Version 193.1 by Dilisi S on 2024/11/14 05:28

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19
20 = 1. Introduction =
21
22 == 1.1 What is the LT-22222-L I/O Controller? ==
23
24 (((
25 (((
26 The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
27
28 The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
29 )))
30 )))
31
32 (((
33 With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
34 )))
35
36 (((
37 You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
38
39 * If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
40 * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
41 * Setup your own private LoRaWAN network.
42
43 {{info}}
44 You can use a LoRaWAN gateway, such as the [[Dragino LG308>>https://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]], to expand or create LoRaWAN coverage in your area.
45 {{/info}}
46 )))
47
48 (((
49 [[image:1653295757274-912.png]]
50
51
52 )))
53
54 == 1.2 Specifications ==
55
56 (% style="color:#037691" %)**Hardware System:**
57
58 * STM32L072xxxx MCU
59 * SX1276/78 Wireless Chip 
60 * Power Consumption:
61 ** Idle: 4mA@12V
62 ** 20dB Transmit: 34mA@12V
63 * Operating Temperature: -40 ~~ 85 Degrees, No Dew
64
65 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
66
67 * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50V, or 220V with optional external resistor)
68 * 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
69 * 2 x Relay Output (5A@250VAC / 30VDC)
70 * 2 x 0~~20mA Analog Input (res:0.01mA)
71 * 2 x 0~~30V Analog Input (res:0.01V)
72 * Power Input 7~~ 24V DC. 
73
74 (% style="color:#037691" %)**LoRa Spec:**
75
76 * Frequency Range:
77 ** Band 1 (HF): 862 ~~ 1020 MHz
78 ** Band 2 (LF): 410 ~~ 528 MHz
79 * 168 dB maximum link budget.
80 * +20 dBm - 100 mW constant RF output vs.
81 * +14 dBm high-efficiency PA.
82 * Programmable bit rate up to 300 kbps.
83 * High sensitivity: down to -148 dBm.
84 * Bullet-proof front end: IIP3 = -12.5 dBm.
85 * Excellent blocking immunity.
86 * Low RX current of 10.3 mA, 200 nA register retention.
87 * Fully integrated synthesizer with a resolution of 61 Hz.
88 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
89 * Built-in bit synchronizer for clock recovery.
90 * Preamble detection.
91 * 127 dB Dynamic Range RSSI.
92 * Automatic RF Sense and CAD with ultra-fast AFC.
93 * Packet engine up to 256 bytes with CRC.
94
95 == 1.3 Features ==
96
97 * LoRaWAN Class A & Class C modes
98 * Optional Customized LoRa Protocol
99 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
100 * AT Commands to change parameters
101 * Remotely configure parameters via LoRaWAN Downlink
102 * Firmware upgradable via program port
103 * Counting
104
105 == 1.4 Applications ==
106
107 * Smart buildings & home automation
108 * Logistics and supply chain management
109 * Smart metering
110 * Smart agriculture
111 * Smart cities
112 * Smart factory
113
114 = 2. Assembling the device =
115
116 == 2.1 Connecting the antenna ==
117
118 Connect the LoRa antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper screw terminal block. Secure the antenna by tightening it clockwise.
119
120 {{warning}}
121 Warning! Do not power on the device without connecting the antenna.
122 {{/warning}}
123
124 == 2.2 Terminals ==
125
126 The  LT-22222-L has two screw terminal blocks. The upper screw treminal block has 6 terminals and the lower screw terminal block has 10 terminals.
127
128 Upper screw terminal block (from left to right):
129
130 (% style="width:634px" %)
131 |=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
132 |(% style="width:295px" %)GND|(% style="width:338px" %)Ground
133 |(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
134 |(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
135 |(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
136 |(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
137 |(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
138
139 Lower screw terminal block (from left to right):
140
141 (% style="width:633px" %)
142 |=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
143 |(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
144 |(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
145 |(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
146 |(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
147 |(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
148 |(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
149 |(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
150 |(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
151 |(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
152 |(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
153
154 == 2.3 Powering the device ==
155
156 The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect your power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator **(PWR) LED** will turn on when the device is properly powered.
157
158 Once powered, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** The Things Stack. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LED** will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status.
159
160 {{warning}}
161 We recommend that you power on the LT-22222-L after configuring its registration information with a LoRaWAN network server. Otherwise, the device will continuously send join-request messages to attempt to join a LoRaWAN network but will fail.
162 {{/warning}}
163
164
165 [[image:1653297104069-180.png]]
166
167
168 = 3. Registering with a LoRaWAN Network Server =
169
170 By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
171
172 After powering on, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** the LoRaWAN network. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LED** will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status.
173
174 In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
175
176 The network diagram below shows how the LT-22222-L is connected to a typical LoRaWAN network.
177
178 [[image:image-20220523172350-1.png||height="266" width="864"]]
179
180 === 3.2.1 Prerequisites ===
181
182 Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
183
184 [[image:image-20230425173427-2.png||height="246" width="530"]]
185
186 The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
187
188 === 3.2.2 The Things Stack Sandbox (TTSS) ===
189
190 The Things Stack Sandbox was formally called The Things Stack Community Edition.
191
192 * Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
193 * Create an application with The Things Stack if you do not have one yet.
194 * Go to your application page and click on the **End devices** in the left menu.
195 * On the End devices page, click on **+ Register end device**. Two registration options are available:
196
197 ==== 3.2.2.1 Using the LoRaWAN Device Repository ====
198
199 * On the **Register end device** page:
200 ** Select the option **Select the end device in the LoRaWAN Device Repository **under **Input method**.
201 ** Select the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)** from the respective dropdown lists.
202 *** **End device brand**: Dragino Technology Co., Limited
203 *** **Model**: LT22222-L I/O Controller
204 *** **Hardware ver**: Unknown
205 *** **Firmware ver**: 1.6.0
206 *** **Profile (Region)**: Select the region that matches your device.
207 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
208
209 [[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
210
211
212 * Register end device page continued...
213 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'.
214 ** In the **DevEUI** field, enter the **DevEUI**.
215 ** In the **AppKey** field, enter the **AppKey.**
216 ** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
217 ** Under **After registration**, select the **View registered end device** option.
218
219 [[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
220
221 ==== ====
222
223 ==== 3.2.2.2 Adding device manually ====
224
225 * On the **Register end device** page:
226 ** Select the option **Enter end device specifies manually** under **Input method**.
227 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
228 ** Select the **LoRaWAN version** as **LoRaWAN Specification 1.0.3**
229 ** Select the **Regional Parameters version** as** RP001 Regional Parameters 1.0.3 revision A**
230 ** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the hidden section.
231 ** Select the option **Over the air activation (OTAA)** under the **Activation mode.**
232 ** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities** dropdown list.
233
234 [[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
235
236
237 * Register end device page continued...
238 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'
239 ** In the **DevEUI** field, enter the **DevEUI**.
240 ** In the **AppKey** field, enter the **AppKey**.
241 ** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
242 ** Under **After registration**, select the **View registered end device** option.
243 ** Click the **Register end device** button.
244
245 [[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
246
247
248 You will be navigated to the **Device overview** page.
249
250
251 [[image:lt-22222-device-overview.png||height="625" width="1000"]]
252
253
254 ==== 3.2.2.3 Joining ====
255
256 On the Device overview page, click on **Live data** tab. The Live data panel for your device will display.
257
258 Now power on your LT-22222-L. It will begin joining The Things Stack. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server. Once successfully joined, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**).
259
260
261 [[image:lt-22222-join-network.png||height="625" width="1000"]]
262
263
264 By default, you will receive an uplink data message from the device every 10 minutes.
265
266 Click on one of a **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the decode_payload {} JSON object.
267
268 [[image:lt-22222-ul-payload-decoded.png]]
269
270
271 If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **End devices** > **LT-22222-L** > **Payload formatters** > **Uplink**. Then  select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
272
273 {{info}}
274 The Things Stack provides two levels of payload formatters: application level and device level. The device-level payload formatters **override **the application-level payload formatters.
275 {{/info}}
276
277 [[image:lt-22222-ul-payload-fmt.png||height="686" width="1000"]]
278
279
280 == 3.3 Work Modes and Uplink Payload formats ==
281
282
283 The LT-22222-L has 5 **work modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any work mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
284
285 * (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
286
287 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
288
289 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
290
291 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
292
293 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
294
295 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
296
297 The uplink messages are sent over LoRaWAN FPort 2. By default, an uplink message is sent every 10 minutes.
298
299 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
300
301 (((
302 This is the default mode.
303
304 The uplink payload is 11 bytes long.
305
306 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
307 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
308 It starts counting again when it reaches the maximum value.**(% style="display:none" wfd-invisible="true" %)
309
310 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
311 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
312 |Value|(((
313 AVI1 voltage
314 )))|(((
315 AVI2 voltage
316 )))|(((
317 ACI1 Current
318 )))|(((
319 ACI2 Current
320 )))|**DIDORO***|(((
321 Reserve
322 )))|MOD
323 )))
324
325 (((
326 (% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
327
328 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
329 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
330 |RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
331 )))
332
333 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
334 * DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
335 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
336
337 (% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
338
339 For example, if the payload is: [[image:image-20220523175847-2.png]]
340
341
342 **The interface values can be calculated as follows:  **
343
344 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
345
346 AVI2 channel voltage is 0x04AC/1000=1.196V
347
348 ACI1 channel current is 0x1310/1000=4.880mA
349
350 ACI2 channel current is 0x1300/1000=4.864mA
351
352 The last byte 0xAA= **10101010**(b) means,
353
354 * [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
355 * [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
356 * **[1] DI3 - not used for LT-22222-L.**
357 * [0] DI2 channel input is LOW, and the DI2 LED is OFF.
358 * [1] DI1 channel input state:
359 ** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
360 ** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
361 ** DI1 LED is ON in both cases.
362 * **[0] DO3 - not used for LT-22222-L.**
363 * [1] DO2 channel output is LOW, and the DO2 LED is ON.
364 * [0] DO1 channel output state:
365 ** DO1 is FLOATING when there is no load between DO1 and V+.
366 ** DO1 is HIGH when there is a load between DO1 and V+.
367 ** DO1 LED is OFF in both cases.
368
369 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
370
371
372 (((
373 **For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
374 )))
375
376 (((
377 The uplink payload is 11 bytes long.
378
379 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
380 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
381 It starts counting again when it reaches the maximum value.**
382
383 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
384 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
385 |Value|COUNT1|COUNT2 |DIDORO*|(((
386 Reserve
387 )))|MOD
388 )))
389
390 (((
391 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
392
393 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
394 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
395 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
396
397 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
398 )))
399
400 * FIRST: Indicates that this is the first packet after joining the network.
401 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
402
403 (((
404 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
405
406
407 )))
408
409 (((
410 **To activate this mode, run the following AT commands:**
411 )))
412
413 (((
414 (% class="box infomessage" %)
415 (((
416 **AT+MOD=2**
417
418 **ATZ**
419 )))
420 )))
421
422 (((
423
424
425 (% style="color:#4f81bd" %)**AT Commands for counting:**
426 )))
427
428 (((
429 **For LT22222-L:**
430
431 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
432
433 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
434
435 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
436
437 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
438
439 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
440
441 (% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
442 )))
443
444
445 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
446
447 (% style="color:red" %)**Note: The maximum count depends on the bytes it is.
448 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
449 It starts counting again when it reaches the maximum value.**
450
451 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
452
453 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
454 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
455 |Value|COUNT1|(((
456 ACI1 Current
457 )))|(((
458 ACI2 Current
459 )))|DIDORO*|Reserve|MOD
460
461 (((
462 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
463
464 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
465 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
466 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
467 )))
468
469 * RO is for the relay. ROx=1: closed, ROx=0 always open.
470 * FIRST: Indicates that this is the first packet after joining the network.
471 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
472
473 (((
474 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
475 )))
476
477
478 (((
479 **To activate this mode, run the following AT commands:**
480 )))
481
482 (((
483 (% class="box infomessage" %)
484 (((
485 **AT+MOD=3**
486
487 **ATZ**
488 )))
489 )))
490
491 (((
492 AT Commands for counting:
493
494 The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
495 )))
496
497
498 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
499
500 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
501 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
502 It starts counting again when it reaches the maximum value.**
503
504
505 (((
506 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
507 )))
508
509 (((
510 The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
511
512 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
513 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
514 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
515 Reserve
516 )))|MOD
517 )))
518
519 (((
520 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
521
522 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
523 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
524 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
525 )))
526
527 * RO is for the relay. ROx=1: closed, ROx=0 always open.
528 * FIRST: Indicates that this is the first packet after joining the network.
529 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
530
531 (((
532 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
533
534
535 )))
536
537 (((
538 **To activate this mode, run the following AT commands:**
539 )))
540
541 (((
542 (% class="box infomessage" %)
543 (((
544 **AT+MOD=4**
545
546 **ATZ**
547 )))
548 )))
549
550 (((
551 Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
552 )))
553
554 (((
555 **In addition to that, below are the commands for AVI1 Counting:**
556
557 (% style="color:blue" %)**AT+SETCNT=3,60 **(%%)**(Sets AVI Count to 60)**
558
559 (% style="color:blue" %)**AT+VOLMAX=20000 **(%%)**(If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
560
561 (% style="color:blue" %)**AT+VOLMAX=20000,0 **(%%)**(If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
562
563 (% style="color:blue" %)**AT+VOLMAX=20000,1 **(%%)**(If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
564 )))
565
566
567 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
568
569 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
570 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
571 It starts counting again when it reaches the maximum value.**
572
573
574 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
575
576 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
577 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
578 |Value|(((
579 AVI1 voltage
580 )))|(((
581 AVI2 voltage
582 )))|(((
583 ACI1 Current
584 )))|COUNT1|DIDORO*|(((
585 Reserve
586 )))|MOD
587
588 (((
589 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
590
591 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
592 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
593 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
594 )))
595
596 * RO is for the relay. ROx=1: closed, ROx=0 always open.
597 * FIRST: Indicates that this is the first packet after joining the network.
598 * (((
599 DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
600 )))
601
602 (((
603 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
604 )))
605
606 (((
607 **To activate this mode, run the following AT commands:**
608 )))
609
610 (((
611 (% class="box infomessage" %)
612 (((
613 **AT+MOD=5**
614
615 **ATZ**
616 )))
617 )))
618
619 (((
620 Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
621 )))
622
623
624 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
625
626
627 (% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.**
628
629 For example, if you configured the following commands:
630
631 * **AT+MOD=1 ** **~-~->**  The default work mode
632 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger mode
633
634 The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases:
635
636 1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
637 1. (((
638 Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**confirmed uplinks.**
639 )))
640
641 (% style="color:#037691" %)**AT Commands to set Trigger Condition**:
642
643 (% style="color:#4f81bd" %)**Trigger based on voltage**:
644
645 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
646
647
648 **Example:**
649
650 AT+AVLIM=3000,6000,0,2000   (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
651
652 AT+AVLIM=5000,0,0,0   (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
653
654
655 (% style="color:#4f81bd" %)**Trigger based on current**:
656
657 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
658
659
660 **Example:**
661
662 AT+ACLIM=10000,15000,0,0   (triggers an uplink if ACI1 voltage is lower than 10mA or higher than 15mA)
663
664
665 (% style="color:#4f81bd" %)**Trigger based on DI status**:
666
667 DI status triggers Flag.
668
669 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
670
671
672 **Example:**
673
674 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
675
676
677 (% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
678
679 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
680
681 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
682
683 AA: Type Code for this downlink Command:
684
685 xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
686
687 yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
688
689 yy2 yy2: AC1 or AV1 HIGH limit.
690
691 yy3 yy3: AC2 or AV2 LOW limit.
692
693 Yy4 yy4: AC2 or AV2 HIGH limit.
694
695
696 **Example 1**: AA 00 13 88 00 00 00 00 00 00
697
698 Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
699
700
701 **Example 2**: AA 02 01 00
702
703 Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
704
705
706 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
707
708 MOD6 Payload: total of 11 bytes
709
710 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
711 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
712 |Value|(((
713 TRI_A FLAG
714 )))|(((
715 TRI_A Status
716 )))|(((
717 TRI_DI FLAG+STA
718 )))|Reserve|Enable/Disable MOD6|(((
719 MOD(6)
720 )))
721
722 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
723
724 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
725 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
726 |(((
727 AV1_LOW
728 )))|(((
729 AV1_HIGH
730 )))|(((
731 AV2_LOW
732 )))|(((
733 AV2_HIGH
734 )))|(((
735 AC1_LOW
736 )))|(((
737 AC1_HIGH
738 )))|(((
739 AC2_LOW
740 )))|(((
741 AC2_HIGH
742 )))
743
744 * Each bit shows if the corresponding trigger has been configured.
745
746 **Example:**
747
748 10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW
749
750
751 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
752
753 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
754 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
755 |(((
756 AV1_LOW
757 )))|(((
758 AV1_HIGH
759 )))|(((
760 AV2_LOW
761 )))|(((
762 AV2_HIGH
763 )))|(((
764 AC1_LOW
765 )))|(((
766 AC1_HIGH
767 )))|(((
768 AC2_LOW
769 )))|(((
770 AC2_HIGH
771 )))
772
773 * Each bit shows which status has been triggered on this uplink.
774
775 **Example:**
776
777 10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low.
778
779
780 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
781
782 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
783 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
784 |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
785
786 * Each bits shows which status has been triggered on this uplink.
787
788 **Example:**
789
790 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
791
792 00000101: Means both DI1 and DI2 trigger are enabled.
793
794
795 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
796
797 Downlink command to poll MOD6 status:
798
799 **AB 06**
800
801 When device got this command, it will send the MOD6 payload.
802
803
804 === 3.3.7 Payload Decoder ===
805
806 (((
807
808
809 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
810 )))
811
812
813 == 3.4 ​Configure LT-22222-L via AT Commands or Downlinks ==
814
815 (((
816 You can configure LT-22222-L I/O Controller via AT Commands or LoRaWAN Downlinks.
817 )))
818
819 (((
820 (((
821 There are two tytes of commands:
822 )))
823 )))
824
825 * (% style="color:blue" %)**Common commands**(%%):
826
827 * (% style="color:blue" %)**Sensor-related commands**(%%):
828
829 === 3.4.1 Common commands ===
830
831 (((
832 These are available for each sensors and include actions such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]s.
833 )))
834
835 === 3.4.2 Sensor-related commands ===
836
837 These commands are specially designed for the LT-22222-L. Commands can be sent to the device using options such as an AT command or a LoRaWAN downlink payload.
838
839 ==== 3.4.2.1 Set Transmit Interval ====
840
841 Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
842
843 (% style="color:#037691" %)**AT command**
844
845 (% style="width:500px" %)
846 |**Command**|AT+TDC<time>
847 |**Response**|
848 |**Parameters**|<time> uplink interval is in milliseconds
849 |**Example**|(((
850 AT+TDC=30000
851
852 Sets the uplink interval to 30,000 milliseconds (30 seconds)
853 )))
854
855 (% style="color:#037691" %)**Downlink payload**
856
857 (% style="width:500px" %)
858 |**Payload**|(((
859 <prefix><time>
860 )))
861 |**Parameters**|(((
862 <prefix> 0x01
863
864 <time> uplink interval is in milliseconds, represented by 3  bytes in hexadecimal.
865 )))
866 |**Example**|(((
867 01 **00 75 30**
868
869 Sets the uplink interval to 30,000 milliseconds (30 seconds)
870
871 Conversion: 30000 (dec) = 00 75 30 (hex)
872
873 See [[RapidTables>>https://www.rapidtables.com/convert/number/decimal-to-hex.html?x=30000]]
874 )))
875
876 ==== 3.4.2.2 Set the Work Mode (AT+MOD) ====
877
878
879 Sets the work mode.
880
881 * (% style="color:#037691" %)**AT command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
882
883 Where N is the work mode.
884
885 **Example**: AT+MOD=2. This will set the work mode to Double DI counting mode.
886
887
888 * (% style="color:#037691" %)**Downlink payload (prefix 0x0A):**
889
890 (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
891
892
893
894 ==== 3.4.2.3 Poll an uplink ====
895
896 Requests the device to send an uplink.
897
898
899 * (% style="color:#037691" %)**AT command:**(%%) There is no AT Command to poll uplink
900
901 * (% style="color:#037691" %)**Downlink payload (prefix 0x08):**
902
903 (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
904
905 **Example**: 0x08FF, ask device to send an Uplink
906
907
908
909 ==== 3.4.2.4 Enable/Disable Trigger Mode ====
910
911 Enable or disable the trigger mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
912
913 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
914
915 (% style="color:red" %)**1:** (%%)Enable the trigger mode
916
917 (% style="color:red" %)**0: **(%%)Disable the trigger mode
918
919
920 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
921
922 (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
923
924
925
926 ==== 3.4.2.5 Poll trigger settings ====
927
928 Polls the trigger settings.
929
930 * (% style="color:#037691" %)**AT Command:**
931
932 There is no AT Command for this feature.
933
934 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
935
936 (% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll the trigger settings. Device will uplink trigger settings once receive this command
937
938
939
940 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as a trigger ====
941
942 Enable or disable DI1/DI2/DI2 as a trigger.
943
944 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
945
946 **Example:** AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
947
948
949 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
950
951 (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
952
953
954
955 ==== 3.4.2.7 Trigger1 – Set DI or DI3 as a trigger ====
956
957 Sets DI1 or DI3 (for LT-33222-L) as a trigger.
958
959 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG1=a,b**
960
961 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
962
963 (% style="color:red" %)**b :** (%%)delay timing.
964
965 **Example:** AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
966
967
968 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
969
970 (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
971
972
973 ==== 3.4.2.8 Trigger2 – Set DI2 as a trigger ====
974
975 Sets DI2 as a trigger.
976
977 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
978
979 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
980
981 (% style="color:red" %)**b :** (%%)delay timing.
982
983 **Example:** AT+TRIG2=0,100 (set DI1 port to trigger on low level, valid signal is 100ms )
984
985
986 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
987
988 (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
989
990
991 ==== 3.4.2.9 Trigger – Set AC (current) as a trigger ====
992
993 Sets the current trigger based on the AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
994
995 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ACLIM**
996
997 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
998
999 (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1000
1001
1002
1003 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
1004
1005 Sets the current trigger based on the AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1006
1007 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
1008
1009 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
1010
1011 (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1012
1013
1014 ==== 3.4.2.11 Trigger – Set minimum interval ====
1015
1016 Sets AV and AC trigger minimum interval. Device won't response to the second trigger within this set time after the first trigger.
1017
1018 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
1019
1020 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
1021
1022 (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
1023
1024 (((
1025 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
1026 )))
1027
1028
1029
1030 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1031
1032 Controls the digital outputs DO1, DO2, and DO3
1033
1034 * (% style="color:#037691" %)**AT Command**
1035
1036 There is no AT Command to control Digital Output
1037
1038
1039 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1040
1041 (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1042
1043 (((
1044 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1045 )))
1046
1047 (((
1048 01: Low,  00: High ,  11: No action
1049
1050 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1051 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
1052 |02  01  00  11|Low|High|No Action
1053 |02  00  11  01|High|No Action|Low
1054 |02  11  01  00|No Action|Low|High
1055 )))
1056
1057 (((
1058 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1059 )))
1060
1061 (((
1062 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1063 )))
1064
1065
1066
1067 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1068
1069
1070 * (% style="color:#037691" %)**AT Command**
1071
1072 There is no AT Command to control Digital Output
1073
1074
1075 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1076
1077 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1078
1079
1080 This is to control the digital output time of DO pin. Include four bytes:
1081
1082 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1083
1084 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1085
1086 01: DO pins will change back to original state after timeout.
1087
1088 00: DO pins will change to an inverter state after timeout 
1089
1090
1091 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1092
1093 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1094 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1095 |0x01|DO1 set to low
1096 |0x00|DO1 set to high
1097 |0x11|DO1 NO Action
1098
1099 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1100
1101 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1102 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1103 |0x01|DO2 set to low
1104 |0x00|DO2 set to high
1105 |0x11|DO2 NO Action
1106
1107 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1108
1109 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1110 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1111 |0x01|DO3 set to low
1112 |0x00|DO3 set to high
1113 |0x11|DO3 NO Action
1114
1115 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:(%%) Latching time. Unit: ms
1116
1117
1118 (% style="color:red" %)**Note: **
1119
1120 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1121
1122 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1123
1124 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1125
1126
1127 **Example payload:**
1128
1129 **~1. A9 01 01 01 01 07 D0**
1130
1131 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1132
1133 **2. A9 01 00 01 11 07 D0**
1134
1135 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1136
1137 **3. A9 00 00 00 00 07 D0**
1138
1139 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1140
1141 **4. A9 00 11 01 00 07 D0**
1142
1143 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1144
1145
1146
1147 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1148
1149
1150 * (% style="color:#037691" %)**AT Command:**
1151
1152 There is no AT Command to control Relay Output
1153
1154
1155 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1156
1157 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1158
1159
1160 (((
1161 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1162 )))
1163
1164 (((
1165 00: Closed ,  01: Open , 11: No action
1166
1167 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1168 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1169 |03  00  11|Open|No Action
1170 |03  01  11|Close|No Action
1171 |03  11  00|No Action|Open
1172 |03  11  01|No Action|Close
1173 |03  00  00|Open|Open
1174 |03  01  01|Close|Close
1175 |03  01  00|Close|Open
1176 |03  00  01|Open|Close
1177 )))
1178
1179 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1180
1181
1182
1183 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1184
1185
1186 * (% style="color:#037691" %)**AT Command:**
1187
1188 There is no AT Command to control Relay Output
1189
1190
1191 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1192
1193 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1194
1195
1196 This is to control the relay output time of relay. Include four bytes:
1197
1198 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1199
1200 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1201
1202 01: Relays will change back to original state after timeout.
1203
1204 00: Relays will change to an inverter state after timeout
1205
1206
1207 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1208
1209 [[image:image-20221008095908-1.png||height="364" width="564"]]
1210
1211
1212 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1213
1214
1215 (% style="color:red" %)**Note:**
1216
1217 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1218
1219 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1220
1221
1222 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1223
1224
1225 **Example payload:**
1226
1227 **~1. 05 01 11 07 D0**
1228
1229 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1230
1231 **2. 05 01 10 07 D0**
1232
1233 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1234
1235 **3. 05 00 01 07 D0**
1236
1237 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1238
1239 **4. 05 00 00 07 D0**
1240
1241 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1242
1243
1244
1245 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1246
1247
1248 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1249
1250 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1251
1252 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1253
1254 (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1255
1256
1257
1258 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1259
1260
1261 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1262
1263 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1264
1265 (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1266
1267
1268 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1269
1270 (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1271
1272
1273
1274 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1275
1276
1277 Clear counting for counting mode
1278
1279 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT         **(%%) ~/~/ clear all counting
1280
1281 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1282
1283 (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1284
1285
1286
1287 ==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1288
1289
1290 * (% style="color:#037691" %)**AT Command:**
1291
1292 (% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1293
1294
1295 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1296
1297 (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1298
1299 (((
1300 range: aa bb cc:0 to 16777215,  (unit:second)
1301 )))
1302
1303
1304
1305 ==== 3.4.2.20 Reset save RO DO state ====
1306
1307
1308 * (% style="color:#037691" %)**AT Command:**
1309
1310 (% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1311
1312 (% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1313
1314
1315 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1316
1317 (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1318
1319
1320
1321 ==== 3.4.2.21 Encrypted payload ====
1322
1323
1324 * (% style="color:#037691" %)**AT Command:**
1325
1326 (% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1327
1328 (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1329
1330
1331
1332 ==== 3.4.2.22 Get sensor value ====
1333
1334
1335 * (% style="color:#037691" %)**AT Command:**
1336
1337 (% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1338
1339 (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1340
1341
1342
1343 ==== 3.4.2.23 Resets the downlink packet count ====
1344
1345
1346 * (% style="color:#037691" %)**AT Command:**
1347
1348 (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1349
1350 (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1351
1352
1353
1354 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1355
1356
1357 * (% style="color:#037691" %)**AT Command:**
1358
1359 (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1360
1361 (% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1362
1363
1364 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1365
1366 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1367
1368
1369
1370 ==== 3.4.2.25 Copy downlink to uplink ====
1371
1372
1373 * (% style="color:#037691" %)**AT Command**(%%)**:**
1374
1375 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1376
1377 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1378
1379
1380 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1381
1382 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1383
1384
1385
1386 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1387
1388 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1389
1390
1391
1392 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1393
1394
1395 * (((
1396 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1397
1398 (% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1399
1400
1401 )))
1402
1403 **Example:**
1404
1405 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1406
1407
1408 == 3.5 Integrating with ThingsEye.io ==
1409
1410 The Things Stack application supports integration with ThingsEye.io. Once integrated, ThingsEye.io acts as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1411
1412 === 3.5.1 Configuring The Things Stack ===
1413
1414 We use The Things Stack Sandbox in this example:
1415
1416 * In **The Things Stack Sandbox**, go to the **Application **for the LT-22222-L you added.
1417 * Select **MQTT** under **Integrations** in the left menu.
1418 * In the **Connection information **section, under **Connection credentials**, The Things Stack displays an auto-generated **username**. You can use it or provide a new one.
1419 * Click the **Generate new API key** button to generate a password. You can view it by clicking on the **visibility toggle/eye** icon. The API key works as the password.
1420
1421 {{info}}
1422 The username and  password (API key) you created here are required in the next section.
1423 {{/info}}
1424
1425 [[image:tts-mqtt-integration.png||height="625" width="1000"]]
1426
1427 === 3.5.2 Configuring ThingsEye.io ===
1428
1429 * Login to your [[ThingsEye.io >>https://thingseye.io]]account.
1430 * Under the **Integrations center**, click **Integrations**.
1431 * Click the **Add integration** button (the button with the **+** symbol).
1432
1433 [[image:thingseye-io-step-1.png||height="625" width="1000"]]
1434
1435
1436 On the **Add integration** window, configure the following:
1437
1438 **Basic settings:**
1439
1440 * Select **The Things Stack Community** from the **Integration type** list.
1441 * Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
1442 * Ensure the following options are turned on.
1443 ** Enable integration
1444 ** Debug mode
1445 ** Allow create devices or assets
1446 * Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
1447
1448 [[image:thingseye-io-step-2.png||height="625" width="1000"]]
1449
1450
1451 **Uplink data converter:**
1452
1453 * Click the **Create new** button if it is not selected by default.
1454 * Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
1455 * Click the **JavaScript** button.
1456 * Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
1457 * Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
1458
1459 [[image:thingseye-io-step-3.png||height="625" width="1000"]]
1460
1461
1462 **Downlink data converter (this is an optional step):**
1463
1464 * Click the **Create new** button if it is not selected by default.
1465 * Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name.
1466 * Click the **JavaScript** button.
1467 * Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Downlink_Converter.js]].
1468 * Click the **Next** button. You will be navigated to the **Connection** tab.
1469
1470 [[image:thingseye-io-step-4.png||height="625" width="1000"]]
1471
1472
1473 **Connection:**
1474
1475 * Choose **Region** from the **Host type**.
1476 * Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
1477 * Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The **username **and **password **can be found on the MQTT integration page of your The Things Stack account (see Configuring The Things Stack).
1478 * Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
1479
1480 [[image:message-1.png]]
1481
1482
1483 * Click the **Add** button.
1484
1485 [[image:thingseye-io-step-5.png||height="625" width="1000"]]
1486
1487
1488 Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings.
1489
1490
1491 [[image:thingseye.io_integrationsCenter_integrations.png||height="686" width="1000"]]
1492
1493
1494 **Viewing integration details**:
1495
1496 Click on your integration from the list. The **Integration details** window will appear with the **Details **tab selected. The **Details **tab shows all the settings you have provided for this integration.
1497
1498 [[image:integration-details.png||height="686" width="1000"]]
1499
1500
1501 If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
1502
1503 {{info}}
1504 See also ThingsEye documentation.
1505 {{/info}}
1506
1507 **Viewing events:**
1508
1509 The **Events **tab displays all the uplink messages from the LT-22222-L.
1510
1511 * Select **Debug **from the **Event type** dropdown.
1512 * Select the** time frame** from the **time window**.
1513
1514 [[image:thingseye-events.png||height="686" width="1000"]]
1515
1516
1517 * To view the JSON payload of a message, click on the three dots (...) in the Message column of the desired message.
1518
1519 [[image:thingseye-json.png||width="1000"]]
1520
1521
1522 **Deleting the integration**:
1523
1524 If you want to delete this integration, click the **Delete integratio**n button.
1525
1526
1527 == 3.6 Interface Details ==
1528
1529 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1530
1531
1532 Support NPN-type sensor
1533
1534 [[image:1653356991268-289.png]]
1535
1536
1537 === 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1538
1539
1540 (((
1541 The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1542 )))
1543
1544 (((
1545 (((
1546 The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1547
1548
1549 )))
1550 )))
1551
1552 [[image:1653357170703-587.png]]
1553
1554 (((
1555 (((
1556 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1557 )))
1558 )))
1559
1560 (((
1561
1562 )))
1563
1564 (((
1565 (% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1566 )))
1567
1568 (((
1569 This type of sensor outputs a low (GND) signal when active.
1570 )))
1571
1572 * (((
1573 Connect the sensor's output to DI1-
1574 )))
1575 * (((
1576 Connect the sensor's VCC to DI1+.
1577 )))
1578
1579 (((
1580 When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be:
1581 )))
1582
1583 (((
1584 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1585 )))
1586
1587 (((
1588 For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1589 )))
1590
1591 (((
1592
1593 )))
1594
1595 (((
1596 (% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1597 )))
1598
1599 (((
1600 This type of sensor outputs a high signal (e.g., 24V) when active.
1601 )))
1602
1603 * (((
1604 Connect the sensor's output to DI1+
1605 )))
1606 * (((
1607 Connect the sensor's GND DI1-.
1608 )))
1609
1610 (((
1611 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1612 )))
1613
1614 (((
1615 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1616 )))
1617
1618 (((
1619 If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1620 )))
1621
1622 (((
1623
1624 )))
1625
1626 (((
1627 (% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1628 )))
1629
1630 (((
1631 Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1632 )))
1633
1634 * (((
1635 Connect the sensor's output to DI1+ with a 50K resistor in series.
1636 )))
1637 * (((
1638 Connect the sensor's GND DI1-.
1639 )))
1640
1641 (((
1642 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1643 )))
1644
1645 (((
1646 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1647 )))
1648
1649 (((
1650 If the sensor output is 220V, then [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1651 )))
1652
1653
1654 (% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1655
1656 From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1657
1658 To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1659
1660 [[image:image-20230616235145-1.png]]
1661
1662 (% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1663
1664 [[image:image-20240219115718-1.png]]
1665
1666
1667 === 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1668
1669
1670 (% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1671
1672 (% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
1673
1674 [[image:1653357531600-905.png]]
1675
1676
1677 === 3.6.4 Analog Input Interfaces ===
1678
1679
1680 The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1681
1682
1683 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1684
1685 [[image:1653357592296-182.png]]
1686
1687 Example: Connecting a 4~~20mA sensor
1688
1689 We will use the wind speed sensor as an example for reference only.
1690
1691
1692 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1693
1694 (% style="color:red" %)**Red:  12~~24V**
1695
1696 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1697
1698 **Black:  GND**
1699
1700 **Connection diagram:**
1701
1702 [[image:1653357640609-758.png]]
1703
1704 [[image:1653357648330-671.png||height="155" width="733"]]
1705
1706
1707 Example: Connecting to a regulated power supply to measure voltage
1708
1709 [[image:image-20230608101532-1.png||height="606" width="447"]]
1710
1711 [[image:image-20230608101608-2.jpeg||height="379" width="284"]]
1712
1713 [[image:image-20230608101722-3.png||height="102" width="1139"]]
1714
1715
1716 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1717
1718 (% style="color:red" %)**Red:  12~~24v**
1719
1720 **Black:  GND**
1721
1722
1723 === 3.6.5 Relay Output ===
1724
1725
1726 (((
1727 The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1728
1729 **Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1730 )))
1731
1732 [[image:image-20220524100215-9.png]]
1733
1734
1735 [[image:image-20220524100215-10.png||height="382" width="723"]]
1736
1737
1738 == 3.7 LEDs Indicators ==
1739
1740 The table below lists the behavior of LED indicators for each port function.
1741
1742 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1743 |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
1744 |**PWR**|Always on when there is power
1745 |**TX**|(((
1746 (((
1747 Device boot: TX blinks 5 times.
1748 )))
1749
1750 (((
1751 Successful network join: TX remains ON for 5 seconds.
1752 )))
1753
1754 (((
1755 Transmit a LoRa packet: TX blinks once
1756 )))
1757 )))
1758 |**RX**|RX blinks once when a packet is received.
1759 |**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
1760 |**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
1761 |**DI1**|(((
1762 For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1763 )))
1764 |**DI2**|(((
1765 For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1766 )))
1767 |**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
1768 |**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1769
1770 = 4. Using AT Commands =
1771
1772 The LT-22222-L supports programming using AT Commands.
1773
1774 == 4.1 Connecting the LT-22222-L to a PC ==
1775
1776 (((
1777 You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a PC, as shown below.
1778 )))
1779
1780 [[image:1653358238933-385.png]]
1781
1782
1783 (((
1784 On the PC, you need to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate of (% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-L. Access to AT commands is disabled by default, and a password (default: (% style="color:green" %)**123456**)(%%) must be entered to enable AT command access, as shown below:
1785 )))
1786
1787 [[image:1653358355238-883.png]]
1788
1789
1790 (((
1791 You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1792
1793 == 4.2 LT-22222-L related AT commands ==
1794 )))
1795
1796 (((
1797 The following is the list of all the AT commands related to the LT-22222-L, except for those used for switching between working modes.
1798
1799 * AT+<CMD>? : Help on <CMD>
1800 * AT+<CMD> : Run <CMD>
1801 * AT+<CMD>=<value> : Set the value
1802 * AT+<CMD>=? : Get the value
1803 * ATZ: Trigger a reset of the MCU
1804 * ##**AT+FDR**##: Reset Parameters to factory default, reserve keys 
1805 * **##AT+DEUI##**: Get or set the Device EUI (DevEUI)
1806 * **##AT+DADDR##**: Get or set the Device Address (DevAddr)
1807 * **##AT+APPKEY##**: Get or set the Application Key (AppKey)
1808 * AT+NWKSKEY: Get or set the Network Session Key (NwkSKey)
1809 * AT+APPSKEY: Get or set the Application Session Key (AppSKey)
1810 * AT+APPEUI: Get or set the Application EUI (AppEUI)
1811 * AT+ADR: Get or set the Adaptive Data Rate setting. (0: OFF, 1: ON)
1812 * AT+TXP: Get or set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Specification)
1813 * AT+DR:  Get or set the Data Rate. (0-7 corresponding to DR_X)  
1814 * AT+DCS: Get or set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1815 * AT+PNM: Get or set the public network mode. (0: off, 1: on)
1816 * AT+RX2FQ: Get or set the Rx2 window frequency
1817 * AT+RX2DR: Get or set the Rx2 window data rate (0-7 corresponding to DR_X)
1818 * AT+RX1DL: Get or set the delay between the end of the Tx and the Rx Window 1 in ms
1819 * AT+RX2DL: Get or set the delay between the end of the Tx and the Rx Window 2 in ms
1820 * AT+JN1DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1821 * AT+JN2DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1822 * AT+NJM: Get or set the Network Join Mode. (0: ABP, 1: OTAA)
1823 * AT+NWKID: Get or set the Network ID
1824 * AT+FCU: Get or set the Frame Counter Uplink (FCntUp)
1825 * AT+FCD: Get or set the Frame Counter Downlink (FCntDown)
1826 * AT+CLASS: Get or set the Device Class
1827 * AT+JOIN: Join network
1828 * AT+NJS: Get OTAA Join Status
1829 * AT+SENDB: Send hexadecimal data along with the application port
1830 * AT+SEND: Send text data along with the application port
1831 * AT+RECVB: Print last received data in binary format (with hexadecimal values)
1832 * AT+RECV: Print last received data in raw format
1833 * AT+VER: Get current image version and Frequency Band
1834 * AT+CFM: Get or Set the confirmation mode (0-1)
1835 * AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1836 * AT+SNR: Get the SNR of the last received packet
1837 * AT+RSSI: Get the RSSI of the last received packet
1838 * AT+TDC: Get or set the application data transmission interval in ms
1839 * AT+PORT: Get or set the application port
1840 * AT+DISAT: Disable AT commands
1841 * AT+PWORD: Set password, max 9 digits
1842 * AT+CHS: Get or set the Frequency (Unit: Hz) for Single Channel Mode
1843 * AT+CHE: Get or set eight channels mode, Only for US915, AU915, CN470
1844 * AT+CFG: Print all settings
1845 )))
1846
1847
1848 == 4.2 Common AT Command Sequence ==
1849
1850 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1851
1852 (((
1853
1854
1855 (((
1856 (% style="color:blue" %)**If the device has not yet joined the network:**
1857 )))
1858 )))
1859
1860 (((
1861 (% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT commands access**##
1862 )))
1863
1864 (((
1865 (% style="background-color:#dcdcdc" %)##**AT+FDR ~/~/Reset parameters to factory default, Reserve keys**##
1866 )))
1867
1868 (((
1869 (% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT commands access**##
1870 )))
1871
1872 (((
1873 (% style="background-color:#dcdcdc" %)##**AT+NJM=0 ~/~/Set to ABP mode**##
1874 )))
1875
1876 (((
1877 (% style="background-color:#dcdcdc" %)##**ATZ ~/~/Reset MCU**##
1878 )))
1879
1880
1881 (((
1882 (% style="color:blue" %)**If the device has already joined the network:**
1883 )))
1884
1885 (((
1886 (% style="background-color:#dcdcdc" %)##**AT+NJM=0**##
1887 )))
1888
1889 (((
1890 (% style="background-color:#dcdcdc" %)##**ATZ**##
1891 )))
1892
1893
1894 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1895
1896 (((
1897
1898
1899 (((
1900 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter password to enable AT commands access
1901 )))
1902 )))
1903
1904 (((
1905 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset parameters to Factory Default, Reserve keys
1906 )))
1907
1908 (((
1909 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter password to enable AT commands access
1910 )))
1911
1912 (((
1913 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to CLASS C mode
1914 )))
1915
1916 (((
1917 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
1918 )))
1919
1920 (((
1921 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
1922 )))
1923
1924 (((
1925 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
1926 )))
1927
1928 (((
1929 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
1930 )))
1931
1932 (((
1933 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4 MHz
1934 )))
1935
1936 (((
1937 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2 frequency to 868.4 MHz (according to the result from the server)
1938 )))
1939
1940 (((
1941 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2 DR to match the downlink DR from the server. See below.
1942 )))
1943
1944 (((
1945 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address. The Device Address can be found in the application on the LoRaWAN NS.
1946 )))
1947
1948 (((
1949 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
1950
1951
1952 )))
1953
1954 (((
1955 (% style="color:red" %)**Note:**
1956 )))
1957
1958 (((
1959 **~1. Ensure that the device is set to ABP mode in the LoRaWAN Network Server.**
1960
1961 **2. Verify that the LG01/02 gateway RX frequency matches the AT+CHS setting exactly.**
1962
1963 **3. Make sure the SF/bandwidth settings in the LG01/LG02 match the settings of AT+DR. Refer to [[this link>>url:http://www.dragino.com/downloads/index.php?
1964 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
1965
1966 **4. The commands AT+RX2FQ and AT+RX2DR enable downlink functionality. To set the correct parameters, you can check the actual downlink parameters to be used as shown below. Here, RX2FQ should be set to 868400000 and RX2DR should be set to 5.**
1967 )))
1968
1969 (((
1970 [[image:1653359097980-169.png||height="188" width="729"]]
1971 )))
1972
1973
1974 === 4.2.3 Change to Class A ===
1975
1976
1977 (((
1978 (% style="color:blue" %)**If sensor JOINED:**
1979
1980 (% style="background-color:#dcdcdc" %)**AT+CLASS=A**
1981
1982 (% style="background-color:#dcdcdc" %)**ATZ**
1983 )))
1984
1985
1986 = 5. Case Study =
1987
1988 == 5.1 Counting how many objects pass through the flow Line ==
1989
1990 See [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
1991
1992
1993 = 6. FAQ =
1994
1995 This section contains some frequently asked questions, which can help you resolve common issues and find solutions quickly.
1996
1997
1998 == 6.1 How to update the firmware? ==
1999
2000 Dragino frequently releases firmware updates for the LT-22222-L. Updating your LT-22222-L with the latest firmware version helps to:
2001
2002 * Support new features
2003 * Fix bugs
2004 * Change LoRaWAN frequency bands
2005
2006 You will need the following things before proceeding:
2007
2008 * 3.5mm programming cable (included with the LT-22222-L as an additional accessory)
2009 * USB to TTL adapter
2010 * Download and install the [[STM32 Flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. (replaced by STM32CubeProgrammer)
2011 * Download the latest firmware image from [[LT-22222-L firmware image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. Check the file name of the firmware to find the correct region.
2012
2013 {{info}}
2014 As of this writing, the latest firmware version available for the LT-22222-L is v1.6.1.
2015 {{/info}}
2016
2017 Below is the hardware setup for uploading a firmware image to the LT-22222-L:
2018
2019 [[image:usb-ttl-programming.png]]
2020
2021
2022
2023 Start the STM32 Flash Loader and choose the correct COM port to update.
2024
2025 (((
2026 (((
2027 (% style="color:blue" %)**For LT-22222-L**(%%):
2028
2029 Hold down the **PRO** button, then briefly press the **RST** button. The **DO1** LED will change from OFF to ON. When the **DO1** LED is ON, it indicates that the device is in firmware download mode.
2030 )))
2031
2032
2033 )))
2034
2035 [[image:image-20220524103407-12.png]]
2036
2037
2038 [[image:image-20220524103429-13.png]]
2039
2040
2041 [[image:image-20220524104033-15.png]]
2042
2043
2044 (% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5 mm cable. The pin mapping is as follows:
2045
2046 [[image:1653360054704-518.png||height="186" width="745"]]
2047
2048
2049 (((
2050 (((
2051 == 6.2 How to change the LoRaWAN frequency band/region? ==
2052 )))
2053 )))
2054
2055 (((
2056 You can follow the introductions on [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2057 )))
2058
2059 (((
2060
2061
2062 == 6.3 How to setup LT-22222-L to work with a Single Channel Gateway, such as LG01/LG02? ==
2063 )))
2064
2065 (((
2066 (((
2067 In this case, you need to set the LT-22222-L to work in ABP mode and transmit on only one frequency.
2068 )))
2069 )))
2070
2071 (((
2072 (((
2073 We assume you have an LG01/LG02 working on the frequency 868400000. Below are the steps.
2074
2075
2076 )))
2077 )))
2078
2079 (((
2080 (% style="color:#0000ff" %)**Step 1**(%%): Log in to The Things Stack Sandbox account and create an ABP device in the application. To do this, use the manual registration option as explained in section 3.2.2.2, //Adding a Device Manually//. Select //Activation by Personalization (ABP)// under Activation Mode. Enter the DevEUI exactly as shown on the registration information sticker, then generate the Device Address, Application Session Key (AppSKey), and Network Session Key (NwkSKey).
2081
2082 [[image:lt-22222-l-abp.png||height="686" width="1000"]]
2083 )))
2084
2085 (((
2086
2087 )))
2088
2089 {{warning}}
2090 Ensure that the Device Address (DevAddr) and the two keys match between the LT-22222-L and The Things Stack. You can modify them either in The Things Stack or on the LT-22222-L to make them align. In The Things Stack, you can configure the NwkSKey and AppSKey on the settings page, but note that the Device Address is generated by The Things Stack.
2091 {{/warning}}
2092
2093
2094 (((
2095 (% style="color:blue" %)**Step 2**(%%)**:  **(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)Run AT commands to configure the LT-22222-L to operate in single-frequency and ABP mode. The AT commands are as follows:
2096
2097
2098 )))
2099
2100 (((
2101 (% style="background-color:#dcdcdc" %)**123456** (%%) : Enter the password to enable AT access.
2102
2103 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Reset parameters to factory default, keeping keys reserved.
2104
2105 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) : Set to ABP mode.
2106
2107 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) : Disable the Adaptive Data Rate (ADR).
2108
2109 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) : Set Data Rate (Use AT+DR=3 for the 915 MHz band).
2110
2111 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) : Set transmit interval to 60 seconds.
2112
2113 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4 MHz.
2114
2115 (% style="background-color:#dcdcdc" %)**AT+DADDR=xxxx**(%%) : Set the Device Address (DevAddr)
2116
2117 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:700; text-decoration:none; white-space:pre-wrap" %)**AT+APPKEY=xxxx**(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %): Get or set the Application Key (AppKey)
2118
2119 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+NWKSKEY=xxxx**: Get or set the Network Session Key (NwkSKey)
2120
2121 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+APPSKEY=xxxx**: Get or set the Application Session Key (AppSKey)
2122
2123 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) : Reset MCU.
2124 )))
2125
2126
2127 (((
2128 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)The following figure shows the screenshot of the command set above, issued using a serial tool:
2129 )))
2130
2131 [[image:1653360498588-932.png||height="485" width="726"]]
2132
2133
2134 == 6.4 How to change the uplink interval? ==
2135
2136 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2137
2138
2139 == 6.5 Can I see the counting event in the serial output? ==
2140
2141 (((
2142 You can run the AT command **AT+DEBUG** to view the counting event in the serial output. If the firmware is too old and doesn’t support AT+DEBUG, update to the latest firmware first.
2143
2144
2145 == 6.6 Can I use point-to-point communication with LT-22222-L? ==
2146
2147 Yes, you can. Please refer to the [[Point-to-Point Communication of LT-22222-L>>https://wiki.dragino.com/xwiki/bin/view/Main/%20Point%20to%20Point%20Communication%20of%20LT-22222-L/]] page. The firmware that supports point-to-point communication can be found [[here>>https://github.com/dragino/LT-22222-L/releases]].
2148
2149
2150 )))
2151
2152 (((
2153 == 6.7 Why does the relay output default to an open relay after the LT-22222-L is powered off? ==
2154
2155 * If the device is not properly shut down and is directly powered off.
2156 * It will default to a power-off state.
2157 * In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2158 * After a restart, the status before the power failure will be read from flash.
2159
2160
2161 == 6.8 Can I setup LT-22222-L as a NC (Normally Closed) relay? ==
2162
2163 The LT-22222-L's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
2164
2165
2166 [[image:image-20221006170630-1.png||height="610" width="945"]]
2167
2168
2169 == 6.9 Can the LT-22222-L save the RO state? ==
2170
2171 To enable this feature, the firmware version must be 1.6.0 or higher.
2172
2173
2174 == 6.10 Why does the LT-22222-L always report 15.585V when measuring the AVI? ==
2175
2176 It is likely that the GND is not connected during the measurement, or that the wire connected to the GND is loose.
2177
2178
2179 = 7. Troubleshooting =
2180
2181 This section provides some known troubleshooting tips.
2182
2183
2184 )))
2185
2186 (((
2187 (((
2188 == 7.1 Downlink isn't working. How can I solve this? ==
2189 )))
2190 )))
2191
2192 (((
2193 Please refer to this link for debugging instructions: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2194 )))
2195
2196 (((
2197
2198
2199 == 7.2 Having trouble uploading an image? ==
2200 )))
2201
2202 (((
2203 Please refer to this link for troubleshooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2204 )))
2205
2206 (((
2207
2208
2209 == 7.3 Why can't I join TTN in the US915 /AU915 bands? ==
2210 )))
2211
2212 (((
2213 It might be related to the channel mapping. [[Please refer to this link for details.>>https://github.com/dragino/LT-22222-L/releases]]
2214 )))
2215
2216
2217 == 7.4 Why can the LT-22222-L perform uplink normally, but cannot receive downlink? ==
2218
2219 The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue.
2220 Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2221
2222
2223 = 8. Ordering information =
2224
2225 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2226
2227 (% style="color:#4f81bd" %)**XXX:**
2228
2229 * (% style="color:red" %)**EU433**(%%): LT with frequency bands EU433
2230 * (% style="color:red" %)**EU868**(%%): LT with frequency bands EU868
2231 * (% style="color:red" %)**KR920**(%%): LT with frequency bands KR920
2232 * (% style="color:red" %)**CN470**(%%): LT with frequency bands CN470
2233 * (% style="color:red" %)**AS923**(%%): LT with frequency bands AS923
2234 * (% style="color:red" %)**AU915**(%%): LT with frequency bands AU915
2235 * (% style="color:red" %)**US915**(%%): LT with frequency bands US915
2236 * (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2237 * (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2238
2239
2240 = 9. Package information =
2241
2242 **Package includes**:
2243
2244 * 1 x LT-22222-L I/O Controller
2245 * 1 x LoRa antenna matched to the frequency of the LT-22222-L
2246 * 1 x bracket for DIN rail mounting
2247 * 1 x 3.5 mm programming cable
2248
2249 **Dimension and weight**:
2250
2251 * Device Size: 13.5 x 7 x 3 cm
2252 * Device Weight: 105 g
2253 * Package Size / pcs : 14.5 x 8 x 5 cm
2254 * Weight / pcs : 170 g
2255
2256
2257 = 10. Support =
2258
2259 * (((
2260 Support is available Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule.
2261 )))
2262 * (((
2263 Please provide as much information as possible regarding your inquiry (e.g., product models, a detailed description of the problem, steps to replicate it, etc.) and send an email to [[support@dragino.cc>>mailto:support@dragino.cc]]
2264
2265
2266 )))
2267
2268 = 11. Reference​​​​​ =
2269
2270 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2271 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2272 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]