is power
1319 |**SYS**|After device is powered on, the SYS will **fast blink in GREEN** for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be **on GREEN for 5 seconds. **SYS will **blink Blue** on every upload and **blink Green** once receive a downlink message.
1320 |**TX**|(((
1321 Device boot: TX blinks 5 times.
1322
1323 Successful join network: TX ON for 5 seconds.
1324
1325 Transmit a LoRa packet: TX blinks once
1326 )))
1327 |**RX**|RX blinks once when receive a packet.
1328 |**DO1**|
1329 |**DO2**|
1330 |**DO3**|
1331 |**DI2**|(((
1332 For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1333
1334 For LT-33222-L: ON when DI2 is low, LOW when DI2 is high
1335 )))
1336 |**DI2**|(((
1337 For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1338
1339 For LT-33222-L: ON when DI2 is low, LOW when DI2 is high
1340 )))
1341 |**DI3**|For LT-33222-L ONLY: ON when DI3 is low, LOW when DI3 is high
1342 |**DI2**|(((
1343 For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1344
1345 For LT-33222-L: ON when DI2 is low, LOW when DI2 is high
1346 )))
1347 |**RO1**|
1348 |**RO2**|
1349
1350 1. Use AT Command
1351 11. Access AT Command
1352
1353 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1354
1355 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]]
1356
1357
1358 In PC, User needs to set **serial tool**(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to **9600** to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:**123456**) to active it. As shown below:
1359
1360 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
1361
1362
1363 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1364
1365 AT+<CMD>?        : Help on <CMD>
1366
1367 AT+<CMD>         : Run <CMD>
1368
1369 AT+<CMD>=<value> : Set the value
1370
1371 AT+<CMD>=?       : Get the value
1372
1373 ATZ: Trig a reset of the MCU
1374
1375 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1376
1377 AT+DEUI: Get or Set the Device EUI
1378
1379 AT+DADDR: Get or Set the Device Address
1380
1381 AT+APPKEY: Get or Set the Application Key
1382
1383 AT+NWKSKEY: Get or Set the Network Session Key
1384
1385 AT+APPSKEY: Get or Set the Application Session Key
1386
1387 AT+APPEUI: Get or Set the Application EUI
1388
1389 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1390
1391 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1392
1393 AT+DR: Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1394
1395 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1396
1397 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1398
1399 AT+RX2FQ: Get or Set the Rx2 window frequency
1400
1401 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1402
1403 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1404
1405 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1406
1407 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1408
1409 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1410
1411 AT+NJM: Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1412
1413 AT+NWKID: Get or Set the Network ID
1414
1415 AT+FCU: Get or Set the Frame Counter Uplink
1416
1417 AT+FCD: Get or Set the Frame Counter Downlink
1418
1419 AT+CLASS: Get or Set the Device Class
1420
1421 AT+JOIN: Join network
1422
1423 AT+NJS: Get OTAA Join Status
1424
1425 AT+SENDB: Send hexadecimal data along with the application port
1426
1427 AT+SEND: Send text data along with the application port
1428
1429 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1430
1431 AT+RECV: Print last received data in raw format
1432
1433 AT+VER: Get current image version and Frequency Band
1434
1435 AT+CFM: Get or Set the confirmation mode (0-1)
1436
1437 AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1438
1439 AT+SNR: Get the SNR of the last received packet
1440
1441 AT+RSSI: Get the RSSI of the last received packet
1442
1443 AT+TDC: Get or set the application data transmission interval in ms
1444
1445 AT+PORT: Get or set the application port
1446
1447 AT+DISAT: Disable AT commands
1448
1449 AT+PWORD: Set password, max 9 digits
1450
1451 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1452
1453 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1454
1455 AT+CFG: Print all settings
1456
1457
1458
1459 1.
1460 11. Common AT Command Sequence
1461 111. Multi-channel ABP mode (Use with SX1301/LG308)
1462
1463 If device has not joined network yet:
1464
1465 123456
1466
1467 AT+FDR
1468
1469 123456
1470
1471 AT+NJM=0
1472
1473 ATZ
1474
1475
1476 If device already joined network:
1477
1478 AT+NJM=0
1479
1480 ATZ
1481
1482 1.
1483 11.
1484 111. Single-channel ABP mode (Use with LG01/LG02)
1485
1486 123456   Enter Password to have AT access.
1487
1488 AT+FDR   Reset Parameters to Factory Default, Keys Reserve
1489
1490 123456   Enter Password to have AT access.
1491
1492 AT+CLASS=C Set to work in CLASS C
1493
1494 AT+NJM=0 Set to ABP mode
1495
1496 AT+ADR=0 Set the Adaptive Data Rate Off
1497
1498 AT+DR=5  Set Data Rate
1499
1500 AT+TDC=60000  Set transmit interval to 60 seconds
1501
1502 AT+CHS=868400000 Set transmit frequency to 868.4Mhz
1503
1504 AT+RX2FQ=868400000 Set RX2Frequency to 868.4Mhz (according to the result from server)
1505
1506 AT+RX2DR=5  Set RX2DR to match the downlink DR from server. see below
1507
1508 AT+DADDR=26 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1509
1510 ATZ          Reset MCU
1511
1512 **Note:**
1513
1514 1. Make sure the device is set to ABP mode in the IoT Server.
1515 1. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1516 1. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1517 1. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1518
1519 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png]]
1520
1521
1522 1.
1523 11.
1524 111. Change to Class A
1525
1526 If sensor JOINED
1527
1528 AT+CLASS=A
1529
1530 ATZ
1531
1532
1533
1534
1535
1536 1. FAQ
1537
1538 1.
1539 11. How to upgrade the image?
1540
1541 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1542
1543 * Support new features
1544 * For bug fix
1545 * Change LoRaWAN bands.
1546
1547 Below shows the hardware connection for how to upload an image to the LT:
1548
1549 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]]
1550
1551
1552 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1553
1554 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1555
1556 **Step3: **Open flashloader; choose the correct COM port to update.
1557
1558 **For LT-33222-L**:
1559
1560 Hold down the PRO button and then momentarily press the RST reset button and the **DO2 led** will change from OFF to ON. When **DO2 LED** is on, it means the device is in download mode.
1561
1562 **For LT-22222-L**:
1563
1564 Hold down the PRO button and then momentarily press the RST reset button and the **DO1 led** will change from OFF to ON. When **DO1 LED** is on, it means the device is in download mode.
1565
1566
1567
1568 |(((
1569 Board detected
1570 )))
1571
1572 |(((
1573
1574 )))
1575
1576 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png]]
1577
1578
1579
1580 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image034.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]]
1581
1582
1583 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1584
1585
1586 **Notice**: In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1587
1588 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1589
1590
1591 1.
1592 11. How to change the LoRa Frequency Bands/Region?
1593
1594 User can follow the introduction for [[how to upgrade image>>path:#upgrade_image]]. When download the images, choose the required image file for download.
1595
1596
1597 1.
1598 11. How to set up LT to work with Single Channel Gateway such as LG01/LG02?
1599
1600 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
1601
1602 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
1603
1604
1605 **Step1**: Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
1606
1607 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image039.png]]
1608
1609 Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.
1610
1611
1612 **Step2: **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
1613
1614 123456   Enter Password to have AT access.
1615
1616 AT+FDR   Reset Parameters to Factory Default, Keys Reserve
1617
1618 123456   Enter Password to have AT access.
1619
1620 AT+NJM=0 Set to ABP mode
1621
1622 AT+ADR=0 Set the Adaptive Data Rate Off
1623
1624 AT+DR=5  Set Data Rate (Set AT+DR=3 for 915 band)
1625
1626 AT+TDC=60000  Set transmit interval to 60 seconds
1627
1628 AT+CHS=868400000 Set transmit frequency to 868.4Mhz
1629
1630 AT+DADDR=26 01 1A F1 Set Device Address to 26 01 1A F1
1631
1632 ATZ                Reset MCU
1633
1634 As shown in below:
1635
1636 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image040.png]]
1637
1638
1639
1640 1.
1641 11. Can I see counting event in Serial?
1642
1643 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn’t support AT+DEBUG. User can update to latest firmware first.
1644
1645
1646
1647
1648 1. Trouble Shooting     
1649 11. Downlink doesn’t work, how to solve it?
1650
1651 Please see this link for how to debug:
1652
1653 [[http:~~/~~/wiki.dragino.com/index.php?title=LoRaWAN_Communication_Debug#How_it_work>>url:http://wiki.dragino.com/index.php?title=LoRaWAN_Communication_Debug#How_it_work]]
1654
1655
1656 1.
1657 11. Have trouble to upload image.
1658
1659 See this link for trouble shooting:
1660
1661 [[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Trouble_Shooting#UART_upgrade_trouble_shooting>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Trouble_Shooting#UART_upgrade_trouble_shooting]]
1662
1663
1664 1.
1665 11. Why I can’t join TTN in US915 /AU915 bands?
1666
1667 It might be about the channels mapping. Please see this link for detail:
1668
1669 [[http:~~/~~/wiki.dragino.com/index.php?title=LoRaWAN_Communication_Debug#Notice_of_US915.2FCN470.2FAU915_Frequency_band>>url:http://wiki.dragino.com/index.php?title=LoRaWAN_Communication_Debug#Notice_of_US915.2FCN470.2FAU915_Frequency_band]]
1670
1671
1672
1673
1674 1. Order Info
1675
1676 **For LT-33222-L-XXX or LT-22222-L-XXX:**
1677
1678 **XXX:**
1679
1680 * **EU433**: LT with frequency bands EU433
1681 * **EU868**: LT with frequency bands EU868
1682 * **KR920**: LT with frequency bands KR920
1683 * **CN470**: LT with frequency bands CN470
1684 * **AS923**: LT with frequency bands AS923
1685 * **AU915**: LT with frequency bands AU915
1686 * **US915**: LT with frequency bands US915
1687 * **IN865**: LT with frequency bands IN865
1688 * **CN779**: LT with frequency bands CN779
1689
1690 1. Packing Info
1691
1692 **Package Includes**:
1693
1694 * LT I/O Controller x 1
1695 * Stick Antenna for LoRa RF part x 1
1696 * Bracket for controller x1
1697 * Program cable x 1
1698
1699 **Dimension and weight**:
1700
1701 * Device Size: 13.5 x 7 x 3 cm
1702 * Device Weight: 105g
1703 * Package Size / pcs : 14.5 x 8 x 5 cm
1704 * Weight / pcs : 170g
1705
1706 1. Support
1707
1708 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1709 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1710
1711 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0