Version 209.1 by Dilisi S on 2024/11/22 19:34

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19
20 = 1. Introduction =
21
22 == 1.1 What is the LT-22222-L I/O Controller? ==
23
24 (((
25 (((
26 {{info}}
27 **This manual is also applicable to the LT-33222-L.**
28 {{/info}}
29
30 The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN end device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
31
32 The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
33 )))
34 )))
35
36 (((
37 With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
38 )))
39
40 (((
41 You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
42
43 * If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Stack Community Network), you can select a network and register the LT-22222-L I/O controller with it.
44 * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
45 * Setup your own private LoRaWAN network.
46 )))
47
48 (((
49
50
51 The network diagram below illustrates how the LT-22222-L communicates with a typical LoRaWAN network.
52 )))
53
54 (% class="wikigeneratedid" %)
55 [[image:lorawan-nw.jpg||height="354" width="900"]]
56
57 == 1.2 Specifications ==
58
59 (% style="color:#037691" %)**Hardware System:**
60
61 * STM32L072xxxx MCU
62 * SX1276/78 Wireless Chip 
63 * Power Consumption:
64 ** Idle: 4mA@12V
65 ** 20dB Transmit: 34mA@12V
66 * Operating Temperature: -40 ~~ 85 Degrees, No Dew
67
68 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
69
70 * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50V, or 220V with optional external resistor)
71 * 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
72 * 2 x Relay Output (5A@250VAC / 30VDC)
73 * 2 x 0~~20mA Analog Input (res:0.01mA)
74 * 2 x 0~~30V Analog Input (res:0.01V)
75 * Power Input 7~~ 24V DC. 
76
77 (% style="color:#037691" %)**LoRa Spec:**
78
79 * Frequency Range:
80 ** Band 1 (HF): 862 ~~ 1020 MHz
81 ** Band 2 (LF): 410 ~~ 528 MHz
82 * 168 dB maximum link budget.
83 * +20 dBm - 100 mW constant RF output vs.
84 * +14 dBm high-efficiency PA.
85 * Programmable bit rate up to 300 kbps.
86 * High sensitivity: down to -148 dBm.
87 * Bullet-proof front end: IIP3 = -12.5 dBm.
88 * Excellent blocking immunity.
89 * Low RX current of 10.3 mA, 200 nA register retention.
90 * Fully integrated synthesizer with a resolution of 61 Hz.
91 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
92 * Built-in bit synchronizer for clock recovery.
93 * Preamble detection.
94 * 127 dB Dynamic Range RSSI.
95 * Automatic RF Sense and CAD with ultra-fast AFC.
96 * Packet engine up to 256 bytes with CRC.
97
98 == 1.3 Features ==
99
100 * LoRaWAN Class A & Class C modes
101 * Optional Customized LoRa Protocol
102 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
103 * AT Commands to change parameters
104 * Remotely configure parameters via LoRaWAN Downlink
105 * Firmware upgradable via program port
106 * Counting
107
108 == 1.4 Applications ==
109
110 * Smart buildings & home automation
111 * Logistics and supply chain management
112 * Smart metering
113 * Smart agriculture
114 * Smart cities
115 * Smart factory
116
117 == 1.5 Hardware Variants ==
118
119 (% style="width:524px" %)
120 |(% style="width:94px" %)**Model**|(% style="width:98px" %)**Photo**|(% style="width:329px" %)**Description**
121 |(% style="width:94px" %)**LT33222-L**|(% style="width:98px" %)(((
122
123 )))|(% style="width:329px" %)(((
124 * 2 x Digital Input (Bi-direction)
125 * 2 x Digital Output
126 * 2 x Relay Output (5A@250VAC / 30VDC)
127 * 2 x 0~~20mA Analog Input (res:0.01mA)
128 * 2 x 0~~30V Analog Input (res:0.01v)
129 * 1 x Counting Port
130 )))
131
132 == 2. Assembling the device ==
133
134 == 2.1 Connecting the antenna ==
135
136 Connect the LoRa antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper screw terminal block. Secure the antenna by tightening it clockwise.
137
138 {{warning}}
139 **Warning! Do not power on the device without connecting the antenna.**
140 {{/warning}}
141
142 == 2.2 Terminals ==
143
144 The  LT-22222-L has two screw terminal blocks. The upper screw treminal block has 6 screw terminals and the lower screw terminal block has 10 screw terminals.
145
146 **Upper screw terminal block (from left to right):**
147
148 (% style="width:634px" %)
149 |=(% style="width: 295px;" %)Screw Terminal|=(% style="width: 338px;" %)Function
150 |(% style="width:295px" %)GND|(% style="width:338px" %)Ground
151 |(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
152 |(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
153 |(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
154 |(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
155 |(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
156
157 **Lower screw terminal block (from left to right):**
158
159 (% style="width:633px" %)
160 |=(% style="width: 296px;" %)Screw Terminal|=(% style="width: 334px;" %)Function
161 |(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
162 |(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
163 |(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
164 |(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
165 |(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
166 |(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
167 |(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
168 |(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
169 |(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
170 |(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
171
172 == 2.3 Connecting LT-22222-L to a Power Source ==
173
174 The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect your power supply’s **positive wire** to the **VIN** and the **negative wire** to the **GND** screw terminals. The power indicator **(PWR) LED** will turn on when the device is properly powered.
175
176 {{warning}}
177 **We recommend that you power on the LT-22222-L after configuring its registration information with a LoRaWAN network server. Otherwise, the device will continuously send join-request messages to attempt to join a LoRaWAN network but will fail.**
178 {{/warning}}
179
180
181 [[image:1653297104069-180.png]]
182
183
184 = 3. Registering LT-22222-L with a LoRaWAN Network Server =
185
186 The LT-22222-L supports both OTAA (Over-the-Air Activation) and ABP (Activation By Personalization) methods to activate with a LoRaWAN Network Server. However, OTAA is the most secure method for activating a device with a LoRaWAN Network Server. OTAA regenerates session keys upon initial registration and regenerates new session keys after any subsequent reboots. By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode.
187
188
189 === 3.2.1 Prerequisites ===
190
191 The LT-22222-L comes with device registration information such as DevEUI, AppEUI, and AppKey that allows you to register it with a LoRaWAN network. These registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
192
193 [[image:image-20230425173427-2.png||height="246" width="530"]]
194
195 {{info}}
196 In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
197 {{/info}}
198
199 The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
200
201 === 3.2.2 The Things Stack ===
202
203 This section guides you through how to register your LT-22222-L with The Things Stack Sandbox.
204
205 {{info}}
206 The Things Stack Sandbox was formally called The Things Stack Community Edition.
207 {{/info}}
208
209
210 The network diagram below illustrates the connection between the LT-22222-L and The Things Stack, as well as how the data can be integrated with the ThingsEye IoT platform.
211
212
213 [[image:dragino-lorawan-nw-lt-22222-n.jpg]]
214
215 {{info}}
216 You can use a LoRaWAN gateway, such as the [[Dragino LPS8N>>https://www.dragino.com/products/lora-lorawan-gateway/item/200-lps8n.html]], to expand or create LoRaWAN coverage in your area.
217 {{/info}}
218
219
220 ==== 3.2.2.1 Setting up ====
221
222 * Sign up for a free account with [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] if you do not have one yet.
223 * Log in to your The Things Stack Sandbox account.
224 * Create an **application** with The Things Stack if you do not have one yet (E.g., dragino-docs).
225 * Go to your application's page and click on the **End devices** in the left menu.
226 * On the End devices page, click on **+ Register end device**. Two registration options are available:
227
228 ==== 3.2.2.2 Using the LoRaWAN Device Repository ====
229
230 * On the **Register end device** page:
231 ** Select the option **Select the end device in the LoRaWAN Device Repository **under **Input method**.
232 ** Select the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)** from the respective dropdown lists.
233 *** **End device brand**: Dragino Technology Co., Limited
234 *** **Model**: LT22222-L I/O Controller
235 *** **Hardware ver**: Unknown
236 *** **Firmware ver**: 1.6.0
237 *** **Profile (Region)**: Select the region that matches your device.
238 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
239
240 [[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
241
242
243 * Register end device page continued...
244 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'.
245 ** In the **DevEUI** field, enter the **DevEUI**.
246 ** In the **AppKey** field, enter the **AppKey.**
247 ** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
248 ** Under **After registration**, select the **View registered end device** option.
249
250 [[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
251
252 ==== ====
253
254 ==== 3.2.2.3 Adding device manually ====
255
256 * On the **Register end device** page:
257 ** Select the option **Enter end device specifies manually** under **Input method**.
258 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
259 ** Select the **LoRaWAN version** as **LoRaWAN Specification 1.0.3**
260 ** Select the **Regional Parameters version** as** RP001 Regional Parameters 1.0.3 revision A**
261 ** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the hidden section.
262 ** Select the option **Over the air activation (OTAA)** under the **Activation mode.**
263 ** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities** dropdown list.
264
265 [[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
266
267
268 * Register end device page continued...
269 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message '//**This end device can be registered on the network**//'
270 ** In the **DevEUI** field, enter the **DevEUI**.
271 ** In the **AppKey** field, enter the **AppKey**.
272 ** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
273 ** Under **After registration**, select the **View registered end device** option.
274 ** Click the **Register end device** button.
275
276 [[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
277
278
279 You will be navigated to the **Device overview** page.
280
281
282 [[image:lt-22222-device-overview.png||height="625" width="1000"]]
283
284
285 ==== 3.2.2.4 Joining ====
286
287 On the Device's page, click on **Live data** tab. The Live data panel for your device will display.
288
289 Now power on your LT-22222-L. The **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** The Things Stack network server. The **TX LED** will be on for **5 seconds** after joining the network. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server.
290
291
292 [[image:lt-22222-join-network.png||height="625" width="1000"]]
293
294
295 ==== 3.2.2.5 Uplinks ====
296
297
298 After successfully joining, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**). When the LT-22222-L sends an uplink message to the server, the **TX LED** turns on for **1 second**. By default, you will receive an uplink data message from the device every 10 minutes.
299
300 Click on one of a **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the decode_payload {} JSON object.
301
302 [[image:lt-22222-ul-payload-decoded.png]]
303
304
305 If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **Applications > your application > End devices** > **your end device** > **Payload formatters** > **Uplink**. Then  select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
306
307 {{info}}
308 The Things Stack provides two levels of payload formatters: application level and device level. The device-level payload formatters **override **the application-level payload formatters.
309 {{/info}}
310
311 [[image:lt-22222-ul-payload-fmt.png||height="686" width="1000"]]
312
313
314 ==== 3.2.2.6 Downlinks ====
315
316 When the LT-22222-L receives a downlink message from the server, the **RX LED** turns on for **1 second**.
317
318
319 == 3.3 Working Modes and Uplink Payload formats ==
320
321
322 The LT-22222-L has 5 **working modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
323
324 * (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
325
326 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
327
328 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
329
330 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
331
332 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
333
334 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
335
336 The uplink messages are sent over LoRaWAN FPort=2. By default, an uplink message is sent every 10 minutes.
337
338 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
339
340 (((
341 This is the default mode.
342
343 The uplink payload is 11 bytes long.
344
345 (% style="color:red" %)**Note:The maximum count depends on the bytes number of bytes.
346 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
347 It starts counting again when it reaches the maximum value.**(% style="display:none" wfd-invisible="true" %)
348
349 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
350 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
351 |Value|(((
352 AVI1 voltage
353 )))|(((
354 AVI2 voltage
355 )))|(((
356 ACI1 Current
357 )))|(((
358 ACI2 Current
359 )))|**DIDORO***|(((
360 Reserve
361 )))|MOD
362 )))
363
364 (((
365 (% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
366
367 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
368 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
369 |RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
370 )))
371
372 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
373 * DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
374 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
375
376 (% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
377
378 For example, if the payload is: [[image:image-20220523175847-2.png]]
379
380
381 **The interface values can be calculated as follows:  **
382
383 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
384
385 AVI2 channel voltage is 0x04AC/1000=1.196V
386
387 ACI1 channel current is 0x1310/1000=4.880mA
388
389 ACI2 channel current is 0x1300/1000=4.864mA
390
391 The last byte 0xAA= **10101010**(b) means,
392
393 * [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
394 * [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
395 * **[1] DI3 - not used for LT-22222-L.**
396 * [0] DI2 channel input is LOW, and the DI2 LED is OFF.
397 * [1] DI1 channel input state:
398 ** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
399 ** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
400 ** DI1 LED is ON in both cases.
401 * **[0] DO3 - not used for LT-22222-L.**
402 * [1] DO2 channel output is LOW, and the DO2 LED is ON.
403 * [0] DO1 channel output state:
404 ** DO1 is FLOATING when there is no load between DO1 and V+.
405 ** DO1 is HIGH and there is a load between DO1 and V+.
406 ** DO1 LED is OFF in both cases.
407
408 Reserve = 0
409
410 MOD = 1
411
412 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
413
414
415 (((
416 **For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
417 )))
418
419 (((
420 The uplink payload is 11 bytes long.
421
422 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
423 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
424 It starts counting again when it reaches the maximum value.**
425
426 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
427 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
428 |Value|COUNT1|COUNT2 |DIDORO*|(((
429 Reserve
430 )))|MOD
431 )))
432
433 (((
434 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
435
436 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
437 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
438 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
439
440 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
441 )))
442
443 * FIRST: Indicates that this is the first packet after joining the network.
444 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
445
446 (((
447 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
448
449
450 )))
451
452 (((
453 **To activate this mode, run the following AT commands:**
454 )))
455
456 (((
457 (% class="box infomessage" %)
458 (((
459 **AT+MOD=2**
460
461 **ATZ**
462 )))
463 )))
464
465 (((
466
467
468 (% style="color:#4f81bd" %)**AT Commands for counting:**
469 )))
470
471 (((
472 **For LT22222-L:**
473
474 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
475
476 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
477
478 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
479
480 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
481
482 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
483
484 (% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
485 )))
486
487
488 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
489
490 (% style="color:red" %)**Note: The maximum count depends on the bytes it is.
491 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
492 It starts counting again when it reaches the maximum value.**
493
494 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
495
496 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
497 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
498 |Value|COUNT1|(((
499 ACI1 Current
500 )))|(((
501 ACI2 Current
502 )))|DIDORO*|Reserve|MOD
503
504 (((
505 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
506
507 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
508 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
509 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
510 )))
511
512 * RO is for the relay. ROx=1: closed, ROx=0 always open.
513 * FIRST: Indicates that this is the first packet after joining the network.
514 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
515
516 (((
517 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
518 )))
519
520
521 (((
522 **To activate this mode, run the following AT commands:**
523 )))
524
525 (((
526 (% class="box infomessage" %)
527 (((
528 **AT+MOD=3**
529
530 **ATZ**
531 )))
532 )))
533
534 (((
535 AT Commands for counting:
536
537 The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
538 )))
539
540
541 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
542
543 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
544 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
545 It starts counting again when it reaches the maximum value.**
546
547
548 (((
549 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
550 )))
551
552 (((
553 The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
554
555 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
556 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
557 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
558 Reserve
559 )))|MOD
560 )))
561
562 (((
563 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
564
565 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
566 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
567 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
568 )))
569
570 * RO is for the relay. ROx=1: closed, ROx=0 always open.
571 * FIRST: Indicates that this is the first packet after joining the network.
572 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
573
574 (((
575 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
576
577
578 )))
579
580 (((
581 **To activate this mode, run the following AT commands:**
582 )))
583
584 (((
585 (% class="box infomessage" %)
586 (((
587 **AT+MOD=4**
588
589 **ATZ**
590 )))
591 )))
592
593 (((
594 AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
595 )))
596
597 (((
598 **In addition to that, below are the commands for AVI1 Counting:**
599
600 (% style="color:blue" %)**AT+SETCNT=3,60 **(%%)**(Sets AVI1 Count to 60)**
601
602 (% style="color:blue" %)**AT+VOLMAX=20000 **(%%)**(If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
603
604 (% style="color:blue" %)**AT+VOLMAX=20000,0 **(%%)**(If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
605
606 (% style="color:blue" %)**AT+VOLMAX=20000,1 **(%%)**(If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
607 )))
608
609
610 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
611
612 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
613 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
614 It starts counting again when it reaches the maximum value.**
615
616
617 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
618
619 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
620 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
621 |Value|(((
622 AVI1 voltage
623 )))|(((
624 AVI2 voltage
625 )))|(((
626 ACI1 Current
627 )))|COUNT1|DIDORO*|(((
628 Reserve
629 )))|MOD
630
631 (((
632 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
633
634 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
635 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
636 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
637 )))
638
639 * RO is for the relay. ROx=1: closed, ROx=0 always open.
640 * FIRST: Indicates that this is the first packet after joining the network.
641 * (((
642 DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
643 )))
644
645 (((
646 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
647 )))
648
649 (((
650 **To activate this mode, run the following AT commands:**
651 )))
652
653 (((
654 (% class="box infomessage" %)
655 (((
656 **AT+MOD=5**
657
658 **ATZ**
659 )))
660 )))
661
662 (((
663 Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
664 )))
665
666
667 === 3.3.6 AT+ADDMOD~=6 (Trigger Mode, Optional) ===
668
669
670 (% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate __alongside__ with other modes.**
671
672 For example, if you configure the following commands:
673
674 * **AT+MOD=1 ** **~-~->**  Sets the default working mode
675 * **AT+ADDMOD6=1**   **~-~->**  Enables trigger mode
676
677 The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. It will send uplink packets in two cases:
678
679 1. Periodic uplink: Based on TDC time. The payload is the same as in normal mode (MOD=1 as set above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
680 1. (((
681 Trigger uplink: sent when a trigger condition is met. In this case, LT will send two packets
682
683 * The first uplink uses the payload specified in trigger mode (MOD=6).
684 * The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**confirmed uplinks.**
685 )))
686
687 (% style="color:#037691" %)**AT Commands to set Trigger Conditions**:
688
689 (% style="color:#4f81bd" %)**Trigger based on voltage**:
690
691 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
692
693
694 **Example:**
695
696 AT+AVLIM=3000,6000,0,2000 (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
697
698 AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
699
700
701 (% style="color:#4f81bd" %)**Trigger based on current**:
702
703 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
704
705
706 **Example:**
707
708 AT+ACLIM=10000,15000,0,0 (triggers an uplink if AC1 current is lower than 10mA or higher than 15mA)
709
710
711 (% style="color:#4f81bd" %)**Trigger based on DI status**:
712
713 DI status triggers Flag.
714
715 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
716
717
718 **Example:**
719
720 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
721
722
723 (% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
724
725 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
726
727 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
728
729 AA: Type Code for this downlink Command:
730
731 xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
732
733 yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
734
735 yy2 yy2: AC1 or AV1 HIGH limit.
736
737 yy3 yy3: AC2 or AV2 LOW limit.
738
739 Yy4 yy4: AC2 or AV2 HIGH limit.
740
741
742 **Example 1**: AA 00 13 88 00 00 00 00 00 00
743
744 Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
745
746
747 **Example 2**: AA 02 01 00
748
749 Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
750
751
752 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
753
754 MOD6 Payload: total of 11 bytes
755
756 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
757 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
758 |Value|(((
759 TRI_A FLAG
760 )))|(((
761 TRI_A Status
762 )))|(((
763 TRI_DI FLAG+STA
764 )))|Reserve|Enable/Disable MOD6|(((
765 MOD(6)
766 )))
767
768 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
769
770 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
771 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
772 |(((
773 AV1_LOW
774 )))|(((
775 AV1_HIGH
776 )))|(((
777 AV2_LOW
778 )))|(((
779 AV2_HIGH
780 )))|(((
781 AC1_LOW
782 )))|(((
783 AC1_HIGH
784 )))|(((
785 AC2_LOW
786 )))|(((
787 AC2_HIGH
788 )))
789
790 * Each bit shows if the corresponding trigger has been configured.
791
792 **Example:**
793
794 10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW
795
796
797 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
798
799 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
800 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
801 |(((
802 AV1_LOW
803 )))|(((
804 AV1_HIGH
805 )))|(((
806 AV2_LOW
807 )))|(((
808 AV2_HIGH
809 )))|(((
810 AC1_LOW
811 )))|(((
812 AC1_HIGH
813 )))|(((
814 AC2_LOW
815 )))|(((
816 AC2_HIGH
817 )))
818
819 * Each bit shows which status has been triggered on this uplink.
820
821 **Example:**
822
823 10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low.
824
825
826 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
827
828 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:674px" %)
829 |(% style="width:64px" %)**bit 7**|(% style="width:68px" %)**bit 6**|(% style="width:63px" %)**bit 5**|(% style="width:66px" %)**bit 4**|(% style="width:109px" %)**bit 3**|(% style="width:93px" %)**bit 2**|(% style="width:109px" %)**bit 1**|(% style="width:99px" %)**bit 0**
830 |(% style="width:64px" %)N/A|(% style="width:68px" %)N/A|(% style="width:63px" %)N/A|(% style="width:66px" %)N/A|(% style="width:109px" %)DI2_STATUS|(% style="width:93px" %)DI2_FLAG|(% style="width:109px" %)DI1_STATUS|(% style="width:99px" %)DI1_FLAG
831
832 * Each bits shows which status has been triggered on this uplink.
833
834 **Example:**
835
836 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
837
838 00000101: Means both DI1 and DI2 trigger are enabled.
839
840
841 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
842
843 Downlink command to poll MOD6 status:
844
845 **AB 06**
846
847 When device got this command, it will send the MOD6 payload.
848
849
850 === 3.3.7 Payload Decoder ===
851
852 (((
853
854
855 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
856 )))
857
858
859 == 3.4 ​Configure LT-22222-L via AT Commands or Downlinks ==
860
861 (((
862 You can configure LT-22222-L I/O Controller via AT Commands or LoRaWAN Downlinks.
863 )))
864
865 (((
866 (((
867 There are two tytes of commands:
868 )))
869 )))
870
871 * (% style="color:blue" %)**Common commands**(%%):
872
873 * (% style="color:blue" %)**Sensor-related commands**(%%):
874
875 === 3.4.1 Common commands ===
876
877 (((
878 These are available for each sensors and include actions such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]s.
879 )))
880
881 === 3.4.2 Sensor-related commands ===
882
883 These commands are specially designed for the LT-22222-L. Commands can be sent to the device using options such as an AT command or a LoRaWAN downlink payload.
884
885
886 ==== 3.4.2.1 Set Transmit Interval ====
887
888 Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
889
890 (% style="color:#037691" %)**AT command**
891
892 (% border="2" style="width:500px" %)
893 |**Command**|AT+TDC=<time>
894 |**Response**|
895 |**Parameters**|**time** : uplink interval is in milliseconds
896 |**Example**|(((
897 AT+TDC=30000
898
899 Sets the uplink interval to 30,000 milliseconds (30 seconds)
900 )))
901
902 (% style="color:#037691" %)**Downlink payload**
903
904 (% border="2" style="width:500px" %)
905 |**Payload**|(((
906 <prefix><time>
907 )))
908 |**Parameters**|(((
909 **prefix** : 0x01
910
911 **time** : uplink interval is in milliseconds, represented by 3  bytes in hexadecimal.
912 )))
913 |**Example**|(((
914 01 **00 75 30**
915
916 Sets the uplink interval to 30,000 milliseconds (30 seconds)
917
918 Conversion: 30000 (dec) = 00 75 30 (hex)
919
920 See [[RapidTables>>https://www.rapidtables.com/convert/number/decimal-to-hex.html?x=30000]]
921 )))
922
923 ==== 3.4.2.2 Set the Working Mode (AT+MOD) ====
924
925 Sets the working mode.
926
927 (% style="color:#037691" %)**AT command**
928
929 (% border="2" style="width:500px" %)
930 |(% style="width:97px" %)**Command**|(% style="width:413px" %)AT+MODE=<working_mode>
931 |(% style="width:97px" %)**Response**|(% style="width:413px" %)
932 |(% style="width:97px" %)**Parameters**|(% style="width:413px" %)(((
933 **working_mode** :
934
935 1 = (Default mode/factory set):  2ACI + 2AVI + DI + DO + RO
936
937 2 = Double DI Counting + DO + RO
938
939 3 = Single DI Counting + 2 x ACI + DO + RO
940
941 4 = Single DI Counting + 1 x Voltage Counting + DO + RO
942
943 5 = Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
944
945 6 = Trigger Mode, Optional, used together with MOD1 ~~ MOD5
946 )))
947 |(% style="width:97px" %)**Example**|(% style="width:413px" %)(((
948 AT+MOD=2
949
950 Sets the device to working mode 2 (Double DI Counting + DO + RO)
951 )))
952
953 (% class="wikigeneratedid" %)
954 (% style="color:#037691" %)**Downlink payload**
955
956 (% border="2" style="width:500px" %)
957 |(% style="width:98px" %)**Payload**|(% style="width:400px" %)<prefix><working_mode>
958 |(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
959 **prefix** : 0x0A
960
961 **working_mode** : Working mode, represented by 1 byte in hexadecimal.
962 )))
963 |(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
964 0A **02**
965
966 Sets the device to working mode 2 (Double DI Counting + DO + RO)
967 )))
968
969 ==== 3.4.2.3 Poll an uplink ====
970
971 Requests an uplink from LT-22222-L.
972
973 (% style="color:#037691" %)**AT command**
974
975 There is no AT Command to request an uplink from LT-22222-L
976
977 (% style="color:#037691" %)**Downlink payload**
978
979 (% border="2" style="width:500px" %)
980 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix>FF
981 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)**prefix** : 0x08
982 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
983 08 FF
984
985 Requests an uplink from LT-22222-L.
986 )))
987
988 ==== 3.4.2.4 Enable/Disable Trigger Mode ====
989
990 Enable or disable the trigger mode for the current working mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
991
992 (% style="color:#037691" %)**AT Command**
993
994 (% border="2" style="width:500px" %)
995 |(% style="width:95px" %)**Command**|(% style="width:403px" %)AT+ADDMOD6=<enable/disable trigger_mode>
996 |(% style="width:95px" %)**Response**|(% style="width:403px" %)
997 |(% style="width:95px" %)**Parameters**|(% style="width:403px" %)(((
998 **enable/disable trigger_mode** :
999
1000 1 = enable trigger mode
1001
1002 0 = disable trigger mode
1003 )))
1004 |(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1005 AT+ADDMOD6=1
1006
1007 Enable trigger mode for the current working mode
1008 )))
1009
1010 (% style="color:#037691" %)**Downlink payload**
1011
1012 (% border="2" style="width:500px" %)
1013 |(% style="width:97px" %)**Payload**|(% style="width:401px" %)<prefix><enable/disable trigger_mode>
1014 |(% style="width:97px" %)**Parameters**|(% style="width:401px" %)(((
1015 **prefix** : 0x0A 06 (two bytes in hexadecimal)
1016
1017 **working mode** : enable (1) or disable (0), represented by 1 byte in hexadecimal.
1018 )))
1019 |(% style="width:97px" %)**Example**|(% style="width:401px" %)(((
1020 0A 06 **01**
1021
1022 Enable trigger mode for the current working mode
1023 )))
1024
1025 ==== 3.4.2.5 Poll trigger settings ====
1026
1027 Polls the trigger settings.
1028
1029 (% style="color:#037691" %)**AT Command:**
1030
1031 There is no AT Command for this feature.
1032
1033 (% style="color:#037691" %)**Downlink Payload**
1034
1035 (% border="2" style="width:500px" %)
1036 |(% style="width:95px" %)**Payload**|(% style="width:403px" %)<prefix>
1037 |(% style="width:95px" %)**Parameters**|(% style="width:403px" %)**prefix **: AB 06 (two bytes in hexadecimal)
1038 |(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1039 AB 06
1040
1041 Uplinks the trigger settings.
1042 )))
1043
1044 ==== 3.4.2.6 Enable/Disable DI1/DI2/DI3 as a trigger ====
1045
1046 Enable or disable DI1/DI2/DI3 as a trigger.
1047
1048 (% style="color:#037691" %)**AT Command**
1049
1050 (% border="2" style="width:500px" %)
1051 |(% style="width:98px" %)**Command**|(% style="width:400px" %)AT+DTRI=<DI1_trigger>,<DI2_trigger>
1052 |(% style="width:98px" %)**Response**|(% style="width:400px" %)
1053 |(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
1054 **DI1_trigger:**
1055
1056 1 = enable DI1 trigger
1057
1058 0 = disable DI1 trigger
1059
1060 **DI2 _trigger**
1061
1062 1 = enable DI2 trigger
1063
1064 0 = disable DI2 trigger
1065 )))
1066 |(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
1067 AT+DTRI=1,0
1068
1069 Enable DI1 trigger, disable DI2 trigger
1070 )))
1071
1072 (% class="wikigeneratedid" %)
1073 (% style="color:#037691" %)**Downlink Payload**
1074
1075 (% border="2" style="width:500px" %)
1076 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><DI1_trigger><DI2_trigger>
1077 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1078 **prefix :** AA 02 (two bytes in hexadecimal)
1079
1080 **DI1_trigger:**
1081
1082 1 = enable DI1 trigger, represented by 1 byte in hexadecimal.
1083
1084 0 = disable DI1 trigger, represented by 1 byte in hexadecimal.
1085
1086 **DI2 _trigger**
1087
1088 1 = enable DI2 trigger, represented by 1 byte in hexadecimal.
1089
1090 0 = disable DI2 trigger, represented by 1 byte in hexadecimal.
1091 )))
1092 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1093 AA 02 **01 00**
1094
1095 Enable DI1 trigger, disable DI2 trigger
1096 )))
1097
1098 ==== 3.4.2.7 Trigger1 – Set DI or DI3 as a trigger ====
1099
1100 Sets DI1 or DI3 (for LT-33222-L) as a trigger.
1101
1102
1103 (% style="color:#037691" %)**AT Command**
1104
1105 (% border="2" style="width:500px" %)
1106 |(% style="width:101px" %)**Command**|(% style="width:397px" %)AT+TRIG1=<interrupt_mode>,<minimum_signal_duration>
1107 |(% style="width:101px" %)**Response**|(% style="width:397px" %)
1108 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1109 **interrupt_mode** :  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1110
1111 **minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1112 )))
1113 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1114 AT+TRIG1=1,100
1115
1116 Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1117 )))
1118
1119 (% class="wikigeneratedid" %)
1120 (% style="color:#037691" %)**Downlink Payload**
1121
1122 (% border="2" style="width:500px" %)
1123 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><interrupt_mode><minimum_signal_duration>
1124 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1125 **prefix** : 09 01 (hexadecimal)
1126
1127 **interrupt_mode** : 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1128
1129 **minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal.
1130 )))
1131 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1132 09 01 **01 00 64**
1133
1134 Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1135 )))
1136
1137 ==== 3.4.2.8 Trigger2 – Set DI2 as a trigger ====
1138
1139 Sets DI2 as a trigger.
1140
1141
1142 (% style="color:#037691" %)**AT Command**
1143
1144 (% border="2" style="width:500px" %)
1145 |(% style="width:94px" %)**Command**|(% style="width:404px" %)AT+TRIG2=<interrupt_mode>,<minimum_signal_duration>
1146 |(% style="width:94px" %)**Response**|(% style="width:404px" %)
1147 |(% style="width:94px" %)**Parameters**|(% style="width:404px" %)(((
1148 **interrupt_mode **:  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1149
1150 **minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1151 )))
1152 |(% style="width:94px" %)**Example**|(% style="width:404px" %)(((
1153 AT+TRIG2=0,100
1154
1155 Set the DI1 port to trigger on a falling edge; the valid signal duration is 100 ms.
1156 )))
1157
1158 (% style="color:#037691" %)**Downlink Payload**
1159
1160 (% border="2" style="width:500px" %)
1161 |(% style="width:96px" %)**Payload**|(% style="width:402px" %)<prefix><interrupt_mode><minimum_signal_duration>
1162 |(% style="width:96px" %)**Parameters**|(% style="width:402px" %)(((
1163 **prefix** : 09 02 (hexadecimal)
1164
1165 **interrupt_mode **: 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1166
1167 **minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal
1168 )))
1169 |(% style="width:96px" %)**Example**|(% style="width:402px" %)09 02 **00 00 64**
1170
1171 ==== ====
1172
1173 ==== 3.4.2.9 Trigger – Set AC (current) as a trigger ====
1174
1175 Sets the current trigger based on the AC port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1176
1177 (% style="color:#037691" %)**AT Command**
1178
1179 (% border="2" style="width:500px" %)
1180 |(% style="width:104px" %)**Command**|(% style="width:394px" %)(((
1181 AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1182 )))
1183 |(% style="width:104px" %)**Response**|(% style="width:394px" %)
1184 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1185 **AC1_LIMIT_LOW** : lower limit of the current to be checked
1186
1187 **AC1_LIMIT_HIGH **: higher limit of the current to be checked
1188
1189 **AC2_LIMIT_HIGH **: lower limit of the current to be checked
1190
1191 **AC2_LIMIT_LOW** : higher limit of the current to be checked
1192 )))
1193 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1194 AT+ACLIM=10000,15000,0,0
1195
1196 Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA
1197 )))
1198 |(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1199
1200 (% style="color:#037691" %)**Downlink Payload**
1201
1202 (% border="2" style="width:500px" %)
1203 |(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1204 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1205 **prefix **: AA 01 (hexadecimal)
1206
1207 **AC1_LIMIT_LOW** : lower limit of the current to be checked, two bytes in hexadecimal
1208
1209 **AC1_LIMIT_HIGH **: higher limit of the current to be checked, two bytes in hexadecimal
1210
1211 **AC2_LIMIT_HIGH **: lower limit of the current to be checked, two bytes in hexadecimal
1212
1213 **AC2_LIMIT_LOW** : higher limit of the current to be checked, two bytes in hexadecimal
1214 )))
1215 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1216 AA 01 **27** **10 3A** **98** 00 00 00 00
1217
1218 Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA. Set all values to zero for AC2 limits because we are only checking AC1 limits.
1219 )))
1220 |(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1221
1222 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
1223
1224 Sets the current trigger based on the AV port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1225
1226 (% style="color:#037691" %)**AT Command**
1227
1228 (% border="2" style="width:500px" %)
1229 |(% style="width:104px" %)**Command**|(% style="width:387px" %)AT+AVLIM= AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1230 |(% style="width:104px" %)**Response**|(% style="width:387px" %)
1231 |(% style="width:104px" %)**Parameters**|(% style="width:387px" %)(((
1232 **AC1_LIMIT_LOW** : lower limit of the current to be checked
1233
1234 **AC1_LIMIT_HIGH **: higher limit of the current to be checked
1235
1236 **AC2_LIMIT_HIGH **: lower limit of the current to be checked
1237
1238 **AC2_LIMIT_LOW** : higher limit of the current to be checked
1239 )))
1240 |(% style="width:104px" %)**Example**|(% style="width:387px" %)(((
1241 AT+AVLIM=3000,6000,0,2000
1242
1243 Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V
1244 )))
1245 |(% style="width:104px" %)**Note**|(% style="width:387px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1246
1247 (% style="color:#037691" %)**Downlink Payload**
1248
1249 (% border="2" style="width:500px" %)
1250 |(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1251 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1252 **prefix **: AA 00 (hexadecimal)
1253
1254 **AV1_LIMIT_LOW** : lower limit of the voltage to be checked, two bytes in hexadecimal
1255
1256 **AV1_LIMIT_HIGH **: higher limit of the voltage to be checked, two bytes in hexadecimal
1257
1258 **AV2_LIMIT_HIGH **: lower limit of the voltage to be checked, two bytes in hexadecimal
1259
1260 **AV2_LIMIT_LOW** : higher limit of the voltage to be checked, two bytes in hexadecimal
1261 )))
1262 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1263 AA 00 **0B B8 17 70 00 00 07 D0**
1264
1265 Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V.
1266 )))
1267 |(% style="width:104px" %)**Note**|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1268
1269 ==== 3.4.2.11 Trigger – Set minimum interval ====
1270
1271 Sets the AV and AC trigger minimum interval. The device won't respond to a second trigger within this set time after the first trigger.
1272
1273 (% style="color:#037691" %)**AT Command**
1274
1275 (% border="2" style="width:500px" %)
1276 |(% style="width:113px" %)**Command**|(% style="width:385px" %)AT+ATDC=<time>
1277 |(% style="width:113px" %)**Response**|(% style="width:385px" %)
1278 |(% style="width:113px" %)**Parameters**|(% style="width:385px" %)(((
1279 **time** : in minutes
1280 )))
1281 |(% style="width:113px" %)**Example**|(% style="width:385px" %)(((
1282 AT+ATDC=5
1283
1284 The device won't respond to the second trigger within 5 minutes after the first trigger.
1285 )))
1286 |(% style="width:113px" %)Note|(% style="width:385px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1287
1288 (% style="color:#037691" %)**Downlink Payload**
1289
1290 (% border="2" style="width:500px" %)
1291 |(% style="width:112px" %)**Payload**|(% style="width:386px" %)<prefix><time>
1292 |(% style="width:112px" %)**Parameters**|(% style="width:386px" %)(((
1293 **prefix** : AC (hexadecimal)
1294
1295 **time **: in minutes (two bytes in hexadecimal)
1296 )))
1297 |(% style="width:112px" %)**Example**|(% style="width:386px" %)(((
1298 AC **00 05**
1299
1300 The device won't respond to the second trigger within 5 minutes after the first trigger.
1301 )))
1302 |(% style="width:112px" %)Note|(% style="width:386px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1303
1304 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1305
1306 Controls the digital outputs DO1, DO2, and DO3
1307
1308 (% style="color:#037691" %)**AT Command**
1309
1310 There is no AT Command to control the Digital Output.
1311
1312
1313 (% style="color:#037691" %)**Downlink Payload**
1314
1315 (% border="2" style="width:500px" %)
1316 |(% style="width:115px" %)**Payload**|(% style="width:383px" %)<prefix><DO1><DO2><DO3>
1317 |(% style="width:115px" %)**Parameters**|(% style="width:383px" %)(((
1318 **prefix** : 02 (hexadecimal)
1319
1320 **DOI** : 01: Low,  00: High, 11: No action (1 byte in hex)
1321
1322 **DO2** : 01: Low,  00: High, 11: No action (1 byte in hex)
1323
1324 **DO3 **: 01: Low,  00: High, 11: No action (1 byte in hex)
1325 )))
1326 |(% style="width:115px" %)**Examples**|(% style="width:383px" %)(((
1327 02 **01 00 01**
1328
1329 If there is a load between V+ and DOx, it means DO1 is set to low, DO2 is set to high, and DO3 is set to low.
1330
1331 **More examples:**
1332
1333 (((
1334 01: Low,  00: High,  11: No action
1335
1336 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1337 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
1338 |02  01  00  11|Low|High|No Action
1339 |02  00  11  01|High|No Action|Low
1340 |02  11  01  00|No Action|Low|High
1341 )))
1342
1343 (((
1344 (((
1345 (% style="color:red" %)**Note: For the LT-22222-L, there is no DO3; the last byte can have any value.**
1346 )))
1347
1348 (((
1349 (% style="color:red" %)**The device will upload a packet if downlink code executes successfully.**
1350 )))
1351 )))
1352 )))
1353
1354 ==== ====
1355
1356 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1357
1358
1359 * (% style="color:#037691" %)**AT Command**
1360
1361 There is no AT Command to control Digital Output
1362
1363
1364 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1365
1366 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1367
1368
1369 This is to control the digital output time of DO pin. Include four bytes:
1370
1371 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1372
1373 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1374
1375 01: DO pins will change back to original state after timeout.
1376
1377 00: DO pins will change to an inverter state after timeout 
1378
1379
1380 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Port status:
1381
1382 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1383 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1384 |0x01|DO1 set to low
1385 |0x00|DO1 set to high
1386 |0x11|DO1 NO Action
1387
1388 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Port status:
1389
1390 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1391 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1392 |0x01|DO2 set to low
1393 |0x00|DO2 set to high
1394 |0x11|DO2 NO Action
1395
1396 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Port status:
1397
1398 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1399 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1400 |0x01|DO3 set to low
1401 |0x00|DO3 set to high
1402 |0x11|DO3 NO Action
1403
1404 (% style="color:#4f81bd" %)**Sixth, Seventh, Eighth, and Ninth Bytes**:(%%) Latching time (Unit: ms)
1405
1406
1407 (% style="color:red" %)**Note: **
1408
1409 Since firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1410
1411 Before firmware v1.6.0, the latch time only supported 2 bytes.
1412
1413 (% style="color:red" %)**Device will upload a packet if the downlink code executes successfully.**
1414
1415
1416 **Example payload:**
1417
1418 **~1. A9 01 01 01 01 07 D0**
1419
1420 DO1 pin, DO2 pin, and DO3 pin will be set to low, last for 2 seconds, and then revert to their original state.
1421
1422 **2. A9 01 00 01 11 07 D0**
1423
1424 DO1 pin is set to high, DO2 pin is set to low, and DO3 pin takes no action. This lasts for 2 seconds and then reverts to the original state.
1425
1426 **3. A9 00 00 00 00 07 D0**
1427
1428 DO1 pin, DO2 pin, and DO3 pin will be set to high, last for 2 seconds, and then all change to low.
1429
1430 **4. A9 00 11 01 00 07 D0**
1431
1432 DO1 pin takes no action, DO2 pin is set to low, and DO3 pin is set to high. This lasts for 2 seconds, after which DO1 pin takes no action, DO2 pin is set to high, and DO3 pin is set to low.
1433
1434
1435 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1436
1437
1438 * (% style="color:#037691" %)**AT Command:**
1439
1440 There is no AT Command to control Relay Output
1441
1442
1443 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1444
1445 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1446
1447
1448 (((
1449 If payload is 0x030100, it means setting RO1 to close and RO2 to open.
1450 )))
1451
1452 (((
1453 00: Close ,  01: Open , 11: No action
1454
1455 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1456 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1457 |03  00  11|Open|No Action
1458 |03  01  11|Close|No Action
1459 |03  11  00|No Action|Open
1460 |03  11  01|No Action|Close
1461 |03  00  00|Open|Open
1462 |03  01  01|Close|Close
1463 |03  01  00|Close|Open
1464 |03  00  01|Open|Close
1465 )))
1466
1467 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1468
1469
1470 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1471
1472 Controls the relay output time.
1473
1474 * (% style="color:#037691" %)**AT Command:**
1475
1476 There is no AT Command to control Relay Output
1477
1478
1479 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1480
1481 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1482
1483
1484 This is to control the relay output time. It includes four bytes:
1485
1486 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1487
1488 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1489
1490 01: Relays will change back to their original state after timeout.
1491
1492 00: Relays will change to the inverter state after timeout.
1493
1494
1495 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1496
1497 [[image:image-20221008095908-1.png||height="364" width="564"]]
1498
1499
1500 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1501
1502
1503 (% style="color:red" %)**Note:**
1504
1505 Since firmware v1.6.0, the latch time supports both 4 bytes and 2 bytes.
1506
1507 Before firmware v1.6.0, the latch time only supported 2 bytes.
1508
1509
1510 (% style="color:red" %)**Device will upload a packet if the downlink code executes successfully.**
1511
1512
1513 **Example payload:**
1514
1515 **~1. 05 01 11 07 D0**
1516
1517 Relay1 and Relay2 will be set to NC, lasting 2 seconds, then revert to their original state
1518
1519 **2. 05 01 10 07 D0**
1520
1521 Relay1 will change to NC, Relay2 will change to NO, lasting 2 seconds, then both will revert to their original state.
1522
1523 **3. 05 00 01 07 D0**
1524
1525 Relay1 will change to NO, Relay2 will change to NC, lasting 2 seconds, then Relay1 will change to NC, and Relay2 will change to NO.
1526
1527 **4. 05 00 00 07 D0**
1528
1529 Relay1 and Relay2 will change to NO, lasting 2 seconds, then both will change to NC.
1530
1531
1532
1533 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1534
1535
1536 When the voltage exceeds the threshold, counting begins. For details, see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1537
1538 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1539
1540 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1541
1542 (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1543
1544
1545 (% style="color:#037691" %)**AT Command**
1546
1547 (% border="2" style="width:500px" %)
1548 |(% style="width:137px" %)**Command**|(% style="width:361px" %)AT+VOLMAX=<voltage><logic>
1549 |(% style="width:137px" %)**Response**|(% style="width:361px" %)
1550 |(% style="width:137px" %)**Parameters**|(% style="width:361px" %)(((
1551 **voltage** : voltage threshold in mV
1552
1553 **logic**:
1554
1555 0 : lower than
1556
1557 1: higher than
1558
1559 if you leave logic parameter blank, it is considered 0
1560 )))
1561 |(% style="width:137px" %)**Examples**|(% style="width:361px" %)(((
1562 AT+VOLMAX=20000
1563
1564 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1565
1566 AT+VOLMAX=20000,0
1567
1568 If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1569
1570 AT+VOLMAX=20000,1
1571
1572 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1573 )))
1574
1575 (% style="color:#037691" %)**Downlink Payload**
1576
1577 (% border="2" style="width:500px" %)
1578 |(% style="width:140px" %)**Payload**|(% style="width:358px" %)<prefix><voltage><logic>
1579 |(% style="width:140px" %)**Parameters**|(% style="width:358px" %)(((
1580 **prefix** : A5 (hex)
1581
1582 **voltage** : voltage threshold in mV (2 bytes in hex)
1583
1584 **logic**: (1 byte in hexadecimal)
1585
1586 0 : lower than
1587
1588 1: higher than
1589
1590 if you leave logic parameter blank, it is considered 1 (higher than)
1591 )))
1592 |(% style="width:140px" %)**Example**|(% style="width:358px" %)(((
1593 A5 **4E 20**
1594
1595 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1596
1597 A5 **4E 20 00**
1598
1599 If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1600
1601 A5 **4E 20 01**
1602
1603 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1604 )))
1605
1606 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1607
1608 This command allows users to pre-configure specific count numbers for various counting parameters such as Count1, Count2, or AVI1 Count. Use the AT command to set the desired count number for each configuration.
1609
1610 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1611
1612 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1613
1614 (% style="color:red" %)**bb cc dd ee: **(%%)The number to be set
1615
1616
1617 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1618
1619 (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1620
1621
1622 (% style="color:#037691" %)**AT Command**
1623
1624 (% border="2" style="width:500px" %)
1625 |(% style="width:134px" %)**Command**|(% style="width:364px" %)AT+SETCNT=<counting_parameter><number>
1626 |(% style="width:134px" %)**Response**|(% style="width:364px" %)
1627 |(% style="width:134px" %)**Parameters**|(% style="width:364px" %)(((
1628 **counting_parameter** :
1629
1630 1: COUNT1
1631
1632 2: COUNT2
1633
1634 3: AVI1 Count
1635
1636 **number** : Start number
1637 )))
1638 |(% style="width:134px" %)**Example**|(% style="width:364px" %)(((
1639 AT+SETCNT=1,10
1640
1641 Sets the COUNT1 to 10.
1642 )))
1643
1644 (% style="color:#037691" %)**Downlink Payload**
1645
1646 (% border="2" style="width:500px" %)
1647 |(% style="width:135px" %)**Payload**|(% style="width:363px" %)<prefix><counting_parameter><number>
1648 |(% style="width:135px" %)**Parameters**|(% style="width:363px" %)(((
1649 prefix : A8 (hex)
1650
1651 **counting_parameter** : (1 byte in hexadecimal)
1652
1653 1: COUNT1
1654
1655 2: COUNT2
1656
1657 3: AVI1 Count
1658
1659 **number** : Start number, 4 bytes in hexadecimal
1660 )))
1661 |(% style="width:135px" %)**Example**|(% style="width:363px" %)(((
1662 A8 **01 00 00 00 0A**
1663
1664 Sets the COUNT1 to 10.
1665 )))
1666
1667 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1668
1669 This command clears the counting in counting mode.
1670
1671 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT         **(%%) ~/~/ clear all counting
1672
1673 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1674
1675 (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1676
1677 (% style="color:#037691" %)**AT Command**
1678
1679 (% border="2" style="width:500px" %)
1680 |(% style="width:142px" %)**Command**|(% style="width:356px" %)AT+CLRCOUNT
1681 |(% style="width:142px" %)**Response**|(% style="width:356px" %)-
1682
1683 (% style="color:#037691" %)**Downlink Payload**
1684
1685 (% border="2" style="width:500px" %)
1686 |(% style="width:141px" %)**Payload**|(% style="width:357px" %)<prefix><clear?>
1687 |(% style="width:141px" %)**Parameters**|(% style="width:357px" %)(((
1688 prefix : A6 (hex)
1689
1690 clear? : 01 (hex)
1691 )))
1692 |(% style="width:141px" %)**Example**|(% style="width:357px" %)A6 **01**
1693
1694 ==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1695
1696 This command allows you to configure the device to save its counting result to internal flash memory at specified intervals. By setting a save time, the device will periodically store the counting data to prevent loss in case of power failure. The save interval can be adjusted to suit your requirements, with a minimum value of 30 seconds.
1697
1698 * (% style="color:#037691" %)**AT Command:**
1699
1700 (% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Sets the save time to 60 seconds. The device will save the counting result in internal flash every 60 seconds. (Min value: 30 seconds)
1701
1702
1703 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1704
1705 (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1706
1707 (((
1708 Range: aa bb cc:0 to 16777215,  (unit: seconds)
1709 )))
1710
1711
1712 (% style="color:#037691" %)**AT Command**
1713
1714 (% border="2" style="width:500px" %)
1715 |(% style="width:124px" %)**Command**|(% style="width:374px" %)AT+COUTIME=<time>
1716 |(% style="width:124px" %)**Response**|(% style="width:374px" %)
1717 |(% style="width:124px" %)**Parameters**|(% style="width:374px" %)time : seconds (0 to 16777215)
1718 |(% style="width:124px" %)**Example**|(% style="width:374px" %)(((
1719 AT+COUTIME=60
1720
1721 Sets the device to save its counting results to the memory every 60 seconds.
1722 )))
1723
1724 (% style="color:#037691" %)**Downlink Payload**
1725
1726 (% border="2" style="width:500px" %)
1727 |(% style="width:123px" %)**Payload**|(% style="width:375px" %)<prefix><time>
1728 |(% style="width:123px" %)**Parameters**|(% style="width:375px" %)(((
1729 prefix : A7
1730
1731 time : seconds, 3 bytes in hexadecimal
1732 )))
1733 |(% style="width:123px" %)**Example**|(% style="width:375px" %)(((
1734 A7 **00 00 3C**
1735
1736 Sets the device to save its counting results to the memory every 60 seconds.
1737 )))
1738
1739 ==== 3.4.2.20 Reset save RO DO state ====
1740
1741 This command allows you to reset the saved relay output (RO) and digital output (DO) states when the device joins the network. By configuring this setting, you can control whether the device should retain or reset the relay states after a reset and rejoin to the network.
1742
1743 * (% style="color:#037691" %)**AT Command:**
1744
1745 (% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1746
1747 (% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state will not change when the device reconnects to the network.
1748
1749
1750 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1751
1752 (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1753
1754
1755 (% border="2" style="width:500px" %)
1756 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+RODORESET=<state>
1757 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1758 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1759 **state** :
1760
1761 **0** : RODO will close when the device joins the network. (default)
1762
1763 **1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1764 )))
1765 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1766 (% style="color:blue" %)**AT+RODORESET=1 **
1767
1768 RODO will close when the device joins the network. (default)
1769
1770 (% style="color:blue" %)**AT+RODORESET=0 **
1771
1772 After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1773 )))
1774
1775 (% border="2" style="width:500px" %)
1776 |(% style="width:127px" %)**Payload**|(% style="width:371px" %)<prefix><state>
1777 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1778 **prefix** : AD
1779
1780 **state** :
1781
1782 **0** : RODO will close when the device joins the network. (default), represents as 1 byte in hexadecimal.
1783
1784 **1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network. - represents as 1 byte in hexadecimal
1785 )))
1786 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1787 AD **01**
1788
1789 RODO will close when the device joins the network. (default)
1790
1791 AD **00**
1792
1793 After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1794 )))
1795
1796 ==== 3.4.2.21 Encrypted payload ====
1797
1798 This command allows you to configure whether the device should upload data in an encrypted format or in plaintext. By default, the device encrypts the payload before uploading. You can toggle this setting to either upload encrypted data or transmit it without encryption.
1799
1800 * (% style="color:#037691" %)**AT Command:**
1801
1802 (% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1803
1804 (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1805
1806
1807 (% border="2" style="width:500px" %)
1808 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DECRYPT=<state>
1809 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1810 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1811 state :
1812
1813 1 : The payload is uploaded without encryption
1814
1815 0 : The payload is encrypted when uploaded (default)
1816 )))
1817 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1818 AT+DECRYPT=1
1819
1820 The payload is uploaded without encryption
1821
1822 AT+DECRYPT=0
1823
1824 The payload is encrypted when uploaded (default)
1825 )))
1826
1827 There is no downlink payload for this configuration.
1828
1829
1830 ==== 3.4.2.22 Get sensor value ====
1831
1832 This command allows you to retrieve and optionally uplink sensor readings through the serial port.
1833
1834 * (% style="color:#037691" %)**AT Command:**
1835
1836 (% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port retrieves the reading of the current sensor.
1837
1838 (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port retrieves the current sensor reading and uploads it.
1839
1840
1841 (% border="2" style="width:500px" %)
1842 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+GETSENSORVALUE=<state>
1843 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1844 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1845 **state** :
1846
1847 **0 **: Retrieves the current sensor reading via the serial port.
1848
1849 **1 **: Retrieves and uploads the current sensor reading via the serial port.
1850 )))
1851 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1852 AT+GETSENSORVALUE=0
1853
1854 Retrieves the current sensor reading via the serial port.
1855
1856 AT+GETSENSORVALUE=1
1857
1858 Retrieves and uplinks the current sensor reading via the serial port.
1859 )))
1860
1861 There is no downlink payload for this configuration.
1862
1863
1864 ==== 3.4.2.23 Resetting the downlink packet count ====
1865
1866 This command manages how the node handles mismatched downlink packet counts. It offers two modes: one disables the reception of further downlink packets if discrepancies occur, while the other resets the downlink packet count to align with the server, ensuring continued communication.
1867
1868 * (% style="color:#037691" %)**AT Command:**
1869
1870 (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1871
1872 (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1873
1874
1875 (% border="2" style="width:500px" %)
1876 |(% style="width:130px" %)**Command**|(% style="width:368px" %)AT+DISFCNTCHECK=<state>
1877 |(% style="width:130px" %)**Response**|(% style="width:368px" %)(((
1878
1879 )))
1880 |(% style="width:130px" %)**Parameters**|(% style="width:368px" %)(((
1881 **state **:
1882
1883 **0** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default).
1884
1885
1886 **1** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency.
1887 )))
1888 |(% style="width:130px" %)**Example**|(% style="width:368px" %)(((
1889 AT+DISFCNTCHECK=0
1890
1891 When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default).
1892
1893 AT+DISFCNTCHECK=1
1894
1895 When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency.
1896 )))
1897
1898 There is no downlink payload for this configuration.
1899
1900
1901 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1902
1903
1904 This command controls the behavior of the node when the combined size of the MAC commands (MACANS) from the server and the payload exceeds the allowed byte limit for the current data rate (DR). The command provides two modes: one enables splitting the data into batches to ensure compliance with the byte limit, while the other prioritizes the payload and ignores the MACANS in cases of overflow.
1905
1906 * (% style="color:#037691" %)**AT Command:**
1907
1908 (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1909
1910 (% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1911
1912
1913 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1914
1915 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1916
1917 (% style="color:#037691" %)**AT Command**
1918
1919 (% border="2" style="width:500px" %)
1920 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DISMACANS=<state>
1921 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1922 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1923 **state** :
1924
1925 **0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1926
1927 **1** : When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1928 )))
1929 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1930 AT+DISMACANS=0
1931
1932 When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1933
1934 AT+DISMACANS=1
1935
1936 When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1937 )))
1938
1939 (% style="color:#037691" %)**Downlink Payload**
1940
1941 (% border="2" style="width:500px" %)
1942 |(% style="width:126px" %)**Payload**|(% style="width:372px" %)<prefix><state>
1943 |(% style="width:126px" %)**Parameters**|(% style="width:372px" %)(((
1944 **prefix** : 21
1945
1946 **state** : (2 bytes in hexadecimal)
1947
1948 **0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1949
1950 **1 **: When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1951 )))
1952 |(% style="width:126px" %)**Example**|(% style="width:372px" %)(((
1953 21 **00 01**
1954
1955 Set DISMACANS=1
1956 )))
1957
1958 ==== 3.4.2.25 Copy downlink to uplink ====
1959
1960 This command enables the device to immediately uplink the content of a received downlink packet back to the server. The command allows for quick data replication from downlink to uplink, with a fixed port number of 100.
1961
1962 * (% style="color:#037691" %)**AT Command**(%%)**:**
1963
1964 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1965
1966 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1967
1968
1969 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1970
1971 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1972
1973 (% border="2" style="width:500px" %)
1974 |(% style="width:122px" %)**Command**|(% style="width:376px" %)(((
1975 AT+RPL=5
1976
1977 After receiving a downlink packet from the server, the node immediately uplinks the content of the packet back to the server using port number 100.
1978 )))
1979 |(% style="width:122px" %)**Example**|(% style="width:376px" %)(((
1980 Downlink:
1981
1982 01 00 02 58
1983
1984 Uplink:
1985
1986 01 01 00 02 58
1987 )))
1988
1989 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1990
1991 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1992
1993
1994
1995 ==== 3.4.2.26 Query firmware version, frequency band, sub band, and TDC time ====
1996
1997 This command is used to query key information about the device, including its firmware version, frequency band, sub band, and TDC time. By sending the specified payload as a downlink, the server can retrieve this essential data from the device.
1998
1999 * (((
2000 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
2001
2002 (% style="color:blue" %)**26 01  ** (%%) ~/~/  The downlink payload 26 01 is used to query the device's firmware version, frequency band, sub band, and TDC time.
2003
2004
2005
2006 )))
2007
2008 **Example:**
2009
2010 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
2011
2012
2013 == 3.5 Integrating with ThingsEye.io ==
2014
2015 The Things Stack application supports integration with ThingsEye.io. Once integrated, ThingsEye.io acts as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
2016
2017 === 3.5.1 Configuring The Things Stack ===
2018
2019 We use The Things Stack Sandbox in this example:
2020
2021 * In **The Things Stack Sandbox**, go to the **Application **for the LT-22222-L you added.
2022 * Select **MQTT** under **Integrations** in the left menu.
2023 * In the **Connection information **section, under **Connection credentials**, The Things Stack displays an auto-generated **username**. You can use it or provide a new one.
2024 * Click the **Generate new API key** button to generate a password. You can view it by clicking on the **visibility toggle/eye** icon. The API key works as the password.
2025
2026 {{info}}
2027 The username and  password (API key) you created here are required in the next section.
2028 {{/info}}
2029
2030 [[image:tts-mqtt-integration.png||height="625" width="1000"]]
2031
2032 === 3.5.2 Configuring ThingsEye.io ===
2033
2034 The ThingsEye.io IoT platform is not open for self-registration at the moment. If you are interested in testing the platform, please send your project information to admin@thingseye.io, and we will create an account for you.
2035
2036 * Login to your [[ThingsEye.io >>https://thingseye.io]]account.
2037 * Under the **Integrations center**, click **Integrations**.
2038 * Click the **Add integration** button (the button with the **+** symbol).
2039
2040 [[image:thingseye-io-step-1.png||height="625" width="1000"]]
2041
2042
2043 On the **Add integration** window, configure the following:
2044
2045 **Basic settings:**
2046
2047 * Select **The Things Stack Community** from the **Integration type** list.
2048 * Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
2049 * Ensure the following options are turned on.
2050 ** Enable integration
2051 ** Debug mode
2052 ** Allow create devices or assets
2053 * Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
2054
2055 [[image:thingseye-io-step-2.png||height="625" width="1000"]]
2056
2057
2058 **Uplink data converter:**
2059
2060 * Click the **Create new** button if it is not selected by default.
2061 * Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
2062 * Click the **JavaScript** button.
2063 * Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
2064 * Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
2065
2066 [[image:thingseye-io-step-3.png||height="625" width="1000"]]
2067
2068
2069 **Downlink data converter (this is an optional step):**
2070
2071 * Click the **Create new** button if it is not selected by default.
2072 * Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name.
2073 * Click the **JavaScript** button.
2074 * Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Downlink_Converter.js]].
2075 * Click the **Next** button. You will be navigated to the **Connection** tab.
2076
2077 [[image:thingseye-io-step-4.png||height="625" width="1000"]]
2078
2079
2080 **Connection:**
2081
2082 * Choose **Region** from the **Host type**.
2083 * Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
2084 * Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The **username **and **password **can be found on the MQTT integration page of your The Things Stack account (see **3.5.1 Configuring The Things Stack**).
2085 * Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
2086
2087 [[image:message-1.png]]
2088
2089
2090 * Click the **Add** button.
2091
2092 [[image:thingseye-io-step-5.png||height="625" width="1000"]]
2093
2094
2095 Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings and correct any errors.
2096
2097
2098 [[image:thingseye.io_integrationsCenter_integrations.png||height="686" width="1000"]]
2099
2100
2101 ==== 3.5.2.1 Viewing integration details ====
2102
2103 Click on your integration from the list. The **Integration details** window will appear with the **Details **tab selected. The **Details **tab shows all the settings you have provided for this integration.
2104
2105 [[image:integration-details.png||height="686" width="1000"]]
2106
2107
2108 If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
2109
2110 {{info}}
2111 See also [[ThingsEye documentation>>https://wiki.thingseye.io/xwiki/bin/view/Main/]].
2112 {{/info}}
2113
2114 ==== **3.5.2.2 Viewing events** ====
2115
2116 The **Events **tab displays all the uplink messages from the LT-22222-L.
2117
2118 * Select **Debug **from the **Event type** dropdown.
2119 * Select the** time frame** from the **time window**.
2120
2121 [[image:thingseye-events.png||height="686" width="1000"]]
2122
2123
2124 * To view the **JSON payload** of a message, click on the **three dots (...)** in the Message column of the desired message.
2125
2126 [[image:thingseye-json.png||width="1000"]]
2127
2128
2129 ==== **3.5.2.3 Deleting an integration** ====
2130
2131 If you want to delete an integration, click the **Delete integratio**n button on the Integrations page.
2132
2133
2134 ==== 3.5.2.4 Creating a Dashboard to Display and Analyze LT-22222-L Data ====
2135
2136 This will be added soon.
2137
2138
2139 == 3.6 Interface Details ==
2140
2141 === 3.6.1 Digital Input Ports: DI1/DI2/DI3 (For LT-33222-L, Low Active) ===
2142
2143
2144 Supports NPN-type sensors.
2145
2146 [[image:1653356991268-289.png]]
2147
2148
2149 === 3.6.2 Digital Input Ports: DI1/DI2 ===
2150
2151
2152 (((
2153 The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
2154 )))
2155
2156 (((
2157 (((
2158 The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
2159
2160
2161 )))
2162 )))
2163
2164 [[image:1653357170703-587.png]]
2165
2166 (((
2167 (((
2168 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
2169 )))
2170 )))
2171
2172 (((
2173
2174 )))
2175
2176 (((
2177 (% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
2178 )))
2179
2180 (((
2181 This type of sensor outputs a low (GND) signal when active.
2182 )))
2183
2184 * (((
2185 Connect the sensor's output to DI1-
2186 )))
2187 * (((
2188 Connect the sensor's VCC to DI1+.
2189 )))
2190
2191 (((
2192 When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be:
2193 )))
2194
2195 (((
2196 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
2197 )))
2198
2199 (((
2200 For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
2201 )))
2202
2203 (((
2204
2205 )))
2206
2207 (((
2208 (% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
2209 )))
2210
2211 (((
2212 This type of sensor outputs a high signal (e.g., 24V) when active.
2213 )))
2214
2215 * (((
2216 Connect the sensor's output to DI1+
2217 )))
2218 * (((
2219 Connect the sensor's GND DI1-.
2220 )))
2221
2222 (((
2223 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
2224 )))
2225
2226 (((
2227 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
2228 )))
2229
2230 (((
2231 If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
2232 )))
2233
2234 (((
2235
2236 )))
2237
2238 (((
2239 (% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
2240 )))
2241
2242 (((
2243 Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
2244 )))
2245
2246 * (((
2247 Connect the sensor's output to DI1+ with a 50K resistor in series.
2248 )))
2249 * (((
2250 Connect the sensor's GND DI1-.
2251 )))
2252
2253 (((
2254 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
2255 )))
2256
2257 (((
2258 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
2259 )))
2260
2261 (((
2262 If the sensor output is 220V, then [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
2263 )))
2264
2265
2266 (% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
2267
2268 From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
2269
2270 To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
2271
2272 [[image:image-20230616235145-1.png]]
2273
2274 (% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
2275
2276 [[image:image-20240219115718-1.png]]
2277
2278
2279 === 3.6.3 Digital Output Ports: DO1/DO2 ===
2280
2281
2282 (% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
2283
2284 (% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
2285
2286 [[image:1653357531600-905.png]]
2287
2288
2289 === 3.6.4 Analog Input Interfaces ===
2290
2291
2292 The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
2293
2294
2295 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
2296
2297 [[image:1653357592296-182.png]]
2298
2299 Example: Connecting a 4~~20mA sensor
2300
2301 We will use the wind speed sensor as an example for reference only.
2302
2303
2304 (% style="color:blue" %)**Specifications of the wind speed sensor:**
2305
2306 (% style="color:red" %)**Red:  12~~24V**
2307
2308 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
2309
2310 **Black:  GND**
2311
2312 **Connection diagram:**
2313
2314 [[image:1653357640609-758.png]]
2315
2316 [[image:1653357648330-671.png||height="155" width="733"]]
2317
2318
2319 Example: Connecting to a regulated power supply to measure voltage
2320
2321 [[image:image-20230608101532-1.png||height="606" width="447"]]
2322
2323 [[image:image-20230608101608-2.jpeg||height="379" width="284"]]
2324
2325 [[image:image-20230608101722-3.png||height="102" width="1139"]]
2326
2327
2328 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
2329
2330 (% style="color:red" %)**Red:  12~~24v**
2331
2332 **Black:  GND**
2333
2334
2335 === 3.6.5 Relay Output ===
2336
2337
2338 (((
2339 The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
2340
2341 **Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
2342 )))
2343
2344 [[image:image-20220524100215-9.png]]
2345
2346
2347 [[image:image-20220524100215-10.png||height="382" width="723"]]
2348
2349
2350 == 3.7 LEDs Indicators ==
2351
2352 The table below lists the behavior of LED indicators for each port function.
2353
2354 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
2355 |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
2356 |**PWR**|Always on when there is power
2357 |**TX**|(((
2358 (((
2359 Device boot: TX blinks 5 times.
2360 )))
2361
2362 (((
2363 Successful network join: TX remains ON for 5 seconds.
2364 )))
2365
2366 (((
2367 Transmit a LoRa packet: TX blinks once
2368 )))
2369 )))
2370 |**RX**|RX blinks once when a packet is received.
2371 |**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
2372 |**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
2373 |**DI1**|(((
2374 For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
2375 )))
2376 |**DI2**|(((
2377 For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
2378 )))
2379 |**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
2380 |**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
2381
2382 = 4. Using AT Commands =
2383
2384 The LT-22222-L supports programming using AT Commands.
2385
2386 == 4.1 Connecting the LT-22222-L to a PC ==
2387
2388 (((
2389 You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a PC, as shown below.
2390
2391 [[image:usb-ttl-programming.png]]
2392 )))
2393
2394
2395
2396 (((
2397 On the PC, you need to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate of (% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-L. Access to AT commands is disabled by default, and a password (default: (% style="color:green" %)**123456**)(%%) must be entered to enable AT command access, as shown below:
2398 )))
2399
2400 [[image:1653358355238-883.png]]
2401
2402
2403 (((
2404 You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
2405
2406 == 4.2 LT-22222-L related AT commands ==
2407 )))
2408
2409 (((
2410 The following is the list of all the AT commands related to the LT-22222-L, except for those used for switching between working modes.
2411
2412 * **##AT##+<CMD>?** : Help on <CMD>
2413 * **##AT##+<CMD>** : Run <CMD>
2414 * **##AT##+<CMD>=<value>** : Set the value
2415 * **##AT##+<CMD>=?** : Get the value
2416 * ##**ATZ**##: Trigger a reset of the MCU
2417 * ##**AT+FDR**##: Reset Parameters to factory default, reserve keys 
2418 * **##AT+DEUI##**: Get or set the Device EUI (DevEUI)
2419 * **##AT+DADDR##**: Get or set the Device Address (DevAddr)
2420 * **##AT+APPKEY##**: Get or set the Application Key (AppKey)
2421 * ##**AT+NWKSKEY**##: Get or set the Network Session Key (NwkSKey)
2422 * **##AT+APPSKEY##**: Get or set the Application Session Key (AppSKey)
2423 * **##AT+APPEUI##**: Get or set the Application EUI (AppEUI)
2424 * **##AT+ADR##**: Get or set the Adaptive Data Rate setting. (0: OFF, 1: ON)
2425 * AT+TXP: Get or set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Specification)
2426 * AT+DR:  Get or set the Data Rate. (0-7 corresponding to DR_X)  
2427 * AT+DCS: Get or set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
2428 * AT+PNM: Get or set the public network mode. (0: off, 1: on)
2429 * AT+RX2FQ: Get or set the Rx2 window frequency
2430 * AT+RX2DR: Get or set the Rx2 window data rate (0-7 corresponding to DR_X)
2431 * AT+RX1DL: Get or set the delay between the end of the Tx and the Rx Window 1 in ms
2432 * AT+RX2DL: Get or set the delay between the end of the Tx and the Rx Window 2 in ms
2433 * AT+JN1DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
2434 * AT+JN2DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
2435 * AT+NJM: Get or set the Network Join Mode. (0: ABP, 1: OTAA)
2436 * AT+NWKID: Get or set the Network ID
2437 * AT+FCU: Get or set the Frame Counter Uplink (FCntUp)
2438 * AT+FCD: Get or set the Frame Counter Downlink (FCntDown)
2439 * AT+CLASS: Get or set the Device Class
2440 * AT+JOIN: Join network
2441 * AT+NJS: Get OTAA Join Status
2442 * AT+SENDB: Send hexadecimal data along with the application port
2443 * AT+SEND: Send text data along with the application port
2444 * AT+RECVB: Print last received data in binary format (with hexadecimal values)
2445 * AT+RECV: Print last received data in raw format
2446 * AT+VER: Get current image version and Frequency Band
2447 * AT+CFM: Get or Set the confirmation mode (0-1)
2448 * AT+CFS: Get confirmation status of the last AT+SEND (0-1)
2449 * AT+SNR: Get the SNR of the last received packet
2450 * AT+RSSI: Get the RSSI of the last received packet
2451 * AT+TDC: Get or set the application data transmission interval in ms
2452 * AT+PORT: Get or set the application port
2453 * AT+DISAT: Disable AT commands
2454 * AT+PWORD: Set password, max 9 digits
2455 * AT+CHS: Get or set the Frequency (Unit: Hz) for Single Channel Mode
2456 * AT+CHE: Get or set eight channels mode, Only for US915, AU915, CN470
2457 * AT+CFG: Print all settings
2458 )))
2459
2460
2461 == 4.2 Common AT Command Sequence ==
2462
2463 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
2464
2465 (((
2466
2467
2468 (((
2469 (% style="color:blue" %)**If the device has not yet joined the network:**
2470 )))
2471 )))
2472
2473 (((
2474 (% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT commands access**##
2475 )))
2476
2477 (((
2478 (% style="background-color:#dcdcdc" %)##**AT+FDR ~/~/Reset parameters to factory default, Reserve keys**##
2479 )))
2480
2481 (((
2482 (% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT commands access**##
2483 )))
2484
2485 (((
2486 (% style="background-color:#dcdcdc" %)##**AT+NJM=0 ~/~/Set to ABP mode**##
2487 )))
2488
2489 (((
2490 (% style="background-color:#dcdcdc" %)##**ATZ ~/~/Reset MCU**##
2491 )))
2492
2493
2494 (((
2495 (% style="color:blue" %)**If the device has already joined the network:**
2496 )))
2497
2498 (((
2499 (% style="background-color:#dcdcdc" %)##**AT+NJM=0**##
2500 )))
2501
2502 (((
2503 (% style="background-color:#dcdcdc" %)##**ATZ**##
2504 )))
2505
2506
2507 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
2508
2509 (((
2510
2511
2512 (((
2513 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter password to enable AT commands access
2514 )))
2515 )))
2516
2517 (((
2518 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset parameters to Factory Default, Reserve keys
2519 )))
2520
2521 (((
2522 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter password to enable AT commands access
2523 )))
2524
2525 (((
2526 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to CLASS C mode
2527 )))
2528
2529 (((
2530 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
2531 )))
2532
2533 (((
2534 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
2535 )))
2536
2537 (((
2538 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
2539 )))
2540
2541 (((
2542 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
2543 )))
2544
2545 (((
2546 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4 MHz
2547 )))
2548
2549 (((
2550 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2 frequency to 868.4 MHz (according to the result from the server)
2551 )))
2552
2553 (((
2554 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2 DR to match the downlink DR from the server. See below.
2555 )))
2556
2557 (((
2558 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address. The Device Address can be found in the application on the LoRaWAN NS.
2559 )))
2560
2561 (((
2562 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
2563
2564
2565 )))
2566
2567 (((
2568 (% style="color:red" %)**Note:**
2569 )))
2570
2571 (((
2572 **~1. Ensure that the device is set to ABP mode in the LoRaWAN Network Server.**
2573
2574 **2. Verify that the LG01/02 gateway RX frequency matches the AT+CHS setting exactly.**
2575
2576 **3. Make sure the SF/bandwidth settings in the LG01/LG02 match the settings of AT+DR. Refer to [[this link>>url:http://www.dragino.com/downloads/index.php?
2577 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
2578
2579 **4. The commands AT+RX2FQ and AT+RX2DR enable downlink functionality. To set the correct parameters, you can check the actual downlink parameters to be used as shown below. Here, RX2FQ should be set to 868400000 and RX2DR should be set to 5.**
2580 )))
2581
2582 (((
2583 [[image:1653359097980-169.png||height="188" width="729"]]
2584 )))
2585
2586
2587 === 4.2.3 Change to Class A ===
2588
2589
2590 (((
2591 (% style="color:blue" %)**If the sensor has JOINED:**
2592
2593 (% style="background-color:#dcdcdc" %)**AT+CLASS=A**
2594
2595 (% style="background-color:#dcdcdc" %)**ATZ**
2596 )))
2597
2598
2599 = 5. Case Study =
2600
2601 == 5.1 Counting how many objects pass through the flow line ==
2602
2603 See [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
2604
2605
2606 = 6. FAQ =
2607
2608 This section contains some frequently asked questions, which can help you resolve common issues and find solutions quickly.
2609
2610
2611 == 6.1 How to update the firmware? ==
2612
2613 Dragino frequently releases firmware updates for the LT-22222-L. Updating your LT-22222-L with the latest firmware version helps to:
2614
2615 * Support new features
2616 * Fix bugs
2617 * Change LoRaWAN frequency bands
2618
2619 You will need the following things before proceeding:
2620
2621 * 3.5mm programming cable (included with the LT-22222-L as an additional accessory)
2622 * USB to TTL adapter
2623 * Download and install the [[STM32 Flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. (replaced by STM32CubeProgrammer)
2624 * Download the latest firmware image from [[LT-22222-L firmware image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. Check the file name of the firmware to find the correct region.
2625
2626 {{info}}
2627 As of this writing, the latest firmware version available for the LT-22222-L is v1.6.1.
2628 {{/info}}
2629
2630 Below is the hardware setup for uploading a firmware image to the LT-22222-L:
2631
2632 [[image:usb-ttl-programming.png]]
2633
2634
2635
2636 Start the STM32 Flash Loader and choose the correct COM port to update.
2637
2638 (((
2639 (((
2640 (% style="color:blue" %)**For LT-22222-L**(%%):
2641
2642 Hold down the **PRO** button, then briefly press the **RST** button. The **DO1** LED will change from OFF to ON. When the **DO1** LED is ON, it indicates that the device is in firmware download mode.
2643 )))
2644
2645
2646 )))
2647
2648 [[image:image-20220524103407-12.png]]
2649
2650
2651 [[image:image-20220524103429-13.png]]
2652
2653
2654 [[image:image-20220524104033-15.png]]
2655
2656
2657 (% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5 mm cable. The pin mapping is as follows:
2658
2659 [[image:1653360054704-518.png||height="186" width="745"]]
2660
2661
2662 (((
2663 (((
2664 == 6.2 How to change the LoRaWAN frequency band/region? ==
2665 )))
2666 )))
2667
2668 (((
2669 You can follow the introductions on [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2670 )))
2671
2672 (((
2673
2674
2675 == 6.3 How to setup LT-22222-L to work with a Single Channel Gateway, such as LG01/LG02? ==
2676 )))
2677
2678 (((
2679 (((
2680 In this case, you need to set the LT-22222-L to work in ABP mode and transmit on only one frequency.
2681 )))
2682 )))
2683
2684 (((
2685 (((
2686 We assume you have an LG01/LG02 working on the frequency 868400000. Below are the steps.
2687
2688
2689 )))
2690 )))
2691
2692 (((
2693 (% style="color:#0000ff" %)**Step 1**(%%): Log in to The Things Stack Sandbox account and create an ABP device in the application. To do this, use the manual registration option as explained in section 3.2.2.2, //Adding a Device Manually//. Select //Activation by Personalization (ABP)// under Activation Mode. Enter the DevEUI exactly as shown on the registration information sticker, then generate the Device Address, Application Session Key (AppSKey), and Network Session Key (NwkSKey).
2694
2695 [[image:lt-22222-l-abp.png||height="686" width="1000"]]
2696 )))
2697
2698 (((
2699
2700 )))
2701
2702 {{warning}}
2703 Ensure that the Device Address (DevAddr) and the two keys match between the LT-22222-L and The Things Stack. You can modify them either in The Things Stack or on the LT-22222-L to make them align. In The Things Stack, you can configure the NwkSKey and AppSKey on the settings page, but note that the Device Address is generated by The Things Stack.
2704 {{/warning}}
2705
2706
2707 (((
2708 (% style="color:blue" %)**Step 2**(%%)**:  **(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)Run AT commands to configure the LT-22222-L to operate in single-frequency and ABP mode. The AT commands are as follows:
2709
2710
2711 )))
2712
2713 (((
2714 (% style="background-color:#dcdcdc" %)**123456** (%%) : Enter the password to enable AT access.
2715
2716 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Reset parameters to factory default, keeping keys reserved.
2717
2718 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) : Set to ABP mode.
2719
2720 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) : Disable the Adaptive Data Rate (ADR).
2721
2722 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) : Set Data Rate (Use AT+DR=3 for the 915 MHz band).
2723
2724 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) : Set transmit interval to 60 seconds.
2725
2726 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4 MHz.
2727
2728 (% style="background-color:#dcdcdc" %)**AT+DADDR=xxxx**(%%) : Set the Device Address (DevAddr)
2729
2730 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:700; text-decoration:none; white-space:pre-wrap" %)**AT+APPKEY=xxxx**(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %): Get or set the Application Key (AppKey)
2731
2732 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+NWKSKEY=xxxx**: Get or set the Network Session Key (NwkSKey)
2733
2734 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+APPSKEY=xxxx**: Get or set the Application Session Key (AppSKey)
2735
2736 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) : Reset MCU.
2737 )))
2738
2739
2740 (((
2741 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)The following figure shows the screenshot of the command set above, issued using a serial tool:
2742 )))
2743
2744 [[image:1653360498588-932.png||height="485" width="726"]]
2745
2746
2747 == 6.4 How to change the uplink interval? ==
2748
2749 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2750
2751
2752 == 6.5 Can I see the counting event in the serial output? ==
2753
2754 (((
2755 You can run the AT command **AT+DEBUG** to view the counting event in the serial output. If the firmware is too old and doesn’t support AT+DEBUG, update to the latest firmware first.
2756
2757
2758 == 6.6 Can I use point-to-point communication with LT-22222-L? ==
2759
2760 Yes, you can. Please refer to the [[Point-to-Point Communication of LT-22222-L>>https://wiki.dragino.com/xwiki/bin/view/Main/%20Point%20to%20Point%20Communication%20of%20LT-22222-L/]] page. The firmware that supports point-to-point communication can be found [[here>>https://github.com/dragino/LT-22222-L/releases]].
2761
2762
2763 )))
2764
2765 (((
2766 == 6.7 Why does the relay output default to an open relay after the LT-22222-L is powered off? ==
2767
2768 * If the device is not properly shut down and is directly powered off.
2769 * It will default to a power-off state.
2770 * In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2771 * After a restart, the status before the power failure will be read from flash.
2772
2773 == 6.8 Can I setup LT-22222-L as a NC (Normally Closed) relay? ==
2774
2775 The LT-22222-L's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
2776
2777
2778 [[image:image-20221006170630-1.png||height="610" width="945"]]
2779
2780
2781 == 6.9 Can the LT-22222-L save the RO state? ==
2782
2783 To enable this feature, the firmware version must be 1.6.0 or higher.
2784
2785
2786 == 6.10 Why does the LT-22222-L always report 15.585V when measuring the AVI? ==
2787
2788 It is likely that the GND is not connected during the measurement, or that the wire connected to the GND is loose.
2789
2790
2791 = 7. Troubleshooting =
2792
2793 This section provides some known troubleshooting tips.
2794
2795
2796 )))
2797
2798 (((
2799 (((
2800 == 7.1 Downlink isn't working. How can I solve this? ==
2801 )))
2802 )))
2803
2804 (((
2805 Please refer to this link for debugging instructions: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2806 )))
2807
2808 (((
2809
2810
2811 == 7.2 Having trouble uploading an image? ==
2812 )))
2813
2814 (((
2815 Please refer to this link for troubleshooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2816 )))
2817
2818 (((
2819
2820
2821 == 7.3 Why can't I join TTN in the US915 /AU915 bands? ==
2822 )))
2823
2824 (((
2825 It might be related to the channel mapping. [[Please refer to this link for details.>>https://github.com/dragino/LT-22222-L/releases]]
2826 )))
2827
2828
2829 == 7.4 Why can the LT-22222-L perform uplink normally, but cannot receive downlink? ==
2830
2831 The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue.
2832 Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2833
2834
2835 = 8. Ordering information =
2836
2837 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2838
2839 (% style="color:#4f81bd" %)**XXX:**
2840
2841 * (% style="color:red" %)**EU433**(%%): LT with frequency bands EU433
2842 * (% style="color:red" %)**EU868**(%%): LT with frequency bands EU868
2843 * (% style="color:red" %)**KR920**(%%): LT with frequency bands KR920
2844 * (% style="color:red" %)**CN470**(%%): LT with frequency bands CN470
2845 * (% style="color:red" %)**AS923**(%%): LT with frequency bands AS923
2846 * (% style="color:red" %)**AU915**(%%): LT with frequency bands AU915
2847 * (% style="color:red" %)**US915**(%%): LT with frequency bands US915
2848 * (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2849 * (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2850
2851 = 9. Package information =
2852
2853 **Package includes**:
2854
2855 * 1 x LT-22222-L I/O Controller
2856 * 1 x LoRa antenna matched to the frequency of the LT-22222-L
2857 * 1 x bracket for DIN rail mounting
2858 * 1 x 3.5 mm programming cable
2859
2860 **Dimension and weight**:
2861
2862 * Device Size: 13.5 x 7 x 3 cm
2863 * Device Weight: 105 g
2864 * Package Size / pcs : 14.5 x 8 x 5 cm
2865 * Weight / pcs : 170 g
2866
2867 = 10. Support =
2868
2869 * (((
2870 Support is available Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule.
2871 )))
2872 * (((
2873 Please provide as much information as possible regarding your inquiry (e.g., product models, a detailed description of the problem, steps to replicate it, etc.) and send an email to [[support@dragino.cc>>mailto:support@dragino.cc]]
2874
2875
2876 )))
2877
2878 = 11. Reference​​​​​ =
2879
2880 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2881 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2882 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]