Version 188.1 by Bei Jinggeng on 2024/11/11 09:50

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19
20 = 1. Introduction =
21
22 == 1.1 What is the LT-22222-L I/O Controller? ==
23
24 (((
25 (((
26 The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
27
28 The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
29 )))
30 )))
31
32 (((
33 With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
34 )))
35
36 (((
37 You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
38
39 * If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
40 * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
41 * Setup your own private LoRaWAN network.
42
43 {{info}}
44 You can use a LoRaWAN gateway, such as the [[Dragino LG308>>https://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]], to expand or create LoRaWAN coverage in your area.
45 {{/info}}
46 )))
47
48 (((
49 [[image:1653295757274-912.png]]
50
51
52 )))
53
54 == 1.2 Specifications ==
55
56 (% style="color:#037691" %)**Hardware System:**
57
58 * STM32L072xxxx MCU
59 * SX1276/78 Wireless Chip 
60 * Power Consumption:
61 ** Idle: 4mA@12V
62 ** 20dB Transmit: 34mA@12V
63 * Operating Temperature: -40 ~~ 85 Degrees, No Dew
64
65 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
66
67 * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50V, or 220V with optional external resistor)
68 * 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
69 * 2 x Relay Output (5A@250VAC / 30VDC)
70 * 2 x 0~~20mA Analog Input (res:0.01mA)
71 * 2 x 0~~30V Analog Input (res:0.01V)
72 * Power Input 7~~ 24V DC. 
73
74 (% style="color:#037691" %)**LoRa Spec:**
75
76 * Frequency Range:
77 ** Band 1 (HF): 862 ~~ 1020 MHz
78 ** Band 2 (LF): 410 ~~ 528 MHz
79 * 168 dB maximum link budget.
80 * +20 dBm - 100 mW constant RF output vs.
81 * +14 dBm high-efficiency PA.
82 * Programmable bit rate up to 300 kbps.
83 * High sensitivity: down to -148 dBm.
84 * Bullet-proof front end: IIP3 = -12.5 dBm.
85 * Excellent blocking immunity.
86 * Low RX current of 10.3 mA, 200 nA register retention.
87 * Fully integrated synthesizer with a resolution of 61 Hz.
88 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
89 * Built-in bit synchronizer for clock recovery.
90 * Preamble detection.
91 * 127 dB Dynamic Range RSSI.
92 * Automatic RF Sense and CAD with ultra-fast AFC.
93 * Packet engine up to 256 bytes with CRC.
94
95 == 1.3 Features ==
96
97 * LoRaWAN Class A & Class C modes
98 * Optional Customized LoRa Protocol
99 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
100 * AT Commands to change parameters
101 * Remotely configure parameters via LoRaWAN Downlink
102 * Firmware upgradable via program port
103 * Counting
104
105 == 1.4 Applications ==
106
107 * Smart buildings & home automation
108 * Logistics and supply chain management
109 * Smart metering
110 * Smart agriculture
111 * Smart cities
112 * Smart factory
113
114 == 1.5 Hardware Variants ==
115
116
117 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
118 |(% style="background-color:#4f81bd; color:white; width:103px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:131px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:266px" %)**Description**
119 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
120 (% style="text-align:center" %)
121 [[image:image-20230424115112-1.png||height="106" width="58"]]
122 )))|(% style="width:334px" %)(((
123 * 2 x Digital Input (Bi-direction)
124 * 2 x Digital Output
125 * 2 x Relay Output (5A@250VAC / 30VDC)
126 * 2 x 0~~20mA Analog Input (res:0.01mA)
127 * 2 x 0~~30V Analog Input (res:0.01v)
128 * 1 x Counting Port
129 )))
130
131 = 2. Assembling the device =
132
133 == 2.1 Connecting the antenna ==
134
135 Connect the LoRa antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper screw terminal block. Secure the antenna by tightening it clockwise.
136
137 {{warning}}
138 Warning! Do not power on the device without connecting the antenna.
139 {{/warning}}
140
141 == 2.2 Terminals ==
142
143 The  LT-22222-L has two screw terminal blocks. The upper screw treminal block has 6 terminals and the lower screw terminal block has 10 terminals.
144
145 Upper screw terminal block (from left to right):
146
147 (% style="width:634px" %)
148 |=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
149 |(% style="width:295px" %)GND|(% style="width:338px" %)Ground
150 |(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
151 |(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
152 |(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
153 |(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
154 |(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
155
156 Lower screw terminal block (from left to right):
157
158 (% style="width:633px" %)
159 |=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
160 |(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
161 |(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
162 |(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
163 |(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
164 |(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
165 |(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
166 |(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
167 |(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
168 |(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
169 |(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
170
171 == 2.3 Powering the device ==
172
173 The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect your power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator **(PWR) LED** will turn on when the device is properly powered.
174
175 Once powered, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** The Things Stack. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LED** will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status.
176
177 {{warning}}
178 We recommend that you power on the LT-22222-L after configuring its registration information with a LoRaWAN network server. Otherwise, the device will continuously send join-request messages to attempt to join a LoRaWAN network but will fail.
179 {{/warning}}
180
181
182 [[image:1653297104069-180.png]]
183
184
185 = 3. Registering with a LoRaWAN Network Server =
186
187 By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
188
189 After powering on, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** the LoRaWAN network. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LED** will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status.
190
191 In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
192
193 The network diagram below shows how the LT-22222-L is connected to a typical LoRaWAN network.
194
195 [[image:image-20220523172350-1.png||height="266" width="864"]]
196
197 === 3.2.1 Prerequisites ===
198
199 Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
200
201 [[image:image-20230425173427-2.png||height="246" width="530"]]
202
203 The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
204
205 === 3.2.2 The Things Stack Sandbox (TTSS) ===
206
207 The Things Stack Sandbox was formally called The Things Stack Community Edition.
208
209 * Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
210 * Create an application with The Things Stack if you do not have one yet.
211 * Go to your application page and click on the **End devices** in the left menu.
212 * On the End devices page, click on **+ Register end device**. Two registration options are available:
213
214 ==== 3.2.2.1 Using the LoRaWAN Device Repository ====
215
216 * On the **Register end device** page:
217 ** Select the option **Select the end device in the LoRaWAN Device Repository **under **Input method**.
218 ** Select the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)** from the respective dropdown lists.
219 *** **End device brand**: Dragino Technology Co., Limited
220 *** **Model**: LT22222-L I/O Controller
221 *** **Hardware ver**: Unknown
222 *** **Firmware ver**: 1.6.0
223 *** **Profile (Region)**: Select the region that matches your device.
224 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
225
226 [[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
227
228
229 * Register end device page continued...
230 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'.
231 ** In the **DevEUI** field, enter the **DevEUI**.
232 ** In the **AppKey** field, enter the **AppKey.**
233 ** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
234 ** Under **After registration**, select the **View registered end device** option.
235
236 [[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
237
238 ==== ====
239
240 ==== 3.2.2.2 Adding device manually ====
241
242 * On the **Register end device** page:
243 ** Select the option **Enter end device specifies manually** under **Input method**.
244 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
245 ** Select the **LoRaWAN version** as **LoRaWAN Specification 1.0.3**
246 ** Select the **Regional Parameters version** as** RP001 Regional Parameters 1.0.3 revision A**
247 ** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the hidden section.
248 ** Select the option **Over the air activation (OTAA)** under the **Activation mode.**
249 ** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities** dropdown list.
250
251 [[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
252
253
254 * Register end device page continued...
255 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'
256 ** In the **DevEUI** field, enter the **DevEUI**.
257 ** In the **AppKey** field, enter the **AppKey**.
258 ** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
259 ** Under **After registration**, select the **View registered end device** option.
260 ** Click the **Register end device** button.
261
262 [[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
263
264
265 You will be navigated to the **Device overview** page.
266
267
268 [[image:lt-22222-device-overview.png||height="625" width="1000"]]
269
270
271 ==== 3.2.2.3 Joining ====
272
273 On the Device overview page, click on **Live data** tab. The Live data panel for your device will display.
274
275 Now power on your LT-22222-L. It will begin joining The Things Stack. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server. Once successfully joined, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**).
276
277
278 [[image:lt-22222-join-network.png||height="625" width="1000"]]
279
280
281 By default, you will receive an uplink data message from the device every 10 minutes.
282
283 Click on one of a **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the decode_payload {} JSON object.
284
285 [[image:lt-22222-ul-payload-decoded.png]]
286
287
288 If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **End devices** > **LT-22222-L** > **Payload formatters** > **Uplink**. Then  select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
289
290 {{info}}
291 The Things Stack provides two levels of payload formatters: application level and device level. The device-level payload formatters **override **the application-level payload formatters.
292 {{/info}}
293
294 [[image:lt-22222-ul-payload-fmt.png||height="686" width="1000"]]
295
296
297 == 3.3 Work Modes and Uplink Payload formats ==
298
299
300 The LT-22222-L has 5 **work modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any work mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
301
302 * (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
303
304 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
305
306 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
307
308 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
309
310 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
311
312 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
313
314 The uplink messages are sent over LoRaWAN FPort 2. By default, an uplink message is sent every 10 minutes.
315
316 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
317
318 (((
319 This is the default mode.
320
321 The uplink payload is 11 bytes long.
322
323 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
324 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
325 It starts counting again when it reaches the maximum value.**(% style="display:none" wfd-invisible="true" %)
326
327 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
328 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
329 |Value|(((
330 AVI1 voltage
331 )))|(((
332 AVI2 voltage
333 )))|(((
334 ACI1 Current
335 )))|(((
336 ACI2 Current
337 )))|**DIDORO***|(((
338 Reserve
339 )))|MOD
340 )))
341
342 (((
343 (% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
344
345 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
346 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
347 |RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
348 )))
349
350 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
351 * DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
352 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
353
354 (% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
355
356 For example, if the payload is: [[image:image-20220523175847-2.png]]
357
358
359 **The interface values can be calculated as follows:  **
360
361 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
362
363 AVI2 channel voltage is 0x04AC/1000=1.196V
364
365 ACI1 channel current is 0x1310/1000=4.880mA
366
367 ACI2 channel current is 0x1300/1000=4.864mA
368
369 The last byte 0xAA= **10101010**(b) means,
370
371 * [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
372 * [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
373 * **[1] DI3 - not used for LT-22222-L.**
374 * [0] DI2 channel input is LOW, and the DI2 LED is OFF.
375 * [1] DI1 channel input state:
376 ** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
377 ** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
378 ** DI1 LED is ON in both cases.
379 * **[0] DO3 - not used for LT-22222-L.**
380 * [1] DO2 channel output is LOW, and the DO2 LED is ON.
381 * [0] DO1 channel output state:
382 ** DO1 is FLOATING when there is no load between DO1 and V+.
383 ** DO1 is HIGH when there is a load between DO1 and V+.
384 ** DO1 LED is OFF in both cases.
385
386 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
387
388
389 (((
390 **For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
391 )))
392
393 (((
394 The uplink payload is 11 bytes long.
395
396 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
397 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
398 It starts counting again when it reaches the maximum value.**
399
400 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
401 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
402 |Value|COUNT1|COUNT2 |DIDORO*|(((
403 Reserve
404 )))|MOD
405 )))
406
407 (((
408 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
409
410 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
411 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
412 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
413
414 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
415 )))
416
417 * FIRST: Indicates that this is the first packet after joining the network.
418 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
419
420 (((
421 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
422
423
424 )))
425
426 (((
427 **To activate this mode, run the following AT commands:**
428 )))
429
430 (((
431 (% class="box infomessage" %)
432 (((
433 **AT+MOD=2**
434
435 **ATZ**
436 )))
437 )))
438
439 (((
440
441
442 (% style="color:#4f81bd" %)**AT Commands for counting:**
443 )))
444
445 (((
446 **For LT22222-L:**
447
448 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
449
450 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
451
452 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
453
454 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
455
456 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
457
458 (% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
459 )))
460
461
462 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
463
464 (% style="color:red" %)**Note: The maximum count depends on the bytes it is.
465 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
466 It starts counting again when it reaches the maximum value.**
467
468 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
469
470 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
471 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
472 |Value|COUNT1|(((
473 ACI1 Current
474 )))|(((
475 ACI2 Current
476 )))|DIDORO*|Reserve|MOD
477
478 (((
479 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
480
481 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
482 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
483 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
484 )))
485
486 * RO is for the relay. ROx=1: closed, ROx=0 always open.
487 * FIRST: Indicates that this is the first packet after joining the network.
488 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
489
490 (((
491 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
492 )))
493
494
495 (((
496 **To activate this mode, run the following AT commands:**
497 )))
498
499 (((
500 (% class="box infomessage" %)
501 (((
502 **AT+MOD=3**
503
504 **ATZ**
505 )))
506 )))
507
508 (((
509 AT Commands for counting:
510
511 The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
512 )))
513
514
515 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
516
517 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
518 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
519 It starts counting again when it reaches the maximum value.**
520
521
522 (((
523 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
524 )))
525
526 (((
527 The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
528
529 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
530 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
531 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
532 Reserve
533 )))|MOD
534 )))
535
536 (((
537 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
538
539 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
540 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
541 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
542 )))
543
544 * RO is for the relay. ROx=1: closed, ROx=0 always open.
545 * FIRST: Indicates that this is the first packet after joining the network.
546 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
547
548 (((
549 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
550
551
552 )))
553
554 (((
555 **To activate this mode, run the following AT commands:**
556 )))
557
558 (((
559 (% class="box infomessage" %)
560 (((
561 **AT+MOD=4**
562
563 **ATZ**
564 )))
565 )))
566
567 (((
568 Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
569 )))
570
571 (((
572 **In addition to that, below are the commands for AVI1 Counting:**
573
574 (% style="color:blue" %)**AT+SETCNT=3,60 **(%%)**(Sets AVI Count to 60)**
575
576 (% style="color:blue" %)**AT+VOLMAX=20000 **(%%)**(If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
577
578 (% style="color:blue" %)**AT+VOLMAX=20000,0 **(%%)**(If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
579
580 (% style="color:blue" %)**AT+VOLMAX=20000,1 **(%%)**(If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
581 )))
582
583
584 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
585
586 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
587 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
588 It starts counting again when it reaches the maximum value.**
589
590
591 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
592
593 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
594 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
595 |Value|(((
596 AVI1 voltage
597 )))|(((
598 AVI2 voltage
599 )))|(((
600 ACI1 Current
601 )))|COUNT1|DIDORO*|(((
602 Reserve
603 )))|MOD
604
605 (((
606 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
607
608 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
609 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
610 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
611 )))
612
613 * RO is for the relay. ROx=1: closed, ROx=0 always open.
614 * FIRST: Indicates that this is the first packet after joining the network.
615 * (((
616 DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
617 )))
618
619 (((
620 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
621 )))
622
623 (((
624 **To activate this mode, run the following AT commands:**
625 )))
626
627 (((
628 (% class="box infomessage" %)
629 (((
630 **AT+MOD=5**
631
632 **ATZ**
633 )))
634 )))
635
636 (((
637 Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
638 )))
639
640
641 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
642
643
644 (% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.**
645
646 For example, if you configured the following commands:
647
648 * **AT+MOD=1 ** **~-~->**  The default work mode
649 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger mode
650
651 The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases:
652
653 1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
654 1. (((
655 Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**confirmed uplinks.**
656 )))
657
658 (% style="color:#037691" %)**AT Commands to set Trigger Condition**:
659
660 (% style="color:#4f81bd" %)**Trigger based on voltage**:
661
662 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
663
664
665 **Example:**
666
667 AT+AVLIM=3000,6000,0,2000   (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
668
669 AT+AVLIM=5000,0,0,0   (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
670
671
672 (% style="color:#4f81bd" %)**Trigger based on current**:
673
674 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
675
676
677 **Example:**
678
679 AT+ACLIM=10000,15000,0,0   (triggers an uplink if ACI1 voltage is lower than 10mA or higher than 15mA)
680
681
682 (% style="color:#4f81bd" %)**Trigger based on DI status**:
683
684 DI status triggers Flag.
685
686 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
687
688
689 **Example:**
690
691 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
692
693
694 (% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
695
696 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
697
698 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
699
700 AA: Type Code for this downlink Command:
701
702 xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
703
704 yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
705
706 yy2 yy2: AC1 or AV1 HIGH limit.
707
708 yy3 yy3: AC2 or AV2 LOW limit.
709
710 Yy4 yy4: AC2 or AV2 HIGH limit.
711
712
713 **Example 1**: AA 00 13 88 00 00 00 00 00 00
714
715 Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
716
717
718 **Example 2**: AA 02 01 00
719
720 Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
721
722
723 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
724
725 MOD6 Payload: total of 11 bytes
726
727 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
728 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
729 |Value|(((
730 TRI_A FLAG
731 )))|(((
732 TRI_A Status
733 )))|(((
734 TRI_DI FLAG+STA
735 )))|Reserve|Enable/Disable MOD6|(((
736 MOD(6)
737 )))
738
739 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
740
741 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
742 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
743 |(((
744 AV1_LOW
745 )))|(((
746 AV1_HIGH
747 )))|(((
748 AV2_LOW
749 )))|(((
750 AV2_HIGH
751 )))|(((
752 AC1_LOW
753 )))|(((
754 AC1_HIGH
755 )))|(((
756 AC2_LOW
757 )))|(((
758 AC2_HIGH
759 )))
760
761 * Each bit shows if the corresponding trigger has been configured.
762
763 **Example:**
764
765 10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW
766
767
768 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
769
770 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
771 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
772 |(((
773 AV1_LOW
774 )))|(((
775 AV1_HIGH
776 )))|(((
777 AV2_LOW
778 )))|(((
779 AV2_HIGH
780 )))|(((
781 AC1_LOW
782 )))|(((
783 AC1_HIGH
784 )))|(((
785 AC2_LOW
786 )))|(((
787 AC2_HIGH
788 )))
789
790 * Each bit shows which status has been triggered on this uplink.
791
792 **Example:**
793
794 10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low.
795
796
797 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
798
799 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
800 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
801 |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
802
803 * Each bits shows which status has been triggered on this uplink.
804
805 **Example:**
806
807 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
808
809 00000101: Means both DI1 and DI2 trigger are enabled.
810
811
812 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
813
814 Downlink command to poll MOD6 status:
815
816 **AB 06**
817
818 When device got this command, it will send the MOD6 payload.
819
820
821 === 3.3.7 Payload Decoder ===
822
823 (((
824
825
826 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
827 )))
828
829
830 == 3.4 ​Configure LT-22222-L via AT Commands or Downlinks ==
831
832 (((
833 You can configure LT-22222-L I/O Controller via AT Commands or LoRaWAN Downlinks.
834 )))
835
836 (((
837 (((
838 There are two tytes of commands:
839 )))
840 )))
841
842 * (% style="color:blue" %)**Common commands**(%%):
843
844 * (% style="color:blue" %)**Sensor-related commands**(%%):
845
846 === 3.4.1 Common commands ===
847
848 (((
849 These are available for each sensors and include actions such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]s.
850 )))
851
852 === 3.4.2 Sensor-related commands ===
853
854 These commands are specially designed for the LT-22222-L. Commands can be sent to the device using options such as an AT command or a LoRaWAN downlink payload.
855
856 ==== 3.4.2.1 Set Transmit Interval ====
857
858 Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
859
860 (% style="color:#037691" %)**AT command**
861
862 (% style="width:500px" %)
863 |**Command**|AT+TDC<time>
864 |**Response**|
865 |**Parameters**|<time> uplink interval is in milliseconds
866 |**Example**|(((
867 AT+TDC=30000
868
869 Sets the uplink interval to 30,000 milliseconds (30 seconds)
870 )))
871
872 (% style="color:#037691" %)**Downlink payload**
873
874 (% style="width:500px" %)
875 |**Payload**|(((
876 <prefix><time>
877 )))
878 |**Parameters**|(((
879 <prefix> 0x01
880
881 <time> uplink interval is in milliseconds, represented by 3  bytes in hexadecimal.
882 )))
883 |**Example**|(((
884 01 **00 75 30**
885
886 Sets the uplink interval to 30,000 milliseconds (30 seconds)
887
888 Conversion: 30000 (dec) = 00 75 30 (hex)
889
890 See [[RapidTables>>https://www.rapidtables.com/convert/number/decimal-to-hex.html?x=30000]]
891 )))
892
893 ==== 3.4.2.2 Set the Work Mode (AT+MOD) ====
894
895
896 Sets the work mode.
897
898 * (% style="color:#037691" %)**AT command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
899
900 Where N is the work mode.
901
902 **Example**: AT+MOD=2. This will set the work mode to Double DI counting mode.
903
904
905 * (% style="color:#037691" %)**Downlink payload (prefix 0x0A):**
906
907 (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
908
909
910
911 ==== 3.4.2.3 Poll an uplink ====
912
913 Requests the device to send an uplink.
914
915
916 * (% style="color:#037691" %)**AT command:**(%%) There is no AT Command to poll uplink
917
918 * (% style="color:#037691" %)**Downlink payload (prefix 0x08):**
919
920 (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
921
922 **Example**: 0x08FF, ask device to send an Uplink
923
924
925
926 ==== 3.4.2.4 Enable/Disable Trigger Mode ====
927
928 Enable or disable the trigger mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
929
930 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
931
932 (% style="color:red" %)**1:** (%%)Enable the trigger mode
933
934 (% style="color:red" %)**0: **(%%)Disable the trigger mode
935
936
937 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
938
939 (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
940
941
942
943 ==== 3.4.2.5 Poll trigger settings ====
944
945 Polls the trigger settings.
946
947 * (% style="color:#037691" %)**AT Command:**
948
949 There is no AT Command for this feature.
950
951 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
952
953 (% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll the trigger settings. Device will uplink trigger settings once receive this command
954
955
956
957 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as a trigger ====
958
959 Enable or disable DI1/DI2/DI2 as a trigger.
960
961 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
962
963 **Example:** AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
964
965
966 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
967
968 (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
969
970
971
972 ==== 3.4.2.7 Trigger1 – Set DI or DI3 as a trigger ====
973
974 Sets DI1 or DI3 (for LT-33222-L) as a trigger.
975
976 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG1=a,b**
977
978 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
979
980 (% style="color:red" %)**b :** (%%)delay timing.
981
982 **Example:** AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
983
984
985 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
986
987 (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
988
989
990 ==== 3.4.2.8 Trigger2 – Set DI2 as a trigger ====
991
992 Sets DI2 as a trigger.
993
994 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
995
996 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
997
998 (% style="color:red" %)**b :** (%%)delay timing.
999
1000 **Example:** AT+TRIG2=0,100 (set DI1 port to trigger on low level, valid signal is 100ms )
1001
1002
1003 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
1004
1005 (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
1006
1007
1008 ==== 3.4.2.9 Trigger – Set AC (current) as a trigger ====
1009
1010 Sets the current trigger based on the AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1011
1012 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ACLIM**
1013
1014 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
1015
1016 (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1017
1018
1019
1020 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
1021
1022 Sets the current trigger based on the AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1023
1024 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
1025
1026 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
1027
1028 (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1029
1030
1031 ==== 3.4.2.11 Trigger – Set minimum interval ====
1032
1033 Sets AV and AC trigger minimum interval. Device won't response to the second trigger within this set time after the first trigger.
1034
1035 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
1036
1037 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
1038
1039 (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
1040
1041 (((
1042 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
1043 )))
1044
1045
1046
1047 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1048
1049 Controls the digital outputs DO1, DO2, and DO3
1050
1051 * (% style="color:#037691" %)**AT Command**
1052
1053 There is no AT Command to control Digital Output
1054
1055
1056 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1057
1058 (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1059
1060 (((
1061 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1062 )))
1063
1064 (((
1065 01: Low,  00: High ,  11: No action
1066
1067 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1068 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
1069 |02  01  00  11|Low|High|No Action
1070 |02  00  11  01|High|No Action|Low
1071 |02  11  01  00|No Action|Low|High
1072 )))
1073
1074 (((
1075 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1076 )))
1077
1078 (((
1079 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1080 )))
1081
1082
1083
1084 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1085
1086
1087 * (% style="color:#037691" %)**AT Command**
1088
1089 There is no AT Command to control Digital Output
1090
1091
1092 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1093
1094 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1095
1096
1097 This is to control the digital output time of DO pin. Include four bytes:
1098
1099 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1100
1101 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1102
1103 01: DO pins will change back to original state after timeout.
1104
1105 00: DO pins will change to an inverter state after timeout 
1106
1107
1108 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1109
1110 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1111 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1112 |0x01|DO1 set to low
1113 |0x00|DO1 set to high
1114 |0x11|DO1 NO Action
1115
1116 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1117
1118 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1119 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1120 |0x01|DO2 set to low
1121 |0x00|DO2 set to high
1122 |0x11|DO2 NO Action
1123
1124 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1125
1126 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1127 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1128 |0x01|DO3 set to low
1129 |0x00|DO3 set to high
1130 |0x11|DO3 NO Action
1131
1132 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:(%%) Latching time. Unit: ms
1133
1134
1135 (% style="color:red" %)**Note: **
1136
1137 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1138
1139 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1140
1141 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1142
1143
1144 **Example payload:**
1145
1146 **~1. A9 01 01 01 01 07 D0**
1147
1148 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1149
1150 **2. A9 01 00 01 11 07 D0**
1151
1152 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1153
1154 **3. A9 00 00 00 00 07 D0**
1155
1156 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1157
1158 **4. A9 00 11 01 00 07 D0**
1159
1160 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1161
1162
1163
1164 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1165
1166
1167 * (% style="color:#037691" %)**AT Command:**
1168
1169 There is no AT Command to control Relay Output
1170
1171
1172 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1173
1174 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1175
1176
1177 (((
1178 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1179 )))
1180
1181 (((
1182 00: Closed ,  01: Open , 11: No action
1183
1184 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1185 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1186 |03  00  11|Open|No Action
1187 |03  01  11|Close|No Action
1188 |03  11  00|No Action|Open
1189 |03  11  01|No Action|Close
1190 |03  00  00|Open|Open
1191 |03  01  01|Close|Close
1192 |03  01  00|Close|Open
1193 |03  00  01|Open|Close
1194 )))
1195
1196 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1197
1198
1199
1200 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1201
1202
1203 * (% style="color:#037691" %)**AT Command:**
1204
1205 There is no AT Command to control Relay Output
1206
1207
1208 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1209
1210 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1211
1212
1213 This is to control the relay output time of relay. Include four bytes:
1214
1215 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1216
1217 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1218
1219 01: Relays will change back to original state after timeout.
1220
1221 00: Relays will change to an inverter state after timeout
1222
1223
1224 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1225
1226 [[image:image-20221008095908-1.png||height="364" width="564"]]
1227
1228
1229 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1230
1231
1232 (% style="color:red" %)**Note:**
1233
1234 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1235
1236 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1237
1238
1239 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1240
1241
1242 **Example payload:**
1243
1244 **~1. 05 01 11 07 D0**
1245
1246 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1247
1248 **2. 05 01 10 07 D0**
1249
1250 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1251
1252 **3. 05 00 01 07 D0**
1253
1254 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1255
1256 **4. 05 00 00 07 D0**
1257
1258 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1259
1260
1261
1262 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1263
1264
1265 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1266
1267 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1268
1269 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1270
1271 (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1272
1273
1274
1275 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1276
1277
1278 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1279
1280 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1281
1282 (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1283
1284
1285 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1286
1287 (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1288
1289
1290
1291 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1292
1293
1294 Clear counting for counting mode
1295
1296 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT         **(%%) ~/~/ clear all counting
1297
1298 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1299
1300 (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1301
1302
1303
1304 ==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1305
1306
1307 * (% style="color:#037691" %)**AT Command:**
1308
1309 (% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1310
1311
1312 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1313
1314 (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1315
1316 (((
1317 range: aa bb cc:0 to 16777215,  (unit:second)
1318 )))
1319
1320
1321
1322 ==== 3.4.2.20 Reset save RO DO state ====
1323
1324
1325 * (% style="color:#037691" %)**AT Command:**
1326
1327 (% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1328
1329 (% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1330
1331
1332 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1333
1334 (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1335
1336
1337
1338 ==== 3.4.2.21 Encrypted payload ====
1339
1340
1341 * (% style="color:#037691" %)**AT Command:**
1342
1343 (% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1344
1345 (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1346
1347
1348
1349 ==== 3.4.2.22 Get sensor value ====
1350
1351
1352 * (% style="color:#037691" %)**AT Command:**
1353
1354 (% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1355
1356 (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1357
1358
1359
1360 ==== 3.4.2.23 Resets the downlink packet count ====
1361
1362
1363 * (% style="color:#037691" %)**AT Command:**
1364
1365 (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1366
1367 (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1368
1369
1370
1371 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1372
1373
1374 * (% style="color:#037691" %)**AT Command:**
1375
1376 (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1377
1378 (% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1379
1380
1381 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1382
1383 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1384
1385
1386
1387 ==== 3.4.2.25 Copy downlink to uplink ====
1388
1389
1390 * (% style="color:#037691" %)**AT Command**(%%)**:**
1391
1392 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1393
1394 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1395
1396
1397 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1398
1399 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1400
1401
1402
1403 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1404
1405 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1406
1407
1408
1409 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1410
1411
1412 * (((
1413 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1414
1415 (% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1416
1417
1418 )))
1419
1420 **Example:**
1421
1422 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1423
1424
1425 == 3.5 Integrating with ThingsEye.io ==
1426
1427 The Things Stack application supports integration with ThingsEye.io. Once integrated, ThingsEye.io acts as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1428
1429 === 3.5.1 Configuring The Things Stack ===
1430
1431 We use The Things Stack Sandbox in this example:
1432
1433 * In **The Things Stack Sandbox**, go to the **Application **for the LT-22222-L you added.
1434 * Select **MQTT** under **Integrations** in the left menu.
1435 * In the **Connection information **section, under **Connection credentials**, The Things Stack displays an auto-generated **username**. You can use it or provide a new one.
1436 * Click the **Generate new API key** button to generate a password. You can view it by clicking on the **visibility toggle/eye** icon. The API key works as the password.
1437
1438 {{info}}
1439 The username and  password (API key) you created here are required in the next section.
1440 {{/info}}
1441
1442 [[image:tts-mqtt-integration.png||height="625" width="1000"]]
1443
1444 === 3.5.2 Configuring ThingsEye.io ===
1445
1446 * Login to your [[ThingsEye.io >>https://thingseye.io]]account.
1447 * Under the **Integrations center**, click **Integrations**.
1448 * Click the **Add integration** button (the button with the **+** symbol).
1449
1450 [[image:thingseye-io-step-1.png||height="625" width="1000"]]
1451
1452
1453 On the **Add integration** window, configure the following:
1454
1455 **Basic settings:**
1456
1457 * Select **The Things Stack Community** from the **Integration type** list.
1458 * Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
1459 * Ensure the following options are turned on.
1460 ** Enable integration
1461 ** Debug mode
1462 ** Allow create devices or assets
1463 * Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
1464
1465 [[image:thingseye-io-step-2.png||height="625" width="1000"]]
1466
1467
1468 **Uplink data converter:**
1469
1470 * Click the **Create new** button if it is not selected by default.
1471 * Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
1472 * Click the **JavaScript** button.
1473 * Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
1474 * Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
1475
1476 [[image:thingseye-io-step-3.png||height="625" width="1000"]]
1477
1478
1479 **Downlink data converter (this is an optional step):**
1480
1481 * Click the **Create new** button if it is not selected by default.
1482 * Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name.
1483 * Click the **JavaScript** button.
1484 * Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Downlink_Converter.js]].
1485 * Click the **Next** button. You will be navigated to the **Connection** tab.
1486
1487 [[image:thingseye-io-step-4.png||height="625" width="1000"]]
1488
1489
1490 **Connection:**
1491
1492 * Choose **Region** from the **Host type**.
1493 * Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
1494 * Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The **username **and **password **can be found on the MQTT integration page of your The Things Stack account (see Configuring The Things Stack).
1495 * Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
1496
1497 [[image:message-1.png]]
1498
1499
1500 * Click the **Add** button.
1501
1502 [[image:thingseye-io-step-5.png||height="625" width="1000"]]
1503
1504
1505 Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings.
1506
1507
1508 [[image:thingseye.io_integrationsCenter_integrations.png||height="686" width="1000"]]
1509
1510
1511 **Viewing integration details**:
1512
1513 Click on your integration from the list. The **Integration details** window will appear with the **Details **tab selected. The **Details **tab shows all the settings you have provided for this integration.
1514
1515 [[image:integration-details.png||height="686" width="1000"]]
1516
1517
1518 If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
1519
1520 {{info}}
1521 See also ThingsEye documentation.
1522 {{/info}}
1523
1524 **Viewing events:**
1525
1526 The **Events **tab displays all the uplink messages from the LT-22222-L.
1527
1528 * Select **Debug **from the **Event type** dropdown.
1529 * Select the** time frame** from the **time window**.
1530
1531 [[image:thingseye-events.png||height="686" width="1000"]]
1532
1533
1534 * To view the JSON payload of a message, click on the three dots (...) in the Message column of the desired message.
1535
1536 [[image:thingseye-json.png||width="1000"]]
1537
1538
1539 **Deleting the integration**:
1540
1541 If you want to delete this integration, click the **Delete integratio**n button.
1542
1543
1544 == 3.6 Interface Details ==
1545
1546 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1547
1548
1549 Support NPN-type sensor
1550
1551 [[image:1653356991268-289.png]]
1552
1553
1554 === 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1555
1556
1557 (((
1558 The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1559 )))
1560
1561 (((
1562 (((
1563 The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1564
1565
1566 )))
1567 )))
1568
1569 [[image:1653357170703-587.png]]
1570
1571 (((
1572 (((
1573 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1574 )))
1575 )))
1576
1577 (((
1578
1579 )))
1580
1581 (((
1582 (% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1583 )))
1584
1585 (((
1586 This type of sensor outputs a low (GND) signal when active.
1587 )))
1588
1589 * (((
1590 Connect the sensor's output to DI1-
1591 )))
1592 * (((
1593 Connect the sensor's VCC to DI1+.
1594 )))
1595
1596 (((
1597 When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be:
1598 )))
1599
1600 (((
1601 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1602 )))
1603
1604 (((
1605 For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1606 )))
1607
1608 (((
1609
1610 )))
1611
1612 (((
1613 (% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1614 )))
1615
1616 (((
1617 This type of sensor outputs a high signal (e.g., 24V) when active.
1618 )))
1619
1620 * (((
1621 Connect the sensor's output to DI1+
1622 )))
1623 * (((
1624 Connect the sensor's GND DI1-.
1625 )))
1626
1627 (((
1628 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1629 )))
1630
1631 (((
1632 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1633 )))
1634
1635 (((
1636 If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1637 )))
1638
1639 (((
1640
1641 )))
1642
1643 (((
1644 (% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1645 )))
1646
1647 (((
1648 Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1649 )))
1650
1651 * (((
1652 Connect the sensor's output to DI1+ with a 50K resistor in series.
1653 )))
1654 * (((
1655 Connect the sensor's GND DI1-.
1656 )))
1657
1658 (((
1659 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1660 )))
1661
1662 (((
1663 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1664 )))
1665
1666 (((
1667 If the sensor output is 220V, then [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1668 )))
1669
1670
1671 (% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1672
1673 From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1674
1675 To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1676
1677 [[image:image-20230616235145-1.png]]
1678
1679 (% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1680
1681 [[image:image-20240219115718-1.png]]
1682
1683
1684 === 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1685
1686
1687 (% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1688
1689 (% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
1690
1691 [[image:1653357531600-905.png]]
1692
1693
1694 === 3.6.4 Analog Input Interfaces ===
1695
1696
1697 The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1698
1699
1700 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1701
1702 [[image:1653357592296-182.png]]
1703
1704 Example: Connecting a 4~~20mA sensor
1705
1706 We will use the wind speed sensor as an example for reference only.
1707
1708
1709 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1710
1711 (% style="color:red" %)**Red:  12~~24V**
1712
1713 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1714
1715 **Black:  GND**
1716
1717 **Connection diagram:**
1718
1719 [[image:1653357640609-758.png]]
1720
1721 [[image:1653357648330-671.png||height="155" width="733"]]
1722
1723
1724 Example: Connecting to a regulated power supply to measure voltage
1725
1726 [[image:image-20230608101532-1.png||height="606" width="447"]]
1727
1728 [[image:image-20230608101608-2.jpeg||height="379" width="284"]]
1729
1730 [[image:image-20230608101722-3.png||height="102" width="1139"]]
1731
1732
1733 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1734
1735 (% style="color:red" %)**Red:  12~~24v**
1736
1737 **Black:  GND**
1738
1739
1740 === 3.6.5 Relay Output ===
1741
1742
1743 (((
1744 The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1745
1746 **Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1747 )))
1748
1749 [[image:image-20220524100215-9.png]]
1750
1751
1752 [[image:image-20220524100215-10.png||height="382" width="723"]]
1753
1754
1755 == 3.7 LEDs Indicators ==
1756
1757 The table below lists the behavior of LED indicators for each port function.
1758
1759 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1760 |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
1761 |**PWR**|Always on when there is power
1762 |**TX**|(((
1763 (((
1764 Device boot: TX blinks 5 times.
1765 )))
1766
1767 (((
1768 Successful network join: TX remains ON for 5 seconds.
1769 )))
1770
1771 (((
1772 Transmit a LoRa packet: TX blinks once
1773 )))
1774 )))
1775 |**RX**|RX blinks once when a packet is received.
1776 |**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
1777 |**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
1778 |**DI1**|(((
1779 For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1780 )))
1781 |**DI2**|(((
1782 For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1783 )))
1784 |**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
1785 |**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1786
1787 = 4. Using AT Commands =
1788
1789 The LT-22222-L supports programming using AT Commands.
1790
1791 == 4.1 Connecting the LT-22222-L to a PC ==
1792
1793 (((
1794 You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a PC, as shown below.
1795 )))
1796
1797 [[image:1653358238933-385.png]]
1798
1799
1800 (((
1801 On the PC, you need to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate of (% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-L. Access to AT commands is disabled by default, and a password (default: (% style="color:green" %)**123456**)(%%) must be entered to enable AT command access, as shown below:
1802 )))
1803
1804 [[image:1653358355238-883.png]]
1805
1806
1807 (((
1808 You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1809
1810 == 4.2 LT-22222-L related AT commands ==
1811 )))
1812
1813 (((
1814 The following is the list of all the AT commands related to the LT-22222-L, except for those used for switching between work modes.
1815
1816 * AT+<CMD>? : Help on <CMD>
1817 * AT+<CMD> : Run <CMD>
1818 * AT+<CMD>=<value> : Set the value
1819 * AT+<CMD>=? : Get the value
1820 * ATZ: Trigger a reset of the MCU
1821 * ##**AT+FDR**##: Reset Parameters to factory default, reserve keys 
1822 * **##AT+DEUI##**: Get or set the Device EUI (DevEUI)
1823 * **##AT+DADDR##**: Get or set the Device Address (DevAddr)
1824 * **##AT+APPKEY##**: Get or set the Application Key (AppKey)
1825 * AT+NWKSKEY: Get or set the Network Session Key (NwkSKey)
1826 * AT+APPSKEY: Get or set the Application Session Key (AppSKey)
1827 * AT+APPEUI: Get or set the Application EUI (AppEUI)
1828 * AT+ADR: Get or set the Adaptive Data Rate setting. (0: OFF, 1: ON)
1829 * AT+TXP: Get or set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Specification)
1830 * AT+DR:  Get or set the Data Rate. (0-7 corresponding to DR_X)  
1831 * AT+DCS: Get or set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1832 * AT+PNM: Get or set the public network mode. (0: off, 1: on)
1833 * AT+RX2FQ: Get or set the Rx2 window frequency
1834 * AT+RX2DR: Get or set the Rx2 window data rate (0-7 corresponding to DR_X)
1835 * AT+RX1DL: Get or set the delay between the end of the Tx and the Rx Window 1 in ms
1836 * AT+RX2DL: Get or set the delay between the end of the Tx and the Rx Window 2 in ms
1837 * AT+JN1DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1838 * AT+JN2DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1839 * AT+NJM: Get or set the Network Join Mode. (0: ABP, 1: OTAA)
1840 * AT+NWKID: Get or set the Network ID
1841 * AT+FCU: Get or set the Frame Counter Uplink (FCntUp)
1842 * AT+FCD: Get or set the Frame Counter Downlink (FCntDown)
1843 * AT+CLASS: Get or set the Device Class
1844 * AT+JOIN: Join network
1845 * AT+NJS: Get OTAA Join Status
1846 * AT+SENDB: Send hexadecimal data along with the application port
1847 * AT+SEND: Send text data along with the application port
1848 * AT+RECVB: Print last received data in binary format (with hexadecimal values)
1849 * AT+RECV: Print last received data in raw format
1850 * AT+VER: Get current image version and Frequency Band
1851 * AT+CFM: Get or Set the confirmation mode (0-1)
1852 * AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1853 * AT+SNR: Get the SNR of the last received packet
1854 * AT+RSSI: Get the RSSI of the last received packet
1855 * AT+TDC: Get or set the application data transmission interval in ms
1856 * AT+PORT: Get or set the application port
1857 * AT+DISAT: Disable AT commands
1858 * AT+PWORD: Set password, max 9 digits
1859 * AT+CHS: Get or set the Frequency (Unit: Hz) for Single Channel Mode
1860 * AT+CHE: Get or set eight channels mode, Only for US915, AU915, CN470
1861 * AT+CFG: Print all settings
1862 )))
1863
1864
1865 == 4.2 Common AT Command Sequence ==
1866
1867 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1868
1869 (((
1870
1871
1872 (((
1873 (% style="color:blue" %)**If the device has not joined the network yet:**
1874 )))
1875 )))
1876
1877 (((
1878 (% style="background-color:#dcdcdc" %)##**123456 ~/~/enable AT commands access**##
1879 )))
1880
1881 (((
1882 (% style="background-color:#dcdcdc" %)##**AT+FDR ~/~/reset parameters to factory default, reserve keys**##
1883 )))
1884
1885 (((
1886 (% style="background-color:#dcdcdc" %)##**123456 ~/~/enable AT commands access**##
1887 )))
1888
1889 (((
1890 (% style="background-color:#dcdcdc" %)##**AT+NJM=0 ~/~/set to ABP mode**##
1891 )))
1892
1893 (((
1894 (% style="background-color:#dcdcdc" %)##**ATZ ~/~/reset MCU**##
1895 )))
1896
1897
1898 (((
1899 (% style="color:blue" %)**If the device has already joined the network:**
1900 )))
1901
1902 (((
1903 (% style="background-color:#dcdcdc" %)##**AT+NJM=0**##
1904 )))
1905
1906 (((
1907 (% style="background-color:#dcdcdc" %)##**ATZ**##
1908 )))
1909
1910
1911 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1912
1913 (((
1914
1915
1916 (((
1917 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
1918 )))
1919 )))
1920
1921 (((
1922 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
1923 )))
1924
1925 (((
1926 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
1927 )))
1928
1929 (((
1930 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
1931 )))
1932
1933 (((
1934 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
1935 )))
1936
1937 (((
1938 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
1939 )))
1940
1941 (((
1942 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
1943 )))
1944
1945 (((
1946 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
1947 )))
1948
1949 (((
1950 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
1951 )))
1952
1953 (((
1954 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
1955 )))
1956
1957 (((
1958 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
1959 )))
1960
1961 (((
1962 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1963 )))
1964
1965 (((
1966 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
1967
1968
1969 )))
1970
1971 (((
1972 (% style="color:red" %)**Note:**
1973 )))
1974
1975 (((
1976 **~1. Make sure the device is set to ABP mode in the IoT Server.**
1977
1978 **2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
1979
1980 **3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
1981 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
1982
1983 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
1984 )))
1985
1986 (((
1987 [[image:1653359097980-169.png||height="188" width="729"]]
1988 )))
1989
1990
1991 === 4.2.3 Change to Class A ===
1992
1993
1994 (((
1995 (% style="color:blue" %)**If sensor JOINED:**
1996
1997 (% style="background-color:#dcdcdc" %)**AT+CLASS=A**
1998
1999 (% style="background-color:#dcdcdc" %)**ATZ**
2000 )))
2001
2002
2003 = 5. Case Study =
2004
2005 == 5.1 Counting how many objects pass through the flow Line ==
2006
2007 See [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
2008
2009
2010 = 6. FAQ =
2011
2012 This section contains some frequently asked questions, which can help you resolve common issues and find solutions quickly.
2013
2014
2015 == 6.1 How to update the firmware? ==
2016
2017 Dragino frequently releases firmware updates for the LT-22222-L.
2018
2019 Updating your LT-22222-L with the latest firmware version helps to:
2020
2021 * Support new features
2022 * Fix bugs
2023 * Change LoRaWAN frequency bands
2024
2025 You will need the following things before proceeding:
2026
2027 * 3.5mm programming cable (included with the LT-22222-L as an additional accessory)
2028 * USB to TTL adapter
2029 * Download and install the [[STM32 Flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. (replaced by STM32CubeProgrammer)
2030 * Download the latest firmware image from [[LT-22222-L firmware image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. Check the file name of the firmware to find the correct region.
2031
2032 {{info}}
2033 As of this writing, the latest firmware version available for the LT-22222-L is v1.6.1.
2034 {{/info}}
2035
2036 Below is the hardware setup for uploading a firmware image to the LT-22222-L:
2037
2038
2039 [[image:1653359603330-121.png]]
2040
2041
2042 Start the STM32 Flash Loader and choose the correct COM port to update.
2043
2044 (((
2045 (((
2046 (% style="color:blue" %)**For LT-22222-L**(%%):
2047
2048 Hold down the **PRO** button, then briefly press the **RST** button. The **DO1** LED will change from OFF to ON. When the **DO1** LED is ON, it indicates that the device is in firmware download mode.
2049 )))
2050
2051
2052 )))
2053
2054 [[image:image-20220524103407-12.png]]
2055
2056
2057 [[image:image-20220524103429-13.png]]
2058
2059
2060 [[image:image-20220524104033-15.png]]
2061
2062
2063 (% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5mm cable. The pin mapping is as follows:
2064
2065 [[image:1653360054704-518.png||height="186" width="745"]]
2066
2067
2068 (((
2069 (((
2070 == 6.2 How to change the LoRaWAN frequency band/region? ==
2071 )))
2072 )))
2073
2074 (((
2075 You can follow the introductions on [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2076 )))
2077
2078 (((
2079
2080
2081 == 6.3 How to setup LT to work with a Single Channel Gateway, such as LG01/LG02? ==
2082 )))
2083
2084 (((
2085 (((
2086 In this case, you need to set the LT-33222-L to work in ABP mode and transmit on only one frequency.
2087 )))
2088 )))
2089
2090 (((
2091 (((
2092 Assume you have an LG02 working on the frequency 868400000. Below are the steps.
2093
2094
2095 )))
2096 )))
2097
2098 (((
2099 (% style="color:#0000ff" %)**Step 1**(%%):  Log in to The Things Stack SANDBOX, create an ABP device in the application, and input the Network Session key (NwkSKey), App session key (AppSKey) of the device.
2100
2101
2102 )))
2103
2104 (((
2105 [[image:1653360231087-571.png||height="401" width="727"]]
2106
2107
2108 )))
2109
2110 (((
2111 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2112 )))
2113
2114
2115
2116 (((
2117 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2118
2119
2120 )))
2121
2122 (((
2123 (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2124
2125 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2126
2127 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2128
2129 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2130
2131 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2132
2133 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2134
2135 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2136
2137 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2138
2139 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2140 )))
2141
2142
2143 (((
2144 As shown in below:
2145 )))
2146
2147 [[image:1653360498588-932.png||height="485" width="726"]]
2148
2149
2150 == 6.4 How to change the uplink interval? ==
2151
2152 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2153
2154
2155 == 6.5 Can I see the counting event in the serial output? ==
2156
2157 (((
2158 You can run the AT command AT+DEBUG to view the counting event in the serial output. If the firmware is too old and doesn’t support AT+DEBUG, update to the latest firmware first.
2159
2160
2161 == 6.6 Can I use point-to-point communication with LT-22222-L? ==
2162
2163 Yes, you can. Please refer to the [[Point-to-Point Communication of LT-22222-L>>https://wiki.dragino.com/xwiki/bin/view/Main/%20Point%20to%20Point%20Communication%20of%20LT-22222-L/]] page. The firmware that supports point-to-point communication can be found [[here>>https://github.com/dragino/LT-22222-L/releases]].
2164
2165
2166 )))
2167
2168 (((
2169 == 6.7 Why does the relay output default to an open relay after the LT-22222-L is powered off? ==
2170
2171 * If the device is not properly shut down and is directly powered off.
2172 * It will default to a power-off state.
2173 * In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2174 * After a restart, the status before the power failure will be read from flash.
2175
2176 == 6.8 Can I setup LT-22222-L as a NC (Normally Closed) relay? ==
2177
2178 The LT-22222-L's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
2179
2180
2181 [[image:image-20221006170630-1.png||height="610" width="945"]]
2182
2183
2184 == 6.9 Can the LT-22222-L save the RO state? ==
2185
2186 The firmware version must be at least 1.6.0.
2187
2188
2189 == 6.10 Why does the LT-22222-L always report 15.585V when measuring the AVI? ==
2190
2191 It is likely that the GND is not connected during the measurement, or that the wire connected to the GND is loose.
2192
2193
2194 = 7. Troubleshooting =
2195
2196 This section provides some known troubleshooting tips.
2197
2198
2199 )))
2200
2201 (((
2202 (((
2203 == 7.1 Downlink isn't working. How can I solve this? ==
2204 )))
2205 )))
2206
2207 (((
2208 Please refer to this link for debugging instructions: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2209 )))
2210
2211 (((
2212
2213
2214 == 7.2 Having trouble uploading an image? ==
2215 )))
2216
2217 (((
2218 Please refer to this link for troubleshooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2219 )))
2220
2221 (((
2222
2223
2224 == 7.3 Why can't I join TTN in the US915 /AU915 bands? ==
2225 )))
2226
2227 (((
2228 It might be related to the channel mapping. [[Please refer to this link for details.>>https://github.com/dragino/LT-22222-L/releases]]
2229 )))
2230
2231
2232 == 7.4 Why can the LT-22222-L perform Uplink normally, but cannot receive Downlink? ==
2233
2234 The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue.
2235 Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2236
2237
2238 = 8. Ordering information =
2239
2240 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2241
2242 (% style="color:#4f81bd" %)**XXX:**
2243
2244 * (% style="color:red" %)**EU433**(%%): LT with frequency bands EU433
2245 * (% style="color:red" %)**EU868**(%%): LT with frequency bands EU868
2246 * (% style="color:red" %)**KR920**(%%): LT with frequency bands KR920
2247 * (% style="color:red" %)**CN470**(%%): LT with frequency bands CN470
2248 * (% style="color:red" %)**AS923**(%%): LT with frequency bands AS923
2249 * (% style="color:red" %)**AU915**(%%): LT with frequency bands AU915
2250 * (% style="color:red" %)**US915**(%%): LT with frequency bands US915
2251 * (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2252 * (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2253
2254 = 9. Packing information =
2255
2256 **Package includes**:
2257
2258 * 1 x LT-22222-L I/O Controller
2259 * 1 x LoRa antenna matched to the frequency of the LT-22222-L
2260 * 1 x bracket for DIN rail mounting
2261 * 1 x 3.5mm programming cable
2262
2263 **Dimension and weight**:
2264
2265 * Device Size: 13.5 x 7 x 3 cm
2266 * Device Weight: 105 g
2267 * Package Size / pcs : 14.5 x 8 x 5 cm
2268 * Weight / pcs : 170 g
2269
2270 = 10. Support =
2271
2272 * (((
2273 Support is available Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule.
2274 )))
2275 * (((
2276 Please provide as much information as possible regarding your inquiry (e.g., product models, a detailed description of the problem, steps to replicate it, etc.) and send an email to [[support@dragino.cc>>mailto:support@dragino.cc]]
2277
2278
2279 )))
2280
2281 = 11. Reference​​​​​ =
2282
2283 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2284 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2285 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]