Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19
20 = 1. Introduction =
21
22 == 1.1 What is the LT-22222-L I/O Controller? ==
23
24 (((
25 (((
26 The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
27
28 The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
29 )))
30 )))
31
32 (((
33 With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
34 )))
35
36 (((
37 You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
38
39 * If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
40 * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
41 * Setup your own private LoRaWAN network.
42
43 {{info}}
44 You can use a LoRaWAN gateway, such as the [[Dragino LG308>>https://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]], to expand or create LoRaWAN coverage in your area.
45 {{/info}}
46 )))
47
48 (((
49 [[image:1653295757274-912.png]]
50
51
52 )))
53
54 == 1.2 Specifications ==
55
56 (% style="color:#037691" %)**Hardware System:**
57
58 * STM32L072xxxx MCU
59 * SX1276/78 Wireless Chip 
60 * Power Consumption:
61 ** Idle: 4mA@12V
62 ** 20dB Transmit: 34mA@12V
63 * Operating Temperature: -40 ~~ 85 Degrees, No Dew
64
65 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
66
67 * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50V, or 220V with optional external resistor)
68 * 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
69 * 2 x Relay Output (5A@250VAC / 30VDC)
70 * 2 x 0~~20mA Analog Input (res:0.01mA)
71 * 2 x 0~~30V Analog Input (res:0.01V)
72 * Power Input 7~~ 24V DC. 
73
74 (% style="color:#037691" %)**LoRa Spec:**
75
76 * Frequency Range:
77 ** Band 1 (HF): 862 ~~ 1020 MHz
78 ** Band 2 (LF): 410 ~~ 528 MHz
79 * 168 dB maximum link budget.
80 * +20 dBm - 100 mW constant RF output vs.
81 * +14 dBm high-efficiency PA.
82 * Programmable bit rate up to 300 kbps.
83 * High sensitivity: down to -148 dBm.
84 * Bullet-proof front end: IIP3 = -12.5 dBm.
85 * Excellent blocking immunity.
86 * Low RX current of 10.3 mA, 200 nA register retention.
87 * Fully integrated synthesizer with a resolution of 61 Hz.
88 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
89 * Built-in bit synchronizer for clock recovery.
90 * Preamble detection.
91 * 127 dB Dynamic Range RSSI.
92 * Automatic RF Sense and CAD with ultra-fast AFC.
93 * Packet engine up to 256 bytes with CRC.
94
95 == 1.3 Features ==
96
97 * LoRaWAN Class A & Class C modes
98 * Optional Customized LoRa Protocol
99 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
100 * AT Commands to change parameters
101 * Remotely configure parameters via LoRaWAN Downlink
102 * Firmware upgradable via program port
103 * Counting
104
105 == 1.4 Applications ==
106
107 * Smart buildings & home automation
108 * Logistics and supply chain management
109 * Smart metering
110 * Smart agriculture
111 * Smart cities
112 * Smart factory
113
114
115 = 2. Assembling the device =
116
117 == 2.1 Connecting the antenna ==
118
119 Connect the LoRa antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper screw terminal block. Secure the antenna by tightening it clockwise.
120
121 {{warning}}
122 Warning! Do not power on the device without connecting the antenna.
123 {{/warning}}
124
125 == 2.2 Terminals ==
126
127 The  LT-22222-L has two screw terminal blocks. The upper screw treminal block has 6 terminals and the lower screw terminal block has 10 terminals.
128
129 Upper screw terminal block (from left to right):
130
131 (% style="width:634px" %)
132 |=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
133 |(% style="width:295px" %)GND|(% style="width:338px" %)Ground
134 |(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
135 |(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
136 |(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
137 |(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
138 |(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
139
140 Lower screw terminal block (from left to right):
141
142 (% style="width:633px" %)
143 |=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
144 |(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
145 |(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
146 |(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
147 |(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
148 |(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
149 |(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
150 |(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
151 |(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
152 |(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
153 |(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
154
155 == 2.3 Powering the device ==
156
157 The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect your power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator **(PWR) LED** will turn on when the device is properly powered.
158
159 Once powered, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** The Things Stack. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LED** will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status.
160
161 {{warning}}
162 We recommend that you power on the LT-22222-L after configuring its registration information with a LoRaWAN network server. Otherwise, the device will continuously send join-request messages to attempt to join a LoRaWAN network but will fail.
163 {{/warning}}
164
165
166 [[image:1653297104069-180.png]]
167
168
169 = 3. Registering with a LoRaWAN Network Server =
170
171 By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
172
173 After powering on, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** the LoRaWAN network. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LED** will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status.
174
175 In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
176
177 The network diagram below shows how the LT-22222-L is connected to a typical LoRaWAN network.
178
179 [[image:image-20220523172350-1.png||height="266" width="864"]]
180
181 === 3.2.1 Prerequisites ===
182
183 Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
184
185 [[image:image-20230425173427-2.png||height="246" width="530"]]
186
187 The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
188
189 === 3.2.2 The Things Stack Sandbox (TTSS) ===
190
191 The Things Stack Sandbox was formally called The Things Stack Community Edition.
192
193 * Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
194 * Create an application with The Things Stack if you do not have one yet.
195 * Go to your application page and click on the **End devices** in the left menu.
196 * On the End devices page, click on **+ Register end device**. Two registration options are available:
197
198 ==== 3.2.2.1 Using the LoRaWAN Device Repository ====
199
200 * On the **Register end device** page:
201 ** Select the option **Select the end device in the LoRaWAN Device Repository **under **Input method**.
202 ** Select the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)** from the respective dropdown lists.
203 *** **End device brand**: Dragino Technology Co., Limited
204 *** **Model**: LT22222-L I/O Controller
205 *** **Hardware ver**: Unknown
206 *** **Firmware ver**: 1.6.0
207 *** **Profile (Region)**: Select the region that matches your device.
208 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
209
210 [[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
211
212
213 * Register end device page continued...
214 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'.
215 ** In the **DevEUI** field, enter the **DevEUI**.
216 ** In the **AppKey** field, enter the **AppKey.**
217 ** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
218 ** Under **After registration**, select the **View registered end device** option.
219
220 [[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
221
222 ==== ====
223
224 ==== 3.2.2.2 Adding device manually ====
225
226 * On the **Register end device** page:
227 ** Select the option **Enter end device specifies manually** under **Input method**.
228 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
229 ** Select the **LoRaWAN version** as **LoRaWAN Specification 1.0.3**
230 ** Select the **Regional Parameters version** as** RP001 Regional Parameters 1.0.3 revision A**
231 ** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the hidden section.
232 ** Select the option **Over the air activation (OTAA)** under the **Activation mode.**
233 ** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities** dropdown list.
234
235 [[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
236
237
238 * Register end device page continued...
239 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'
240 ** In the **DevEUI** field, enter the **DevEUI**.
241 ** In the **AppKey** field, enter the **AppKey**.
242 ** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
243 ** Under **After registration**, select the **View registered end device** option.
244 ** Click the **Register end device** button.
245
246 [[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
247
248
249 You will be navigated to the **Device overview** page.
250
251
252 [[image:lt-22222-device-overview.png||height="625" width="1000"]]
253
254
255 ==== 3.2.2.3 Joining ====
256
257 On the Device overview page, click on **Live data** tab. The Live data panel for your device will display.
258
259 Now power on your LT-22222-L. It will begin joining The Things Stack. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server. Once successfully joined, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**).
260
261
262 [[image:lt-22222-join-network.png||height="625" width="1000"]]
263
264
265 By default, you will receive an uplink data message from the device every 10 minutes.
266
267 Click on one of a **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the decode_payload {} JSON object.
268
269 [[image:lt-22222-ul-payload-decoded.png]]
270
271
272 If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **End devices** > **LT-22222-L** > **Payload formatters** > **Uplink**. Then  select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
273
274 {{info}}
275 The Things Stack provides two levels of payload formatters: application level and device level. The device-level payload formatters **override **the application-level payload formatters.
276 {{/info}}
277
278 [[image:lt-22222-ul-payload-fmt.png||height="686" width="1000"]]
279
280
281 == 3.3 Work Modes and Uplink Payload formats ==
282
283
284 The LT-22222-L has 5 **work modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any work mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
285
286 * (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
287
288 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
289
290 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
291
292 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
293
294 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
295
296 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
297
298 The uplink messages are sent over LoRaWAN FPort 2. By default, an uplink message is sent every 10 minutes.
299
300 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
301
302 (((
303 This is the default mode.
304
305 The uplink payload is 11 bytes long.
306
307 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
308 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
309 It starts counting again when it reaches the maximum value.**(% style="display:none" wfd-invisible="true" %)
310
311 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
312 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
313 |Value|(((
314 AVI1 voltage
315 )))|(((
316 AVI2 voltage
317 )))|(((
318 ACI1 Current
319 )))|(((
320 ACI2 Current
321 )))|**DIDORO***|(((
322 Reserve
323 )))|MOD
324 )))
325
326 (((
327 (% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
328
329 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
330 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
331 |RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
332 )))
333
334 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
335 * DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
336 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
337
338 (% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
339
340 For example, if the payload is: [[image:image-20220523175847-2.png]]
341
342
343 **The interface values can be calculated as follows:  **
344
345 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
346
347 AVI2 channel voltage is 0x04AC/1000=1.196V
348
349 ACI1 channel current is 0x1310/1000=4.880mA
350
351 ACI2 channel current is 0x1300/1000=4.864mA
352
353 The last byte 0xAA= **10101010**(b) means,
354
355 * [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
356 * [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
357 * **[1] DI3 - not used for LT-22222-L.**
358 * [0] DI2 channel input is LOW, and the DI2 LED is OFF.
359 * [1] DI1 channel input state:
360 ** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
361 ** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
362 ** DI1 LED is ON in both cases.
363 * **[0] DO3 - not used for LT-22222-L.**
364 * [1] DO2 channel output is LOW, and the DO2 LED is ON.
365 * [0] DO1 channel output state:
366 ** DO1 is FLOATING when there is no load between DO1 and V+.
367 ** DO1 is HIGH when there is a load between DO1 and V+.
368 ** DO1 LED is OFF in both cases.
369
370 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
371
372
373 (((
374 **For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
375 )))
376
377 (((
378 The uplink payload is 11 bytes long.
379
380 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
381 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
382 It starts counting again when it reaches the maximum value.**
383
384 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
385 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
386 |Value|COUNT1|COUNT2 |DIDORO*|(((
387 Reserve
388 )))|MOD
389 )))
390
391 (((
392 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
393
394 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
395 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
396 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
397
398 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
399 )))
400
401 * FIRST: Indicates that this is the first packet after joining the network.
402 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
403
404 (((
405 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
406
407
408 )))
409
410 (((
411 **To activate this mode, run the following AT commands:**
412 )))
413
414 (((
415 (% class="box infomessage" %)
416 (((
417 **AT+MOD=2**
418
419 **ATZ**
420 )))
421 )))
422
423 (((
424
425
426 (% style="color:#4f81bd" %)**AT Commands for counting:**
427 )))
428
429 (((
430 **For LT22222-L:**
431
432 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
433
434 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
435
436 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
437
438 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
439
440 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
441
442 (% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
443 )))
444
445
446 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
447
448 (% style="color:red" %)**Note: The maximum count depends on the bytes it is.
449 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
450 It starts counting again when it reaches the maximum value.**
451
452 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
453
454 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
455 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
456 |Value|COUNT1|(((
457 ACI1 Current
458 )))|(((
459 ACI2 Current
460 )))|DIDORO*|Reserve|MOD
461
462 (((
463 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
464
465 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
466 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
467 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
468 )))
469
470 * RO is for the relay. ROx=1: closed, ROx=0 always open.
471 * FIRST: Indicates that this is the first packet after joining the network.
472 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
473
474 (((
475 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
476 )))
477
478
479 (((
480 **To activate this mode, run the following AT commands:**
481 )))
482
483 (((
484 (% class="box infomessage" %)
485 (((
486 **AT+MOD=3**
487
488 **ATZ**
489 )))
490 )))
491
492 (((
493 AT Commands for counting:
494
495 The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
496 )))
497
498
499 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
500
501 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
502 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
503 It starts counting again when it reaches the maximum value.**
504
505
506 (((
507 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
508 )))
509
510 (((
511 The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
512
513 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
514 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
515 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
516 Reserve
517 )))|MOD
518 )))
519
520 (((
521 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
522
523 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
524 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
525 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
526 )))
527
528 * RO is for the relay. ROx=1: closed, ROx=0 always open.
529 * FIRST: Indicates that this is the first packet after joining the network.
530 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
531
532 (((
533 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
534
535
536 )))
537
538 (((
539 **To activate this mode, run the following AT commands:**
540 )))
541
542 (((
543 (% class="box infomessage" %)
544 (((
545 **AT+MOD=4**
546
547 **ATZ**
548 )))
549 )))
550
551 (((
552 Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
553 )))
554
555 (((
556 **In addition to that, below are the commands for AVI1 Counting:**
557
558 (% style="color:blue" %)**AT+SETCNT=3,60 **(%%)**(Sets AVI Count to 60)**
559
560 (% style="color:blue" %)**AT+VOLMAX=20000 **(%%)**(If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
561
562 (% style="color:blue" %)**AT+VOLMAX=20000,0 **(%%)**(If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
563
564 (% style="color:blue" %)**AT+VOLMAX=20000,1 **(%%)**(If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
565 )))
566
567
568 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
569
570 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
571 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
572 It starts counting again when it reaches the maximum value.**
573
574
575 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
576
577 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
578 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
579 |Value|(((
580 AVI1 voltage
581 )))|(((
582 AVI2 voltage
583 )))|(((
584 ACI1 Current
585 )))|COUNT1|DIDORO*|(((
586 Reserve
587 )))|MOD
588
589 (((
590 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
591
592 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
593 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
594 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
595 )))
596
597 * RO is for the relay. ROx=1: closed, ROx=0 always open.
598 * FIRST: Indicates that this is the first packet after joining the network.
599 * (((
600 DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
601 )))
602
603 (((
604 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
605 )))
606
607 (((
608 **To activate this mode, run the following AT commands:**
609 )))
610
611 (((
612 (% class="box infomessage" %)
613 (((
614 **AT+MOD=5**
615
616 **ATZ**
617 )))
618 )))
619
620 (((
621 Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
622 )))
623
624
625 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
626
627
628 (% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.**
629
630 For example, if you configured the following commands:
631
632 * **AT+MOD=1 ** **~-~->**  The default work mode
633 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger mode
634
635 The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases:
636
637 1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
638 1. (((
639 Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**confirmed uplinks.**
640 )))
641
642 (% style="color:#037691" %)**AT Commands to set Trigger Condition**:
643
644 (% style="color:#4f81bd" %)**Trigger based on voltage**:
645
646 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
647
648
649 **Example:**
650
651 AT+AVLIM=3000,6000,0,2000   (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
652
653 AT+AVLIM=5000,0,0,0   (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
654
655
656 (% style="color:#4f81bd" %)**Trigger based on current**:
657
658 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
659
660
661 **Example:**
662
663 AT+ACLIM=10000,15000,0,0   (triggers an uplink if ACI1 voltage is lower than 10mA or higher than 15mA)
664
665
666 (% style="color:#4f81bd" %)**Trigger based on DI status**:
667
668 DI status triggers Flag.
669
670 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
671
672
673 **Example:**
674
675 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
676
677
678 (% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
679
680 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
681
682 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
683
684 AA: Type Code for this downlink Command:
685
686 xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
687
688 yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
689
690 yy2 yy2: AC1 or AV1 HIGH limit.
691
692 yy3 yy3: AC2 or AV2 LOW limit.
693
694 Yy4 yy4: AC2 or AV2 HIGH limit.
695
696
697 **Example 1**: AA 00 13 88 00 00 00 00 00 00
698
699 Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
700
701
702 **Example 2**: AA 02 01 00
703
704 Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
705
706
707 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
708
709 MOD6 Payload: total of 11 bytes
710
711 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
712 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
713 |Value|(((
714 TRI_A FLAG
715 )))|(((
716 TRI_A Status
717 )))|(((
718 TRI_DI FLAG+STA
719 )))|Reserve|Enable/Disable MOD6|(((
720 MOD(6)
721 )))
722
723 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
724
725 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
726 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
727 |(((
728 AV1_LOW
729 )))|(((
730 AV1_HIGH
731 )))|(((
732 AV2_LOW
733 )))|(((
734 AV2_HIGH
735 )))|(((
736 AC1_LOW
737 )))|(((
738 AC1_HIGH
739 )))|(((
740 AC2_LOW
741 )))|(((
742 AC2_HIGH
743 )))
744
745 * Each bit shows if the corresponding trigger has been configured.
746
747 **Example:**
748
749 10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW
750
751
752 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
753
754 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
755 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
756 |(((
757 AV1_LOW
758 )))|(((
759 AV1_HIGH
760 )))|(((
761 AV2_LOW
762 )))|(((
763 AV2_HIGH
764 )))|(((
765 AC1_LOW
766 )))|(((
767 AC1_HIGH
768 )))|(((
769 AC2_LOW
770 )))|(((
771 AC2_HIGH
772 )))
773
774 * Each bit shows which status has been triggered on this uplink.
775
776 **Example:**
777
778 10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low.
779
780
781 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
782
783 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
784 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
785 |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
786
787 * Each bits shows which status has been triggered on this uplink.
788
789 **Example:**
790
791 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
792
793 00000101: Means both DI1 and DI2 trigger are enabled.
794
795
796 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
797
798 Downlink command to poll MOD6 status:
799
800 **AB 06**
801
802 When device got this command, it will send the MOD6 payload.
803
804
805 === 3.3.7 Payload Decoder ===
806
807 (((
808
809
810 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
811 )))
812
813
814 == 3.4 ​Configure LT-22222-L via AT Commands or Downlinks ==
815
816 (((
817 You can configure LT-22222-L I/O Controller via AT Commands or LoRaWAN Downlinks.
818 )))
819
820 (((
821 (((
822 There are two tytes of commands:
823 )))
824 )))
825
826 * (% style="color:blue" %)**Common commands**(%%):
827
828 * (% style="color:blue" %)**Sensor-related commands**(%%):
829
830 === 3.4.1 Common commands ===
831
832 (((
833 These are available for each sensors and include actions such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]s.
834 )))
835
836 === 3.4.2 Sensor-related commands ===
837
838 These commands are specially designed for the LT-22222-L. Commands can be sent to the device using options such as an AT command or a LoRaWAN downlink payload.
839
840 ==== 3.4.2.1 Set Transmit Interval ====
841
842 Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
843
844 (% style="color:#037691" %)**AT command**
845
846 (% style="width:500px" %)
847 |**Command**|AT+TDC<time>
848 |**Response**|
849 |**Parameters**|<time> uplink interval is in milliseconds
850 |**Example**|(((
851 AT+TDC=30000
852
853 Sets the uplink interval to 30,000 milliseconds (30 seconds)
854 )))
855
856 (% style="color:#037691" %)**Downlink payload**
857
858 (% style="width:500px" %)
859 |**Payload**|(((
860 <prefix><time>
861 )))
862 |**Parameters**|(((
863 <prefix> 0x01
864
865 <time> uplink interval is in milliseconds, represented by 3  bytes in hexadecimal.
866 )))
867 |**Example**|(((
868 01 **00 75 30**
869
870 Sets the uplink interval to 30,000 milliseconds (30 seconds)
871
872 Conversion: 30000 (dec) = 00 75 30 (hex)
873
874 See [[RapidTables>>https://www.rapidtables.com/convert/number/decimal-to-hex.html?x=30000]]
875 )))
876
877 ==== 3.4.2.2 Set the Work Mode (AT+MOD) ====
878
879
880 Sets the work mode.
881
882 * (% style="color:#037691" %)**AT command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
883
884 Where N is the work mode.
885
886 **Example**: AT+MOD=2. This will set the work mode to Double DI counting mode.
887
888
889 * (% style="color:#037691" %)**Downlink payload (prefix 0x0A):**
890
891 (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
892
893
894
895 ==== 3.4.2.3 Poll an uplink ====
896
897 Requests the device to send an uplink.
898
899
900 * (% style="color:#037691" %)**AT command:**(%%) There is no AT Command to poll uplink
901
902 * (% style="color:#037691" %)**Downlink payload (prefix 0x08):**
903
904 (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
905
906 **Example**: 0x08FF, ask device to send an Uplink
907
908
909
910 ==== 3.4.2.4 Enable/Disable Trigger Mode ====
911
912 Enable or disable the trigger mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
913
914 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
915
916 (% style="color:red" %)**1:** (%%)Enable the trigger mode
917
918 (% style="color:red" %)**0: **(%%)Disable the trigger mode
919
920
921 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
922
923 (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
924
925
926
927 ==== 3.4.2.5 Poll trigger settings ====
928
929 Polls the trigger settings.
930
931 * (% style="color:#037691" %)**AT Command:**
932
933 There is no AT Command for this feature.
934
935 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
936
937 (% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll the trigger settings. Device will uplink trigger settings once receive this command
938
939
940
941 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as a trigger ====
942
943 Enable or disable DI1/DI2/DI2 as a trigger.
944
945 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
946
947 **Example:** AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
948
949
950 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
951
952 (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
953
954
955
956 ==== 3.4.2.7 Trigger1 – Set DI or DI3 as a trigger ====
957
958 Sets DI1 or DI3 (for LT-33222-L) as a trigger.
959
960 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG1=a,b**
961
962 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
963
964 (% style="color:red" %)**b :** (%%)delay timing.
965
966 **Example:** AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
967
968
969 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
970
971 (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
972
973
974 ==== 3.4.2.8 Trigger2 – Set DI2 as a trigger ====
975
976 Sets DI2 as a trigger.
977
978 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
979
980 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
981
982 (% style="color:red" %)**b :** (%%)delay timing.
983
984 **Example:** AT+TRIG2=0,100 (set DI1 port to trigger on low level, valid signal is 100ms )
985
986
987 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
988
989 (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
990
991
992 ==== 3.4.2.9 Trigger – Set AC (current) as a trigger ====
993
994 Sets the current trigger based on the AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
995
996 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ACLIM**
997
998 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
999
1000 (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1001
1002
1003
1004 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
1005
1006 Sets the current trigger based on the AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1007
1008 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
1009
1010 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
1011
1012 (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1013
1014
1015 ==== 3.4.2.11 Trigger – Set minimum interval ====
1016
1017 Sets AV and AC trigger minimum interval. Device won't response to the second trigger within this set time after the first trigger.
1018
1019 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
1020
1021 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
1022
1023 (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
1024
1025 (((
1026 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
1027 )))
1028
1029
1030
1031 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1032
1033 Controls the digital outputs DO1, DO2, and DO3
1034
1035 * (% style="color:#037691" %)**AT Command**
1036
1037 There is no AT Command to control Digital Output
1038
1039
1040 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1041
1042 (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1043
1044 (((
1045 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1046 )))
1047
1048 (((
1049 01: Low,  00: High ,  11: No action
1050
1051 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1052 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
1053 |02  01  00  11|Low|High|No Action
1054 |02  00  11  01|High|No Action|Low
1055 |02  11  01  00|No Action|Low|High
1056 )))
1057
1058 (((
1059 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1060 )))
1061
1062 (((
1063 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1064 )))
1065
1066
1067
1068 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1069
1070
1071 * (% style="color:#037691" %)**AT Command**
1072
1073 There is no AT Command to control Digital Output
1074
1075
1076 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1077
1078 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1079
1080
1081 This is to control the digital output time of DO pin. Include four bytes:
1082
1083 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1084
1085 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1086
1087 01: DO pins will change back to original state after timeout.
1088
1089 00: DO pins will change to an inverter state after timeout 
1090
1091
1092 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1093
1094 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1095 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1096 |0x01|DO1 set to low
1097 |0x00|DO1 set to high
1098 |0x11|DO1 NO Action
1099
1100 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1101
1102 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1103 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1104 |0x01|DO2 set to low
1105 |0x00|DO2 set to high
1106 |0x11|DO2 NO Action
1107
1108 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1109
1110 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1111 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1112 |0x01|DO3 set to low
1113 |0x00|DO3 set to high
1114 |0x11|DO3 NO Action
1115
1116 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:(%%) Latching time. Unit: ms
1117
1118
1119 (% style="color:red" %)**Note: **
1120
1121 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1122
1123 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1124
1125 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1126
1127
1128 **Example payload:**
1129
1130 **~1. A9 01 01 01 01 07 D0**
1131
1132 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1133
1134 **2. A9 01 00 01 11 07 D0**
1135
1136 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1137
1138 **3. A9 00 00 00 00 07 D0**
1139
1140 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1141
1142 **4. A9 00 11 01 00 07 D0**
1143
1144 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1145
1146
1147
1148 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1149
1150
1151 * (% style="color:#037691" %)**AT Command:**
1152
1153 There is no AT Command to control Relay Output
1154
1155
1156 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1157
1158 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1159
1160
1161 (((
1162 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1163 )))
1164
1165 (((
1166 00: Closed ,  01: Open , 11: No action
1167
1168 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1169 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1170 |03  00  11|Open|No Action
1171 |03  01  11|Close|No Action
1172 |03  11  00|No Action|Open
1173 |03  11  01|No Action|Close
1174 |03  00  00|Open|Open
1175 |03  01  01|Close|Close
1176 |03  01  00|Close|Open
1177 |03  00  01|Open|Close
1178 )))
1179
1180 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1181
1182
1183
1184 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1185
1186
1187 * (% style="color:#037691" %)**AT Command:**
1188
1189 There is no AT Command to control Relay Output
1190
1191
1192 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1193
1194 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1195
1196
1197 This is to control the relay output time of relay. Include four bytes:
1198
1199 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1200
1201 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1202
1203 01: Relays will change back to original state after timeout.
1204
1205 00: Relays will change to an inverter state after timeout
1206
1207
1208 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1209
1210 [[image:image-20221008095908-1.png||height="364" width="564"]]
1211
1212
1213 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1214
1215
1216 (% style="color:red" %)**Note:**
1217
1218 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1219
1220 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1221
1222
1223 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1224
1225
1226 **Example payload:**
1227
1228 **~1. 05 01 11 07 D0**
1229
1230 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1231
1232 **2. 05 01 10 07 D0**
1233
1234 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1235
1236 **3. 05 00 01 07 D0**
1237
1238 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1239
1240 **4. 05 00 00 07 D0**
1241
1242 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1243
1244
1245
1246 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1247
1248
1249 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1250
1251 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1252
1253 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1254
1255 (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1256
1257
1258
1259 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1260
1261
1262 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1263
1264 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1265
1266 (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1267
1268
1269 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1270
1271 (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1272
1273
1274
1275 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1276
1277
1278 Clear counting for counting mode
1279
1280 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT         **(%%) ~/~/ clear all counting
1281
1282 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1283
1284 (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1285
1286
1287
1288 ==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1289
1290
1291 * (% style="color:#037691" %)**AT Command:**
1292
1293 (% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1294
1295
1296 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1297
1298 (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1299
1300 (((
1301 range: aa bb cc:0 to 16777215,  (unit:second)
1302 )))
1303
1304
1305
1306 ==== 3.4.2.20 Reset save RO DO state ====
1307
1308
1309 * (% style="color:#037691" %)**AT Command:**
1310
1311 (% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1312
1313 (% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1314
1315
1316 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1317
1318 (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1319
1320
1321
1322 ==== 3.4.2.21 Encrypted payload ====
1323
1324
1325 * (% style="color:#037691" %)**AT Command:**
1326
1327 (% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1328
1329 (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1330
1331
1332
1333 ==== 3.4.2.22 Get sensor value ====
1334
1335
1336 * (% style="color:#037691" %)**AT Command:**
1337
1338 (% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1339
1340 (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1341
1342
1343
1344 ==== 3.4.2.23 Resets the downlink packet count ====
1345
1346
1347 * (% style="color:#037691" %)**AT Command:**
1348
1349 (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1350
1351 (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1352
1353
1354
1355 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1356
1357
1358 * (% style="color:#037691" %)**AT Command:**
1359
1360 (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1361
1362 (% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1363
1364
1365 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1366
1367 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1368
1369
1370
1371 ==== 3.4.2.25 Copy downlink to uplink ====
1372
1373
1374 * (% style="color:#037691" %)**AT Command**(%%)**:**
1375
1376 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1377
1378 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1379
1380
1381 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1382
1383 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1384
1385
1386
1387 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1388
1389 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1390
1391
1392
1393 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1394
1395
1396 * (((
1397 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1398
1399 (% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1400
1401
1402 )))
1403
1404 **Example:**
1405
1406 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1407
1408
1409 == 3.5 Integrating with ThingsEye.io ==
1410
1411 The Things Stack application supports integration with ThingsEye.io. Once integrated, ThingsEye.io acts as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1412
1413 === 3.5.1 Configuring The Things Stack ===
1414
1415 We use The Things Stack Sandbox in this example:
1416
1417 * In **The Things Stack Sandbox**, go to the **Application **for the LT-22222-L you added.
1418 * Select **MQTT** under **Integrations** in the left menu.
1419 * In the **Connection information **section, under **Connection credentials**, The Things Stack displays an auto-generated **username**. You can use it or provide a new one.
1420 * Click the **Generate new API key** button to generate a password. You can view it by clicking on the **visibility toggle/eye** icon. The API key works as the password.
1421
1422 {{info}}
1423 The username and  password (API key) you created here are required in the next section.
1424 {{/info}}
1425
1426 [[image:tts-mqtt-integration.png||height="625" width="1000"]]
1427
1428 === 3.5.2 Configuring ThingsEye.io ===
1429
1430 * Login to your [[ThingsEye.io >>https://thingseye.io]]account.
1431 * Under the **Integrations center**, click **Integrations**.
1432 * Click the **Add integration** button (the button with the **+** symbol).
1433
1434 [[image:thingseye-io-step-1.png||height="625" width="1000"]]
1435
1436
1437 On the **Add integration** window, configure the following:
1438
1439 **Basic settings:**
1440
1441 * Select **The Things Stack Community** from the **Integration type** list.
1442 * Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
1443 * Ensure the following options are turned on.
1444 ** Enable integration
1445 ** Debug mode
1446 ** Allow create devices or assets
1447 * Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
1448
1449 [[image:thingseye-io-step-2.png||height="625" width="1000"]]
1450
1451
1452 **Uplink data converter:**
1453
1454 * Click the **Create new** button if it is not selected by default.
1455 * Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
1456 * Click the **JavaScript** button.
1457 * Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
1458 * Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
1459
1460 [[image:thingseye-io-step-3.png||height="625" width="1000"]]
1461
1462
1463 **Downlink data converter (this is an optional step):**
1464
1465 * Click the **Create new** button if it is not selected by default.
1466 * Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name.
1467 * Click the **JavaScript** button.
1468 * Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Downlink_Converter.js]].
1469 * Click the **Next** button. You will be navigated to the **Connection** tab.
1470
1471 [[image:thingseye-io-step-4.png||height="625" width="1000"]]
1472
1473
1474 **Connection:**
1475
1476 * Choose **Region** from the **Host type**.
1477 * Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
1478 * Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The **username **and **password **can be found on the MQTT integration page of your The Things Stack account (see Configuring The Things Stack).
1479 * Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
1480
1481 [[image:message-1.png]]
1482
1483
1484 * Click the **Add** button.
1485
1486 [[image:thingseye-io-step-5.png||height="625" width="1000"]]
1487
1488
1489 Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings.
1490
1491
1492 [[image:thingseye.io_integrationsCenter_integrations.png||height="686" width="1000"]]
1493
1494
1495 **Viewing integration details**:
1496
1497 Click on your integration from the list. The **Integration details** window will appear with the **Details **tab selected. The **Details **tab shows all the settings you have provided for this integration.
1498
1499 [[image:integration-details.png||height="686" width="1000"]]
1500
1501
1502 If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
1503
1504 {{info}}
1505 See also ThingsEye documentation.
1506 {{/info}}
1507
1508 **Viewing events:**
1509
1510 The **Events **tab displays all the uplink messages from the LT-22222-L.
1511
1512 * Select **Debug **from the **Event type** dropdown.
1513 * Select the** time frame** from the **time window**.
1514
1515 [[image:thingseye-events.png||height="686" width="1000"]]
1516
1517
1518 * To view the JSON payload of a message, click on the three dots (...) in the Message column of the desired message.
1519
1520 [[image:thingseye-json.png||width="1000"]]
1521
1522
1523 **Deleting the integration**:
1524
1525 If you want to delete this integration, click the **Delete integratio**n button.
1526
1527
1528 == 3.6 Interface Details ==
1529
1530 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1531
1532
1533 Support NPN-type sensor
1534
1535 [[image:1653356991268-289.png]]
1536
1537
1538 === 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1539
1540
1541 (((
1542 The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1543 )))
1544
1545 (((
1546 (((
1547 The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1548
1549
1550 )))
1551 )))
1552
1553 [[image:1653357170703-587.png]]
1554
1555 (((
1556 (((
1557 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1558 )))
1559 )))
1560
1561 (((
1562
1563 )))
1564
1565 (((
1566 (% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1567 )))
1568
1569 (((
1570 This type of sensor outputs a low (GND) signal when active.
1571 )))
1572
1573 * (((
1574 Connect the sensor's output to DI1-
1575 )))
1576 * (((
1577 Connect the sensor's VCC to DI1+.
1578 )))
1579
1580 (((
1581 When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be:
1582 )))
1583
1584 (((
1585 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1586 )))
1587
1588 (((
1589 For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1590 )))
1591
1592 (((
1593
1594 )))
1595
1596 (((
1597 (% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1598 )))
1599
1600 (((
1601 This type of sensor outputs a high signal (e.g., 24V) when active.
1602 )))
1603
1604 * (((
1605 Connect the sensor's output to DI1+
1606 )))
1607 * (((
1608 Connect the sensor's GND DI1-.
1609 )))
1610
1611 (((
1612 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1613 )))
1614
1615 (((
1616 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1617 )))
1618
1619 (((
1620 If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1621 )))
1622
1623 (((
1624
1625 )))
1626
1627 (((
1628 (% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1629 )))
1630
1631 (((
1632 Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1633 )))
1634
1635 * (((
1636 Connect the sensor's output to DI1+ with a 50K resistor in series.
1637 )))
1638 * (((
1639 Connect the sensor's GND DI1-.
1640 )))
1641
1642 (((
1643 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1644 )))
1645
1646 (((
1647 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1648 )))
1649
1650 (((
1651 If the sensor output is 220V, then [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1652 )))
1653
1654
1655 (% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1656
1657 From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1658
1659 To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1660
1661 [[image:image-20230616235145-1.png]]
1662
1663 (% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1664
1665 [[image:image-20240219115718-1.png]]
1666
1667
1668 === 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1669
1670
1671 (% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1672
1673 (% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
1674
1675 [[image:1653357531600-905.png]]
1676
1677
1678 === 3.6.4 Analog Input Interfaces ===
1679
1680
1681 The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1682
1683
1684 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1685
1686 [[image:1653357592296-182.png]]
1687
1688 Example: Connecting a 4~~20mA sensor
1689
1690 We will use the wind speed sensor as an example for reference only.
1691
1692
1693 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1694
1695 (% style="color:red" %)**Red:  12~~24V**
1696
1697 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1698
1699 **Black:  GND**
1700
1701 **Connection diagram:**
1702
1703 [[image:1653357640609-758.png]]
1704
1705 [[image:1653357648330-671.png||height="155" width="733"]]
1706
1707
1708 Example: Connecting to a regulated power supply to measure voltage
1709
1710 [[image:image-20230608101532-1.png||height="606" width="447"]]
1711
1712 [[image:image-20230608101608-2.jpeg||height="379" width="284"]]
1713
1714 [[image:image-20230608101722-3.png||height="102" width="1139"]]
1715
1716
1717 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1718
1719 (% style="color:red" %)**Red:  12~~24v**
1720
1721 **Black:  GND**
1722
1723
1724 === 3.6.5 Relay Output ===
1725
1726
1727 (((
1728 The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1729
1730 **Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1731 )))
1732
1733 [[image:image-20220524100215-9.png]]
1734
1735
1736 [[image:image-20220524100215-10.png||height="382" width="723"]]
1737
1738
1739 == 3.7 LEDs Indicators ==
1740
1741 The table below lists the behavior of LED indicators for each port function.
1742
1743 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1744 |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
1745 |**PWR**|Always on when there is power
1746 |**TX**|(((
1747 (((
1748 Device boot: TX blinks 5 times.
1749 )))
1750
1751 (((
1752 Successful network join: TX remains ON for 5 seconds.
1753 )))
1754
1755 (((
1756 Transmit a LoRa packet: TX blinks once
1757 )))
1758 )))
1759 |**RX**|RX blinks once when a packet is received.
1760 |**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
1761 |**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
1762 |**DI1**|(((
1763 For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1764 )))
1765 |**DI2**|(((
1766 For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1767 )))
1768 |**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
1769 |**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1770
1771 = 4. Using AT Commands =
1772
1773 The LT-22222-L supports programming using AT Commands.
1774
1775 == 4.1 Connecting the LT-22222-L to a PC ==
1776
1777 (((
1778 You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a PC, as shown below.
1779 )))
1780
1781 [[image:1653358238933-385.png]]
1782
1783
1784 (((
1785 On the PC, you need to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate of (% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-L. Access to AT commands is disabled by default, and a password (default: (% style="color:green" %)**123456**)(%%) must be entered to enable AT command access, as shown below:
1786 )))
1787
1788 [[image:1653358355238-883.png]]
1789
1790
1791 (((
1792 You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1793
1794 == 4.2 LT-22222-L related AT commands ==
1795 )))
1796
1797 (((
1798 The following is the list of all the AT commands related to the LT-22222-L, except for those used for switching between work modes.
1799
1800 * AT+<CMD>? : Help on <CMD>
1801 * AT+<CMD> : Run <CMD>
1802 * AT+<CMD>=<value> : Set the value
1803 * AT+<CMD>=? : Get the value
1804 * ATZ: Trigger a reset of the MCU
1805 * ##**AT+FDR**##: Reset Parameters to factory default, reserve keys 
1806 * **##AT+DEUI##**: Get or set the Device EUI (DevEUI)
1807 * **##AT+DADDR##**: Get or set the Device Address (DevAddr)
1808 * **##AT+APPKEY##**: Get or set the Application Key (AppKey)
1809 * AT+NWKSKEY: Get or set the Network Session Key (NwkSKey)
1810 * AT+APPSKEY: Get or set the Application Session Key (AppSKey)
1811 * AT+APPEUI: Get or set the Application EUI (AppEUI)
1812 * AT+ADR: Get or set the Adaptive Data Rate setting. (0: OFF, 1: ON)
1813 * AT+TXP: Get or set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Specification)
1814 * AT+DR:  Get or set the Data Rate. (0-7 corresponding to DR_X)  
1815 * AT+DCS: Get or set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1816 * AT+PNM: Get or set the public network mode. (0: off, 1: on)
1817 * AT+RX2FQ: Get or set the Rx2 window frequency
1818 * AT+RX2DR: Get or set the Rx2 window data rate (0-7 corresponding to DR_X)
1819 * AT+RX1DL: Get or set the delay between the end of the Tx and the Rx Window 1 in ms
1820 * AT+RX2DL: Get or set the delay between the end of the Tx and the Rx Window 2 in ms
1821 * AT+JN1DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1822 * AT+JN2DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1823 * AT+NJM: Get or set the Network Join Mode. (0: ABP, 1: OTAA)
1824 * AT+NWKID: Get or set the Network ID
1825 * AT+FCU: Get or set the Frame Counter Uplink (FCntUp)
1826 * AT+FCD: Get or set the Frame Counter Downlink (FCntDown)
1827 * AT+CLASS: Get or set the Device Class
1828 * AT+JOIN: Join network
1829 * AT+NJS: Get OTAA Join Status
1830 * AT+SENDB: Send hexadecimal data along with the application port
1831 * AT+SEND: Send text data along with the application port
1832 * AT+RECVB: Print last received data in binary format (with hexadecimal values)
1833 * AT+RECV: Print last received data in raw format
1834 * AT+VER: Get current image version and Frequency Band
1835 * AT+CFM: Get or Set the confirmation mode (0-1)
1836 * AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1837 * AT+SNR: Get the SNR of the last received packet
1838 * AT+RSSI: Get the RSSI of the last received packet
1839 * AT+TDC: Get or set the application data transmission interval in ms
1840 * AT+PORT: Get or set the application port
1841 * AT+DISAT: Disable AT commands
1842 * AT+PWORD: Set password, max 9 digits
1843 * AT+CHS: Get or set the Frequency (Unit: Hz) for Single Channel Mode
1844 * AT+CHE: Get or set eight channels mode, Only for US915, AU915, CN470
1845 * AT+CFG: Print all settings
1846 )))
1847
1848
1849 == 4.2 Common AT Command Sequence ==
1850
1851 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1852
1853 (((
1854
1855
1856 (((
1857 (% style="color:blue" %)**If the device has not joined the network yet:**
1858 )))
1859 )))
1860
1861 (((
1862 (% style="background-color:#dcdcdc" %)##**123456 ~/~/enable AT commands access**##
1863 )))
1864
1865 (((
1866 (% style="background-color:#dcdcdc" %)##**AT+FDR ~/~/reset parameters to factory default, reserve keys**##
1867 )))
1868
1869 (((
1870 (% style="background-color:#dcdcdc" %)##**123456 ~/~/enable AT commands access**##
1871 )))
1872
1873 (((
1874 (% style="background-color:#dcdcdc" %)##**AT+NJM=0 ~/~/set to ABP mode**##
1875 )))
1876
1877 (((
1878 (% style="background-color:#dcdcdc" %)##**ATZ ~/~/reset MCU**##
1879 )))
1880
1881
1882 (((
1883 (% style="color:blue" %)**If the device has already joined the network:**
1884 )))
1885
1886 (((
1887 (% style="background-color:#dcdcdc" %)##**AT+NJM=0**##
1888 )))
1889
1890 (((
1891 (% style="background-color:#dcdcdc" %)##**ATZ**##
1892 )))
1893
1894
1895 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1896
1897 (((
1898
1899
1900 (((
1901 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
1902 )))
1903 )))
1904
1905 (((
1906 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
1907 )))
1908
1909 (((
1910 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
1911 )))
1912
1913 (((
1914 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
1915 )))
1916
1917 (((
1918 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
1919 )))
1920
1921 (((
1922 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
1923 )))
1924
1925 (((
1926 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
1927 )))
1928
1929 (((
1930 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
1931 )))
1932
1933 (((
1934 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
1935 )))
1936
1937 (((
1938 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
1939 )))
1940
1941 (((
1942 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
1943 )))
1944
1945 (((
1946 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1947 )))
1948
1949 (((
1950 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
1951
1952
1953 )))
1954
1955 (((
1956 (% style="color:red" %)**Note:**
1957 )))
1958
1959 (((
1960 **~1. Make sure the device is set to ABP mode in the IoT Server.**
1961
1962 **2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
1963
1964 **3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
1965 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
1966
1967 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
1968 )))
1969
1970 (((
1971 [[image:1653359097980-169.png||height="188" width="729"]]
1972 )))
1973
1974
1975 === 4.2.3 Change to Class A ===
1976
1977
1978 (((
1979 (% style="color:blue" %)**If sensor JOINED:**
1980
1981 (% style="background-color:#dcdcdc" %)**AT+CLASS=A**
1982
1983 (% style="background-color:#dcdcdc" %)**ATZ**
1984 )))
1985
1986
1987 = 5. Case Study =
1988
1989 == 5.1 Counting how many objects pass through the flow Line ==
1990
1991 See [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
1992
1993
1994 = 6. FAQ =
1995
1996 This section contains some frequently asked questions, which can help you resolve common issues and find solutions quickly.
1997
1998
1999 == 6.1 How to update the firmware? ==
2000
2001 Dragino frequently releases firmware updates for the LT-22222-L.
2002
2003 Updating your LT-22222-L with the latest firmware version helps to:
2004
2005 * Support new features
2006 * Fix bugs
2007 * Change LoRaWAN frequency bands
2008
2009 You will need the following things before proceeding:
2010
2011 * 3.5mm programming cable (included with the LT-22222-L as an additional accessory)
2012 * USB to TTL adapter
2013 * Download and install the [[STM32 Flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. (replaced by STM32CubeProgrammer)
2014 * Download the latest firmware image from [[LT-22222-L firmware image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. Check the file name of the firmware to find the correct region.
2015
2016 {{info}}
2017 As of this writing, the latest firmware version available for the LT-22222-L is v1.6.1.
2018 {{/info}}
2019
2020 Below is the hardware setup for uploading a firmware image to the LT-22222-L:
2021
2022
2023 [[image:1653359603330-121.png]]
2024
2025
2026 Start the STM32 Flash Loader and choose the correct COM port to update.
2027
2028 (((
2029 (((
2030 (% style="color:blue" %)**For LT-22222-L**(%%):
2031
2032 Hold down the **PRO** button, then briefly press the **RST** button. The **DO1** LED will change from OFF to ON. When the **DO1** LED is ON, it indicates that the device is in firmware download mode.
2033 )))
2034
2035
2036 )))
2037
2038 [[image:image-20220524103407-12.png]]
2039
2040
2041 [[image:image-20220524103429-13.png]]
2042
2043
2044 [[image:image-20220524104033-15.png]]
2045
2046
2047 (% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5mm cable. The pin mapping is as follows:
2048
2049 [[image:1653360054704-518.png||height="186" width="745"]]
2050
2051
2052 (((
2053 (((
2054 == 6.2 How to change the LoRaWAN frequency band/region? ==
2055 )))
2056 )))
2057
2058 (((
2059 You can follow the introductions on [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2060 )))
2061
2062 (((
2063
2064
2065 == 6.3 How to setup LT to work with a Single Channel Gateway, such as LG01/LG02? ==
2066 )))
2067
2068 (((
2069 (((
2070 In this case, you need to set the LT-33222-L to work in ABP mode and transmit on only one frequency.
2071 )))
2072 )))
2073
2074 (((
2075 (((
2076 Assume you have an LG02 working on the frequency 868400000. Below are the steps.
2077
2078
2079 )))
2080 )))
2081
2082 (((
2083 (% style="color:#0000ff" %)**Step 1**(%%):  Log in to The Things Stack SANDBOX, create an ABP device in the application, and input the Network Session key (NwkSKey), App session key (AppSKey) of the device.
2084
2085
2086 )))
2087
2088 (((
2089 [[image:1653360231087-571.png||height="401" width="727"]]
2090
2091
2092 )))
2093
2094 (((
2095 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2096 )))
2097
2098
2099
2100 (((
2101 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2102
2103
2104 )))
2105
2106 (((
2107 (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2108
2109 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2110
2111 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2112
2113 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2114
2115 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2116
2117 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2118
2119 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2120
2121 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2122
2123 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2124 )))
2125
2126
2127 (((
2128 As shown in below:
2129 )))
2130
2131 [[image:1653360498588-932.png||height="485" width="726"]]
2132
2133
2134 == 6.4 How to change the uplink interval? ==
2135
2136 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2137
2138
2139 == 6.5 Can I see the counting event in the serial output? ==
2140
2141 (((
2142 You can run the AT command AT+DEBUG to view the counting event in the serial output. If the firmware is too old and doesn’t support AT+DEBUG, update to the latest firmware first.
2143
2144
2145 == 6.6 Can I use point-to-point communication with LT-22222-L? ==
2146
2147 Yes, you can. Please refer to the [[Point-to-Point Communication of LT-22222-L>>https://wiki.dragino.com/xwiki/bin/view/Main/%20Point%20to%20Point%20Communication%20of%20LT-22222-L/]] page. The firmware that supports point-to-point communication can be found [[here>>https://github.com/dragino/LT-22222-L/releases]].
2148
2149
2150 )))
2151
2152 (((
2153 == 6.7 Why does the relay output default to an open relay after the LT-22222-L is powered off? ==
2154
2155 * If the device is not properly shut down and is directly powered off.
2156 * It will default to a power-off state.
2157 * In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2158 * After a restart, the status before the power failure will be read from flash.
2159
2160 == 6.8 Can I setup LT-22222-L as a NC (Normally Closed) relay? ==
2161
2162 The LT-22222-L's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
2163
2164
2165 [[image:image-20221006170630-1.png||height="610" width="945"]]
2166
2167
2168 == 6.9 Can the LT-22222-L save the RO state? ==
2169
2170 The firmware version must be at least 1.6.0.
2171
2172
2173 == 6.10 Why does the LT-22222-L always report 15.585V when measuring the AVI? ==
2174
2175 It is likely that the GND is not connected during the measurement, or that the wire connected to the GND is loose.
2176
2177
2178 = 7. Troubleshooting =
2179
2180 This section provides some known troubleshooting tips.
2181
2182
2183 )))
2184
2185 (((
2186 (((
2187 == 7.1 Downlink isn't working. How can I solve this? ==
2188 )))
2189 )))
2190
2191 (((
2192 Please refer to this link for debugging instructions: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2193 )))
2194
2195 (((
2196
2197
2198 == 7.2 Having trouble uploading an image? ==
2199 )))
2200
2201 (((
2202 Please refer to this link for troubleshooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2203 )))
2204
2205 (((
2206
2207
2208 == 7.3 Why can't I join TTN in the US915 /AU915 bands? ==
2209 )))
2210
2211 (((
2212 It might be related to the channel mapping. [[Please refer to this link for details.>>https://github.com/dragino/LT-22222-L/releases]]
2213 )))
2214
2215
2216 == 7.4 Why can the LT-22222-L perform Uplink normally, but cannot receive Downlink? ==
2217
2218 The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue.
2219 Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2220
2221
2222 = 8. Ordering information =
2223
2224 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2225
2226 (% style="color:#4f81bd" %)**XXX:**
2227
2228 * (% style="color:red" %)**EU433**(%%): LT with frequency bands EU433
2229 * (% style="color:red" %)**EU868**(%%): LT with frequency bands EU868
2230 * (% style="color:red" %)**KR920**(%%): LT with frequency bands KR920
2231 * (% style="color:red" %)**CN470**(%%): LT with frequency bands CN470
2232 * (% style="color:red" %)**AS923**(%%): LT with frequency bands AS923
2233 * (% style="color:red" %)**AU915**(%%): LT with frequency bands AU915
2234 * (% style="color:red" %)**US915**(%%): LT with frequency bands US915
2235 * (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2236 * (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2237
2238 = 9. Packing information =
2239
2240 **Package includes**:
2241
2242 * 1 x LT-22222-L I/O Controller
2243 * 1 x LoRa antenna matched to the frequency of the LT-22222-L
2244 * 1 x bracket for DIN rail mounting
2245 * 1 x 3.5mm programming cable
2246
2247 **Dimension and weight**:
2248
2249 * Device Size: 13.5 x 7 x 3 cm
2250 * Device Weight: 105 g
2251 * Package Size / pcs : 14.5 x 8 x 5 cm
2252 * Weight / pcs : 170 g
2253
2254 = 10. Support =
2255
2256 * (((
2257 Support is available Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule.
2258 )))
2259 * (((
2260 Please provide as much information as possible regarding your inquiry (e.g., product models, a detailed description of the problem, steps to replicate it, etc.) and send an email to [[support@dragino.cc>>mailto:support@dragino.cc]]
2261
2262
2263 )))
2264
2265 = 11. Reference​​​​​ =
2266
2267 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2268 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2269 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0