Version 197.1 by Dilisi S on 2024/11/17 15:49

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19
20 = 1. Introduction =
21
22 == 1.1 What is the LT-22222-L I/O Controller? ==
23
24 (((
25 (((
26 {{info}}
27 **This manual is also applicable to the LT-33222-L.**
28 {{/info}}
29
30 The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
31
32 The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
33 )))
34 )))
35
36 (((
37 With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
38 )))
39
40 (((
41 You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
42
43 * If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
44 * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
45 * Setup your own private LoRaWAN network.
46
47 {{info}}
48 You can use a LoRaWAN gateway, such as the [[Dragino LG308>>https://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]], to expand or create LoRaWAN coverage in your area.
49 {{/info}}
50 )))
51
52 (((
53 [[image:1653295757274-912.png]]
54
55
56 )))
57
58 == 1.2 Specifications ==
59
60 (% style="color:#037691" %)**Hardware System:**
61
62 * STM32L072xxxx MCU
63 * SX1276/78 Wireless Chip 
64 * Power Consumption:
65 ** Idle: 4mA@12V
66 ** 20dB Transmit: 34mA@12V
67 * Operating Temperature: -40 ~~ 85 Degrees, No Dew
68
69 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
70
71 * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50V, or 220V with optional external resistor)
72 * 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
73 * 2 x Relay Output (5A@250VAC / 30VDC)
74 * 2 x 0~~20mA Analog Input (res:0.01mA)
75 * 2 x 0~~30V Analog Input (res:0.01V)
76 * Power Input 7~~ 24V DC. 
77
78 (% style="color:#037691" %)**LoRa Spec:**
79
80 * Frequency Range:
81 ** Band 1 (HF): 862 ~~ 1020 MHz
82 ** Band 2 (LF): 410 ~~ 528 MHz
83 * 168 dB maximum link budget.
84 * +20 dBm - 100 mW constant RF output vs.
85 * +14 dBm high-efficiency PA.
86 * Programmable bit rate up to 300 kbps.
87 * High sensitivity: down to -148 dBm.
88 * Bullet-proof front end: IIP3 = -12.5 dBm.
89 * Excellent blocking immunity.
90 * Low RX current of 10.3 mA, 200 nA register retention.
91 * Fully integrated synthesizer with a resolution of 61 Hz.
92 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
93 * Built-in bit synchronizer for clock recovery.
94 * Preamble detection.
95 * 127 dB Dynamic Range RSSI.
96 * Automatic RF Sense and CAD with ultra-fast AFC.
97 * Packet engine up to 256 bytes with CRC.
98
99 == 1.3 Features ==
100
101 * LoRaWAN Class A & Class C modes
102 * Optional Customized LoRa Protocol
103 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
104 * AT Commands to change parameters
105 * Remotely configure parameters via LoRaWAN Downlink
106 * Firmware upgradable via program port
107 * Counting
108
109 == 1.4 Applications ==
110
111 * Smart buildings & home automation
112 * Logistics and supply chain management
113 * Smart metering
114 * Smart agriculture
115 * Smart cities
116 * Smart factory
117
118
119 == 2. Assembling the device ==
120
121 == 2.1 Connecting the antenna ==
122
123 Connect the LoRa antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper screw terminal block. Secure the antenna by tightening it clockwise.
124
125 {{warning}}
126 Warning! Do not power on the device without connecting the antenna.
127 {{/warning}}
128
129 == 2.2 Terminals ==
130
131 The  LT-22222-L has two screw terminal blocks. The upper screw treminal block has 6 terminals and the lower screw terminal block has 10 terminals.
132
133 Upper screw terminal block (from left to right):
134
135 (% style="width:634px" %)
136 |=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
137 |(% style="width:295px" %)GND|(% style="width:338px" %)Ground
138 |(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
139 |(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
140 |(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
141 |(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
142 |(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
143
144 Lower screw terminal block (from left to right):
145
146 (% style="width:633px" %)
147 |=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
148 |(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
149 |(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
150 |(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
151 |(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
152 |(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
153 |(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
154 |(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
155 |(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
156 |(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
157 |(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
158
159 == 2.3 Powering the device ==
160
161 The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect your power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator **(PWR) LED** will turn on when the device is properly powered.
162
163 Once powered, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** The Things Stack. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LED** will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status.
164
165 {{warning}}
166 We recommend that you power on the LT-22222-L after configuring its registration information with a LoRaWAN network server. Otherwise, the device will continuously send join-request messages to attempt to join a LoRaWAN network but will fail.
167 {{/warning}}
168
169
170 [[image:1653297104069-180.png]]
171
172
173 = 3. Registering with a LoRaWAN Network Server =
174
175 By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
176
177 After powering on, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** the LoRaWAN network. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LED** will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status.
178
179 In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
180
181 The network diagram below shows how the LT-22222-L is connected to a typical LoRaWAN network.
182
183 [[image:image-20220523172350-1.png||height="266" width="864"]]
184
185 === 3.2.1 Prerequisites ===
186
187 Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
188
189 [[image:image-20230425173427-2.png||height="246" width="530"]]
190
191 The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
192
193 === 3.2.2 The Things Stack Sandbox (TTSS) ===
194
195 The Things Stack Sandbox was formally called The Things Stack Community Edition.
196
197 * Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
198 * Create an application with The Things Stack if you do not have one yet.
199 * Go to your application page and click on the **End devices** in the left menu.
200 * On the End devices page, click on **+ Register end device**. Two registration options are available:
201
202 ==== 3.2.2.1 Using the LoRaWAN Device Repository ====
203
204 * On the **Register end device** page:
205 ** Select the option **Select the end device in the LoRaWAN Device Repository **under **Input method**.
206 ** Select the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)** from the respective dropdown lists.
207 *** **End device brand**: Dragino Technology Co., Limited
208 *** **Model**: LT22222-L I/O Controller
209 *** **Hardware ver**: Unknown
210 *** **Firmware ver**: 1.6.0
211 *** **Profile (Region)**: Select the region that matches your device.
212 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
213
214 [[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
215
216
217 * Register end device page continued...
218 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'.
219 ** In the **DevEUI** field, enter the **DevEUI**.
220 ** In the **AppKey** field, enter the **AppKey.**
221 ** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
222 ** Under **After registration**, select the **View registered end device** option.
223
224 [[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
225
226 ==== ====
227
228 ==== 3.2.2.2 Adding device manually ====
229
230 * On the **Register end device** page:
231 ** Select the option **Enter end device specifies manually** under **Input method**.
232 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
233 ** Select the **LoRaWAN version** as **LoRaWAN Specification 1.0.3**
234 ** Select the **Regional Parameters version** as** RP001 Regional Parameters 1.0.3 revision A**
235 ** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the hidden section.
236 ** Select the option **Over the air activation (OTAA)** under the **Activation mode.**
237 ** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities** dropdown list.
238
239 [[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
240
241
242 * Register end device page continued...
243 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'
244 ** In the **DevEUI** field, enter the **DevEUI**.
245 ** In the **AppKey** field, enter the **AppKey**.
246 ** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
247 ** Under **After registration**, select the **View registered end device** option.
248 ** Click the **Register end device** button.
249
250 [[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
251
252
253 You will be navigated to the **Device overview** page.
254
255
256 [[image:lt-22222-device-overview.png||height="625" width="1000"]]
257
258
259 ==== 3.2.2.3 Joining ====
260
261 On the Device overview page, click on **Live data** tab. The Live data panel for your device will display.
262
263 Now power on your LT-22222-L. It will begin joining The Things Stack. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server. Once successfully joined, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**).
264
265
266 [[image:lt-22222-join-network.png||height="625" width="1000"]]
267
268
269 By default, you will receive an uplink data message from the device every 10 minutes.
270
271 Click on one of a **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the decode_payload {} JSON object.
272
273 [[image:lt-22222-ul-payload-decoded.png]]
274
275
276 If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **End devices** > **LT-22222-L** > **Payload formatters** > **Uplink**. Then  select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
277
278 {{info}}
279 The Things Stack provides two levels of payload formatters: application level and device level. The device-level payload formatters **override **the application-level payload formatters.
280 {{/info}}
281
282 [[image:lt-22222-ul-payload-fmt.png||height="686" width="1000"]]
283
284
285 == 3.3 Working Modes and Uplink Payload formats ==
286
287
288 The LT-22222-L has 5 **working modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
289
290 * (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
291
292 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
293
294 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
295
296 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
297
298 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
299
300 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
301
302 The uplink messages are sent over LoRaWAN FPort=2. By default, an uplink message is sent every 10 minutes.
303
304 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
305
306 (((
307 This is the default mode.
308
309 The uplink payload is 11 bytes long.
310
311 (% style="color:red" %)**Note:The maximum count depends on the bytes number of bytes.
312 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
313 It starts counting again when it reaches the maximum value.**(% style="display:none" wfd-invisible="true" %)
314
315 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
316 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
317 |Value|(((
318 AVI1 voltage
319 )))|(((
320 AVI2 voltage
321 )))|(((
322 ACI1 Current
323 )))|(((
324 ACI2 Current
325 )))|**DIDORO***|(((
326 Reserve
327 )))|MOD
328 )))
329
330 (((
331 (% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
332
333 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
334 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
335 |RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
336 )))
337
338 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
339 * DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
340 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
341
342 (% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
343
344 For example, if the payload is: [[image:image-20220523175847-2.png]]
345
346
347 **The interface values can be calculated as follows:  **
348
349 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
350
351 AVI2 channel voltage is 0x04AC/1000=1.196V
352
353 ACI1 channel current is 0x1310/1000=4.880mA
354
355 ACI2 channel current is 0x1300/1000=4.864mA
356
357 The last byte 0xAA= **10101010**(b) means,
358
359 * [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
360 * [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
361 * **[1] DI3 - not used for LT-22222-L.**
362 * [0] DI2 channel input is LOW, and the DI2 LED is OFF.
363 * [1] DI1 channel input state:
364 ** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
365 ** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
366 ** DI1 LED is ON in both cases.
367 * **[0] DO3 - not used for LT-22222-L.**
368 * [1] DO2 channel output is LOW, and the DO2 LED is ON.
369 * [0] DO1 channel output state:
370 ** DO1 is FLOATING when there is no load between DO1 and V+.
371 ** DO1 is HIGH and there is a load between DO1 and V+.
372 ** DO1 LED is OFF in both cases.
373
374 Reserve = 0
375
376 MOD = 1
377
378 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
379
380
381 (((
382 **For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
383 )))
384
385 (((
386 The uplink payload is 11 bytes long.
387
388 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
389 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
390 It starts counting again when it reaches the maximum value.**
391
392 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
393 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
394 |Value|COUNT1|COUNT2 |DIDORO*|(((
395 Reserve
396 )))|MOD
397 )))
398
399 (((
400 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
401
402 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
403 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
404 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
405
406 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
407 )))
408
409 * FIRST: Indicates that this is the first packet after joining the network.
410 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
411
412 (((
413 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
414
415
416 )))
417
418 (((
419 **To activate this mode, run the following AT commands:**
420 )))
421
422 (((
423 (% class="box infomessage" %)
424 (((
425 **AT+MOD=2**
426
427 **ATZ**
428 )))
429 )))
430
431 (((
432
433
434 (% style="color:#4f81bd" %)**AT Commands for counting:**
435 )))
436
437 (((
438 **For LT22222-L:**
439
440 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
441
442 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
443
444 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
445
446 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
447
448 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
449
450 (% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
451 )))
452
453
454 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
455
456 (% style="color:red" %)**Note: The maximum count depends on the bytes it is.
457 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
458 It starts counting again when it reaches the maximum value.**
459
460 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
461
462 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
463 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
464 |Value|COUNT1|(((
465 ACI1 Current
466 )))|(((
467 ACI2 Current
468 )))|DIDORO*|Reserve|MOD
469
470 (((
471 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
472
473 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
474 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
475 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
476 )))
477
478 * RO is for the relay. ROx=1: closed, ROx=0 always open.
479 * FIRST: Indicates that this is the first packet after joining the network.
480 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
481
482 (((
483 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
484 )))
485
486
487 (((
488 **To activate this mode, run the following AT commands:**
489 )))
490
491 (((
492 (% class="box infomessage" %)
493 (((
494 **AT+MOD=3**
495
496 **ATZ**
497 )))
498 )))
499
500 (((
501 AT Commands for counting:
502
503 The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
504 )))
505
506
507 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
508
509 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
510 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
511 It starts counting again when it reaches the maximum value.**
512
513
514 (((
515 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
516 )))
517
518 (((
519 The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
520
521 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
522 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
523 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
524 Reserve
525 )))|MOD
526 )))
527
528 (((
529 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
530
531 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
532 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
533 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
534 )))
535
536 * RO is for the relay. ROx=1: closed, ROx=0 always open.
537 * FIRST: Indicates that this is the first packet after joining the network.
538 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
539
540 (((
541 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
542
543
544 )))
545
546 (((
547 **To activate this mode, run the following AT commands:**
548 )))
549
550 (((
551 (% class="box infomessage" %)
552 (((
553 **AT+MOD=4**
554
555 **ATZ**
556 )))
557 )))
558
559 (((
560 Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
561 )))
562
563 (((
564 **In addition to that, below are the commands for AVI1 Counting:**
565
566 (% style="color:blue" %)**AT+SETCNT=3,60 **(%%)**(Sets AVI Count to 60)**
567
568 (% style="color:blue" %)**AT+VOLMAX=20000 **(%%)**(If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
569
570 (% style="color:blue" %)**AT+VOLMAX=20000,0 **(%%)**(If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
571
572 (% style="color:blue" %)**AT+VOLMAX=20000,1 **(%%)**(If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
573 )))
574
575
576 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
577
578 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
579 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
580 It starts counting again when it reaches the maximum value.**
581
582
583 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
584
585 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
586 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
587 |Value|(((
588 AVI1 voltage
589 )))|(((
590 AVI2 voltage
591 )))|(((
592 ACI1 Current
593 )))|COUNT1|DIDORO*|(((
594 Reserve
595 )))|MOD
596
597 (((
598 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
599
600 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
601 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
602 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
603 )))
604
605 * RO is for the relay. ROx=1: closed, ROx=0 always open.
606 * FIRST: Indicates that this is the first packet after joining the network.
607 * (((
608 DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
609 )))
610
611 (((
612 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
613 )))
614
615 (((
616 **To activate this mode, run the following AT commands:**
617 )))
618
619 (((
620 (% class="box infomessage" %)
621 (((
622 **AT+MOD=5**
623
624 **ATZ**
625 )))
626 )))
627
628 (((
629 Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
630 )))
631
632
633 === 3.3.6 AT+ADDMOD~=6 (Trigger Mode, Optional) ===
634
635
636 (% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate __alongside__ with other modes.**
637
638 For example, if you configure the following commands:
639
640 * **AT+MOD=1 ** **~-~->**  Sets the default working mode
641 * **AT+ADDMOD6=1**   **~-~->**  Enables trigger mode
642
643 The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. It will send uplink packets in two cases:
644
645 1. Periodic uplink: Based on TDC time. The payload is the same as in normal mode (MOD=1 as set above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
646 1. (((
647 Trigger uplink: sent when a trigger condition is met. In this case, LT will send two packets
648
649 * The first uplink uses the payload specified in trigger mode (MOD=6).
650 * The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**confirmed uplinks.**
651 )))
652
653 (% style="color:#037691" %)**AT Commands to set Trigger Conditions**:
654
655 (% style="color:#4f81bd" %)**Trigger based on voltage**:
656
657 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
658
659
660 **Example:**
661
662 AT+AVLIM=3000,6000,0,2000 (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
663
664 AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
665
666
667 (% style="color:#4f81bd" %)**Trigger based on current**:
668
669 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
670
671
672 **Example:**
673
674 AT+ACLIM=10000,15000,0,0 (triggers an uplink if AC1 current is lower than 10mA or higher than 15mA)
675
676
677 (% style="color:#4f81bd" %)**Trigger based on DI status**:
678
679 DI status triggers Flag.
680
681 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
682
683
684 **Example:**
685
686 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
687
688
689 (% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
690
691 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
692
693 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
694
695 AA: Type Code for this downlink Command:
696
697 xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
698
699 yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
700
701 yy2 yy2: AC1 or AV1 HIGH limit.
702
703 yy3 yy3: AC2 or AV2 LOW limit.
704
705 Yy4 yy4: AC2 or AV2 HIGH limit.
706
707
708 **Example 1**: AA 00 13 88 00 00 00 00 00 00
709
710 Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
711
712
713 **Example 2**: AA 02 01 00
714
715 Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
716
717
718 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
719
720 MOD6 Payload: total of 11 bytes
721
722 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
723 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
724 |Value|(((
725 TRI_A FLAG
726 )))|(((
727 TRI_A Status
728 )))|(((
729 TRI_DI FLAG+STA
730 )))|Reserve|Enable/Disable MOD6|(((
731 MOD(6)
732 )))
733
734 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
735
736 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
737 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
738 |(((
739 AV1_LOW
740 )))|(((
741 AV1_HIGH
742 )))|(((
743 AV2_LOW
744 )))|(((
745 AV2_HIGH
746 )))|(((
747 AC1_LOW
748 )))|(((
749 AC1_HIGH
750 )))|(((
751 AC2_LOW
752 )))|(((
753 AC2_HIGH
754 )))
755
756 * Each bit shows if the corresponding trigger has been configured.
757
758 **Example:**
759
760 10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW
761
762
763 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
764
765 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
766 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
767 |(((
768 AV1_LOW
769 )))|(((
770 AV1_HIGH
771 )))|(((
772 AV2_LOW
773 )))|(((
774 AV2_HIGH
775 )))|(((
776 AC1_LOW
777 )))|(((
778 AC1_HIGH
779 )))|(((
780 AC2_LOW
781 )))|(((
782 AC2_HIGH
783 )))
784
785 * Each bit shows which status has been triggered on this uplink.
786
787 **Example:**
788
789 10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low.
790
791
792 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
793
794 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
795 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
796 |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
797
798 * Each bits shows which status has been triggered on this uplink.
799
800 **Example:**
801
802 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
803
804 00000101: Means both DI1 and DI2 trigger are enabled.
805
806
807 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
808
809 Downlink command to poll MOD6 status:
810
811 **AB 06**
812
813 When device got this command, it will send the MOD6 payload.
814
815
816 === 3.3.7 Payload Decoder ===
817
818 (((
819
820
821 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
822 )))
823
824
825 == 3.4 ​Configure LT-22222-L via AT Commands or Downlinks ==
826
827 (((
828 You can configure LT-22222-L I/O Controller via AT Commands or LoRaWAN Downlinks.
829 )))
830
831 (((
832 (((
833 There are two tytes of commands:
834 )))
835 )))
836
837 * (% style="color:blue" %)**Common commands**(%%):
838
839 * (% style="color:blue" %)**Sensor-related commands**(%%):
840
841 === 3.4.1 Common commands ===
842
843 (((
844 These are available for each sensors and include actions such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]s.
845 )))
846
847 === 3.4.2 Sensor-related commands ===
848
849 These commands are specially designed for the LT-22222-L. Commands can be sent to the device using options such as an AT command or a LoRaWAN downlink payload.
850
851
852 ==== 3.4.2.1 Set Transmit Interval ====
853
854 Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
855
856 (% style="color:#037691" %)**AT command**
857
858 (% style="width:500px" %)
859 |**Command**|AT+TDC<time>
860 |**Response**|
861 |**Parameters**|time : uplink interval is in milliseconds
862 |**Example**|(((
863 AT+TDC=30000
864
865 Sets the uplink interval to 30,000 milliseconds (30 seconds)
866 )))
867
868 (% style="color:#037691" %)**Downlink payload**
869
870 (% style="width:500px" %)
871 |**Payload**|(((
872 <prefix><time>
873 )))
874 |**Parameters**|(((
875 prefix : 0x01
876
877 time : uplink interval is in milliseconds, represented by 3  bytes in hexadecimal.
878 )))
879 |**Example**|(((
880 01 **00 75 30**
881
882 Sets the uplink interval to 30,000 milliseconds (30 seconds)
883
884 Conversion: 30000 (dec) = 00 75 30 (hex)
885
886 See [[RapidTables>>https://www.rapidtables.com/convert/number/decimal-to-hex.html?x=30000]]
887 )))
888
889 ==== 3.4.2.2 Set the Working Mode (AT+MOD) ====
890
891 Sets the working mode.
892
893 (% style="color:#037691" %)**AT command**
894
895 (% style="width:500px" %)
896 |(% style="width:97px" %)**Command**|(% style="width:413px" %)AT+MODE<working_mode>
897 |(% style="width:97px" %)**Response**|(% style="width:413px" %)
898 |(% style="width:97px" %)**Parameters**|(% style="width:413px" %)(((
899 working_mode :
900
901 1 = (Default mode/factory set):  2ACI + 2AVI + DI + DO + RO
902
903 2 = Double DI Counting + DO + RO
904
905 3 = Single DI Counting + 2 x ACI + DO + RO
906
907 4 = Single DI Counting + 1 x Voltage Counting + DO + RO
908
909 5 = Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
910
911 6 = Trigger Mode, Optional, used together with MOD1 ~~ MOD5
912 )))
913 |(% style="width:97px" %)**Example**|(% style="width:413px" %)(((
914 AT+MOD=2
915
916 Sets the device to working mode 2 (Double DI Counting + DO + RO)
917 )))
918
919 (% class="wikigeneratedid" %)
920 (% style="color:#037691" %)**Downlink payload**
921
922 (% style="width:500px" %)
923 |(% style="width:98px" %)**Payload**|(% style="width:400px" %)<prefix><working_mode>
924 |(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
925 prefix : 0x0A
926
927 working_mode : Working mode, represented by 1 byte in hexadecimal.
928 )))
929 |(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
930 0A **02**
931
932 Sets the device to working mode 2 (Double DI Counting + DO + RO)
933 )))
934
935 ==== 3.4.2.3 Poll an uplink ====
936
937 Requests an uplink from LT-22222-L.
938
939 (% style="color:#037691" %)**AT command**
940
941 There is no AT Command to request an uplink from LT-22222-L
942
943 (% style="color:#037691" %)**Downlink payload**
944
945 (% style="width:500px" %)
946 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix>FF
947 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)prefix : 0x08
948 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
949 08 FF
950
951 Requests an uplink from LT-22222-L.
952 )))
953
954 ==== 3.4.2.4 Enable/Disable Trigger Mode ====
955
956 Enable or disable the trigger mode for the current working mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
957
958 (% style="color:#037691" %)**AT Command**
959
960 (% style="width:500px" %)
961 |(% style="width:95px" %)**Command**|(% style="width:403px" %)AT+ADDMOD6=<enable/disable trigger_mode>
962 |(% style="width:95px" %)**Response**|(% style="width:403px" %)
963 |(% style="width:95px" %)**Parameters**|(% style="width:403px" %)(((
964 enable/disable trigger_mode :
965
966 1 = enable trigger mode
967
968 0 = disable trigger mode
969 )))
970 |(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
971 AT+ADDMOD6=1
972
973 Enable trigger mode for the current working mode
974 )))
975
976 (% style="color:#037691" %)**Downlink payload**
977
978 (% style="width:500px" %)
979 |(% style="width:97px" %)**Payload**|(% style="width:401px" %)<prefix><enable/disable trigger_mode>
980 |(% style="width:97px" %)**Parameters**|(% style="width:401px" %)(((
981 prefix : 0x0A 06
982
983 working mode : enable (1) or disable (0), represented by 1 byte in hexadecimal.
984 )))
985 |(% style="width:97px" %)**Example**|(% style="width:401px" %)(((
986 0A 06 **01**
987
988 Enable trigger mode for the current working mode
989 )))
990
991 ==== 3.4.2.5 Poll trigger settings ====
992
993 Polls the trigger settings.
994
995 (% style="color:#037691" %)**AT Command:**
996
997 There is no AT Command for this feature.
998
999 (% style="color:#037691" %)**Downlink Payload**
1000
1001 (% style="width:500px" %)
1002 |(% style="width:95px" %)**Payload**|(% style="width:403px" %)<prefix>
1003 |(% style="width:95px" %)**Parameters**|(% style="width:403px" %)prefix : AB 06
1004 |(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1005 AB 06
1006
1007 Uplinks the trigger settings.
1008 )))
1009
1010 ==== 3.4.2.6 Enable/Disable DI1/DI2 as a trigger ====
1011
1012 Enable or disable DI1/DI2 as a trigger.
1013
1014 (% style="color:#037691" %)**AT Command**
1015
1016 (% style="width:500px" %)
1017 |(% style="width:98px" %)Command|(% style="width:400px" %)AT+DTRI=<DI1_trigger><DI2_trigger>
1018 |(% style="width:98px" %)Response|(% style="width:400px" %)
1019 |(% style="width:98px" %)Parameters|(% style="width:400px" %)(((
1020 DI1_trigger:
1021
1022 1 = enable DI1 trigger
1023
1024 0 = disable DI1 trigger
1025
1026 DI2 _trigger
1027
1028 1 = enable DI2 trigger
1029
1030 0 = disable DI2 trigger
1031 )))
1032 |(% style="width:98px" %)Example|(% style="width:400px" %)(((
1033 AT+DTRI=1,0
1034
1035 Enable DI1 trigger, disable DI2 trigger
1036 )))
1037
1038 (% class="wikigeneratedid" %)
1039 (% style="color:#037691" %)**Downlink Payload**
1040
1041 (% style="width:500px" %)
1042 |(% style="width:101px" %)Payload|(% style="width:397px" %)<prefix><DI1_trigger><DI2_trigger>
1043 |(% style="width:101px" %)Parameters|(% style="width:397px" %)(((
1044 prefix : AA 02
1045
1046 DI1_trigger:
1047
1048 1 = enable DI1 trigger, represented by 1 byte in hexadecimal.
1049
1050 0 = disable DI1 trigger, represented by 1 byte in hexadecimal.
1051
1052 DI2 _trigger
1053
1054 1 = enable DI2 trigger, represented by 1 byte in hexadecimal.
1055
1056 0 = disable DI2 trigger, represented by 1 byte in hexadecimal.
1057 )))
1058 |(% style="width:101px" %)Example|(% style="width:397px" %)(((
1059 AA 02 **01 00**
1060
1061 Enable DI1 trigger, disable DI2 trigger
1062 )))
1063
1064 ==== 3.4.2.7 Trigger1 – Set DI or DI3 as a trigger ====
1065
1066 Sets DI1 or DI3 (for LT-33222-L) as a trigger.
1067
1068 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG1=a,b**
1069
1070 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
1071
1072 (% style="color:red" %)**b :** (%%)delay timing.
1073
1074 **Example:** AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
1075
1076
1077 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
1078
1079 (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
1080
1081
1082 (% style="width:500px" %)
1083 |(% style="width:101px" %)Command|(% style="width:397px" %)
1084 |(% style="width:101px" %)Response|(% style="width:397px" %)
1085 |(% style="width:101px" %)Parameters|(% style="width:397px" %)
1086 |(% style="width:101px" %)Example|(% style="width:397px" %)
1087
1088 ==== 3.4.2.8 Trigger2 – Set DI2 as a trigger ====
1089
1090 Sets DI2 as a trigger.
1091
1092 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
1093
1094 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1095
1096 (% style="color:red" %)**b :** (%%)delay timing.
1097
1098 **Example:** AT+TRIG2=0,100 (Set the DI1 port to trigger on a falling edge; the valid signal duration is 100 ms)
1099
1100
1101 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
1102
1103 (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
1104
1105
1106 (% style="color:#037691" %)**AT Command**
1107
1108 (% style="width:500px" %)
1109 |(% style="width:94px" %)Command|(% style="width:404px" %)AT+TRIG=<interrupt_mode><minimum_signal_duration>
1110 |(% style="width:94px" %)Response|(% style="width:404px" %)
1111 |(% style="width:94px" %)Parameters|(% style="width:404px" %)(((
1112 interrupt_mode :  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1113
1114 minimum_signal_duration : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1115 )))
1116 |(% style="width:94px" %)Example|(% style="width:404px" %)(((
1117 AT+TRIG2=0,100
1118
1119 Set the DI1 port to trigger on a falling edge; the valid signal duration is 100 ms.
1120 )))
1121
1122 (% style="color:#037691" %)**Downlink Payload**
1123
1124 (% style="width:500px" %)
1125 |(% style="width:96px" %)Payload|(% style="width:402px" %)<prefix><interrupt_mode><minimum_signal_duration>
1126 |(% style="width:96px" %)Parameters|(% style="width:402px" %)(((
1127 prefix : 09 02
1128
1129 interrupt_mode : 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1130
1131 <minimum_signal_duration>, represented two bytes in hexadecimal
1132 )))
1133 |(% style="width:96px" %)Example|(% style="width:402px" %)09 02 **00 00 64**
1134
1135 ==== 3.4.2.9 Trigger – Set AC (current) as a trigger ====
1136
1137 Sets the current trigger based on the AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1138
1139 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ACLIM**
1140
1141 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
1142
1143 (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1144
1145
1146 (% style="width:500px" %)
1147 |(% style="width:104px" %)Command|(% style="width:394px" %)AT+ACLIM
1148 |(% style="width:104px" %)Response|(% style="width:394px" %)
1149 |(% style="width:104px" %)Parameters|(% style="width:394px" %)-
1150 |(% style="width:104px" %)Example|(% style="width:394px" %)AT+ACLIM
1151
1152
1153 (% style="width:500px" %)
1154 |(% style="width:104px" %)Payload|(% style="width:394px" %)<prefix>
1155 |(% style="width:104px" %)Parameters|(% style="width:394px" %)prefix : AA 01
1156 |(% style="width:104px" %)Example|(% style="width:394px" %)AA 01 aa bb cc dd ee ff gg hh
1157
1158 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
1159
1160 Sets the current trigger based on the AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1161
1162 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
1163
1164 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
1165
1166 (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1167
1168
1169 ==== 3.4.2.11 Trigger – Set minimum interval ====
1170
1171 Sets AV and AC trigger minimum interval. Device won't response to the second trigger within this set time after the first trigger.
1172
1173 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
1174
1175 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
1176
1177 (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
1178
1179 (((
1180 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
1181 )))
1182
1183
1184
1185 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1186
1187 Controls the digital outputs DO1, DO2, and DO3
1188
1189 * (% style="color:#037691" %)**AT Command**
1190
1191 There is no AT Command to control Digital Output
1192
1193
1194 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1195
1196 (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1197
1198 (((
1199 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1200 )))
1201
1202 (((
1203 01: Low,  00: High ,  11: No action
1204
1205 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1206 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
1207 |02  01  00  11|Low|High|No Action
1208 |02  00  11  01|High|No Action|Low
1209 |02  11  01  00|No Action|Low|High
1210 )))
1211
1212 (((
1213 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1214 )))
1215
1216 (((
1217 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1218 )))
1219
1220
1221
1222 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1223
1224
1225 * (% style="color:#037691" %)**AT Command**
1226
1227 There is no AT Command to control Digital Output
1228
1229
1230 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1231
1232 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1233
1234
1235 This is to control the digital output time of DO pin. Include four bytes:
1236
1237 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1238
1239 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1240
1241 01: DO pins will change back to original state after timeout.
1242
1243 00: DO pins will change to an inverter state after timeout 
1244
1245
1246 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1247
1248 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1249 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1250 |0x01|DO1 set to low
1251 |0x00|DO1 set to high
1252 |0x11|DO1 NO Action
1253
1254 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1255
1256 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1257 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1258 |0x01|DO2 set to low
1259 |0x00|DO2 set to high
1260 |0x11|DO2 NO Action
1261
1262 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1263
1264 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1265 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1266 |0x01|DO3 set to low
1267 |0x00|DO3 set to high
1268 |0x11|DO3 NO Action
1269
1270 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:(%%) Latching time. Unit: ms
1271
1272
1273 (% style="color:red" %)**Note: **
1274
1275 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1276
1277 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1278
1279 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1280
1281
1282 **Example payload:**
1283
1284 **~1. A9 01 01 01 01 07 D0**
1285
1286 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1287
1288 **2. A9 01 00 01 11 07 D0**
1289
1290 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1291
1292 **3. A9 00 00 00 00 07 D0**
1293
1294 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1295
1296 **4. A9 00 11 01 00 07 D0**
1297
1298 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1299
1300
1301
1302 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1303
1304
1305 * (% style="color:#037691" %)**AT Command:**
1306
1307 There is no AT Command to control Relay Output
1308
1309
1310 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1311
1312 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1313
1314
1315 (((
1316 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1317 )))
1318
1319 (((
1320 00: Closed ,  01: Open , 11: No action
1321
1322 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1323 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1324 |03  00  11|Open|No Action
1325 |03  01  11|Close|No Action
1326 |03  11  00|No Action|Open
1327 |03  11  01|No Action|Close
1328 |03  00  00|Open|Open
1329 |03  01  01|Close|Close
1330 |03  01  00|Close|Open
1331 |03  00  01|Open|Close
1332 )))
1333
1334 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1335
1336
1337
1338 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1339
1340
1341 * (% style="color:#037691" %)**AT Command:**
1342
1343 There is no AT Command to control Relay Output
1344
1345
1346 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1347
1348 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1349
1350
1351 This is to control the relay output time of relay. Include four bytes:
1352
1353 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1354
1355 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1356
1357 01: Relays will change back to original state after timeout.
1358
1359 00: Relays will change to an inverter state after timeout
1360
1361
1362 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1363
1364 [[image:image-20221008095908-1.png||height="364" width="564"]]
1365
1366
1367 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1368
1369
1370 (% style="color:red" %)**Note:**
1371
1372 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1373
1374 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1375
1376
1377 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1378
1379
1380 **Example payload:**
1381
1382 **~1. 05 01 11 07 D0**
1383
1384 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1385
1386 **2. 05 01 10 07 D0**
1387
1388 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1389
1390 **3. 05 00 01 07 D0**
1391
1392 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1393
1394 **4. 05 00 00 07 D0**
1395
1396 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1397
1398
1399
1400 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1401
1402
1403 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1404
1405 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1406
1407 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1408
1409 (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1410
1411
1412
1413 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1414
1415
1416 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1417
1418 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1419
1420 (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1421
1422
1423 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1424
1425 (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1426
1427
1428
1429 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1430
1431
1432 Clear counting for counting mode
1433
1434 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT         **(%%) ~/~/ clear all counting
1435
1436 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1437
1438 (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1439
1440
1441
1442 ==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1443
1444
1445 * (% style="color:#037691" %)**AT Command:**
1446
1447 (% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1448
1449
1450 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1451
1452 (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1453
1454 (((
1455 range: aa bb cc:0 to 16777215,  (unit:second)
1456 )))
1457
1458
1459
1460 ==== 3.4.2.20 Reset save RO DO state ====
1461
1462
1463 * (% style="color:#037691" %)**AT Command:**
1464
1465 (% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1466
1467 (% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1468
1469
1470 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1471
1472 (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1473
1474
1475
1476 ==== 3.4.2.21 Encrypted payload ====
1477
1478
1479 * (% style="color:#037691" %)**AT Command:**
1480
1481 (% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1482
1483 (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1484
1485
1486
1487 ==== 3.4.2.22 Get sensor value ====
1488
1489
1490 * (% style="color:#037691" %)**AT Command:**
1491
1492 (% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1493
1494 (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1495
1496
1497
1498 ==== 3.4.2.23 Resets the downlink packet count ====
1499
1500
1501 * (% style="color:#037691" %)**AT Command:**
1502
1503 (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1504
1505 (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1506
1507
1508
1509 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1510
1511
1512 * (% style="color:#037691" %)**AT Command:**
1513
1514 (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1515
1516 (% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1517
1518
1519 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1520
1521 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1522
1523
1524
1525 ==== 3.4.2.25 Copy downlink to uplink ====
1526
1527
1528 * (% style="color:#037691" %)**AT Command**(%%)**:**
1529
1530 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1531
1532 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1533
1534
1535 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1536
1537 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1538
1539
1540
1541 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1542
1543 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1544
1545
1546
1547 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1548
1549
1550 * (((
1551 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1552
1553 (% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1554
1555
1556 )))
1557
1558 **Example:**
1559
1560 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1561
1562
1563 == 3.5 Integrating with ThingsEye.io ==
1564
1565 The Things Stack application supports integration with ThingsEye.io. Once integrated, ThingsEye.io acts as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1566
1567 === 3.5.1 Configuring The Things Stack ===
1568
1569 We use The Things Stack Sandbox in this example:
1570
1571 * In **The Things Stack Sandbox**, go to the **Application **for the LT-22222-L you added.
1572 * Select **MQTT** under **Integrations** in the left menu.
1573 * In the **Connection information **section, under **Connection credentials**, The Things Stack displays an auto-generated **username**. You can use it or provide a new one.
1574 * Click the **Generate new API key** button to generate a password. You can view it by clicking on the **visibility toggle/eye** icon. The API key works as the password.
1575
1576 {{info}}
1577 The username and  password (API key) you created here are required in the next section.
1578 {{/info}}
1579
1580 [[image:tts-mqtt-integration.png||height="625" width="1000"]]
1581
1582 === 3.5.2 Configuring ThingsEye.io ===
1583
1584 * Login to your [[ThingsEye.io >>https://thingseye.io]]account.
1585 * Under the **Integrations center**, click **Integrations**.
1586 * Click the **Add integration** button (the button with the **+** symbol).
1587
1588 [[image:thingseye-io-step-1.png||height="625" width="1000"]]
1589
1590
1591 On the **Add integration** window, configure the following:
1592
1593 **Basic settings:**
1594
1595 * Select **The Things Stack Community** from the **Integration type** list.
1596 * Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
1597 * Ensure the following options are turned on.
1598 ** Enable integration
1599 ** Debug mode
1600 ** Allow create devices or assets
1601 * Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
1602
1603 [[image:thingseye-io-step-2.png||height="625" width="1000"]]
1604
1605
1606 **Uplink data converter:**
1607
1608 * Click the **Create new** button if it is not selected by default.
1609 * Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
1610 * Click the **JavaScript** button.
1611 * Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
1612 * Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
1613
1614 [[image:thingseye-io-step-3.png||height="625" width="1000"]]
1615
1616
1617 **Downlink data converter (this is an optional step):**
1618
1619 * Click the **Create new** button if it is not selected by default.
1620 * Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name.
1621 * Click the **JavaScript** button.
1622 * Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Downlink_Converter.js]].
1623 * Click the **Next** button. You will be navigated to the **Connection** tab.
1624
1625 [[image:thingseye-io-step-4.png||height="625" width="1000"]]
1626
1627
1628 **Connection:**
1629
1630 * Choose **Region** from the **Host type**.
1631 * Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
1632 * Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The **username **and **password **can be found on the MQTT integration page of your The Things Stack account (see Configuring The Things Stack).
1633 * Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
1634
1635 [[image:message-1.png]]
1636
1637
1638 * Click the **Add** button.
1639
1640 [[image:thingseye-io-step-5.png||height="625" width="1000"]]
1641
1642
1643 Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings.
1644
1645
1646 [[image:thingseye.io_integrationsCenter_integrations.png||height="686" width="1000"]]
1647
1648
1649 ==== 3.5.2.1 Viewing integration details ====
1650
1651 Click on your integration from the list. The **Integration details** window will appear with the **Details **tab selected. The **Details **tab shows all the settings you have provided for this integration.
1652
1653 [[image:integration-details.png||height="686" width="1000"]]
1654
1655
1656 If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
1657
1658 {{info}}
1659 See also ThingsEye documentation.
1660 {{/info}}
1661
1662 ==== **3.5.2.2 Viewing events** ====
1663
1664 The **Events **tab displays all the uplink messages from the LT-22222-L.
1665
1666 * Select **Debug **from the **Event type** dropdown.
1667 * Select the** time frame** from the **time window**.
1668
1669 [[image:thingseye-events.png||height="686" width="1000"]]
1670
1671
1672 * To view the JSON payload of a message, click on the three dots (...) in the Message column of the desired message.
1673
1674 [[image:thingseye-json.png||width="1000"]]
1675
1676
1677 ==== **3.5.2.3 Deleting an integration** ====
1678
1679 If you want to delete an integration, click the **Delete integratio**n button on the Integrations page.
1680
1681
1682 == 3.6 Interface Details ==
1683
1684 === 3.6.1 Digital Input Ports: DI1/DI2/DI3 (For LT-33222-L, Low Active ) ===
1685
1686
1687 Supports NPN-type sensors.
1688
1689 [[image:1653356991268-289.png]]
1690
1691
1692 === 3.6.2 Digital Input Ports: DI1/DI2 ===
1693
1694
1695 (((
1696 The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1697 )))
1698
1699 (((
1700 (((
1701 The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1702
1703
1704 )))
1705 )))
1706
1707 [[image:1653357170703-587.png]]
1708
1709 (((
1710 (((
1711 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1712 )))
1713 )))
1714
1715 (((
1716
1717 )))
1718
1719 (((
1720 (% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1721 )))
1722
1723 (((
1724 This type of sensor outputs a low (GND) signal when active.
1725 )))
1726
1727 * (((
1728 Connect the sensor's output to DI1-
1729 )))
1730 * (((
1731 Connect the sensor's VCC to DI1+.
1732 )))
1733
1734 (((
1735 When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be:
1736 )))
1737
1738 (((
1739 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1740 )))
1741
1742 (((
1743 For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1744 )))
1745
1746 (((
1747
1748 )))
1749
1750 (((
1751 (% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1752 )))
1753
1754 (((
1755 This type of sensor outputs a high signal (e.g., 24V) when active.
1756 )))
1757
1758 * (((
1759 Connect the sensor's output to DI1+
1760 )))
1761 * (((
1762 Connect the sensor's GND DI1-.
1763 )))
1764
1765 (((
1766 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1767 )))
1768
1769 (((
1770 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1771 )))
1772
1773 (((
1774 If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1775 )))
1776
1777 (((
1778
1779 )))
1780
1781 (((
1782 (% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1783 )))
1784
1785 (((
1786 Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1787 )))
1788
1789 * (((
1790 Connect the sensor's output to DI1+ with a 50K resistor in series.
1791 )))
1792 * (((
1793 Connect the sensor's GND DI1-.
1794 )))
1795
1796 (((
1797 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1798 )))
1799
1800 (((
1801 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1802 )))
1803
1804 (((
1805 If the sensor output is 220V, then [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1806 )))
1807
1808
1809 (% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1810
1811 From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1812
1813 To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1814
1815 [[image:image-20230616235145-1.png]]
1816
1817 (% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1818
1819 [[image:image-20240219115718-1.png]]
1820
1821
1822 === 3.6.3 Digital Output Ports: DO1/DO2 ===
1823
1824
1825 (% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1826
1827 (% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
1828
1829 [[image:1653357531600-905.png]]
1830
1831
1832 === 3.6.4 Analog Input Interfaces ===
1833
1834
1835 The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1836
1837
1838 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1839
1840 [[image:1653357592296-182.png]]
1841
1842 Example: Connecting a 4~~20mA sensor
1843
1844 We will use the wind speed sensor as an example for reference only.
1845
1846
1847 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1848
1849 (% style="color:red" %)**Red:  12~~24V**
1850
1851 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1852
1853 **Black:  GND**
1854
1855 **Connection diagram:**
1856
1857 [[image:1653357640609-758.png]]
1858
1859 [[image:1653357648330-671.png||height="155" width="733"]]
1860
1861
1862 Example: Connecting to a regulated power supply to measure voltage
1863
1864 [[image:image-20230608101532-1.png||height="606" width="447"]]
1865
1866 [[image:image-20230608101608-2.jpeg||height="379" width="284"]]
1867
1868 [[image:image-20230608101722-3.png||height="102" width="1139"]]
1869
1870
1871 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1872
1873 (% style="color:red" %)**Red:  12~~24v**
1874
1875 **Black:  GND**
1876
1877
1878 === 3.6.5 Relay Output ===
1879
1880
1881 (((
1882 The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1883
1884 **Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1885 )))
1886
1887 [[image:image-20220524100215-9.png]]
1888
1889
1890 [[image:image-20220524100215-10.png||height="382" width="723"]]
1891
1892
1893 == 3.7 LEDs Indicators ==
1894
1895 The table below lists the behavior of LED indicators for each port function.
1896
1897 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1898 |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
1899 |**PWR**|Always on when there is power
1900 |**TX**|(((
1901 (((
1902 Device boot: TX blinks 5 times.
1903 )))
1904
1905 (((
1906 Successful network join: TX remains ON for 5 seconds.
1907 )))
1908
1909 (((
1910 Transmit a LoRa packet: TX blinks once
1911 )))
1912 )))
1913 |**RX**|RX blinks once when a packet is received.
1914 |**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
1915 |**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
1916 |**DI1**|(((
1917 For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1918 )))
1919 |**DI2**|(((
1920 For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1921 )))
1922 |**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
1923 |**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1924
1925 = 4. Using AT Commands =
1926
1927 The LT-22222-L supports programming using AT Commands.
1928
1929 == 4.1 Connecting the LT-22222-L to a PC ==
1930
1931 (((
1932 You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a PC, as shown below.
1933
1934 [[image:usb-ttl-programming.png]]
1935 )))
1936
1937
1938
1939 (((
1940 On the PC, you need to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate of (% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-L. Access to AT commands is disabled by default, and a password (default: (% style="color:green" %)**123456**)(%%) must be entered to enable AT command access, as shown below:
1941 )))
1942
1943 [[image:1653358355238-883.png]]
1944
1945
1946 (((
1947 You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1948
1949 == 4.2 LT-22222-L related AT commands ==
1950 )))
1951
1952 (((
1953 The following is the list of all the AT commands related to the LT-22222-L, except for those used for switching between working modes.
1954
1955 * **##AT##+<CMD>?** : Help on <CMD>
1956 * **##AT##+<CMD>** : Run <CMD>
1957 * **##AT##+<CMD>=<value>** : Set the value
1958 * **##AT##+<CMD>=?** : Get the value
1959 * ##**ATZ**##: Trigger a reset of the MCU
1960 * ##**AT+FDR**##: Reset Parameters to factory default, reserve keys 
1961 * **##AT+DEUI##**: Get or set the Device EUI (DevEUI)
1962 * **##AT+DADDR##**: Get or set the Device Address (DevAddr)
1963 * **##AT+APPKEY##**: Get or set the Application Key (AppKey)
1964 * ##**AT+NWKSKEY**##: Get or set the Network Session Key (NwkSKey)
1965 * **##AT+APPSKEY##**: Get or set the Application Session Key (AppSKey)
1966 * **##AT+APPEUI##**: Get or set the Application EUI (AppEUI)
1967 * **##AT+ADR##**: Get or set the Adaptive Data Rate setting. (0: OFF, 1: ON)
1968 * AT+TXP: Get or set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Specification)
1969 * AT+DR:  Get or set the Data Rate. (0-7 corresponding to DR_X)  
1970 * AT+DCS: Get or set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1971 * AT+PNM: Get or set the public network mode. (0: off, 1: on)
1972 * AT+RX2FQ: Get or set the Rx2 window frequency
1973 * AT+RX2DR: Get or set the Rx2 window data rate (0-7 corresponding to DR_X)
1974 * AT+RX1DL: Get or set the delay between the end of the Tx and the Rx Window 1 in ms
1975 * AT+RX2DL: Get or set the delay between the end of the Tx and the Rx Window 2 in ms
1976 * AT+JN1DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1977 * AT+JN2DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1978 * AT+NJM: Get or set the Network Join Mode. (0: ABP, 1: OTAA)
1979 * AT+NWKID: Get or set the Network ID
1980 * AT+FCU: Get or set the Frame Counter Uplink (FCntUp)
1981 * AT+FCD: Get or set the Frame Counter Downlink (FCntDown)
1982 * AT+CLASS: Get or set the Device Class
1983 * AT+JOIN: Join network
1984 * AT+NJS: Get OTAA Join Status
1985 * AT+SENDB: Send hexadecimal data along with the application port
1986 * AT+SEND: Send text data along with the application port
1987 * AT+RECVB: Print last received data in binary format (with hexadecimal values)
1988 * AT+RECV: Print last received data in raw format
1989 * AT+VER: Get current image version and Frequency Band
1990 * AT+CFM: Get or Set the confirmation mode (0-1)
1991 * AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1992 * AT+SNR: Get the SNR of the last received packet
1993 * AT+RSSI: Get the RSSI of the last received packet
1994 * AT+TDC: Get or set the application data transmission interval in ms
1995 * AT+PORT: Get or set the application port
1996 * AT+DISAT: Disable AT commands
1997 * AT+PWORD: Set password, max 9 digits
1998 * AT+CHS: Get or set the Frequency (Unit: Hz) for Single Channel Mode
1999 * AT+CHE: Get or set eight channels mode, Only for US915, AU915, CN470
2000 * AT+CFG: Print all settings
2001 )))
2002
2003
2004 == 4.2 Common AT Command Sequence ==
2005
2006 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
2007
2008 (((
2009
2010
2011 (((
2012 (% style="color:blue" %)**If the device has not yet joined the network:**
2013 )))
2014 )))
2015
2016 (((
2017 (% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT commands access**##
2018 )))
2019
2020 (((
2021 (% style="background-color:#dcdcdc" %)##**AT+FDR ~/~/Reset parameters to factory default, Reserve keys**##
2022 )))
2023
2024 (((
2025 (% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT commands access**##
2026 )))
2027
2028 (((
2029 (% style="background-color:#dcdcdc" %)##**AT+NJM=0 ~/~/Set to ABP mode**##
2030 )))
2031
2032 (((
2033 (% style="background-color:#dcdcdc" %)##**ATZ ~/~/Reset MCU**##
2034 )))
2035
2036
2037 (((
2038 (% style="color:blue" %)**If the device has already joined the network:**
2039 )))
2040
2041 (((
2042 (% style="background-color:#dcdcdc" %)##**AT+NJM=0**##
2043 )))
2044
2045 (((
2046 (% style="background-color:#dcdcdc" %)##**ATZ**##
2047 )))
2048
2049
2050 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
2051
2052 (((
2053
2054
2055 (((
2056 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter password to enable AT commands access
2057 )))
2058 )))
2059
2060 (((
2061 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset parameters to Factory Default, Reserve keys
2062 )))
2063
2064 (((
2065 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter password to enable AT commands access
2066 )))
2067
2068 (((
2069 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to CLASS C mode
2070 )))
2071
2072 (((
2073 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
2074 )))
2075
2076 (((
2077 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
2078 )))
2079
2080 (((
2081 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
2082 )))
2083
2084 (((
2085 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
2086 )))
2087
2088 (((
2089 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4 MHz
2090 )))
2091
2092 (((
2093 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2 frequency to 868.4 MHz (according to the result from the server)
2094 )))
2095
2096 (((
2097 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2 DR to match the downlink DR from the server. See below.
2098 )))
2099
2100 (((
2101 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address. The Device Address can be found in the application on the LoRaWAN NS.
2102 )))
2103
2104 (((
2105 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
2106
2107
2108 )))
2109
2110 (((
2111 (% style="color:red" %)**Note:**
2112 )))
2113
2114 (((
2115 **~1. Ensure that the device is set to ABP mode in the LoRaWAN Network Server.**
2116
2117 **2. Verify that the LG01/02 gateway RX frequency matches the AT+CHS setting exactly.**
2118
2119 **3. Make sure the SF/bandwidth settings in the LG01/LG02 match the settings of AT+DR. Refer to [[this link>>url:http://www.dragino.com/downloads/index.php?
2120 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
2121
2122 **4. The commands AT+RX2FQ and AT+RX2DR enable downlink functionality. To set the correct parameters, you can check the actual downlink parameters to be used as shown below. Here, RX2FQ should be set to 868400000 and RX2DR should be set to 5.**
2123 )))
2124
2125 (((
2126 [[image:1653359097980-169.png||height="188" width="729"]]
2127 )))
2128
2129
2130 === 4.2.3 Change to Class A ===
2131
2132
2133 (((
2134 (% style="color:blue" %)**If the sensor has JOINED:**
2135
2136 (% style="background-color:#dcdcdc" %)**AT+CLASS=A**
2137
2138 (% style="background-color:#dcdcdc" %)**ATZ**
2139 )))
2140
2141
2142 = 5. Case Study =
2143
2144 == 5.1 Counting how many objects pass through the flow line ==
2145
2146 See [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
2147
2148
2149 = 6. FAQ =
2150
2151 This section contains some frequently asked questions, which can help you resolve common issues and find solutions quickly.
2152
2153
2154 == 6.1 How to update the firmware? ==
2155
2156 Dragino frequently releases firmware updates for the LT-22222-L. Updating your LT-22222-L with the latest firmware version helps to:
2157
2158 * Support new features
2159 * Fix bugs
2160 * Change LoRaWAN frequency bands
2161
2162 You will need the following things before proceeding:
2163
2164 * 3.5mm programming cable (included with the LT-22222-L as an additional accessory)
2165 * USB to TTL adapter
2166 * Download and install the [[STM32 Flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. (replaced by STM32CubeProgrammer)
2167 * Download the latest firmware image from [[LT-22222-L firmware image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. Check the file name of the firmware to find the correct region.
2168
2169 {{info}}
2170 As of this writing, the latest firmware version available for the LT-22222-L is v1.6.1.
2171 {{/info}}
2172
2173 Below is the hardware setup for uploading a firmware image to the LT-22222-L:
2174
2175 [[image:usb-ttl-programming.png]]
2176
2177
2178
2179 Start the STM32 Flash Loader and choose the correct COM port to update.
2180
2181 (((
2182 (((
2183 (% style="color:blue" %)**For LT-22222-L**(%%):
2184
2185 Hold down the **PRO** button, then briefly press the **RST** button. The **DO1** LED will change from OFF to ON. When the **DO1** LED is ON, it indicates that the device is in firmware download mode.
2186 )))
2187
2188
2189 )))
2190
2191 [[image:image-20220524103407-12.png]]
2192
2193
2194 [[image:image-20220524103429-13.png]]
2195
2196
2197 [[image:image-20220524104033-15.png]]
2198
2199
2200 (% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5 mm cable. The pin mapping is as follows:
2201
2202 [[image:1653360054704-518.png||height="186" width="745"]]
2203
2204
2205 (((
2206 (((
2207 == 6.2 How to change the LoRaWAN frequency band/region? ==
2208 )))
2209 )))
2210
2211 (((
2212 You can follow the introductions on [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2213 )))
2214
2215 (((
2216
2217
2218 == 6.3 How to setup LT-22222-L to work with a Single Channel Gateway, such as LG01/LG02? ==
2219 )))
2220
2221 (((
2222 (((
2223 In this case, you need to set the LT-22222-L to work in ABP mode and transmit on only one frequency.
2224 )))
2225 )))
2226
2227 (((
2228 (((
2229 We assume you have an LG01/LG02 working on the frequency 868400000. Below are the steps.
2230
2231
2232 )))
2233 )))
2234
2235 (((
2236 (% style="color:#0000ff" %)**Step 1**(%%): Log in to The Things Stack Sandbox account and create an ABP device in the application. To do this, use the manual registration option as explained in section 3.2.2.2, //Adding a Device Manually//. Select //Activation by Personalization (ABP)// under Activation Mode. Enter the DevEUI exactly as shown on the registration information sticker, then generate the Device Address, Application Session Key (AppSKey), and Network Session Key (NwkSKey).
2237
2238 [[image:lt-22222-l-abp.png||height="686" width="1000"]]
2239 )))
2240
2241 (((
2242
2243 )))
2244
2245 {{warning}}
2246 Ensure that the Device Address (DevAddr) and the two keys match between the LT-22222-L and The Things Stack. You can modify them either in The Things Stack or on the LT-22222-L to make them align. In The Things Stack, you can configure the NwkSKey and AppSKey on the settings page, but note that the Device Address is generated by The Things Stack.
2247 {{/warning}}
2248
2249
2250 (((
2251 (% style="color:blue" %)**Step 2**(%%)**:  **(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)Run AT commands to configure the LT-22222-L to operate in single-frequency and ABP mode. The AT commands are as follows:
2252
2253
2254 )))
2255
2256 (((
2257 (% style="background-color:#dcdcdc" %)**123456** (%%) : Enter the password to enable AT access.
2258
2259 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Reset parameters to factory default, keeping keys reserved.
2260
2261 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) : Set to ABP mode.
2262
2263 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) : Disable the Adaptive Data Rate (ADR).
2264
2265 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) : Set Data Rate (Use AT+DR=3 for the 915 MHz band).
2266
2267 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) : Set transmit interval to 60 seconds.
2268
2269 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4 MHz.
2270
2271 (% style="background-color:#dcdcdc" %)**AT+DADDR=xxxx**(%%) : Set the Device Address (DevAddr)
2272
2273 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:700; text-decoration:none; white-space:pre-wrap" %)**AT+APPKEY=xxxx**(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %): Get or set the Application Key (AppKey)
2274
2275 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+NWKSKEY=xxxx**: Get or set the Network Session Key (NwkSKey)
2276
2277 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+APPSKEY=xxxx**: Get or set the Application Session Key (AppSKey)
2278
2279 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) : Reset MCU.
2280 )))
2281
2282
2283 (((
2284 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)The following figure shows the screenshot of the command set above, issued using a serial tool:
2285 )))
2286
2287 [[image:1653360498588-932.png||height="485" width="726"]]
2288
2289
2290 == 6.4 How to change the uplink interval? ==
2291
2292 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2293
2294
2295 == 6.5 Can I see the counting event in the serial output? ==
2296
2297 (((
2298 You can run the AT command **AT+DEBUG** to view the counting event in the serial output. If the firmware is too old and doesn’t support AT+DEBUG, update to the latest firmware first.
2299
2300
2301 == 6.6 Can I use point-to-point communication with LT-22222-L? ==
2302
2303 Yes, you can. Please refer to the [[Point-to-Point Communication of LT-22222-L>>https://wiki.dragino.com/xwiki/bin/view/Main/%20Point%20to%20Point%20Communication%20of%20LT-22222-L/]] page. The firmware that supports point-to-point communication can be found [[here>>https://github.com/dragino/LT-22222-L/releases]].
2304
2305
2306 )))
2307
2308 (((
2309 == 6.7 Why does the relay output default to an open relay after the LT-22222-L is powered off? ==
2310
2311 * If the device is not properly shut down and is directly powered off.
2312 * It will default to a power-off state.
2313 * In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2314 * After a restart, the status before the power failure will be read from flash.
2315
2316 == 6.8 Can I setup LT-22222-L as a NC (Normally Closed) relay? ==
2317
2318 The LT-22222-L's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
2319
2320
2321 [[image:image-20221006170630-1.png||height="610" width="945"]]
2322
2323
2324 == 6.9 Can the LT-22222-L save the RO state? ==
2325
2326 To enable this feature, the firmware version must be 1.6.0 or higher.
2327
2328
2329 == 6.10 Why does the LT-22222-L always report 15.585V when measuring the AVI? ==
2330
2331 It is likely that the GND is not connected during the measurement, or that the wire connected to the GND is loose.
2332
2333
2334 = 7. Troubleshooting =
2335
2336 This section provides some known troubleshooting tips.
2337
2338
2339 )))
2340
2341 (((
2342 (((
2343 == 7.1 Downlink isn't working. How can I solve this? ==
2344 )))
2345 )))
2346
2347 (((
2348 Please refer to this link for debugging instructions: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2349 )))
2350
2351 (((
2352
2353
2354 == 7.2 Having trouble uploading an image? ==
2355 )))
2356
2357 (((
2358 Please refer to this link for troubleshooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2359 )))
2360
2361 (((
2362
2363
2364 == 7.3 Why can't I join TTN in the US915 /AU915 bands? ==
2365 )))
2366
2367 (((
2368 It might be related to the channel mapping. [[Please refer to this link for details.>>https://github.com/dragino/LT-22222-L/releases]]
2369 )))
2370
2371
2372 == 7.4 Why can the LT-22222-L perform uplink normally, but cannot receive downlink? ==
2373
2374 The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue.
2375 Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2376
2377
2378 = 8. Ordering information =
2379
2380 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2381
2382 (% style="color:#4f81bd" %)**XXX:**
2383
2384 * (% style="color:red" %)**EU433**(%%): LT with frequency bands EU433
2385 * (% style="color:red" %)**EU868**(%%): LT with frequency bands EU868
2386 * (% style="color:red" %)**KR920**(%%): LT with frequency bands KR920
2387 * (% style="color:red" %)**CN470**(%%): LT with frequency bands CN470
2388 * (% style="color:red" %)**AS923**(%%): LT with frequency bands AS923
2389 * (% style="color:red" %)**AU915**(%%): LT with frequency bands AU915
2390 * (% style="color:red" %)**US915**(%%): LT with frequency bands US915
2391 * (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2392 * (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2393
2394 = 9. Package information =
2395
2396 **Package includes**:
2397
2398 * 1 x LT-22222-L I/O Controller
2399 * 1 x LoRa antenna matched to the frequency of the LT-22222-L
2400 * 1 x bracket for DIN rail mounting
2401 * 1 x 3.5 mm programming cable
2402
2403 **Dimension and weight**:
2404
2405 * Device Size: 13.5 x 7 x 3 cm
2406 * Device Weight: 105 g
2407 * Package Size / pcs : 14.5 x 8 x 5 cm
2408 * Weight / pcs : 170 g
2409
2410 = 10. Support =
2411
2412 * (((
2413 Support is available Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule.
2414 )))
2415 * (((
2416 Please provide as much information as possible regarding your inquiry (e.g., product models, a detailed description of the problem, steps to replicate it, etc.) and send an email to [[support@dragino.cc>>mailto:support@dragino.cc]]
2417
2418
2419 )))
2420
2421 = 11. Reference​​​​​ =
2422
2423 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2424 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2425 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]